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Abstract
The study of fluid behaviors has been a challenging topic.

Flow visualization enables us to visually acquire qualitative and

quantitative flow information. There exist various software tools

performing different flow visualization tasks. However, we lack

tools that help students learn important flow field concepts. In

this paper, we present a visualization app, named FlowVisual

which runs on iOS devices, to illustrate basic flow field concepts

in 3D. In order to meet a comprehensive learning goal for stu-

dents, we integrate a number of techniques into FlowVisual de-

sign, including field-line tracing, field-line comparison, critical

point detection and classification, template-based seeding, and

surface visualization. We evaluate and demonstrate the effective-

ness of FlowVisual by conducting a formal user study including

an introduction and training session, an auto-grading test, and a

post-questionnaire survey.

Introduction
Fluid mechanics and computational fluid dynamics (CFD)

are among the core courses in many engineering majors such as

mechanical engineering, aerospace engineering, biomedical en-

gineering, chemical engineering, and civil engineering. In these

courses, it is important for students to acquire the knowledge of

fundamental flow field concepts. Many of those concepts are not

straightforward to learn. For instance, it is not easy for beginning-

level students to fully understand the differences between various

kinds of field-lines and critical points. Commonly, these mate-

rials are taught by instructors through explaining concepts and

definitions, drawing diagrams and illustrations, and occasionally,

playing custom-made animations or video clips. Using intuitive

and real flow examples proves to be an excellent way of learning.

However, most examples available today are only designed for

lecture or demonstration but not for student interaction or self-

learning. Developing a pedagogical visualization tool holds the

potential to help students better learn these essential flow field

concepts through interactive exploration.

In this paper, we present FlowVisual, an educational app run-

ning on iOS devices, to illustrate basic flow field concepts in 3D.

This app is an extension of the desktop version of FlowVisual for

2D flow fields [14]. The desktop version has been used in class-

room teaching of CFD course for multiple times and has received

positive feedback from students. From our user study, we found

that the app helped students with no previous 2D flow field knowl-

edge understand concepts to the similar degree of students who

had studied those concepts before. This new mobile FlowVisual

is developed to illustrate the concepts in 3D space as cases in 3D

are more common yet more challenging to understand in practice.

Besides different kinds of field-lines, we also implemented stream

surfaces in this app to enrich the perception of the flow field char-

acteristics in a more continuous fashion. Our key deliverable is an

app for classroom demonstration and for self-study by students

and professionals. Its implementation on iPad makes it highly

portable and accessible by anyone who is interested in learning

and exploring key flow field concepts. The app has been used

in a classroom environment and its effectiveness was evaluated

through a formal user study involving students from mechanical

engineering, electrical engineering, and computer science. The

mobile FlowVisual is freely accessible in the App Store. The tu-

torial and evaluation materials are also available online so that

instructors and students who are interested in our work can make

use of them.

Related Work
Flow visualization plays a vital role in many scientific, engi-

neering, and medical disciplines, offering users a graphical repre-

sentation of their vector data for visual understanding, interpreta-

tion, and decision-making. For over two decades, flow visualiza-

tion has been a central topic in scientific visualization, and a vari-

ety of techniques including glyph-based [10], texture-based [6],

integration-based [8], topology-based [7], partition-based [12],

and illustration-based [1] visualizations have been presented. Our

tool focuses on integration-based flow visualization as it is most

widely used in practice. For integration-based flow visualiza-

tion, particles or seeds are placed in a vector field and advected

over time. The traces or field-lines that the particles follow, e.g.,

streamlines for steady flow and pathlines for unsteady flow, depict

the underlying vector data.

