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Abstract—The ever-increasing sizes of data produced from
a variety of scientific studies post a formidable challenge for
the subsequent data analysis and visualization tasks. While
steady advances in graphics hardware enable faster rendering,
achieving interactive visualization of large data must also rely
on effective data filtering and organization. In many cases, the
best interactivity can only be obtained by taking into account the
intrinsic properties of the data and domain knowledge to better
reduce and organize the data for visualization. As a result, in
recent years, we have seen increasing research and development
efforts into the area of Information and Knowledge assisted
Visualization (IKV). In this paper, we survey research in IKV of
scientific data and also identify a few directions for further work
in this emerging area.

I. INTRODUCTION

Interactive visualization is key to insightful data exploration.

In the past decade, we have witnessed great advancements of

graphics hardware, which make real-time rendering a com-

modity. Real-time rendering enables interactive visualization

but the size of the viewable data is limited by the available

computer memory space. An active area of research is thus

the reduction, packing, and indexing of large data for more

efficient and effective visualization. Most of the solutions

introduced were based on conventional compression methods,

multi-resolution techniques, and out-of-core algorithms. It is

projected that by 2011, we will enter the era of petascale

computing. The vast amounts of data routinely generated

by petascale computing will overwhelm any of the existing

data visualization hardware and software technologies, thus

demanding novel thinking and new techniques for making

sense of the data. This exponential growth of data will continue

into exascale and greater. We are in need of scalable, cost-

effective solutions for data analysis and visualization.

A viable solution to such extreme scale data problem builds

on our ability to identify the most relevant information about

the data and utilize this information in the process of visu-

alization. This information may be explicit or implicit within

the data. It may also be knowledge derived from data analysis.

We believe that information and knowledge assisted visualiza-

tion (IKV) holds the promise for extreme-scale visualization

where more efficient and effective visual understanding can

be achieved through the utilization of intrinsic information

extracted from the data as well as domain knowledge about

the modeled phenomena or processes. In this way, we are able

Fig. 1. Information and knowledge assisted visualization (IKV).

to preserve or reveal important aspects of the data while de-

emphasizing or discarding non-important parts.

Most existing visualization techniques and systems were not

designed to utilize the information and knowledge about the

data or derived from the analysis and visualization process.

As visual data analysis is inherently an iterative and explo-

rative process, it is highly desirable to enable more effective

visualization by utilizing information about the visualization

process itself (e.g., visualization parameters chosen by users)

and knowledge about the data to be visualized (e.g., feature

description from specialists). Collecting and leveraging such

information and knowledge becomes important, especially

when the cost of visualization is high or when the work

requires collaborative efforts. The combination of such infor-

mation from different visualization processes can also infer

new knowledge that can aid data visualization in an intelligent

manner. In addition, information visualization techniques are

increasingly used in scientific data analysis and visualization

to especially display high-dimensional information and derived

knowledge.

We begin to see a growing interest in IKV. As sketched in

Figure 1, IKV takes essential information extracted from the

data, such as statistical, geometric, topological, and semantic

information, and/or knowledge, such as domain-specific or

shared knowledge, about the data as input. The visualization

process itself may also incorporate intelligent computational



algorithms such as data mining or machine learning. The

output of visualization are in the form of image and video,

which may lead to insights and discoveries.

The position paper [4], written by the organizers of IEEE

Visualization Knowledge-Assisted Visualization Workshop,

describes the definitions and relationships of data, information,

and knowledge in visualization. Examples of information and

knowledge assisted visualization are also provided. This paper

reviews recent work in information and knowledge assisted

analysis and visualization of large-scale data. To keep the dis-

cussion focused, we specifically restrict ourselves to examples

of work in scientific visualization. These IKV examples are

chosen to match the diagram shown in Figure 1, rather than

provide a comprehensive review for the field. At the end of

this paper, we point out a few future research directions.

