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Abstract—We present a semi-automatic approach for stream surface generation. Our approach is based on the conjecture that good

seeding curves can be inferred from a set of streamlines. Given a set of densely traced streamlines over the flow field, we design a

sketch-based interface that allows users to describe their perceived flow patterns through drawing simple strokes directly on top of the

streamline visualization results. Based on the 2D stroke, we identify a 3D seeding curve and generate a stream surface that captures

the flow pattern of streamlines at the outermost layer. Then, we remove the streamlines whose patterns are covered by the stream

surface. Repeating this process, users can peel the flow by replacing the streamlines with customized surfaces layer by layer.

Furthermore, we propose an optimization scheme to identify the optimal seeding curve in the neighborhood of an original seeding

curve based on surface quality measures. To support interactive optimization, we design a parallel surface quality estimation strategy

that estimates the quality of a seeding curve without generating the surface. Our sketch-based interface leverages an intuitive painting

metaphor which most users are familiar with. We present results using multiple data sets to show the effectiveness of our approach.

Index Terms—Flow visualization, sketch-based interface, human perception, seeding curves, stream surfaces.

✦

1 INTRODUCTION

I N flow visualization, a stream surface is the integration of a

1D seeding rake or curve through a 3D steady flow field. The

resulting surface is everywhere tangent to the local flow. As a

natural generalization of streamlines, stream surfaces represent

a continuum of streamlines. Besides indicating flow directions,

stream surfaces can depict folding, shearing, and twisting behav-

iors, enhance the visual perception of complex flow structures, and

facilitate an intuitive understanding of flow geometry [7], [12].

Compared to streamline visualization, effective stream surface

visualization is much more difficult to achieve. Unlike streamlines

which can be uniquely determined by seeding locations, the

seeding curves of stream surfaces have a much greater degree

of freedom to vary. The differences in length, location, and

shape of seeding curves lead to different stream surfaces. In

addition, the quality of stream surfaces is often difficult to predict,

which requires more post-analysis after the surface is generated.

Existing works on surface seeding often allow users to specify two

endpoints for generating the seeding rake. Seeds are placed on the

resulting line segment for surface tracing. While straightforward,

this approach limits the search space to the surfaces with at

least one straight timeline (i.e., the seeding rake), which may

not be ideal for capturing flow patterns. Moreover, it is difficult

for users to adjust the endpoints to improve the quality of the

generated stream surface since the adjustment result is hardly

foreseeable. Therefore, fine tuning the seeding rake normally

entails painstaking trial-and-error efforts [21].

Inspired by the concept of “structure from motion”, which

reconstructs 3D structures from a set of 2D images [17], we

conjecture that good seeding curves can be inferred from a set

of streamlines. We can randomly place seeds to produce a set of

streamlines that densely cover the entire domain. Unlike discrete

vectors at isolated voxel locations, integral streamlines give a
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Fig. 1: The overall workflow that uses our sketch-based interface

to generate stream surfaces in a semi-automatic manner. The pink

part of the workflow involves user interaction while the green part

is fully automatic.

continuous impression of the underlying flow over the domain,

thus providing more immediate hints to searching for good seeding

curves. Our goal is to leverage human perception to generate

stream surfaces that are picked, adjusted, and verified by users,

which ensures that the resulting surfaces will indeed convey the

information perceived by users. In this regard, our work is in

line with other semi-automatic techniques that leverage human

knowledge for machine-challenging tasks. For example, users

may draw strokes on an image to indicate the foreground and

background for segmentation [2].

In this extended version of our ACM SA16VIS paper [31],

we present a sketch-based interface that allows users to gener-

ate desired stream surfaces on top of a set of densely traced

streamlines. We sketch a typical workflow in Figure 1. Starting

from the streamline visualization results, users can simply draw

a 2D stroke directly on the streamlines to indicate the favored

seeding curve. We derive a binormal field from the flow field

and identify a 3D candidate seeding curve following the binormal

direction. The 2D projection of this seeding curve is similar to

the user-drawn stroke and it leads to a surface that captures the
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flow pattern of the outermost layer of streamlines (i.e., the ones

that are closest to users along the viewing direction). Once the

stream surface is generated, the streamlines whose distances to the

surface are smaller than a user-defined threshold will be removed.

Repeating this process, users can “peel” the streamlines layer by

layer, and each layer becomes one stream surface. During this

process, users can simply remove the less interesting streamlines

as well. They can further adjust the length of the seeding curve to

extend the surface for a more complete coverage, or to shrink the

surface for a more concise representation. They can also apply

an additional optimization step to improve the seeding curve

based on our surface quality estimation. If the seeding curve

is satisfactory, they can generate the stream surface at any step

during this procedure; otherwise, they can abandon the current

seeding curve by drawing another stroke. This procedure applies

human perception to position a seeding curve and verifies the

generated surface to ensure that the visualization results can be

perceived in the desired way. Users can adjust the rendering

effect to achieve desirable surface visualization results. All these

functions are provided by an intuitive painting interface where

users draw seeding curves using the pencil tool, drag a seeding

curve using the hand tool, remove streamlines using the eraser

tool, and adjust surface rendering using the brush tool.

The contributions of our work are the following: First, we

design a novel interface that allows users to generate desired

stream surfaces by sketching on top of a set of densely traced

streamlines. Compared with trial-and-error manual stream surface

seeding, our approach provides useful indications for users to

predict the shapes of generated surfaces. Compared with the

fully automatic surface selection, our approach is more flexible

by allowing users to generate stream surfaces according to their

own needs. Second, our interface leverages a painting metaphor

with four tools (pencil, hand, eraser, and brush) which most users

are familiar with. This reduces the learning curve and allows the

stream surfaces to be generated and rendered in the “what-you-

see-is-what-you-get” manner. Third, we propose a parallel scheme

to estimate the surface quality from a seeding curve without

actually generating the surface. Based on this quality estimation,

we further introduce a real-time surface optimization approach to

improve the seeding curve in its local neighborhood.

2 RELATED WORK

For almost thirty years, flow visualization has been a central

topic in scientific visualization. We refer readers to the surveys

of integration-based [22] and surface-based [8] flow visualization

for an overview of related work. In the following, we restrict our

attention to stream surfaces and review related work on surface

seeding and placement, surface construction and computation,

surface rendering, and surface selection. Then, we present related

work on sketch-based interface for scientific visualization. We also

highlight the differences between our work and prior work.

2.1 Surface-Based Flow Visualization

Existing stream surface generation techniques include extracting

stream surfaces as isosurfaces in specifically designed scalar fields

[4], [33], creating seeding curves as isolines of scalar fields on

domain boundaries [10], and generating seeding curves based on

streamline clusters [9] or a seeding structure (e.g., a seeding plane)

[3], [24]. Similar to our approach, Sadlo et al. [24] proposed to

generate seeding curves guided by a derived vector field (vorticity

field). Unlike the binormal direction, which is uniquely determined

by the shape of streamlines, vorticity field lines are impacted by

many other factors (e.g., velocity magnitude). Therefore, although

their approach is effective for vortex analysis, it may not produce

surfaces with desired shape properties for general flow patterns.

