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ABSTRACT

Effective techniques for organizing and visualizing large image collections are in growing demand as visual search
gets increasingly popular. Targeting an online astronomy archive with thousands of images, we present our
solution for image search and clustering based on the evaluation of image similarity using both visual and
textual information. To lay out images, we introduce iMap, a treemap-based representation for visualizing and
navigating image search and clustering results. iMap not only makes effective use of available display area to
arrange images but also maintains stable update when images are inserted or removed during the query. We
also develop an embedded visualization that integrates image tags for in-place search refinement. We show the
effectiveness of our approach by demonstrating experimental results and conducting a comparative user study.
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1. INTRODUCTION

With the booming of digital cameras and image archiving and photo sharing websites, browsing and searching
through large online image collections is becoming increasingly popular. An emerging trend is that images are
now often tagged with names, keywords, hyperlinks and so on to improve the search and understanding. In
this paper, we strive for innovation on the organization and interaction aspects of image search rather than the
search algorithm itself. Specifically, we explore how to arrange images in a layout for better viewing and how to
leverage the connection between image and text for better interaction.

Many existing applications provide overviews of image collections by presenting a set of thumbnail images
arranged in a spreadsheet-like interface. We advocate a more attractive way for image browsing to enable effective
sense-making of large image collections through image ranking and clustering, and intuitive presentation and
interaction. We analyze image content and design measures to evaluate their similarity using both visual and
textual information. We arrange similar images close to each other and leverage a treemap-based representation
to visualize image search and clustering results to facilitate the understanding. This visual means brings several
benefits such as effective screen space utilization, occlusion minimization, and stable update. In addition, we
develop an embedded visualization that integrates image tags for in-place search refinement.

We experiment with our approach using the Astronomy Picture of the Day (APOD),1 a popular online
astronomy archive. Everyday APOD features a picture of our universe, along with a brief explanation written by
a professional astronomer. Since its debut in June 1995, APOD has archived thousands of handpicked pictures,
which makes it the largest collection of annotated astronomical images on the Internet. This makes it perfect
for us to include textual information into similarity analysis and interaction design. Our work complements the
state-of-the-art image search and exploration techniques with new interface and interaction that enable effective
sense-making of a large image collection. This interface guides users to sift through the collection and identify
images of interest, a critical need for many applications involving with large image collections.

Further author information: (Send correspondence to Chaoli Wang)
Chaoli Wang: E-mail: chaoliw@mtu.edu, Telephone: 1 906 487 1643
John P. Reese: E-mail: jpreese@mtu.edu
Huan Zhang: E-mail: huanz@mtu.edu
Jun Tao: E-mail: junt@mtu.edu
Robert J. Nemiroff: E-mail: nemiroff@mtu.edu



2. RELATED WORK

2.1 Image Similarity Analysis

Content-based image analysis is at the heart of modern image searching and retrieval. Its primary goal is to
organize digital image archives by their visual content. Image features capture visual properties of an image,
either globally or locally. To extract image features that help perform meaningful classification and retrieval,
researchers have utilized key visual contributions such as color,2–4 texture,3–5 shape,6 salient points,7 and land-
marks.8 Advances have been made in both deriving new features and constructing signatures based on these
features.9 We leverage the color and spectrum information together with the grayscale version of images for
similarity analysis.

2.2 Image Collection Organization

The most common way to organize a large collection of images is based on a two-dimensional grid of thumbnails,
but it enforces a uniform thumbnail aspect ratio. Furthermore, only parts of the dataset can be seen within line of
sight when the image collection is excessively large. Over the years, different new solutions have been proposed to
improve the organization of image collections. Chen et. al.10 leveraged the Pathfinder network scaling technique,
originally developed for the analysis of proximity data in psychology, to organize a collection of images based
on their color labels, texture, shape orientation etc. Torres et al.11 introduced a focus+context approach based
on spiral and concentric rings for exploring query results in an image database. Yang et al.12 developed a
scalable semantic image browser (SIB) based on the semantic content of images. The multidimensional scaling
layout based on semantic similarities was used for image overview and the value and relation layout was used
for content overview. Gomi et al.13 presented clustered album thumbnails (CAT) for hierarchical browsing large
image collections which shows representative images when zooming out and individual images when zooming in.
Brivio et al.14 proposed a dynamic image browsing mechanism in which the arrangement of the thumbnails is
based on weighted anisotropic Voronoi diagrams and Lloyd relaxation.

2.3 Visualization and Presentation Modes

Common visualization schemes for image collections include relevance-ordered (e.g., Google Images), time-ordered
(e.g., the timeline15 and time quilt16), clustered (e.g., the design gallery layout using multidimensional scaling17),
hierarchical (e.g., Google Image Swirl), and composite (the mix of two or more of the preceding forms). In terms
of user presentation, there are three modes: static (i.e., no motion is involved whatsoever), moving (i.e., constant
motion even without interaction), and interactive (i.e., motion triggered only under user interaction). A recent
study has shown that static presentation is better than moving presentation in terms of recognition success and
user preference.18 We design a layout for organizing a large image collection using the composite visualization
scheme and interactive presentation mode.