II. INFORMATION-ASSISTED VISUALIZATION

Information-assisted visualization utilizes intrinsic infor-

mation extracted from the data for meaningful visual data

analysis, such as data classification, automatic viewpoint and

camera path planning, feature detection, structure understand-

ing, and semantic parameter specification etc. The types of

information include statistical measures, geometric representa-

tions of physical features, topological structures, and semantic

relationships, etc.

A. Visualization Enabled by Statistical Information

Importance-Driven Focus of Attention. Viola et al. [17]

presented a solution for automatic focusing on features within

a volumetric data set. A focus is selected from a set of

predefined features and the algorithm automatically determines

the most expressive view on this feature. Characteristic view-

points are estimated using the viewpoint mutual information

(VMI) measure defined in terms of visibility between a set of

viewpoints and the objects of a data set. A high value of the

VMI means a high dependence between the viewpoint and the

data object; while a low value of the VMI corresponds to a

more independent view showing more objects in the data in

a balanced way. Therefore, a best viewpoint is defined as the

one that has minimum mutual information. Focus of attention

from one object to another is achieved by smoothly changing

viewpoint settings and visual parameters with emphasis placed

on the newly-selected object of interest.

Texture-Based Tracking and Transfer Function. Caban et

al. [2] proposed a texture-based feature tracking technique by

analyzing local textural properties and finding correspondent

properties in the time series. This approach is based on the

observation that time-varying data present specific pattern and

textural features which characterize local space-time regions.

These patterns represent the actual dynamic data movement

and thus make tracking possible. They used a combination of

first-order, second-order, and run-length matrices to capture

local data texture patterns. To enable feature tracking, they

employed similarity measurements and a windowing technique

to find the best texture match in subsequent time steps.

Caban and Rheingans [3] further extended this texture-based

Fig. 2. Importance-driven visualization of the jet flame combustion data set
[19]. Top to bottom: three clusters with high, medium, and low importance
values respectively. Opacity is adjusted in the figure to hide the remaining
clusters not selected.

approach for transfer function specification in which the color

and opacity of voxels are based on local textural properties

instead of intensity values. They showed that textual metrics

can be more effective in differentiate similar structures due to

the fact that the statistical textural pattern is attached to local

properties rather than individual intensity values.

Importance-Driven Visualization. Wang et al. [19] pro-

posed to study the important aspect of time-varying volume

data using an information-theoretic approach. They evaluated

the importance of data around a spatial local neighborhood

(i.e., a data block) in the joint feature-temporal space. The

feature space is a multidimensional space that consists of

data value, local features such as gradient magnitude, and/or

domain specific derivatives or quantities. Using the conditional

entropy from information theory, they derived the importance

measure by computing the amount of relative information a

data block contains with respect to other blocks in the time

series. An importance curve is derived for each data block

which characterizes the local temporal behavior of the block.

Clustering the importance curves of all the volume blocks

effectively classifies the underlying data. For example, Figure

2 shows the three clusters of the jet flame combustion data set.



Such clustering results help scientists focus on, for example,

the cluster of the highest importance values (i.e., with the

most temporal changes) and examine its evolution over time.

Based on different temporal trends exhibited by importance

curves and their clustering results, they demonstrated several

interesting and cost-effective ways to visualize and understand

large time-varying volume data.

Local Statistical Complexity. Jänicke et al. [8] introduced

an information-theoretic approach to detect importance regions

by extending the concept of local statistical complexity (LSC)

from finite state cellula automata to discretized multifields.

LSC focuses on the local temporal evolution of a field. The

local past of a position in the field consists of all the points

that might influence it. As effects propogate at finite speed,

the past has the shape of a light-cone that is directed towards

the past. Similarly, the future is given by a light-cone that

is directed in the opposite direction. In their approach, past

and future light-cones are defined for all grid points, which

are used to estimate conditional distributions and calculate the

LSC. It has been shown that this method can automatically

detect structures in an unsteady multifield that deviate from

the average behavior in the field.