Hultquist [14] presented the first work for surface construction

that advances a seeding front to generate stream surfaces. Sev-

eral works further refine the seeding fronts during advancement,

such as arc-length-based [12], quad-based [23], and point-based

[25] algorithms. Other works improve the interpolation using

tetrahedral grids [26] or Hermite interpolation [27]. Garth et al.

[11] advocated a two-step surface generation. It first generates a

skeleton of the integral surface, followed by a well-conditioned

triangulation. Machado et al. [18] represented surfaces using a

dense set of streamlines, which does not require any triangulation

of surfaces.

Surface rendering aims at reducing visual occlusion and clutter

and enhancing the depth and spatial perception of flow features

and structures. Existing techniques leverage contour lines and

half-toning [1], transparency and texturing [15], and illustration

buffer [5] to improve and enhance the perception of surfaces.

Born et al. [1] leveraged contour lines and half-toning to show the

overall surface shape. They demonstrated that flow directions and

singularities on the stream surface can be depicted and enhanced

by illustrative surface streamlines. Hummel et al. [15] studied

how transparency and texturing can be used to convey the shape

and directional information. They applied screen-space curvature

approximation to enhance integral surface visualization. To enable

nonlocal transparency enhancement and create expressive surface

rendering, Carnecky et al. [5] proposed the illustration buffer to

store a list of all surface layers for each pixel and used a set of

operators to process these depth lists to generate the final image.

Only a few works are directly related to stream surface

selection [20], [30]. Martinez Esturo et al. [20] pointed out the

huge search space of possible stream surfaces in a flow field

and proposed to favor surfaces where the flow is aligned with

principal curvature directions. They leveraged simulated annealing

to select a globally optimal stream surface based on a set of

stream surface quality measures. Schulze et al. [30] extended

the work to select a set of globally optimal stream surfaces in

an iterative manner. All selected surfaces are mutually distant

to convey different flow features while reducing visual occlusion

and clutter. Together they optimize global stream surface quality

measures. These two solutions are fully automatic. Therefore, they

could not be customized according to user intentions or needs.

Due to the highly flexible nature of seeding curves and the huge

candidate pool of stream surfaces, seeking a unique, optimal set

of surfaces demands the generation of an excessive number of

stream surfaces for goodness test. Instead, we advocate a user-

centric approach and allow users to sketch 2D strokes directly on

top of the streamline visualization result to specify surfaces of

interest. Our reasoning is that users can play an instrumental role

in this challenging task by conveying their intuition (i.e., where to

place the surfaces) and priority (i.e., the order of surfaces created)

to quickly narrow down the search space. In this way, we are able

to produce comparable stream surface results cost-effectively, even

though we do not claim that the surfaces are optimal.

2.2 Sketch-Based Interface for Scientific Visualization

In scientific visualization, sketch-based interface leverages human

perception and intuition to achieve customized results and convey
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essential information. For volume visualization, sketch- and touch-

based interface and interaction have been introduced for transfer

function design [32], WYSIWYG volume visualization [13], and

Visualization-by-Sketching for time-varying multivariate data vi-

sualization [29]. Tzeng et al. [32] introduced a sketch interface for

transfer function specification. The interface allows users to paint

directly on sample slices of the volume to specify the materials

that they want and do not want to see. Such information is fed

into an artificial neural network for designing a high-dimensional

classification function for volume visualization. Guo et al. [13]

developed a set of tools to enable direct manipulation of color,

transparency, contrast, brightness, and other optical properties by

brushing a few strokes on top of the volume rendering image. By

matching the sparse sketching input with the clustered features in

both image space and volume space, they were able to identify

the targeted volumetric features. Both works [13], [32] provide

users with intuitive and flexible interaction, without resorting to

the traditional approach of tuning transfer function parameters via

sliders, buttons, or other widgets. Schroeder et al. [29] presented

Visualization-by-Sketching, a sketching interface to enhance the

role of human creativity in time-varying multivariate data visual-

ization. Designers are allowed to paint directly on top of a digital

data canvas, sketch data glyphs, and arrange and blend together

multiple layers of animated 2D graphics.

For flow visualization, sketch-based interfaces have been ap-

plied to 2D illustrative visualization [28], 3D flow field classifi-

cation [35], and exploration of scientific data sets [16]. Schroeder

et al. [28] designed a sketch-based interface for 2D vector fields

that enables users to draw on top of LIC images. Streamlines

approximating the strokes are then added into the visualization. It

also allows users to cut, extend or completely remove a streamline

using sketching. Wei et al. [35] targeted 3D vector fields instead

and presented a solution that allows users to sketch a 2D curve

for pattern matching in 2D and streamline clustering in 3D. A

string matching method is utilized to identify a 3D streamline

whose view-dependent 2D projection is most similar to the user’s

drawing. Then, the identified streamline is used to extract all

similar 3D streamlines. Klein et al. [16] presented a design study

of direct touch interaction to explore 3D scientific data sets. Users

can manipulate a 2D cutting plane on a touch screen, and select

endpoints where streamlines are traced in between.

Unlike the sketch-based interfaces presented in [28], [35] for

streamline visualization, we target the more challenging problem

of stream surface generation. For convenience, we allow users

to directly draw 2D stokes on top of the streamline visualization

result to specify seeding curves, rather than painting on 2D slices

of the volume in a separate view [32]. This minimizes the gap

between users’ perceived flow patterns from the streamlines and

the generated stream surfaces. Compared to the seeding rake gen-

eration [16], we do not require a cutting plane for user sketching.

Instead of directly using the user’s input as the seeding curve, we

identify a seeding curve that leads to an improved surface with

good quality while matching the user’s intention.

Compared with our ACM SA16VIS paper [31], this journal

version makes a significant extension by introducing 1) the parallel

surface quality estimation that efficiently estimates the quality

of a seeding curve without generating the actual surface, and

2) the optimization that improves a seeding curve in its local

neighborhood based on the surface quality estimation. The ex-

tension also includes a quantitative study of the new estimation

and optimization step to demonstrate its effectiveness.

3 STREAM SURFACE GENERATION

Our approach identifies a seeding curve based on a user-drawn

stroke so that the stream surface generated from the seeding curve

covers the outermost layer of streamlines intersecting with the

stroke. To capture the flow pattern, the stream surface should align

with the flow. That is, a local patch of the surface lies in the same

plane defined by the tangent and binormal vectors at a point on the

streamline. The relationship among the tangent t, normal n, and

binormal b vectors is shown in Figure 2 (a). To avoid ambiguity,

we define t as a unit vector pointing in the same direction as the

flow direction v. The directions of n and b are decided accordingly.