Teaching the core concepts of fluid dynamics has not experi-

enced significant changes over the years. A few published works

discussed some recent advances. Hertzberg and Sweetman [5] de-

signed a flow visualization course focusing on studio/laboratory

experiences for mixed teams of students. The course content in-

cludes fluid flow physics, history of photography with respect to

the relationship with science and art, as well as flow visualiza-

tion and photography techniques. Their course proved to be very

successful in attracting both graduate and undergraduate students,

engineering women in particular. Settles et al. [13] argued that

fluid mechanics is fundamentally visual, and visual topics can be

taught by modern multimedia methods. They described a new

series of 10-15 minutes narrated videos that use flow visualiza-

tion to illustrate basic fluid mechanics concepts. Rossmann and

Skvirsky [11] developed a sophomore-level seminar that exposes



students to flow visualization techniques and the science of fluid

mechanics, and to the photographic methods needed to create ef-

fective images. The fundamentals of fluid flow and photography

were taught and practiced in a studio setting. As an interactive

visualization app for learning flow field concepts, our FlowVisual

builds on the solid education tool of iPad and provides an alterna-

tive to the above methods.

Terms
We give a brief introduction to some important concepts of

flow fields. These concepts are incorporated into our FlowVisual

design.

Flow Field A flow field (or vector field) is an assignment of a

velocity vector to each point in the domain to represent the move-

ment of the flow. Essentially, it is a mapping

F(p; t) = v (1)

that assigns a vector v to each point p at time t. Mathematically,

a flow field could be expressed as a differential equation

dp

dt
= v(p; t). (2)

Steady and Unsteady Flow When all the time derivatives of a

flow field vanish, the flow is considered to be a steady flow. In

other words, steady flow refers to the condition where the fluid

properties at each point in the system do not change over time.

When time does affect the behavior of the flow, we consider the

flow as an unsteady flow.

Streamline A streamline is the trajectory that a massless par-

ticle follows if released in a steady flow field. It is also known

as the curve that is everywhere tangent to the vectors it passes

through. Mathematically, a streamline is the solution from pc =
((xc,yc,zc); tc) constrained in an instantaneous vector field of

v(pc; tc) at time tc, and it can be represented by

p(b) = pc +
∫ b

0
v(p(σ); tc)dσ . (3)

Pathline A pathline is the trajectory that an individual particle

follows in an unsteady flow field. Given a flow field dp
dt = v(p; t),

the solution with initial state p0 = ((x0,y0,z0); t0) is

p(t = b) = p0 +
∫ b

0
v(p(σ); t0 +σ)dσ , (4)

which is referred to as a pathline starting at position p0.

Streakline A streakline is the locus of points of all the fluid

particles that have passed continuously through a particular spatial

point in the past. Given a set of pathlines traced from the same

position at different time steps, connecting all points at the same

time step forms a streakline.

Timeline A timeline is a line formed by a set of fluid particles

that were marked at a previous instant in time, creating a curve

that is displaced over time as the particles evolve. Given a set

of pathlines traced from the same time step at different positions,

connecting all the points at the same time step forms a timeline.

Stream Surface A stream surface is a continuous surface that

is everywhere tangent to the vector it passes through, which can

be obtained from streamlines traced from a densely seeded curve.

Critical Point A point p is called a critical point of v(p; tc) if

v(p; tc) = 0. Critical points are crucial because they are enclosed

by their compact neighborhood with distinct patterns determined

by their types.

Figure 1. The user interface of the FlowVisual app.

Overview
Figure 1 shows the user interface of the FlowVisual app.

There are two major parts: a drawing canvas and a function panel.

The drawing canvas is where users place seeds and where flow

field concepts are visualized. The panel has three sections: field-

line section, stream surface section, and critical point section. The

field-line section supports visualization of different field-lines to

help students understand the definitions and their similarities and

differences. It includes the visualization of streamline, pathline,

streakline, and timeline, as well as the comparisons of pathline

and streakline, pathline and timeline, and streamline and streak-

line. We support two types of seeding: point seeding and rake

seeding. In addition, line integral convolution (LIC) textures

can be displayed, which provides an overview of the underly-

ing flow to guide seed placement. The stream surface section

supports multiple surface overview and single surface inspection

with streamlines and streamline animation. The multiple surface

overview provides an overall impression of the flow field by dis-

playing multiple stream surfaces at the same time. The single

surface inspection allows one surface to be examined along with

streamlines and streamline animation, without occlusion from

other surfaces. The critical point section supports the detection

and classification of critical points and template-based seeding.

We carefully place seeds around each critical point to reveal the

flow pattern in its vicinity.