B. Visualization Enabled by Geometric Information

Particle Destination and FTLE Maps. Snoi et al. [14]

studied the effects of flow structures on particle transport and

deposition in the small bronchial tubes. The main challenge

associated with identifying the impact of flow features on

particle deposition is that both local (Eulerian) and global

(Lagrangian) effects must be considered. In response, they

employed particle destination maps in conjunction with two-

dimensional, finite-time Lyapunov exponent (FTLE) maps to

correlate local information about the flow with global particle

decomposition patterns. The particle destination maps indicate

the zone of the computational domain in which a particle is

deposited. The FTLE maps give a quantitative description of

the coherence of particles passing through a certain region in

the flow. Their visualizations demonstrate that the combination

both maps, together with carefully-placed particle trajectories,

provides an effective means to study particle/flow structure

interactions and their effects on particle deposition.

C. Visualization Enabled by Topological Information

Topology Simplification. Gyulassy et al. [5] presented a

topological approach for simplifying continuous functions de-

fined on volumetric domains. They introduced two atomic op-

erations that remove pairs of critical points of the function and

design a combinatorial algorithm that simplifies the Morse-

Smale complex by repeated application of these operations.

The Morse-Smale complex is a topological data structure that

provides a compact representation of gradient flow between

critical points of a function. The Morse-Smale complex is

used to guide data simplification through the utilization of

a global view of the function and its spatial distribution for

detecting, ordering, and removing features. It also allows

the simplification within a local neighborhood of the non-

significant feature. Critical points paired by the Morse-Smale

complex identify topological features and their importance.

The simplification procedure leaves important critical points

untouched, and is therefore useful for extracting desirable

features.

Topological Landscapes. Weber et al. [21] proposed a

visual terrain metaphor, called the topological landscape, to

facilitate understanding of the topological structure of scien-

tific scalar data. The common way of depicting topological

information using a contour tree is not intuitive for the

user to relate to the structure of a scalar field. To improve

this situation, they utilized the topological information and

additional metric information associated with its branches

to create the topological landscape, which shares the same

topology as the original data. Such a metaphor is very intuitive

to understand since humans are naturally trained and very

effective in understanding the structure of a terrain. Important

information, such as function values of critical points, the

persistence (function span) topological features, is preserved

in this metaphor mapping. Complex topological information

becomes easily accessible by displaying the topologically

equivalent landscape together with the original data.

D. Visualization Enabled by Semantic Information

Semantic Transfer Functions and Layers. Transfer func-

tion specification is a complex task which requires expert

knowledge about the data as well as the underlying rendering

technique. The increasing uses of multidimensional transfer

function make the task more difficult and non-intuitive. Rezk-

Salama et al. [12] presented a new way to facilitate the

specification of transfer function for direct volume rendering

by introducing an additional level of abstraction for parametric

models of transfer functions. Based on principal component

analysis and concepts from computer animation, they proposed

a high-level user interface for transfer function design which

can be intuitively used by non-expert users. It was demon-

strated that such semantic models can be effectively used

to hide the complexity of visual parameter assignment for a

specific examination purpose. Rautek et al. [11] proposed a

methodology for the specification of semantic layers which

maps volumetric attributes to illustrative visual styles. They

used fuzzy sets to represent volumetric attributes and visual

styles and specified rules for mapping that are evaluated with

fuzzy logic arithmetics. This handling allows the user to

specify the fuzzy sets and the rules without knowing the under-

lying rendering techniques. Such semantic-based approaches

open up a new research direction on visualization enabled by

semantic specification.

III. KNOWLEDGE-ASSISTED VISUALIZATION

Knowledge-assisted visualization incorporates domain

knowledge or derived knowledge for more efficient and

effective data manipulation, management, and understanding.

A key ingredient in knowledge-assisted visualization is that

certain knowledge about the data or simulation is known a



Fig. 3. Application-driven compression of the V-flame combustion data set [20]. Left to right: rendering of original data, rendering of compressed data,
image difference of the compressed and original data calculated in the CIELUV color space, and the color map. Note that regions farther away from the
surface of interest show more quantization artifacts in rendering. The mixfrac surface with the chi variable are shown in the figure.

priori and can thus be leveraged, or about user intentions or

preferences may be recorded and utilized to derive a more

concise, well-informed visualization.