For a point p on the streamline, t and n lie on the plane of

Pl which contains the streamline segment centered at p, while

b is perpendicular to Pl . Since streamlines on a stream surface

follow the flow direction, the timelines are preferred to follow

the binormal direction. We approximate a user-drawn stroke with

a seeding curve following the binormal direction and trace the

surface using the quad-based approach [23].

3.1 Aligning Seeding Curve along Binormal Direction

The reason for us to use the binormal direction to align a seeding

curve is based on the following observation. It is ideal to generate

seeding curves that are as perpendicular to the flow as possible

since this kind of seeding curve would maximize the effective

length to generate stream surfaces. In Figure 2 (a), the plane

Pn is defined by the normal n and binormal b vectors. Pn is

perpendicular to the flow direction (i.e., the tangent vector t).

Obviously, there are still an infinite number of directions to take

for the seeding curve on Pn. But we only consider the normal

and binormal directions of the streamline, since they form an

orthogonal basis of Pn. In Figure 2 (b), we illustrate the seeding

curves along the normal direction n and binormal direction b in

red and green, respectively. The black curves are three planar

streamline segments l1, l2, l3 residing in the plane Pl . We can see

that both n and b are perpendicular to the streamline segments,

but n lies in the same plane of Pl as the streamline segments while

b is perpendicular to Pl . Therefore, seeding along n (red curves)

will create a planar surface, which only depicts the flow direction

on the boundary of the surface (i.e., l1 and l3). The flow direction

inside the surface, such as the shape of l2, can only be implied from

the boundary of the surface. On the contrary, seeding along b is

more desirable, since it leads to a surface with a more interesting

3D shape, allowing the flow direction to be perceived from the

shape of the surface.

Figure 2 (d) and (e) show two stream surfaces traced from

two seeding curves following the binormal and normal directions,

respectively. We can see that the surface seeded along the binormal

direction better captures the 3D shape of the vortex core. In

contrast, the surface seeded along the normal direction contains

a large planar portion around the tail of the spiral. Even for the

spiral, this surface is mostly perpendicular to the vortex core and

it fails to convey the impression of a layer of the flow.

For a quantitative study, we leverage the normal curvature

proposed by Martinez Esturo et al. [20] to evaluate the quality

of a surface. They measured the normal curvature of the surface at

a point p as

ns
T Jv

|v|
, (1)

where ns is the surface normal at p, and J and v are the Jacobian

matrix and flow velocity at p, respectively. Note that v is in the
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Fig. 2: (a) the tangent t, normal n, and binormal b vectors at a point p on a streamline. (b) seeding along n (red curves) or b (green

curves). (c) quality measure using the average squared normal curvature. The horizontal axis corresponds to equally sampled seeding

rake directions, starting from the binormal direction. (d) to (f) show stream surfaces seeded along the binormal direction, the normal

direction, and the best straight seeding rake, respectively, for the tornado data set.

same direction as t with additional magnitude information. For

a fair comparison, we compute the average squared normal cur-

vature of each surface by averaging the squared normal curvature

over the entire surface. The stream surfaces that minimize this term

are usually flat ones with vanishing normal curvature and produce

less interesting results. The surfaces that maximize this term often

demonstrate a better quality. In addition to the two seeding curves

along the binormal and normal directions, we evenly sample 30

straight lines pointing in different directions as seeding rakes for

comparison. All these seeding rakes are centered at the midpoint

pc of the seeding curve following the binormal direction and reside

in the plane Pn determined by the binormal and normal vectors at

pc. We make their lengths equal to the maximum distance between

any two seeds on the binormal seeding curve so that they cover a

similar range as the seeding curve following the binormal direction

does.

We plot the average squared normal curvature measured on the

sampled seeding rakes as a gray curve in Figure 2 (c), starting from

the rake following the binormal direction. The average squared

normal curvature of the surface generated from seeding along the

binormal/normal direction is plotted as the blue/orange line. We

can see that seeding along the binormal direction, the generated

surface has close to best quality compared to the sampled seeding

rakes. This is confirmed by comparing Figure 2 (d) and (f), as the

two surfaces only differ by a small degree at the tails.

In practice, instead of computing the binormal directions from

streamlines, we precompute a binormal vector field from the given

vector field, so that the binormal direction at any point in the

domain can be retrieved directly from the binormal vector field.

The binormal direction b at a point p is given by

b = n× t = Jt× t, (2)

where t, n, and J are the tangent direction, normal direction,

and Jacobian matrix at p. The seeding curve is integrated in the

binormal vector field using the fourth-order Runge-Kutta method.

This is similar to tracing streamlines in the original vector field.

3.2 Seeding Curve Approximation

The seeding curve approximation is performed as follows. First,

we map the points on the 2D user-drawn stroke back to the 3D

space. For each point p, we identify the streamline that is first hit

at p, and use the hit point as the mapped 3D point. Figure 3 (a)

shows a user-drawn stroke in the original viewpoint, under which

the stroke is sketched. Each point on this stroke is mapped to a

point on a streamline that is closest to the screen under the original

viewpoint. Observing from another viewing direction as shown in

Figure 3 (b), we can see that although the original stroke seems

relatively smooth, the 3D stroke after mapping is actually zig-zag

due to the depth discontinuity among the streamlines.

Second, instead of smoothing this 3D stroke, we search for

a curve which follows the binormal direction and is closest to

the 3D stroke. For each point p on the 3D stroke, we trace a

curve in the binormal vector field and compute the mean of closest

point distances from the 3D stroke to each curve. The closest

curve is defined as the one with the smallest distance among all

the generated curves. The mean of closest point (MCP) distances

from one point set P = {p1, p2, . . . , pn} to another point set Q =
{q1,q2, . . . ,qm} is formulated as follows

d(P,Q) =
∑pi∈P minq j∈Q d(pi,q j)

n
, (3)

where d(pi,q j) is the Euclidean distance between pi and q j.

Figure 3 (c) demonstrates one example with this setting. One gray

curve is generated at each point on the blue 3D stroke, and the

closest curve is the one highlighted in red. We can see that the

depth randomness of streamlines is canceled out and the closest

curve is approximately the centerline of the 3D stroke.

Third, since we trace the curves in the binormal vector field as

long as possible, these curves are usually longer than the stroke

itself. Therefore, we cut one segment on the curve that best fits

the length of the stroke. Specifically, starting from the point that

is closest to the 3D stroke, we scan the curve in both the forward

and backward directions to identify two points that are closest

to the two endpoints of the stroke. The segment between the two
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Fig. 3: Seeding curve approximation based on a user-drawn stroke. (a) shows the stroke under the original viewpoint. (b) shows the

stroke under another viewpoint, so that its 3D shape can be perceived. (c) shows the stroke in blue, the candidate seeding curves in

gray, and the actual seeding curve in red.
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Fig. 4: Quality estimation based on streamlines. (a) shows the case

where additional streamlines are added for the diverging flow. (b)

shows the streamlines added in three passes using the five critical

points data set. The red, green, and blue streamlines are added in

the first, second, and third passes, respectively.

points identified is the seeding curve. In Figure 3 (c), the red curve

segment is the seeding curve we generate for this example.