3. IMAGE DISTANCE MEASURE

Measuring the similarity or distance between two images is central to any image searching or clustering tasks.
Images themselves provide direct cues to visual comparison. Textual information associated with images, when-
ever available, gives additional hints for us to evaluate their similarity or difference. We therefore compare images
using their visual and textual information from multiple perspectives and define five partial distances (DG, DF ,
DH , DK , and DL). The overall distance measure is a weighted summation of all the partial distances.

3.1 Visual Distance

Different images in an image collection come with different dimensions, types, and formats. For simplicity, we
convert all resulting images to the same type and format, and scale them down to a fixed resolution (256× 256).
We consider three aspects of images, namely, grayscale image distance, spectrum image distance, and color
histogram distance, for calculating their visual distance. Note that our solution to visual similarity analysis is
by no means ideal. Rather, we seek a cost-effective solution to serve the basic visual search need.

Grayscale Image Distance. Intuitively, the similarity between two images can be evaluated by identifying
their structural similarity. The structural similarity index proposed by Wang et al.19 considers luminance,
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Figure 1. Four images and their respective grayscale frequency spectrum images. All four spectrum images are enhanced
with the same log transform. We can observe that (a) and (b) are most similar, followed by (a) and (e), and (a) and (g).

contrast, and structure information of the two images. We use the grayscale version of images for this evaluation
and will consider color information separately when computing the color histogram distance. Given two grayscale
images, we take a local 8×8 window, which moves pixel-by-pixel over the entire image, to evaluate their similarity.
For two corresponding image blocks Ba and Bb, we compute their similarity as

SB(Ba, Bb) =
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where µa and µb are the means of Ba and Bb respectively, σa and σb are the standard deviations of Ba and Bb

respectively, and σab is the covariance of Ba and Bb. Small constants c1 and c2 are included to avoid instability
when µa, µb, σa, and σb are very close to zero. As suggested by Wang et al.,19 we set c1 = (0.01 × L)2 and
c2 = (0.03 × L)2 where L is the number of levels in the grayscale images. We define the distance between two
grayscale images Ga and Gb as

DG(Ga, Gb) = 1.0 −
1

m

m
∑
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SB(Bai, Bbi), (2)

where m is the total number of image blocks considered and S denotes the normalized similarity value.

Spectrum Image Distance. The power spectrum of an image is a representation of the magnitude of
its various frequency components that has been transformed using the Fourier transform. The power at each
location in the spectrum indicates the frequency and orientation of a particular feature in the image. We use the
grayscale version of the spectrum image after the log transform. In Figure 1, we compare four astronomy images
using their spectrum images to demonstrate the feasibility of analyzing image similarity in terms of complexity.
Given two grayscale frequency spectrum images Fa and Fb, we compute their similarity through evaluating their
block-wise Pearson linear correlation. Again, we take a local 8× 8 window, which moves pixel-by-pixel over the
entire image. For two corresponding image blocks Ba and Bb, we compute their correlation as
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where paj and pbj are the j-th pixel values of Ba and Bb respectively, µa and µb are the means of Ba and Bb

respectively, σa and σb are the standard deviations of Ba and Bb respectively, and n is the number of pixels
in the block. With Equation 3, we compute the distance DF (Fa, Fb) similar to Equation 2 where the absolute
correlation values |PB(Bai, Bbi)| are used instead.

Color Histogram Distance. Image colors provide additional information for similarity comparison. Given
an image, we compute its color histogram by sampling each of the R, G, B channels into eight levels, which
leads to a color histogram of 512 entries. Given two normalized color histograms Ha and Hb, we can use the
Kullback-Leibler divergence (KLD) to evaluate their difference

KH(Ha||Hb) =

b
∑

k=1

ha(k) log
ha(k)

hb(k)
, (4)

where ha(k) and hb(k) are the heights of the kth bin for Ha and Hb respectively, and b is the number of bins
in the color histogram. Notice that the KLD is not a true metric, i.e., KH(Ha||Hb) 6= KH(Hb||Ha). We thus
actually use the symmetric Jensen-Shannon divergence (JSD) measure instead



DH(Ha,Hb) =
KH(Ha||Hm) + KH(Hb||Hm)

2
, (5)

where Hm = (Ha + Hb)/2.

3.2 Textual Distance

To obtain textual features, we extract meta-tagged keywords in the HTML header. We also extract hyperlinks in
the explanation. These hyperlinks refer to URLs and similar hyperlinks indicate that their corresponding images
may also share similarity. Then, we convert all uppercase letters to lowercase ones for extracted keywords and
hyperlinks and apply the bag-of-words model20 for textual similarity measurement. We point out that semantic-
based methods for detecting text similarity21 can classify text based on the same semantic focus such as an
object or action. Nevertheless, the simple keyword extraction and similarity evaluation technique we propose
performs well as all images in our case share the same theme of astronomy.