We use a hurricane simulation data set and a synthesized five

critical points data set in this app. The hurricane data set is made

available through IEEE Visualization 2004 Contest. The data set

is downsampled and used to illustrate flow field concepts for un-
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Figure 2. Field-lines. (a) streamlines, (b) pathlines, (c) pathline-streakline with LIC, and (d) pathline-timeline with LIC.

steady flow fields. The five critical points data set is made avail-

able by Dr. Alex Pang through his IEEE Visualization 2005 paper

[16]. This steady flow field data set is mainly used for the demon-

stration of critical points and stream surfaces.

Functions and Implementation
Field-lines
Seeding To trace field-lines, users may specify any point in the

domain as the seed. To ease the placement of seeds in the 3D

space, we use seeding planes to fix the coordinate of one dimen-

sion and allow users to place seeds on the seeding planes. Users

can use up to two seeding planes simultaneously. Either of the

two planes can be switched between xy, yz or xz planes with ad-

justable z, x or y coordinates, respectively. Our app supports both

point seeding and rake seeding. Point seeding allows only one

seed at a time. Rake seeding, on the other hand, allows multiple

seeds to be placed. Users are asked to click two end points. Based

on the number of seeds (between 2 and 20) specified on the user

interface, seeds will be placed evenly in between the chosen two

end points.

Line Drawing To trace the trajectory of a particle within a

flow field, we need to solve for positions that the particle passes

through using the differential equation representing the flow field.

We employ the fourth-order Runge-Kutta (RK4) method which

numerically integrates ordinary differential equations by using a

trial step at the midpoint of an interval to cancel out lower-order

error terms. We depict the field-lines in two forms: solid tubes

(see Figure 1) and animated arrows (see Figure 4). The tube form

is depicted by simply connecting the points that we trace along the

field-line. It shows the entire field-line with different colors repre-

senting different types of field-lines. As an extension of the static

tube, animated arrows show the formation of filed-lines. In addi-

tion to drawing the entire line as the background using a transpar-

ent gray color, the animation uses dashed lines with arrowheads

to indicate flow directions.

Visualization and Comparison Our app includes the visual-

ization of four different types of field-lines: streamline, pathline,

streakline, and timeline. To distinguish different field-lines, we

employ distinct colors: red for streamlines, orange for pathlines,

green for streaklines, and purple for timelines. Streamlines are

traced in one single time step (i.e., steady field), while all other

field-lines are traced over multiple time steps (i.e., unsteady field).

Figure 2 shows different field-lines depicted by our app.

To demonstrate the concepts of field-lines and their relation-

ships, we also provide multiple field-lines comparisons with ani-

mation. Timeline and streakline are both defined upon pathlines.

Therefore, including pathline-timeline comparison and pathline-

streakline comparison by showing the formation of timeline and

streakline step by step would help users better understand the re-

lationships between these flow lines.

Additionally, we use the LIC texture as the background

to provide an overview of the flow within a plane in the flow

field. The algorithm for generating LIC texture was introduced by

Cabral and Leedom [2]. It works by adding a random static pat-

tern of black-and-white paint sources to visualize the flow field.

As the flow passes by the sources each fluid particle picks up some

of the source intensity. The result is a striped texture where points

along the same streamline tends to have similar intensities. If the

LIC texture is turned on when tracing pathline, streakline, or time-

line, the texture will be updated synchronously over time showing

the underlying unsteady flow field. Users can adjust the animation

speed as desired. Figures 2 (c) and (d) show pathline-streakline

and pathline-timeline comparisons at selected time steps with LIC

textures.

Stream Surfaces
A stream surface is a continuous surface that is everywhere

tangent to the vector it passes in a steady flow field. It can be

obtained by connecting the set of streamlines traced through every

sample point on a seeding curve. In contrast to having numerous

discrete streamlines in an area, a surface presents the flow pattern

in a more coherent manner.

Seeding and Surface Construction Selecting the seeding

curve for a surface is crucial for surface generation. It influences

the resulting surface in two aspects: the effectiveness of surface

in characterizing flow features, and the smoothness of the surface.