3.3 Surface Quality Estimation

We estimate the quality of a seeding curve by predicting how

well its corresponding stream surface aligns with the flow. The

estimation is based on a set of streamlines traced from the seeding

curve. Since we do not require the exact surface for quality

estimation, our solution is more suitable for supporting runtime

interaction. We perform quality estimation for every surface strip

formed between two consecutive streamlines. The quality of the

entire surface is obtained by aggregating the quality of all strips.

Figure 4 (a) shows one strip between two consecutive stream-

lines li and li+1. We apply the greedy approach described by

Hultquist [14] to triangulate this strip so that the local shape of the

surface can be better represented using the triangles. The quality

of the surface is evaluated at each triangle and aggregated over the

entire surface weighted by the area of triangles. We consider two

terms used by Martinez Esturo et al. [20] to measure the quality,

namely, alignment error and normal curvature. Both terms can

be evaluated locally. The alignment error evaluates how well the

principal directions of the surface align with the flow directions so

that the flow direction on the surface can be captured by human

perception. The normal curvature is used to avoid generating

trivial surfaces where less information can be perceived.

However, if the flow diverges, this quality measure between

neighboring streamlines may be inaccurate as the triangles could

be highly skewed. In Figure 4 (a), the left parts of the two

streamlines align well with each other. But the right parts diverge

as the two streamlines go into different directions. The surface

between them cannot be faithfully represented by a single strip

anymore. To tackle the divergence case, we keep track of the

distance between the closest point pair along the two streamlines

li and li+1. When this distance increases to twice of the distance

between two consecutive seeds ds, we terminate the computation

of quality for the two streamlines and trace multiple streamlines

to fill the gap. The number of streamlines to add is estimated by

n = d/ds, where d is the distance between the endpoints of the

two streamlines li and li+1. In Figure 4 (a), we terminate quality

evaluation at points pk and p′k and add n new streamlines (i.e.,

l′′1 , l
′′
2 . . . l

′′
n ). The surface quality is then estimated using the new

streamlines.

The added streamlines could be overly dense, which only

increases the number of samples but does not change the quality

significantly. This is because the result is weighted by the local

area of points, and the total area does not change much as the

density of streamlines varies. As such, we allow up to three levels

of divergence cases in our implementation. In Figure 4 (b), we can

see that the surface is well captured with the additional streamlines

added in the second and third passes.

The time complexity of computing the quality between two

streamlines is linear with respect to the number of points on

the streamlines given the triangulation since it does not require

testing the pairwise distance among points. Without consider-

ing the divergence case, the alignment error between different

streamline pairs is independent of each other. This means that

the computation can be easily parallelized to reduce the evaluation

time. The use of overly dense streamlines for each divergence case

increases the number of streamlines. However, it reduces the level

of divergence cases, which is desired for parallel computation.

With the maximum level of divergence cases set to three, our

quality estimation for the entire surface can be completed in three

passes. In each pass, the alignment error between streamlines at

the same level is computed. Therefore, if computed in parallel,

the quality estimation for the entire surface is still linear with

respect to the number of points on a single streamline. In contrast,

the performance of quality measures that directly evaluate stream

surfaces is often constrained by surface integration [20].

3.4 Seeding Curve Optimization

Seeding curve optimization is an optional step we consider for

improving the surface quality. The original seeding curve that

approximates a user’s sketch follows the binormal direction to

generate the surface. However, even if the binormal vector field

is used to guide surface generation, it does not guarantee that the

resulting stream surface aligns well with the binormal vector field

globally. At this stage, we search for other seeding curves that
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Fig. 5: Seeding curve optimization. (a) shows an example of a grid generated from the red seeding curve. (b) shows a grid using the two

swirls data set. (c) and (d) show the stream surfaces generated from the original and optimized seeding curves based on (b), respectively.

(a)

(b) (c) (d)
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Fig. 6: Our sketch-based interface for stream surface generation. (a) to (d) show the panel of tools, the panel of tool parameters, the

streamline widget, and the stream surface widget, respectively. In (a), the five tool icons displayed from left to right are pencil, eraser,

undo, brush, and save, respectively. Users sketch to generate a new stream surface in (c). Once confirmed, the newly generated surface

will be moved to (d) for visualization.

produce stream surfaces covering similar flow patterns with better

quality. This procedure is outlined in Algorithm 1.

The search space is a grid G of candidate seeds SG by

moving the seeds on the original seeding curve along the normal

direction, as shown in Figure 5 (a). The original seeding curve

and the candidate seeds are displayed as the red curve and the

red circles, respectively. For each seed si on the seeding curve

S = {s1, . . . ,sm}, we trace si along the normal direction up to k

steps forward and k steps backward. The width of the grid is

constrained by the number of steps k so that the optimized seeding

curve still cover similar regions. Note that such a search space is

sufficient since the grid is likely to be perpendicular to the flow

direction as it aligns with the binormal and normal directions.

Therefore, for any seeding curve, an equivalent seeding curve that

is not on the grid can be found by moving the seeds along the flow

direction.

Compared with the surface optimization on a regular 3D grid

proposed by Martinez Esturo et al. [20], our 2D grid is more

efficient since it has fewer grid points. However, our 2D grid may

not be fully expanded when critical points exist in the normal and

binormal fields. The critical points in these two fields satisfy n =
Jv= 0, indicating less interesting laminar flow if v 6= 0. Therefore,

it is unlikely to further improve the quality of a surface at the

critical points in these two fields. For efficiency, we simply stop

expanding the grid at these critical points.

The neighboring candidate seeds are connected to form the

edges EG of the grid. In Figure 5 (a), the connections among

candidate seeds are shown by the solid lines. Note that to avoid

sharp turns on the seeding curve, we do not connect candidate

seeds along the normal direction.