Analysis of the Mixing Flow. Understanding the turbulent

mixing of fluids is one of the fundamental research challenges

in the area of fluid dynamics. Laney et al. [10] presented a

compressive study joint with domain scientists to understand

the structure of the turbulent mixing layer in hydrodynamic

instabilities. They extracted a hierarchical segmentation of the

mixing envelope surface to identify bubbles (due to the heavy

fluid) and spikes (due to the light fluid) which are critical

for understanding the mixing process, and analyzed analogous

segmentations of fields on the interface plane. Meaningful

statistical information is computed to reveal the evolution of

topological features and corroborate the observations made by

scientists. Moreover, they also employed geometric tracking

techniques to follow the evolution of single bubbles and

highlight merge/split events leading to the formation of the

large and complex structures. This approach is based on the

rigorous mathematical foundations of Morse theory and can

be applied to a more general class of applications.

LiveSync. Kohlmann et al. [9] presented LiveSync, a new

concept to synchronize 2D slice views and volumetric views

in medical data sets. Although direct volume rendering with

high interactivity is available due to the advances of graphics

hardware, this visualization method is seldom used in the

clinical practice due to the complexity of adjusting the pa-

rameters, such as viewpoint, zooming, transfer function, and

clipping planes, to achieve meaningful results. As a result,

most often only 2D slices of the data set are examined, which

raises an issue of synchronizing 2D and 3D views. To achieve

live synchronization, they used a minimal set of derived

information without the need to segment data or precompute

data-specific quantities. Taking into account knowledge about

the procedure performed, a rough estimate of the preferred

viewing directions is made. They introduced deformed viewing

spheres which encode the viewpoint quality (including picked

point, slice view zoom, patient orientation, viewpoint history,

local object shape and visibility) for the components. A

combination of these deformed viewing spheres is used to

estimate a good viewpoint. LiveSync provides the physicians

with synchronized views which help them gain deeper insight

into the medical data with minimal user interaction.

Application-Driven Compression. The common practice

of compressing high-precision floating-point data solely based

on values can only achieve limited saving. Further reduction

is possible by utilizing the fact that usually only a smaller

subset of the data is of interest in the analysis. Wang et

al. [20] have experimented with this application-driven ap-

proach to compressing large-scale time-varying volume data.

By consulting the application scientists, a reference feature

is identified for partitioning the data into space-time blocks,

which are compressed with various precisions according to

their association to the feature. For example, in the context

of time-varying, multivariate volume data visualization, such

knowledge could be the salient isosurface of interest for some

variable and the visualization task could be observing spatio-

temporal relationships among other variables in the neighbor-

hood of that isosurface. The goal is to directly incorporate

such knowledge and tasks into the whole data reduction,

compression, and rendering process. This application-driven

solution achieves high compression rates and interactive ren-

dering while preserving fine details around regions of interest.

An example with the V-flame combustion data set is shown

in Figure 3. Such a knowledge-assisted approach points out

a promising direction for coping with the large data problem

facing computational scientists.

IV. INTELLIGENT VISUALIZATION

Intelligent visualization applies methods from artificial in-

telligence (AI) such as machine learning and intelligent al-



Fig. 4. Intelligent feature tracking with the swirling flow data set [15]. Fist
row: the results of tracking a feature over time based on a specific data range.
Second row: the results of tracking the same feature with the adaptive transfer
function. The feature is still tracked even the data range has changed.

gorithms from data mining to tackle difficult tasks that could

not be easily solved by other approaches. Adaptive training

or heuristic search is leveraged to generate desired results in

an iterative manner. The derived knowledge can be accumu-

lated and systematically shared and reused in the process of

visualization.

Intelligent Feature Tracking. Conventional methods for

feature extraction and tracking require either an analytical

description of the feature of interest or tedious manual inter-

vention throughout the feature extraction and tracking process.