We choose the seeding curves whose corresponding stream

surfaces are able to capture the pattern of critical points. The types

and locations of critical points reveal important patterns of a flow

field, which are difficult to predict if no surfaces pass through

those regions. Once the starting seed is placed, the following

seeds on the curve are generated along the binormal vector of the

previous seed so that the resulting stream surface can demonstrate
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Figure 3. Stream Surfaces. (a) multiple surface overview with unique color for each surface, (b)-(c) multiple surface overview with coloring based on the types

of related critical points, (d) single surface with streamlines, and (e) single surface with streamline animation.

the flow direction. For a point p on a streamline with velocity vec-

tor v and normal vector n, its binormal vector is the vector at p

that is orthogonal to the plane containing v and n.

To generate smooth surfaces, we use a threshold value σ as

the largest distance between two consecutive sample points to en-

sure the seeding curve is densely sampled. Then, we employ the

easy integral surface algorithm [9] for surface construction where

the maximum distance between two consecutive sample points on

the propagation front is within σ . The front propagation is per-

formed by tracing streamlines one step at a time and connecting

the neighboring points into quads. Special cases such as diver-

gence and convergence are taken care of to fill the gaps and avoid

oversampling.

The surfaces are manually selected for the given five critical

points data set. We first randomly generate 3000 lines that follow

the binormal direction, and then manually specify segments of

these lines as the seeding curves. To capture the flow features, we

select those surfaces that pass through the critical regions. On the

other hand, to avoid the surface being overly complicated, we do

not select those surfaces that diverge and end at more than two

critical points.

Surface Coloration To show the correspondence between

stream surfaces and critical points, we color stream surfaces that

relate to the same critical points with similar colors (see Figure 3

(b) and (c)). As mentioned before, a single surface passes no more

than two critical points. Given zero velocity at critical points, the

tracing of a surface either terminates at a critical point or on the

boundaries of the flow field. This indicates that each of our sur-

faces connects two critical points or is constructed between a criti-

cal point and the volume’s boundary. In the former case, the color

of a surface vertex is linearly interpolated between the colors of

the two critical points. In the later case, the color will gradually

fade out as the surface moves far away from the critical point.

Surface Drawing We precompute a total of fourteen surfaces

from the five critical points data set and store them as files to re-

duce runtime workload and ensure prompt response during inter-

action. There are two options to examine the surfaces: multiple

surface overview, and single surface inspection with streamlines

and streamline animation. The first option displays all 14 sur-

faces to present an overview of the flow field. The second option

enables closer inspection of a particular surface with streamlines

or streamline animation.

Streamline Drawing In the single surface inspection mode, we

provide two options: streamlines and streamline animation, to

help detailed inspection. An example is shown in Figure 3 (d)

and (e). The displayed surface will have three streamlines evenly

distributed on the surface to show the exact pattern of the flow.
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Figure 4. Critical points and their seeding templates. (a) saddle, (b) sink, (c) source, (d) spiral, and (e) spiral saddle.

Streamline animation is also available for showing the speed and

direction of the flow.

Critical Points

Extracting features from flow fields has been a topic of ac-

tive research for decades. A great deal of work has been done to

tackle this problem. Given a flow field, we achieve the following

two goals in this work: figuring out locations and types of critical

points for a given flow field, and designing seeding templates that

effectively capture streamline patterns around different types of

critical points.

Detection A critical point is a position in a flow field domain

where the velocity vanishes. For discrete vector data, we de-

tect critical points through sign checking and vector interpolation.

Specifically, for each voxel, we check whether there is at least one

change of sign of the vectors at its corners. If the x, y and z vector

components all have a sign change, it means that a critical point

may exist within the voxel and a further step is taken to obtain the

precise location of the critical point.

For a 3D flow field, the detection of critical points is achieved

by utilizing the Greene’s bisection method [3]. This method di-

vides the flow field into equally-sized cubes and computes their

Poincaré index to check the existence of any critical point within

the cube. If a cube has a non-zero Poincaré index, the cube will

be bisected into subcubes iteratively to find the precise locations

of the critical points.