We formulate this optimization problem as finding the shortest

path between any two candidate seeds s1,i and sm, j spawned

by the first seed s1 and last seed sm on the original curve,

so that the optimized seeding curve roughly follows a similar

direction and covers a similar range. As shown in Figure 5 (a),

we create two dummy nodes as source s0 and sink sm+1 (green

circles), which connect to candidates spawned by the first and last

seeds, respectively, with weights of zero (green dashed lines). The

shortest path between the source and sink is then identified using

Dijkstra’s algorithm.
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Algorithm 1: Seeding curve optimization

input : A seeding curve S = {s1, . . . ,sm}
output: An Optimized seeding curve S′

1 G =< SG,EG >=< /0, /0 >
2 foreach si ∈ S do

3 for j =−k, . . . ,k do

4 si, j← trace si in the normal vector field by j steps

5 VG←VG∪ si, j

6 end

7 end

8 foreach si, j,sr,l ∈VG do

9 if |i− r|= 1, | j− l| ≤ 1 then

10 EG← EG∪< si, j,sr,l >
11 end

12 end

13 create two dummy grid points s0 and sm+1

14 foreach s1, j ∈ G do

15 EG← EG∪< s0,s1, j >
16 end

17 foreach sm, j ∈ G do

18 EG← EG∪< sm, j,sm+1 >
19 end

20 evaluate the quality of < si, j,sr,l >∈ EG in parallel

21 find the shortest path s0→ S′→ sm+1 on the grid G

Figure 5 (b) shows a grid generated from a seeding curve

using the two swirls data set with k = 5. The edges are colored by

the estimated alignment error of the corresponding stream surface

strip. The original seeding curve is the one in the middle with

edges of medium or small alignment errors (as indicated by the

red dashed curve). The selected seeds on the shortest path are

displayed as black dots forming the optimized seeding curve (as

indicated by the gray dashed curve). We can see that the optimized

seeding curve contains mostly blue segments with small alignment

errors. Figure 5 (c) and (d) show the stream surfaces generated

from the original and optimized seeding curves, respectively.

The stream surfaces are colored by the local alignment error at

each vertex using the color map in (d). This color map is used

throughout the paper to indicate attribute values on surfaces or

velocity magnitude on streamlines. The surface generated from

the optimized seeding curve reduces the total alignment error by

avoiding most regions with large alignment errors while capturing

a similar flow pattern.

4 INTERFACE AND INTERACTION DESIGN

As shown in Figure 6, our interface consists of four components:

the tool panel, parameter panel, streamline widget, and stream

surface widget. We provide six tools (pencil, eraser, hand, undo,

brush, and save) for users to complete different tasks in the two

widgets. The streamline widget displays all streamlines and works

with the pencil, eraser, hand, and undo tools. It also displays the

newly generated stream surface before users confirm the surface

and move it to the stream surface widget. The stream surface

widget displays all the confirmed stream surfaces. Users can use

the brush tool to change their rendering effects. The save tool

is used to output the current screenshot as an image file. In this

section, we describe the widgets, and discuss the associated tools

and interactions.

(a) (b)

(c) (d)

(e) (f)

Fig. 7: Generating a single stream surface. (a) shows the original

streamlines. (b) shows a user-drawn stroke in blue, the correspond-

ing seeding curve in red, and guiding streamlines in gray. (c)

shows the stream surface generated from the seeding curve. (d)

shows the extended seeding curve and the corresponding guiding

streamlines. (e) shows the stream surface generated from the

extended seeding curve. (f) shows the remaining streamlines after

removing the streamlines that are captured by the newly generated

stream surface.

4.1 Streamline Widget

In the streamline widget, users sketch with the pencil tool to

generate seeding curves and then create stream surfaces. They use

the eraser tool to remove unimportant or surrounding streamlines

so that the stream surfaces covering the important or inner flow

pattern can be generated subsequently. To modify the width of

the stream surface, users can leverage the hand tool to drag the

endpoints of its seeding curve along the binormal direction. We

do not present an icon for the hand tool on the interface as this

tool will be automatically enabled for fine tuning the seeding curve

and surface right after the initial surface is generated.

Typical Workflow. We demonstrate the use of the streamline

widget with an example shown in Figure 7. We start with a pool

of streamlines densely traced over the field, as shown in (a). Users

can use the eraser tool to remove less interesting streamlines and

use the pencil tool to draw a stroke on top of the streamline
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(a) (b)

Fig. 8: A stream surface and its corresponding streamlines, deter-

mined by the mean of closest point distances. (a) and (b) show the

surface and streamlines under two different viewpoints.

visualization result to indicate the flow pattern they want to

capture. We trace a set of guiding streamlines from evenly spaced

seeds on this seeding curve to indicate the shape of corresponding

stream surface. For a clearer observation, the streamlines close to

the guiding streamlines will be temporarily removed, as shown in

(b). Users can generate a stream surface from the seeding curve

if they feel that the guiding streamlines represent the desired flow

pattern; otherwise, they can ignore this seeding curve by simply

drawing another stroke.

After the stream surface is generated, the surface along with

the two endpoints of its seeding curve will appear in the streamline

widget, as shown in (c). Users can use the hand tool to drag

the endpoints to extend or shrink the surface. When users finish

dragging the endpoints, they can regenerate the surface, as shown

in (e). If users are satisfied with the quality of the surface, they

can confirm the surface and add it to the final visualization

result. Once the stream surface is confirmed, it will be moved

to the stream surface widget, and the streamlines whose pattern

is captured by this surface will be removed from the streamline

widget. Compared to the streamlines before surface generation as

shown in (a), we can see that the outermost layer of streamlines is

peeled, as shown in (f). Repeating this process, users can peel the

flow field layer by layer, and generate the desired stream surfaces

for visualization.

Tool Tuning. Several parameters can be adjusted for the pencil

and eraser tools. For the pencil tool, the only parameter is its size.

Similar to that in a painting interface which decides the thickness

of stroke, the size of the pencil in our interface determines the

thickness of the layer being peeled. The streamlines close to the

guiding streamlines or the stream surface are peeled based on the

mean of closest point distances. The size parameter serves as the

distance threshold to control which streamlines to remove. If the

value is small, then only the streamlines that are very close to the

guiding streamlines or the stream surface will be removed, which

means that only a thin layer will be peeled. In Figure 8, we show a

stream surface and the corresponding streamlines removed under

two different viewpoints. We can observe that the streamlines

approximately form a layer centered at the surface.

For the eraser tool, two parameters are available: size and

depth. The size parameter determines the radius of a circle

centered at the mouse position on the screen. Under the current

viewpoint, we remove the front streamlines that intersect with this

circle in the screen space. The depth parameter decides how many

streamlines to remove at the mouse position. If the value is one,

only the frontmost streamline will be removed at each sample

position. We also provide the undo tool, so that users can click on

the icon to recover the streamlines removed by the eraser tool.

4.2 Stream Surface Widget

In the stream surface widget, we render the stream surfaces and

allow users to adjust rendering effects with the brush tool. The

rendering effects include color, transparency, silhouette, ambi-

ent occlusion, and displaying streamlines on the surface. The

silhouette visually emphasizes the transition between front- and

back-facing surface layers and facilitates better perception of

surface shape together with the use of ambient occlusion. So it

is applied to all surfaces by default. Other rendering effects can

be adjusted by users. We provide two coloring schemes: surface-

based coloring and attribute-based coloring.