Keyword List Distance. We treat two given keywords ka and kb as strings and calculate their edit distance
by computing the minimum number of inserts, deletes, and substitutions required to transform one string into
the other. The distance between ka and kb is calculated as

Dk(ka, kb) =
cini + cdnd + csns

|ka| + |kb|
, (6)

where ci, cd, and cs are the costs of insertion, deletion, and substitution operations respectively, ni, nd, ns are
the numbers of times that these three operations occur respectively, and |ka| and |kb| are the lengths of keywords
ka and kb respectively. We set ci = 2.0, cd = 2.0, and cs = 3.0 since the cost of deletion or insertion operation
must be greater than half of the cost of substitution operation. Otherwise, two strings ka and kb will be matched
using the deletion and insertion operation only.

To calculate the distance between two lists of keywords, we take into account all keyword pairs from the two
lists. Our solution is to calculate the average of the minimum distance values of keyword pairs, i.e.,

DK(Ka,Kb) =
AK(Ka,Kb) + AK(Kb,Ka)

2
, (7)

where AK(Ka,Kb) is the average of the minimum distances (Equation 6) for each keyword in list Ka to any
keyword in list Kb. All DK are normalized for use.

Hyperlink List Distance. Given two hyperlinks, we compute their similarity by first determining if we
are comparing an internal link (i.e., a URL in the same website) to an external link (i.e., a URL in a different
website). For simplicity, we only check these links not the actual content these links refer to. If the two hyperlinks
are internal and external links, we define their similarity as 0. If both links are internal, the similarity is 1 if
they match exactly; otherwise, the similarity is 0. If both links are external, we ignore any directories and only
take into account each hyperlink’s subdomains. Each hyperlink is first split into a list, where each element in
the list is a subdomain (for example, www.nasa.gov is split into the list www, nasa, and gov). We then compare
each subdomain in the first hyperlink to each subdomain in the second hyperlink starting from the end of each
list and moving backwards. At any step, if two subdomains being compared do not match exactly, then we do
not proceed further. Let la be a hyperlink with |la| subdomains, lb be a hyperlink with |lb| subdomains, and n
be the number of subdomains matched. We define the similarity between two hyperlinks la and lb as

Sl(la, lb) =
n

max(|la|, |lb|)
. (8)

To find the similarity between two lists of hyperlinks, we use the average of the maximum similarity values

SL(La, Lb) =
AL(La, Lb) + AL(Lb, La)

2
, (9)

where AL(La, Lb) is the average of the maximum similarity values (Equation 8) for each hyperlink in list La to
any hyperlink in list Lb. We normalize all similarity values to [0, 1] and define the distance between La and Lb

as DL(La, Lb) = 1.0 − SL(La, Lb).



4. IMAGE RANKING AND CLUSTERING

With the overall image distance defined, we build a symmetric distance matrix recording the distance between
any two images in the collection. During image search, the user selects a query image and all other images in the
collection are ranked accordingly. The user can change the weights for partial distances to update the distance
matrix and search results.

For image clustering, we apply the hierarchical quality threshold algorithm due to its simplicity and efficiency.
The algorithm uses a list of distance thresholds with increasing values {δ0, δ1, δ2, . . . , δl} to create a hierarchy up
to l + 1 levels (δ0 = 0, δl = 1). Initially, each image in the collection is in its own cluster. At the first iteration,
we build a candidate cluster for each image I by including all images that have their respective distance to I
smaller than δ1. We save the cluster with the largest number of images as the first true cluster and remove all
images in this cluster from further consideration. In the true cluster, image I is treated as its representative. We
repeat with the reduced set of images until all images are classified. In the following iterations, the input is all
representative images gathered from the previous iteration. We continue this process for the following iterations
until we finish the lth iteration or until we only have one cluster left in the current iteration.

5. IMAGE LAYOUT AND INTERACTION

Once image are ranked, image layout is important as it determines how images should be arranged for viewing.
For a large image collection, it is desirable to maintain good visual overview while allowing flexible exploration
and detailed examination. An appropriate image layout should fulfill the following criteria:

• stable layout : the layout should accommodate image ordering and maintain stable update when images are
inserted or removed during the query;

• screen utilization: for efficiency, the layout should display as many images as users can comfortably view
them;

• occlusion minimization: for effectiveness, images displayed should not occlude each other in the layout or
their overlap should be minimized;

• in-place interaction: the layout itself should also serve as an interface for in-place interaction to attract
user attention and facilitate image identification.