Tzeng and Ma [15] presented an intelligent feature extraction

and tracking algorithm for visualizing large-scale 4D flow

simulation data. They showed that it is possible for a visualiza-

tion system to learn to extract and track features in complex

4D flow field according to their visual properties, location,

shape, and size. Intelligent feature extraction and tracking is

performed in the data space by utilizing machine learning

techniques on high-dimensional data. In this case, the scientists

do not need to specify explicitly the relationship between

these different dimensions. The feature extraction function

is revised through an iterative training process following the

temporally changing properties of the tracked features. An

example is shown in Figure 4. They also designed an intuitive

user interface with multiple coordinated views to facilitate

interactive, intelligent feature extraction and tracking. Using a

painting metaphor, the scientist specifies a feature of interest

by marking directly on the 2D or 3D images of the data

through this interface. Such an intelligent system leads to a

greatly simplified and intuitive visualization interface.

ViA. Healey et al. [6] proposed an AI-based visualization

assistant named ViA which integrates perceptual guidelines

Fig. 5. LOD adjustment on the Richtmyer-Meshkov instability data set [18].
First row: the LOD selected based on the mean square error (MSE) and
its corresponding LOD map. Second row: the LOD after adjustment and its
corresponding LOD map. The number of blocks remains the same while more
details of the data are revealed after the adjustment.

from human vision with heuristic AI search strategies and

mixed-initiative interactions to collaborates with its users to

identify perceptually-salient visualizations for large multidi-

mensional data sets. The proposed system applies the knowl-

edge of low-level human vision to evaluate the effectiveness

of a visualization and to direct its search towards new visual-

izations for possible improvements. ViA also allows the users

to share their different strengths to improve the understanding

of user preferences using a mixed-initiative strategy.

V. VISUALIZATION INTERFACE

User interface plays an increasingly important role in nav-

igation and exploration of large-scale data sets. Research

has been conducted to utilize information extracted from

scientific data for interface design, guiding the user through

the immerse data and parameter spaces using information

visualization techniques. In this scenario, multiple coordinated

views are enabled with brushing and linking techniques to

allow comprehensive data analysis through the diverse types

of information. The key is to help the user mentally link pieces

of information obtained through the process of visualization

with a carefully-designed interface.

LOD Map. Wang and Shen [18] developed the LOD

map, a visual interface for navigating multiresolution volume

visualization. To quantify the level-of-detail (LOD) quality,

they proposed to evaluate the distortion and contribution of

multiresolution data blocks and utilized the concept of entropy

from information theory. The LOD map is constructed by



Fig. 6. Using the tri-space interface to explore the hurricane data set for finding correlation between cloud, wind speed, vapor and pressure [1]. Left to right:
the spatial view for time steps 2 and 29, the temporal view for the four variables, and the variable view for time step 29. Brushing and linking are used to
coordinate multiple views for simultaneous exploration of data in all domains.

mapping the LOD quality (distortion and contribution of

data blocks) to the 2D treemap (color, size, and opacity of

rectangles) from information visualization. Through visually-

striking features, the LOD map shows the tradeoff between

computation cost and information gain, as well as the com-

pleteness of visualization results. Figure 5 shows an example

of LOD adjustment using the LOD map. The LOD map

after adjustment gives a more balanced result in terms of the

size and color of rectangles, which indicates a better LOD

quality. In this manner, the user is informed not only what

they have seen (i.e., visible data blocks), but also what they

have not yet seen (i.e., occluded data blocks). This interface

greatly facilitates LOD selection and comparison, resulting in

an increase in effectiveness and productivity.

Tri-Space Interface. The dramatic grow of data in spatial,

temporal, and variable dimensions demands new tools to en-

able simultaneous data exploration with all these dimensions.

Akiba and Ma [1] proposed a tri-space interface for analyzing

and visualizing time-varying, multivariate volume data. As

shown in Figure 6, their tri-space interface consists of three

components. The spatial component allows the user to explore

the data in spatial domain while rendering multiple variables

into a single visualization in a user-controllable fashion. The

temporal component displays time histograms of the data

which helps the user identify time steps of interest and spec-

ify time-varying features. The variable component displays

correlations between variables using parallel coordinates and

allows the user to verify correlations and identity unanticipated

ones. Each of these three components is not only an interface

but also the visualization itself, thus enabling efficient usage

of the screen space. The three components are tightly linked

to facilitate tri-space data exploration, offering scientists new

power to study their time-varying, multivariate volume data.