Surface-Based Coloring. This coloring scheme uses different

colors for different stream surfaces, but all points on the same

surface share the same color. Using this scheme, different surfaces

can be better distinguished. As suggested by Hummel et al. [15],

the transparency is designed as a function of normal variation in

the image space to emphasize surface details, such as ridges and

valleys. Formally, the transparency value is given by αv = vγ/2,

where v is the normal variation and γ is a parameter in [0,1].
A large γ value emphasizes regions with high normal variation.

We further restrict the transparency value to [αmin,αmax] by linear

interpolation (1−αv)αmin +αvαmax.

The brush tool in this coloring scheme has three parameters:

color, γ , and transparency scaling factor sα . The color can be

selected from a color palette, while γ and sα can be selected with

sliders or input from text boxes. We use sα as a scaling factor to

adjust the transparency of each individual surface so that users can

deemphasize the less important surfaces and emphasize the more

important ones. The final transparency is defined as

α = sα((1−αv)αmin +αvαmax), (4)

Using the brush tool, users can simply click on a surface to apply

the current parameter values of the brush.

Attribute-Based Coloring. This coloring scheme assigns the

same color and transparency to surface points with the same

attribute value. The scalar attribute, such as the curvature or

torsion field derived from the flow field, is specified by users.

This coloring scheme helps to distinguish flow patterns with a

certain property as indicated by the selected attribute. Initially, the

color at each surface point is given by a color map, and following

Equation (4), its transparency is given by

α = (1−aγ/2)αmin +aγ/2αmax, (5)

where a is the normalized attribute value. Two parameters can

be adjusted for the brush tool: color and transparency. Users can

use the brush tool to paint colors directly on top of the stream

surface rendering. This will blend the brush color with the original

color. When the brush tool is used to sketch on the surfaces, we

accumulate the attribute values in the brush strokes. We partition

the attribute values into a number of discrete ranges. Let ni be

the count of the i-th attribute range that is brushed by users. We

update c(i), the color of the i-th attribute value range, to

c(i) = (1−wi)co(i)+wicb, (6)

where co(i) is the original color of the i-th attribute value range,

cb is the brush color, wi = min(ni/N,1), and N is a constant. If

ni is zero, which means that the i-th attribute value range is never
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timing (in seconds) quality (%)
avg. curve surface line estimation AE NC

data set dimension # p/l SR fitting integral removal optimize error improve improve

Bénard 128×32×64 288.4 1 0.21 0.50 0.11 0.77 15.1 5.6 8.4
crayfish 322×162×119 288.7 15 0.23 4.45 0.97 1.63 19.1 9.0 4.1
electron 64×64×64 58.0 1 0.26 0.10 0.10 0.16 4.5 13.0 1.0
five CPs 51×51×51 116.2 1 0.22 0.15 0.15 0.16 3.6 20.5 5.9
sq. cylinder 192×64×48 195.9 1 0.69 2.37 0.41 0.67 26.2 32.0 3.6
tornado 64×64×64 292.4 1 0.25 0.26 0.14 0.15 13.1 20.1 11.6
two swirls 64×64×64 918.2 10 0.79 2.24 0.73 1.54 21.4 35.6 10.4

TABLE 1: Timing and quality results, and parameters for each data set. We used 500 streamlines for the two swirls data set and 3000

streamlines for the other data sets. The timing reported is the average cost to generate one stream surface in the results. “avg. # p/l” is

the average number of points per streamline. “SR” is sampling rate, “AE” is alignment error, and “NC” is normal curvature.

brushed, that attribute value range uses its original color. If ni is

larger than N, the color of the i-th attribute value range becomes

the brush color. The transparency is updated similarly.

5 RESULTS

5.1 Performance, Parameters, and Quality Estimation

We evaluated the performance of our approach using the data sets

listed in Table 1. From top to bottom, these data sets are: the

liquid flow between two parallel planes [36], the heat flow around

a cooking crayfish [19], a flow field containing three electrodes

[37], a synthesized flow field consisting of five critical points [38],

the flow around a confined square cylinder [34], a procedurally

generated tornado [6], and swirls resulting from wake vortices

[19]. All results were collected on a PC with an Intel Core i7-4790

quad-core 3.60GHz CPU, 32GB main memory, and an NVIDIA

GeForce 970 graphics card with 4GB video memory.

Performance and Parameters. For most data sets, we ran-

domly traced 3000 streamlines to fill the entire domain. For

the crayfish and two swirls data sets, since the streamlines are

relatively long with repeated patterns, we used fewer streamlines

for better speed performance. Generally, the streamlines are suf-

ficiently dense if most of the points on a user sketch will fall

onto the outermost layer of the streamlines. The sampling rate r

indicates that a point in every r points on a streamline is used

to compute the mean of closest point distances between that

streamline and a stream surface or a guiding streamline. This

distance was used to determine whether or not a streamline close

to a stream surface or the guiding streamlines should be removed.

The streamline removal was performed in the GPU using CUDA,

and its running time mainly depends on the numbers of points

on a streamline and the stream surface. With the continuity of

streamlines, we felt that the distances computed using the sampled

points still produce reasonable results, especially for the long

streamlines with repeated patterns.

For each data set, the timing and quality results were collected

in three runs. During each run, we generated as many surfaces

as needed, until most streamlines were removed and the flow

features were captured by the surfaces. For different runs, we

might generate different sets of surfaces to collect more complete

results. The curve fitting time includes the time to trace lines in

the binormal vector field, fit the user’s sketch to those lines, trace

the guiding streamlines, and temporarily remove streamlines for

occlusion reduction. The seeding curve optimization time includes

the time to estimate surface strips between every pair of candidate

seeds and find the shortest path on the grid. The streamline tracing

and removal, and surface quality estimation were performed in

the GPU, and the other steps were performed in the CPU. The

guiding streamlines contain much fewer points than the final

surface, especially when the flow is complex. Therefore, removing

streamlines according to the guiding streamlines is less costly.

In our experiment, the average time to fit a seeding curve and

generate the guiding streamlines is less than one second for all

data sets. The surface integral may be costly for more complicated

data sets since the diverging and swirling flow patterns will result

in a large surface, which can take several seconds. But in general,

the system is interactive as the surface integral and streamline

removal steps will only be performed when users are satisfied with

the guiding streamlines. Our parallel surface quality estimation

provides significant speedup to support real-time optimization.

Given a seeding curve with m seeds, the optimization will need

to evaluate the quality of (6k + 1)× (m− 1) surface strips and

identify the shortest path, where k = 5 is the number of candidate

seeds produced by an original seed in both forward and backward

directions. This leads to around 31 times of computation when the

surface integral is required in the optimization. With our parallel

estimation, the optimization takes less than one second for most

of the data sets and it is usually even faster than surface integral.

Quality Estimation. To measure the accuracy of our quality

estimation, we compare the estimated alignment error of each

seeding curve with the one measured on the actual stream surfaces.