5.1 iMap

Since most displays and images are in the form of rectangle, we opt to use the rectangular shape for image layout
so that the available display area can be best utilized. We propose to use the treemap22 to visualize a large
image collection due to its simplicity and effectiveness. We refer to the treemap-based representation of image
collections as the iMap (“i” stands for image). Each node in iMap corresponds to a rectangle that displays an
image thumbnail. The sizes of these rectangles can be determined by the importance of their images, such as
search rank or hit count.

Layout Design. The original “slice-and-dice” treemap layout generates rectangles of arbitrary aspect ra-
tios. Squarified treemaps23 create rectangles with smaller aspect ratios but give up on node ordering. Ordered
treemaps24 offer a good tradeoff among stable updates, order preserving, and low aspect ratios. Quantum
treemaps developed for PhotoMesa25 guarantee that the regions showing groups of photos have dimensions that
are integer multiples of the dimensions of the photos (i.e., they must be sized to contain quantum, or indivisi-
ble contents). Spiral treemaps26 place nodes along the spiral pattern which guarantees that neither the overall
pattern nor the specific node ordering will change drastically as the data evolve over time.

For iMap, we propose a hybrid layout that combines the advantages of both quantum and spiral treemaps:
the use of quantum with a fixed aspect ratio simplifies the layout for images of different aspect ratios; and
the adoption of spiral pattern maintains stable update when we insert or remove images. The 1D spiral also
accommodates image ordering, such as the chronological order or rank order. Our layout results with image
search and clustering are given in Figure 2. To organize clustering results, we apply a two-level layout: the
quad-tree layout for different levels of hierarchy and the spiral layout for images within each level. Much as in
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Figure 2. iMap with the spiral layout. Left: image search results. Right: hierarchical clustering results.
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Figure 3. F+C Visualization. (a) edge expansions of the focus divide the entire space into eight areas. (b) adjust each
area independently. (c) adjust areas by group. In (d) and (e), one image, shown in the dashed rectangle, crosses three
areas.

human vision, we display the focus image at the center of display area (focal point) and arrange less important
images in its surrounding (periphery). By default, we display the focus image in normal size and reduce the
width and height by half for the successive layers. The user can adjust the number of repetition layers r needed
to keep the current width and height. In Figure 2, we set r = 2 for image search and r = 1 for image clustering.

iMap Interaction. The interaction with image search function includes the following: left mouse click for
showing the overlay full-resolution image in its original aspect ratio; middle mouse click for showing metadata
information; and right mouse click for updating search with respect to the image selected. Each image comes
with an ID and we also store the number of pixels similar to a list of given representative colors. This allows
us to enable “search by ID” (selecting an image ID via slider) and “search by color” (picking a representative
color via radio button) functions for updating the query image besides “search by image” (directly clicking on an
image displayed in iMap). The interaction with image clustering function is the same except that right mouse
click on an image is for displaying its next level of images in the hierarchy.

We also implement a focus+context (F+C) function to further improve the readability of iMap as the user
mouses over the images. Our F+C approach aims to apply a simple strategy to achieve an acceptable result for
a single focus. As shown in Figure 3, in a general case, the expansions of the four edges of the focused image
divide the entire space into eight areas. When the focus is enlarged, its edges move accordingly, so do the edges
of the eight areas. However, if we simply scale each area to fit into the new layout, the four areas adjacent to the
focus, i.e., Areas 2, 4, 7, and 5, will suffer from more serious distortion than other areas (Figure 3 (b)). Taking
Areas 1 and 2 for example, when the focus grows, the horizontal edges of Area 2 will expand while its vertical
edges shrink; but for Area 1, both its horizontal and vertical edges will shrink. Thus, the aspect ratio of Area 2
changes more significantly than that of Area 1. To balance these changes, we group each area adjacent to the
focus to the one at the corner, i.e., Areas 1 and 2, 3 and 5, 4 and 6, 7 and 8 will be grouped together, respectively.
This strategy is similar to the solution proposed by Kustanowitz and Shneiderman in their two-level auto-layout
technique for photo browsing.27 Then we apply the transformation to each group, so that the overall distortion
can be reduced (Figure 3 (c)). However, for the spiral layout, an image that is larger than the focus might cross
three areas, as shown in Figure 3 (d). Figure 3 (e) shows an example where the current query image at the center
crosses Areas 1, 2, and 3. In this case, Areas 1, 2, and 3 must be in one group to ensure that every image is still
a rectangle. For other areas, we will group Areas 4 and 6, 5 and 8, respectively, and leave Area 7 ungrouped
(since it is the smallest one).

In our implementation, the focused image will be scaled up to the same size as the centered query image
before the deformation. To better preserve the original aspect ratio for the areas out of focus, the center of



Figure 4. Left to right: iMap showing search results with the use of visual distance only, textual distance only, and a
combination of visual and textual distances, respectively.

the focused image might move. Take the horizontal direction for example, the left and right boundaries of the
focused image after deformation are decided in a way such that the left and right remaining areas are squeezed
proportionally to their original widths. Once the boundaries of the focused image are determined, we compute
the boundaries of each area and uniformly deform the context images within each area.