Classification Critical points are classified according to the

flow patterns in their neighborhood. Mathematically, the type of

critical point is determined by the real and imaginary parts of the

eigenvalues of the Jacobian matrix in the neighborhood of the crit-

ical point. Since imaginary parts demonstrate the circulating flow

pattern while real parts represent the repelling or attracting be-

havior of the flow, an analysis on both parts would determine the

types of critical points [4, 15].

A first-order critical point p0 where v(p0 : t) = 0 can be clas-

sified based on its eigenvalues of the Jacobian matrix Jv(p0) when

det(Jv(p0)) 6= 0.

Consider a 3D flow field

v(x,y,z) =





u(x,y,z)
v(x,y,z)
w(x,y,z)



,

we have its Jacobian matrix as follows

Jv(x,y,z) =
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Let λ1, λ2, λ3 be the eigenvalues of Jv(p0). R1, R2, R3 are their

real parts, and I1, I2, I3 are their imaginary parts. We order λ1, λ2,



λ3 according to the values of their real parts so that R1 ≤ R2 ≤ R3.

Based on the sign of their real parts and the presence of imag-

inary parts, critical points can be grouped into the following types:

Repelling node: R1,2,3 > 0 I1,2,3 = 0

Attracting node: R1,2,3 < 0 I1,2,3 = 0

Repelling focus: R1,2,3 > 0 I1 = 0, I2,3 6= 0

Attracting focus: R1,2,3 < 0 I1 = 0, I2,3 6= 0

Repelling node saddle: R1 < 0 < R2 ≤ R3 I1,2,3 = 0

Attracting node saddle: R1 ≤ R2 < 0 < R3 I1,2,3 = 0

Repelling focus saddle: R1 < 0 < R2 ≤ R3 I1 = 0, I2,3 6= 0

Attracting focus saddle: R1 < 0 < R2 ≤ R3 I1 = 0, I2,3 6= 0

Center: R1,2,3 = 0 I1 = 0, I2,3 6= 0

For simplicity, we merge all types of critical points into five

types in our app as shown in Figure 4. Below is our merging

strategy:

Source: Repelling node

Sink: Attracting node

Spiral: Repelling focus

Attracting focus

Spiral saddle: Repelling node saddle

Attracting node saddle

Repelling focus saddle

Attracting focus saddle

This strategy preserves the distinction of sink and source. It

also categorizes the types whose patterns present a combination

of spiral and saddle shapes. In this way, we avoid using too many

different colors to differentiate different types of critical points on

the screen. As a result, users will not have to constantly refer back

and forth to check the color and the type of a critical point.

Template Design Since streamline patterns around distinct

types of critical points are quite different from one another,

streamline placement becomes important in order to effectively

reveal the characteristics of critical points. We adopt a similar

strategy proposed by Ye et al. [16] that applies a different seeding

template for each type of critical point. For a saddle, the template

has the seeds distributed along the bisector of the hyperbola. But

for an attracting/repelling focus or a center, the pattern forms a

circular or spiral shape. Therefore, seeding on concentric circles

with increasing radii is an appropriate strategy. As for an attract-

ing/repelling node, the flow directions are either toward or away

from the critical point. The corresponding strategy is to place

seeds evenly on a circle centered at the critical point.

Visualization Our app allows users to turn on/off a type of crit-

ical point. Critical points are drawn in the color of their types

as indicated on the interface. By clicking on a critical point, its

template seeds are placed to trace the corresponding streamlines

so that the flow field around the critical point could be perceived.

By applying a different template for each type of critical point, we

avoid the overwhelming occlusion brought by drawing all stream-

lines around critical points while maintaining interactive perfor-

(a) (b)

Figure 5. Streamlines around critical points via template-based seeding.

(a) static streamlines and (b) dynamic streamlines with animated arrows.

mance. In addition, users may edit the templates through chang-

ing the size of the template, the number of layers along the z direc-

tion, and the distance between the layers. Figure 5 shows exam-

ples of visualizing critical points and their corresponding stream-

lines.

Auto-grading
We design an auto-grading component to evaluate a student’s

understanding of flow field concepts. We provide four kinds of

questions:

• The first kind is text-based questions asking about the core

concepts involved.