The estimated error is small for more regular flow fields (less than

5% for the electron and five critical points data sets) and relatively

large for more complex ones (26.2% and 21.4% for the square

cylinder and two swirls data sets, respectively). In our experiment,

we find that the estimation usually covers a larger area than the

actual surface when the estimated error is large. This is likely

due to different termination criteria of the streamline integral for

estimation and the actual surface integral. Our surface integral

implements the approach proposed by McLoughlin et al. [23],

which produces smooth timelines by adjusting the integration step

sizes for different seeds when flow rotates. Therefore, the length

of each streamline on the resulting surface depends on others. In

contrast, the lengths of streamlines generated in the estimation

are not constrained by others, and the estimation usually covers a

more complete area.

Generally, the estimation is accurate enough to guide the opti-

mization. For each seeding curve, we produce one optimized curve

by minimizing the alignment error and another by maximizing

the normal curvature. We then compare the surfaces generated

from the optimized ones with the original ones. In terms of the

alignment error, we find that more reduction can be obtained

through the optimization for complex data sets (35.6% and 32%

less alignment error for the two swirls and square cylinder data

sets, respectively). Understandably, if the flow is simple, seeding
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9: Minimizing the alignment error for the five critical points, Bénard flow, and crayfish data sets. The first and second columns

show the surfaces before and after optimization, respectively. The third column shows the grids of candidate seeds. The black dots

indicate the selected seeds. The red and gray dashed curves indicate the original and optimized seeding curve, respectively. Surfaces

and grids are colored by the alignment error.

curves in the local neighborhood of the original one are likely

to produce similar surfaces; only with more complicated flow

patterns, surface strips produced on the grid of candidate seeds

are more diverse, leaving more room for potential improvement.

The only exception is the crayfish data set, which is complex but

our optimization only manages to reduce 9% of alignment error.

Figure 9 shows three original surfaces and their corresponding

optimized ones using three different data sets. From the grids of

candidate seeds, we can see that the optimized seeding curves

contain mostly blue segments, indicating that the alignment error

is small. For all three cases, the error reduction is more than 30%.

By comparing the optimized surfaces with the original ones, we

find that they not only tilt to better align with the flow. More

importantly, the optimized surfaces either avoid the regions with

large alignment error or include more regions with small alignment

error to obtain such reduction. In terms of the normal curvature,

we find that usually less improvement can be achieved through

optimization as the increase of normal curvature is less than

10% for most of the data sets. This indicates that the original

seeding curves already produce surfaces that align well with the

binormal direction. Therefore, there is little room to improve over

the original seeding curves.

Figure 10 demonstrates the optimization results of maximizing

the average squared normal curvature (top row) and minimizing a

linear combination of the alignment error and the average squared

normal curvature (bottom row). The same seeding curve is used as

the seeding curve in the bottom row of Figure 9. By maximizing

the normal curvature, stream surfaces with nontrivial shapes are

preferred. In Figure 10 (a), we can see that the surface mostly

resides in the region of more complicated flow patterns. Note that

the high normal curvature regions (red) are preferred. Then, we

investigate the optimization using both the alignment error ε and

the normal curvature κ . We empirically combine the two attributes

as ε−10κ . We use a negative weight so that higher κ is preferred

during the minimization of the combined term. The scaling factor

10 is used to balance the impact of the two quality measures. We

find that the surface in Figure 10 (c) is similar to the corresponding

surface in Figure 9 (a). But the region of simpler flow pattern is

covered less since the normal curvature is involved.

Since we focus on evaluating how well our optimization can

locally adjust an existing seeding curve for better surface quality,

we do not further investigate the impact of different quality

measures and how these measures should be combined. Our

quality estimation and seeding curve optimization should work

with any other quality measures that can be locally evaluated. To

enhance the perceptual quality, we may need further criteria that
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(a) (b)

(c) (d)

Fig. 10: Surface optimization results using the crayfish data set.

(a) and (b) show respectively, the optimized surface and the grid of

candidate seeds that maximizes the normal curvature. (c) and (d)

show respectively, the optimized surface and the grid of candidate

seeds that minimizes a combination of the alignment error and the

normal curvature. Surfaces and grids are colored by the respective

quality measure.

(a) (b) (c)

Fig. 11: Stream surfaces generated by tracing seeding curves in

a precomputed binormal vector field (top row) and by computing

the binormal directions in the original vector field in real time

(bottom row). The five critical points data set is used.

consider the information conveyed by the surface or the shared

information between a surface and previously generated ones to

avoid the overly simplified surface (e.g., Figure 9 (d)) or surfaces

with redundant information.

Binormal Computation. In our implementation, we trace the

seeding curves in a precomputed binormal vector field (PRE). An

alternative is to compute the binormal directions in the original

vector field in real time (RT), which may be more accurate but

would be more costly. In Figure 11, we can see that the stream

surfaces generated using the two methods are very similar. The

most significant difference is found between the two surfaces in

(c), where PRE captures the spiral at the center, but RT does not.

average quality difference (%) MCP
data set PRE RT quality area distance

Bénard 0.69 0.67 5.18 16.3 1.48
crayfish 0.59 0.59 3.76 19.4 2.02
electron 0.96 0.96 0.06 1.6 0.27
five CPs 0.69 0.68 4.63 16.6 2.49
sq. cylinder 0.69 0.67 4.76 15.5 0.87
tornado 0.81 0.82 1.70 5.7 1.02
two swirls 0.68 0.69 2.99 10.5 1.03

TABLE 2: The performance difference of using a precomputed

binormal vector field and computing the binormal directions in

real time. “average quality” shows the average quality evaluated

by the alignment error. “MCP distance” shows the MCP distance

between the corresponding stream surfaces.

We use the MCP distance (Equation (3)) to quantify the difference.

The distances between surfaces in (a), (b), and (c) are 0.71, 0.86,

and 2.05, respectively.

For a more complete study, we randomly generate 20 points

in each data set and trace 20 seeding curves along the binormal

direction using each method. Each seeding curve contains 20

seeds. The results are shown in Table 2. For most of the data

sets, we can see that the distances are smaller than 2. The smallest

average distance (0.27) is found using the electron data set with

less diverging flow patterns. The five critical points data set has

the largest average distance (2.49) due to the existence of a

large distance (17.75) between two corresponding surfaces. The

alignment errors for most of the data sets are similar, with the

largest difference of 5.18% for the Bénard data set. The average

alignment errors are similar as well, and none of the two methods

is a clear winner.

In general, we find that the seeding curves generated using the

two methods are mostly identical, but their differences may get

larger with the presence of the diverging flow. In our experiment,

we find that the differences between stream surfaces generated

by randomly selected seeding curves are usually larger than the

differences between stream surfaces generated by user sketches.

This is because users tend to sketch on stable flow patterns rather

than turbulent ones.