5.2 Integrating Text into Image Search

Building the overall distance matrix that includes the keyword and hyperlink distances for image search implicitly
utilizes the textual information. In this case, all keywords or all hyperlinks associated with images must be taken
into account. Nevertheless, these keywords or hyperlinks can also be explicitly utilized to customize or refine the
search. We present three different ways to explicitly integrate text into image search.

Keyword Input. In this mode, the user inputs a keyword into a text widget and we search and display
images that contain such a keyword. The keyword input could be partially or exactly matched with image
keywords and/or text explanations in the HTML files. Multiple keywords are allowed with logical operators
(OR, AND). Images founded can be ordered by their IDs or other attributes such as hit count. They can also
be arranged according to their rank order from the previous image search results.

Tag Cloud. Unlike keyword input, tag cloud displays pages of keywords from which the user clicks on a
keyword of interest to find related images. The order of keywords in the tag cloud can be determined by their
alphabetical or frequency order. Their visual attributes such as size can be determined by their frequency.

Embedded Text. Both keyword input and tag cloud display text in another widget or window separate
from iMap. Another different design is to embed image tags for in-place selection and search, which obviates
the need to use a list of words separately. This concept is similar to PhotoMesa,25 a zoomable image browser (in
terms of in-place interaction) and scented widgets28 (in terms of improving navigation cues). Zoomable interfaces
make navigation straightforward and avoid getting lost. Improving navigation cues lowers the cost structure of
seeking and accessing information. We therefore advocate a solution that integrates tag information into iMap
for further interaction and embedded search. For the APOD collection, tags are only associated with the image,
not specific objects. We thus overlay a layer of tags for user selection and search refinement. Much as in tag
clouds, the size, color, or order of tags for an image can be adjusted to provide additional hints such as how
many images will match selected tags. The user can select multiple tags to add into the current search.

6. RESULTS

We collected APOD webpages that contain meta-tagged keywords (since Sep. 26, 1997) till a cut-off date (Apr.
3, 2010). Occasionally, APOD runs videos instead of images. In this experiment, we did not consider videos and
therefore excluded those webpages from our collection. For images in the GIF format though, we extract the first
frame as the representative of the entire image sequence. The resulting data set consists of 4560 images with text
information including keywords, hyperlinks, and explanations extracted from the HTML files. At preprocessing,
we computed five distance matrices (DG, DF , DH , DK , and DL) to record the distance for all pairs of images.
These distance matrices are used at runtime to update the final overall distance. In the following, we present



Figure 5. Left to right: iMap showing clustering results with the use of visual distance only, textual distance only, and a
combination of visual and textual distances, respectively.

(a) spiral, 5 layers, 145 images (b) spiral, 7 layers, 289 images (c) row-and-column, 144 images

Figure 6. Query by color: images are ranked according to their percentages of brown pixels. F+C visualization is shown
in (b) where the focused image is expanded and highlighted in the yellow boundary.

iMap results with screenshots captured from our program. Please refer to the accompanying video for the best
evaluation of iMap.

6.1 Image Layout

Figure 2 shows iMap layout. For image search, the query image of the International Space Station is displayed
at the center of iMap as the focus. Results based on both visual and textual distances are ranked and arranged
along the spiral circling out. The effectiveness of image search can be verified by the similar images retrieved
and displayed. For image clustering, the user explores the cluster hierarchy by clicking the image of interest
which will be highlighted with a yellow bounding box, and its next level of detail is displayed. By displaying all
levels of hierarchy currently explored, we give the user the freedom to jump between non-consecutive hierarchical
levels during the exploration. In Figure 4, we can see that using only visual distance picks up images of similar
brownish-yellow colors while using only textual distance pulls up the ranks for grayscale images related to the
Mars. A combination of both visual and textual distances finds a balance in between. In Figure 5, we show
that if no other textual search is provided, clustering images with the incorporation of visual distance would
be more effective for users to identify images of interest in their exploration. Our current implementation only
provides the top-down exploration of the hierarchy, it would be interesting to consider the bottom-up exploration
as well. For example, the user can search a leaf image via keyword and all corresponding intermediate levels in
the hierarchy are automatically extracted and displayed.

Figure 6 shows an example of “search by color” where images are ranked according to how much percentages
of brown pixels they contain. Compared to the row-and-column layout, the spiral layout effectively highlights
top-ranked images while maintaining stable update when the number of image layers changes. We also show
the results with different numbers of layers displayed and the effect with F+C visualization. Note that our
F+C strategy might result in larger distortion when the focused image is close to the corner. In this case, some
divided areas could be small, whose size will change dramatically during the deformation. A more sophisticated
F+C visualization for this kind of application remains an open problem. To keep the shape of each image as



Figure 7. Image search via keyword input. Left to right: the search results corresponding to keyword(s) “spiral”, “galaxy”,
“spiral” OR “galaxy”, and “spiral” AND “galaxy”, respectively. There are 222, 461, 474, and 208 images matched from
left to right, respectively. The first 145 images, ordered by their dates, are shown in each search.