• The second kind lists some visualization results generated

from our app and asks which one corresponds to which type

of field-line. Here the visualization results use a different

field-line coloring scheme in order to eliminate the possible

memorization of field-line colors encoded by our app.

• The third kind asks students to classify the type for a given

critical point or locate a critical point with a given type. Stu-

dents need to trace streamlines over the flow field in order to

answer these questions correctly.

• The fourth kind asks students to locate a certain type of crit-

ical point or tell the types of critical points given stream sur-

faces with and without streamlines and streamline anima-

tion.

The auto-grading function was used for user study in our

work. The answers and the grade of each student taking the test

are stored in a file, which is sent to the instructor via email. This

component could also be used in class assignment or quiz to test

students’ understanding and help instructors’ in their course de-

sign.

Implementation
The mobile FlowVisual interface was developed using

Xcode provided by Apple in Objective C. It includes the panel on

the left for various widgets and the canvas on the right for visu-

alization. The visualization was implemented using OpenGL ES

2.0. This version of OpenGL ES has a programmable pipeline,

which requires the use of shaders and vertex buffer object (VBO).

The flags of attributes such as lighting, texture, the matrices for

viewport setting and the values of texture, as well as the coordi-

nate, color, normal vector, and index of each point to draw must



be attached to some variables and VBO buffers. The vertex and

fragment shaders will then be compiled. To display any item on

the canvas, the coordinates, colors, normal vectors, and indices of

the points are computed and loaded into the related VBO buffer.

Due to the limited memory and computation power available

on iPad, the storage of inherently large flow field data and the in-

tense and frequent computation of LIC textures on the fly can be

difficult to achieve. We therefore adopted several ways to over-

come these challenges. To reduce the size of the flow field data,

we down-sampled the data spatially and reduced the number of

time steps loaded for an unsteady flow field. To avoid LIC texture

computation on the fly, we precomputed LIC textures and saved

them as JPG files with affordable extra memory cost. The seeding

curve and surface data were also precomputed and saved into files

since generating stream surfaces at run time can be costly which

would negatively impact the performance.

Evaluation
We conducted two user studies to evaluate the effectiveness

of the mobile FlowVisual: one for the sections of field-line and

critical point, and the other for stream surface section. The main

reason for conducting two separate user studies is because surface

visualization was incorporated in a later stage as an update of the

app. Both studies consist of two parts, an auto-grading test us-

ing our app and a paper-based survey. The auto-grading test asks

students to interact with the app and answer related questions.

The students were informed that the main factor for evaluation

was how the app can improve their understanding of flow field

concepts. The studies were conducted in our lab. Before a test

started, the students were first briefed with an introduction to the

flow field concepts and our app, and were given time to explore

the app. When they felt comfortable with the concepts and the

app, they could perform the auto-grading test and fill in the sur-

vey. During the test, the students were only allowed to ask ques-

tions regarding the use of the app. Test questions were presented

one by one. Once a question was answered, the student could not

go back for review or correction.

The first survey on field-line and critical point includes 21

rating questions and six open questions. The second survey on

stream surface has eight rating questions and three open ques-

tions. The rating questions ask the participants to evaluate the

presentation of field-lines and critical points, stream surfaces, and

the design of the user interface (UI). Each function (e.g., stream-

line point seeding, streamline rake seeding, streakline animation,

etc.) has a question that asks the students to rate how much they

agree that a particular function helps them understand the con-

cept. The available choices are 5: strongly agree, 4: agree, 3:

neutral, 2: disagree, and 1: strongly disagree. Based on the na-

ture of the content, the questions are divided into the groups. The

question groups in the first survey are “flow field”, “streamline”,

“pathline”, “streakline”, “timeline”, “animation”, “critical point”,

“UI color”, and “UI size”, where the “UI size” category has ques-

tions on the size of seeds and critical points, and the width of

lines. Each group has two to five questions, and one question

may appear in multiple groups. For example, a question asking

the students to rate the streamline animation capability appears in

both the streamline group and the animation group. The questions

in the second survey have groups of “flow field”, “stream surface

alone is better than streamlines with rake seeding”, “stream sur-

face with streamlines is better than stream surface alone”, “stream

surface with streamline animation is better than stream surface

alone”, “stream surface with streamline animation is better than

stream surface with streamlines”, and “UI color”.