5.2 Visualization Results

Five Critical Points. The six stream surfaces we generate from the

five critical points data set are shown in Figure 12. This data set

is synthesized with five randomly generated critical points: two

spirals, two saddles, and one source. The flow patterns related

to these critical points and their connections are essential for

understanding. We start from the larger spiral pattern at the corner

and generate the blue stream surface since it is the most obvious

feature as seen from the outermost layer of streamlines. The blue

surface covers a large portion of the field, revealing not only the

flow pattern of the larger spiral but also the connection between

the two spirals, as highlighted in (c). Then, we sketch on the

other spiral to generate the orange surface, and the two saddles to

generate the green, red, and brown surfaces. Finally, we generate

the purple surface to fill the gap between the upper spiral and

the source, where the green surface starts. The stream surfaces

with surface-based coloring are shown in (a). We find that the

flow directions on the spirals are easy to follow, but those on

the other critical points may not be easily perceived at the first

glance. Therefore, we add streamlines to enhance the perception

of these critical points. The saddle between the green and red
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Fig. 12: (a) and (b) show six stream surfaces of the five critical points data set with surface-based coloring and attribute-based coloring,

respectively. (c) shows the single blue stream surface. (d) shows the surfaces as seen from the opposite viewpoint of (a).

(a)

(b)

Fig. 13: (a) and (b) show three stream surfaces of the square

cylinder data set with surface-based coloring and attribute-based

coloring, respectively.

surfaces can be observed clearly. The saddle at the bottom left

corner and the source near the center of the volume are captured

by the streamlines, but their patterns are not outstanding. In (b),

we switch to attribute-based coloring. The critical points can be

noticed easily when the curvature attribute is used since all critical

points correspond to the high-curvature regions shown in red. We

also find two extra saddles on the purple surface between the upper

spiral and the source, and on the upper region of the red surface, by

simply looking for all red regions. The connections among critical

points can be observed clearly as well. A stream surface with

multiple red regions is likely to connect different critical points.

We can see that the blue surface connects the two spirals, the green

surface connects the source and the bottom right saddle, the red

(a) (b)

Fig. 14: (a) and (b) show four stream surfaces of the two swirls

data set with surface-based coloring and attribute-based coloring,

respectively.

surface connects the upper spiral and two saddles on the right,

the brown surface connects the spiral and the bottom left saddle,

and the purple surface connects the upper spiral, the source and

one saddle between them. In (d), we render the stream surfaces

from the opposite viewpoint to observe the two spirals and the

connection between the source and the upper spiral.

Other Data Sets. The visualization results for the other data

sets are shown in Figures 13 to 16. We generate three surfaces

for the square cylinder data set to capture the upper, middle and

lower layers of the flow (Figure 13), and four surfaces for the two

swirls data set to capture the flow patterns in the front and back

halves of each swirl (Figure 14). In Figure 15, we show two sets

of surfaces for the Bénard flow data set which demonstrates the

flexibility of our approach: Figure 15 (a) resembles Figure 15 in

[9] and Figure 15 (b) resembles the corresponding subfigure of

Figure 7 in [30]. In Figure 16 (a), we show four surfaces for the

tornado data set. To better reveal the inner pattern, we use the

brush tool to adjust the opacity so that the low entropy regions

become more transparent, as shown in Figure 16 (b). The flow

pattern can be captured by a single surface as well, as shown in

Figure 16 (c). Although the single surface in (c) provides a more

compact visualization result, the four surfaces in (a) with their tails

pointing into different directions reveal additional information.
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(a)

(b)

Fig. 15: (a) and (b) show two different sets of stream surfaces of

the Bénard flow data set with surface-based coloring.

5.3 Limitations

Our current work has several limitations. First, the accuracy of our

quality estimation still has room for improvement. In Section 5.1,

we discuss two scenarios that may lead to inaccurate estimation

results: 1) the gaps in the diverging flow that cannot be filled

within three passes, and 2) the surface integration method [23] and

our estimation may cover different lengths along the streamlines.

While we consider the first scenario to be a tradeoff between

accuracy and efficiency, the second scenario may be solved by

developing a surface integration method that is more consistent

with our current estimation strategy. A similar parallel scheme

may be used to generate streamlines in several passes and connect

the neighboring streamlines to form the surfaces. In this way, the

streamlines traced in the estimation stage may better represent

the actual surfaces. Certainly, we still need to investigate how

to handle the rotation, converging, and diverging flows properly

to produce smooth surfaces with this parallel scheme. Second,

the performance of our seeding curve optimization relies on the

accuracy of the estimation. Although our seeding curve optimiza-

tion only performs on a relatively small 2D grid, we find that

this optimization usually performs well with accurate estimation

results. However, when the estimation becomes inaccurate, the

optimization may produce less desired results. For example, in

Figure 10 (c), the value of combined term is reduced by 60.2%

with the optimization, but the quality evaluated on the actual

surface is only 8.7% better than the original surface. Third, the

optimized surfaces are not guaranteed to capture user intention.

For example, the optimized surfaces may be overly simplified

(e.g., Figure 9 (d)) to avoid entering regions with a higher

alignment error. In this case, they may present flow patterns quite

different from the original ones. We may need to consider the

information conveyed by the surface or the shared information

between a surface and previously generated ones so that the

optimized surface conveys similar information in a clearer way.

(a) (b) (c)

Fig. 16: (a) shows four stream surfaces of the tornado data set

with surface-based coloring. (b) shows the surfaces with attribute-

based coloring and edited color mapping. (c) shows one single

stream surface that covers the entire domain.

6 CONCLUSIONS AND FUTURE WORK

We have presented a novel sketch-based interface to generate

stream surfaces guided by human perception. The interface is

designed to follow the commonly used painting metaphor, re-

quiring less learning effort. We provide a suite of tools to users

so that they can peel the flow field layer by layer to obtain

desired stream surfaces with customized rendering effects. By

following the binormal direction, we efficiently generate surfaces

with acceptable quality to support interactive performance. We

also provide an option to allow users to further improve seeding

curves based on surface quality measures. Our approach allows

users to obtain customized visualization results that describe the

flow field according to their own needs and to verify that the

surfaces convey the information they perceive. To the best of our

knowledge, our work is the first that leverages user sketching and

painting metaphor for semi-automatic stream surface generation.

In the future, we would like to develop a surface integration

approach that is more consistent with our quality estimation. We

will evaluate how this may improve the accuracy of the estimation

and the performance of the seeding curve optimization. We will

consider the information conveyed by the optimized surfaces and

the original ones to ensure that the optimized ones still capture

user intention. We would also like to further investigate surface

rendering to enhance the perception of flow directions, especially

in complex regions. Specifically, we will evaluate the information

shared by the surface patches so that when patches with similar

information occlude each other, only one patch will be shown with

high opacity. When patches with different information occlude

each other, we will study the problem of presenting the mixture of

information in a possibly abstract way.
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