Figure 8. iMap and tag cloud. Left: the page of the most frequent keywords. Middle: a page of keywords in the
alphabetical order. Right: all images that contain the keyword “sun” are ordered by their IDs and displayed.

a rectangle, it will be challenging to minimize the distortion while preserving their relative positions without
creating voids. The variation of image size in the spiral layout makes the problem more complicated, since those
large images will greatly limit the possible moves we can take. Producing a smooth animated transition of the
deformation could be even more difficult.

6.2 Image and Text

Figure 7 shows an example of interactive image filtering via keyword input. The user can choose either partial
or exact keyword match in the search. Figure 8 shows the use of tag cloud in iMap. Tag clouds organize all
keywords in a certain order and the user can go over pages to identify the keyword of interest. As an option, the
frequency count for each keyword may also be displayed. When the user clicks on the keyword, iMap updates
the search result and displays all images containing the selected keyword. Figure 9 shows an example where the
user first searches images based on the use of visual and textual distances as usual. Upon identifying the images
of interest, the user can then turn on the embedded keyword list associated with the query image to refine the
search by clicking on a certain keyword. All images that do not contain the selected keyword will be filtered out
from the query result while the rank order from the previous search is utilized to maintain the relative stable
update. The embedded search allows users to perform in-place interaction to refine their search results without
shifting their focus among different windows, which makes it easy for users to follow and take actions.

6.3 Performance

For the APOD data set, the one-time computation of the five distance matrices took about a few days to
complete on a single Intel Xeon 2.0GHz CPU. The dominant timing was spent on calculating DG and DF where
we computed SB (Equation 1) and PB (Equation 3) on a local 8 × 8 window which moves pixel-by-pixel over
the entire image. This timing can be significantly improved by taking an approximate solution: increasing the
window size and/or setting a step size larger than one pixel for moving the local window. Furthermore, we can
leverage the GPU to perform distance computation in parallel for multiple images simultaneously. At run time,
only the clustering step takes a few minutes to complete. All other tasks and interactions are interactive.



Figure 9. iMap with embedded search. Left: image search results using visual and textual distances. Middle/right: the
user clicks on the keyword “space shuttle”/“columbia” from the embedded list for result filtering.

7. USER STUDY

We performed a user study to evaluate the effectiveness of iMap by comparing it with the existing image search
functions (archive, index, and text search) provided by online APOD. We used a design of 2 conditions (iMap
vs. online APOD) × 3 tasks (text, image, and image + text). We assigned a target image for each of the
six combinations except for Task 1, where users were asked to identify two images with very different numbers
of images retrieved. So, a total of eight images were selected. These images cover different topics: astronaut,
aurora, black hole, Earth, Jupiter, Mars, Moon, and Sun.

7.1 Hypotheses

We postulated four hypotheses for the study. Since the users’ respond time varies for each task, hypotheses
about response time of search under both conditions will be considered based on different tasks. Furthermore,
we only considered the overall accuracy due to the high probability of finding the exact image.

• Hypothesis 1. Given the keywords and description only (Task 1), iMap is faster to search than online
APOD.

• Hypothesis 2. Given the image only (Task 2), iMap is faster to search than online APOD.

• Hypothesis 3. Given the image and keywords (Task 3), iMap is faster to search than online APOD.

• Hypothesis 4. Overall, for image search, using iMap makes fewer errors than online APOD.

7.2 Interactions

Detailed interactions with iMap are described in Section 5. For online APOD, three search modes are provided:
archive, index, and text search. The archive mode provides the dates and titles of all images and arranges them
in the reverse chronological order. The index mode offers various keywords organized by category. Clicking on
any keyword shows keyword-related thumbnail images with their dates, titles, and short explanations. The text
search mode provides OR or AND search for multiple keywords. Since the way to search online APOD is similar
to other websites, we assume that all users are familiar with it.

7.3 Tasks and Procedure

Three tasks were implemented to compare the performance of iMap and online APOD. In each task, users were
asked to identify the three most related or similar images. Ideally, the exact image should be found and if not,
they were asked to find up to three most related ones.

• Task 1. Text search: given a short text description and several recommended keywords, users were asked
to find the three most related images. Two images will be tested for each condition, one search generated
a large number of retrieved images while the other generated a small number.

• Task 2. Image search: given target images without any keyword or description, users were asked to find
the three most similar images. We assumed that the users could figure out the content of the images with
their very basic astronomy knowledge.
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Figure 10. Comparing iMap to online APOD. (a) mean response time by task. (b) mean error rate. (c) mean overall
rating. (d) mean rating by statement. The four statements are: (S1) It was enjoyable to use; (S2) It was easy to search
images with only keywords given; (S3) It was easy to search images with only images given; and (S4) It was easy to search
images with keywords and images given.