Multifield-Graphs. Sauber et al. [13] presented an ap-

proach to visualize correlations in 3D multifield data using

multifield-graphs. Correlations are calculated using two dif-

ferent measures: gradient similarity measure (GSIM) and local

correlation coefficient (LCC). In multifield-graphs, each node

corresponds to a correlation field and each edge connects two

fields where one field is the exact addition of another field

with one new variable. The nodes are displayed as icons with

correlation overview information graphically encoded. This

interface provides an overview of the correlations and their

strengths, thus are able to guide the selection of promising

correlation fields for detailed examination. Multifield-graphs

become very useful when a large number of variables are

simultaneously considered in the analysis.

Attribute Cloud. Jänicke et al. [7] proposed to use the

attribute cloud for multivariate data visualization. The attribute

cloud is a point cloud that results from transforming of the

high-dimensional data in attribute space to 2D. The transfor-

mation is based on ideas from multivariate statistics and man-

ifold learning. They first computed a minimal spanning tree

(MST) that represents the skeleton of the high-dimensional

density and then used Fruchterman-Reingold algorithm for

graph layout of the MST in 2D. In attribute cloud, points

with similar multivariate attributes are located close to each

other. Leveraging this visual representation, correlations and

coherency in the high-dimensional multivariate attribute space

can be explored by the user in the 2D space.



VI. FUTURE RESEARCH

The samples of IKV research suggest many opportunities

for further research. In the following, we outline some promi-

nent directions.

Feature Extraction and Tracking. Most previous research

in feature extraction and tracking took into account the statis-

tical, geometric, or topological information in the data but did

not incorporate domain knowledge. Many scientific simulation

data are dynamic in nature and exhibit a diverse presence

of spontaneous fluctuations distributed over a wide range of

spatial and temporal scales. Research in this direction requires

that visualization researchers and application scientists work

closely to truly understand what are the features in the data.

This is the important first step for feature extraction and

tracking, but little attention has been paid. Domain knowl-

edge can provide specific criteria and guidelines to describe,

characterize, and quantify data features so that they can be

effectively categorized, tracked, and visualized.

Detecting Causal Effects. Time-varying, multivariate data

analysis and visualization remains one of the most challenging

subjects in visualization research. Previous work on multi-

variate data visualization placed a focus on correlation study.

A more challenging issue in multivariate data analysis is

the study of information flow to identify the casual effects

between the input and the output, or relationships among

different variables in the time series. Commonly-used tools

for the estimation of dependencies are linear cross-correlation

and mutual information. However, these measures share the

property of being symmetric and therefore are not suitable for

this porpose. New methods and techniques need to be sought

for assessing causality within relationships.

Assess the Uncertainty. Dealing with and accounting for

uncertainty is an important topic in scientific experiments.

Uncertainty comes with various forms and has multiple facets

throughout the simulation and data understanding pipeline.

Thus, a comprehensive framework is necessary for tracing

the sources of uncertainty and the following propagation

throughout the entire simulation, analysis, and visualization

process. Uncertainty representation and quantification, uncer-

tainty propagation, and uncertainty visualization techniques

need to be developed in order to provide scientists with

credible and verifiable visualizations. Information as well as

knowledge gathered from the process can be used to handle

the uncertainty where the different sources of uncertainty

are identified, quantified, represented, tracked, and visualized

together with the underlying data.

VII. CONCLUDING REMARKS

The primary goal of scientific data analysis and visualization

is to support the generation of new knowledge [16]. Most

visualization algorithms and techniques developed up to date,

however, address knowledge implicitly rather than explicitly.

That is, these techniques are not formally integrated with meth-

ods and tools to enable knowledge discovery, representation,

and sharing. The future of visualization lies in the development

of information and knowledge driven solutions that utilize

previously acquired knowledge and related information to

derive new knowledge so that it can be disseminated to science

collaborators or even broader communities.
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