• Task 3. Image + text search: given target images with several keywords, users were asked to find the three
most similar images.

For iMap, there was a 15-minute training session and a further 5-minute free exploration time (practice
search) preceding the actual tasks. This was the same for online APOD, except that there was no training. A
post-test survey for user preference and comments was conducted immediately after a user finished all the tests.
A total of 16 users (eight graduate and eight undergraduate students) participated in this study and each user
used both iMap and online APOD. Users were required to finish tasks in the order given. Users recorded the date
of images they selected, and we helped them record the starting and ending time for completing each task. Each
user was asked to perform 8 trials, and therefore, we had a total of 128 (16 × 8) trials. Each experiment was
conducted individually and took approximately 40 minutes, including the training, practice task, experimental
tasks for both conditions, and questionnaire.

7.4 Results and Discussion

We present results from the study in three aspects: completion time, accuracy, and subjective preferences. A
paired t-test with a standard significance level α = 0.05 was performed to determine statistical significance
between the two conditions.

Completion Time. Figure 10 (a) shows the mean response time results when comparing iMap to online
APOD for each task.

• For Task 1, iMap was significantly faster than online APOD with only keywords given and a large number
of images retrieved (iMap: 82.39s, online APOD: 215.36s; p = 0.007). This is because iMap provides a
good overview of the image collection to facilitate the visual search. However, no significant difference was
found with only keywords given and a small number of images retrieved. Possible reasons include: the text
descriptions were confusing to some users; users were more proficient for online search while it took time
for them to adjust to using iMap; and users needed to switch among multiple views or tabs in iMap while
there was only one view in online APOD.

• For Task 2, iMap was significantly faster than online APOD with only images given (iMap: 38.86s, online
APOD: 72.29s; p = 0.0127). Two reasons explain this. First, using online APOD, users were able to scroll
up and down the result page to view about 10 images at a time, while they could view hundreds of image
simultaneously using iMap. Second, neighboring images in iMap are similar while neighboring images have
no connection at online APOD.

• For Task 3, no significant difference in response time was found with keywords and images given. Since
the images we selected for this task got a very small number of images retrieved (10 to 20 images), it was
easy for users to search under both conditions.

Therefore, Hypothesis 1 was fully supported when the number of images retrieved is large. Hypothesis 2 was
also fully supported while Hypotheses 3 was not supported.



Accuracy. Since almost all users were able to find the exact image correctly, we compute the error as the
number of failed trials (i.e., image misidentified) over the number of total trials. With online APOD, 4.69% (6
out of 128) tests failed and with iMap, 1.56% (2 out of 128) tests failed. Figure 10 (b) shows the average error
results when comparing iMap and online APOD. In terms of accuracy, iMap was not distinguishable from online
APOD, which contradicts Hypothesis 4. We found that almost every user could find the exact image under both
conditions.

Subjective Preferences. The 16 users completed a survey after their experiment. They were asked which
condition they preferred overall and which interface they perceived to be more useful for each of the three tasks.
Four statements were provided as follows

• Statement 1. “It was enjoyable to use.”

• Statement 2. “It was easy to search images with only keywords given.”

• Statement 3. “It was easy to search images with only images given.”

• Statement 4. “It was easy to search images with keywords and images given.”

Each statement was answered with a 5-point scale (1 = strongly disagree, 5 = strongly agree). We ran a paired
t-test with a standard significance level α = 0.05 and found a significant effect for iMap.

Figure 10 (c) shows the mean overall rating when comparing iMap to online APOD. The rating for iMap is
significantly higher than online APOD (iMap: 3.89, Online APOD: 2.89; p = 0.039), which indicates that the
users prefer using iMap over online APOD.

Figure 10 (d) shows the mean rating when comparing iMap to online APOD for the four statements:

• For Statement 1, iMap was judged to be more enjoyable to use (iMap: 4.19, online APOD: 2.94; p = 0.0017).

• For Statement 2, iMap was not significantly easier to search images with only keywords given (iMap: 2.94,
online APOD: 2.56; p = 0.5544).

• For Statement 3, iMap was significantly easier to search images with only images given (iMap: 4.06, online
APOD: 2.634; p = 0.0001).

• For Statement 4, iMap was significantly easier to search images with keywords and images given (iMap:
4.38, online APOD: 3.44; p = 0.0098).

8. CONCLUSIONS AND FUTURE WORK

We have presented iMap, an analysis and visualization framework that supports effective searching, browsing,
and understanding of large image collections. iMap strikes a good balance among simplicity, intuitiveness,
and effectiveness by addressing issues such as stable layout, screen utilization, and in-place interaction. Our
user study confirms that iMap provides a more effective solution for image search, ranking, and identification
compared with traditional archive and keyword search methods. We are currently deploying a web version of
iMap for APOD so that any users can easily access our system online. While the layout itself will work for other
image collections beyond APOD, we would improve our image distance measure by considering image aesthetics
measures, high-level image features, and relationships between words so that the similarity ranking would be
applicable to other image collections as well. In the future, we will also incorporate animated transitions to help
users better perceive the changes as a new query image is chosen.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National Science Foundation through grants IIS-1017935 and CNS-
1229297. We thank the anonymous reviewers for their helpful comments. All the images at the APOD website
are credited to the owners or institutions where they originated.



REFERENCES

[1] Nemiroff, R. J. and Bonnell, J. T., “Astronomy picture of the day: http://antwrp.gsfc.nasa.gov/apod/
astropix.html,” in [Bulletin of the American Astronomical Society ], 1291 (1995).

[2] Swain, M. and Ballard, B., “Color indexing,” International Journal of Computer Vision 7(1), 11–32 (1991).

[3] Rodden, K., Basalaj, W., Sinclair, D., and Wood, K., “Evaluating a visualisation of image similarity as a
tool for image browsing,” in [Proceedings of IEEE Symposium on Information Visualization ], 36–43 (1999).

[4] Rodden, K., Basalaj, W., Sinclair, D., and Wood, K., “Does organisation by similarity assist image brows-
ing?,” in [Proceedings of ACM SIGCHI Conference ], 190–197 (2001).

[5] Manjunath, B. S. and Ma, W.-Y., “Texture features for browsing and retrieval of image data,” IEEE
Transactions on Pattern Analysis and Machine Intelligence 18(8), 837–842 (1996).

[6] Bimbo, A. D. and Pala, P., “Visual image retrieval by elastic matching of user sketches,” IEEE Transactions
on Pattern Analysis and Machine Intelligence 19(2), 121–132 (1997).

[7] Mikolajczyk, K. and Schmid, C., “Scale and affine invariant interest point detectors,” International Journal
of Computer Vision 60(1), 63–86 (2004).

[8] Kennedy, L. and Naaman, M., “Generating diverse and representative image search results for landmarks,”
in [Proceedings of International Conference on World Wide Web ], 297–306 (2008).

[9] Datta, R., Joshi, D., Li, J., and Wang, J. Z., “Image retrieval: Ideas, influences, and trends of the new age,”
ACM Computing Surveys 40(2) (2008).

[10] Chen, C., Gagaudakis, G., and Rosin, P., “Content-based image visualization,” in [Proceedings of Interna-
tional Conference on Information Visualisation ], 13–18 (2000).

[11] Torres, R., Silva, C., Medeiros, C., and Rocha, H., “Visual structures for image browsing,” in [Proceedings
of International Conference on Information and Knowledge Management ], 49–55 (2003).

[12] Yang, J., Fan, J., Hubball, D., Gao, Y., Luo, H., Ribarsky, W., and Ward, M., “Semantic image browser:
Bridging information visualization with automated intelligent image analysis,” in [Proceedings of IEEE
Symposium on Visual Analytics Science and Technology ], 191–198 (2006).

[13] Gomi, A., Miyazaki, R., Itoh, T., and Li, J., “CAT: A hierarchical image browser using a rectangle packing
technique,” in [Proceedings of International Conference on Information Visualisation ], 82–87 (2008).

[14] Brivio, P., Tarini, M., and Cignoni, P., “Browsing large image datasets through Voronoi diagrams,” IEEE
Transactions on Visualization and Computer Graphics 16(6), 1261–1270 (2010).

[15] Harada, S., Naaman, M., Song, Y. J., Wang, Q. Y., and Paepcke, A., “Lost in memories: Interacting with
large photo collections on PDAs,” in [Proceedings of ACM/IEEE-CS Joint Conference on Digital Libraries ],
325–333 (2004).

[16] Huynh, D. F., Drucker, S. M., Baudisch, P., and Wong, C., “Time quilt: Scaling up zoomable photo
browsers for large, unstructured photo collections,” in [Proceedings of ACM CHI Extended Abstracts ], 1937–
1940 (2005).

[17] Marks, J., Andalman, B., Beardsley, P. A., Freeman, W., Gibson, S., Hodgins, J., Kang, T., Mirtich,
B., Pfister, H., Ruml, W., Ryall, K., Seims, J., and Shieber, S., “Design galleries: A general approach to
setting parameters for computer graphics and animation,” in [Proceedings of ACM SIGGRAPH Conference ],
389–400 (1997).

[18] Cooper, K., de Bruijn, O., Spence, R., and Witkowski, M., “A comparison of static and moving presentation
modes for image collections,” in [Proceedings of International Working Conference on Advanced Visual
Interfaces ], 381–388 (2006).

[19] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P., “Image quality assessment: From error
visibility to structural similarity,” IEEE Transactions on Image Processing 13(4), 600–612 (2004).
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