All students recruited in both user studies are from Michi-

gan Technological University. Each student was paid $10 in re-

turn. There were 21 students participated in the first study. Ten

of them majored in electrical engineering and computer science

(EECS) with one undergraduate student, and eleven were from

mechanical engineering (ME) department with two undergradu-

ate students. Some ME students, especially graduate students,

have taken the CFD course, where the students learned the ba-

sic concepts for kinematics and dynamics of fluid flows. The flow

field concepts such as streamline and streakline were introduced at

the beginning, followed by the introduction of the Navier-Stokes

equations. The CFD course focused on the methods to analyze

engineering problems, such as control volume analysis and non-

dimensional analysis. For the second survey, there were 11 partic-

ipants from varied majors. These students can be categorized into

groups with CFD background (five students) and without CFD

background (six students). One participant from the group with-

out CFD background was identified as an outlier based on the

auto-grading test results. The test results have the first quartile Q1

of 3, median of 3, the third quartile Q3 of 4 and thus its interquar-

tile range (IQR) evaluates to the range between the first and third

quartile, which is 1. Any data point that lies outside the range of

[Q1-1.5×IQR, Q3+1.5×IQR], i.e., [1.5, 5.5] in our case, is con-

sidered as an outlier. Therefore, this participant with score of 1

was treated as an outlier and the feedback was not considered in

the following analysis.

General Findings
The top table in Table 1 shows the mean and standard de-

viation of each question group from the first study. In general,

student reactions to the app was positive with mean values larger

than 4.40, which is a positive feedback to all the elements of the

app.

The streakline had the largest standard deviation (0.82) per-

haps for the reason of the inherent difficulty of its definition. We

investigated the differences of student groups. The bottom table

in Table 1 summarizes the ratings from EECS, ME, UG (under-

graduate), and Grad (graduate) students. Students from MEG per-

formed best amongst all groups. This may be due to their previous

study in fluid dynamics and more in-depth research experience

compared with undergrads from the same department. We also

find that students from ME performed slightly better than students

from EECS and the mean values of group EECS and MEUG were

quite close.

Table 2 shows the mean and standard deviation of each ques-

tion group from the second study. Groups except the “stream sur-

face alone is better than streamlines with rake seeding” received

average ratings no less than 4.40. Group “stream surface alone

is better than streamlines with rake seeding” received the lowest

score of 3.70 with the largest standard deviation of 0.94. This is,

however, not surprising since a stream surface alone is the com-

bined depiction of many streamlines. Overall, we received a posi-

tive feedback on the stream surface section and the stream surface

with streamline animation is the most preferred visual representa-

tion.



flow stream path streak timeline critical UI UI

field line line line line animation point color size EECS ME UG Grad

mean 4.42 4.44 4.52 4.49 4.73 4.55 4.44 4.45 4.69 4.53 4.49 4.48 4.52

std dev 0.69 0.71 0.72 0.82 0.45 0.70 0.61 0.63 0.52 0.64 0.63 0.50 0.65

EECS ME UG Grad MEUG MEG all

mean 72.78 76.26 72.22 74.85 73.61 79.08 74.60

std dev 17.85 21.62 17.07 7.86 5.56 14.51 15.86

Top: means and standard deviations of field-line and critical point question groups and student groups. Bottom: means and

standard deviations of field-line and critical point auto-grading test results.

surface alone surface + lines surface + line surface + line

flow better than lines better than animation better animation better than UI w/o CFD w CFD

field with rake seeding surface alone than surface surface + lines color background background

mean 4.20 3.70 4.40 4.70 4.40 4.55 4.20 4.43

std dev 0.61 0.94 0.84 0.67 0.69 0.48 0.75 0.71

w/o CFD background w CFD background all

mean 80.00 85.00 82.50

std dev 20.92 13.69 16.87

Top: means and standard deviations of surface question groups and student groups. Bottom: means and standard deviations of

surface auto-grading test results.

Study of Group Differences with MANOVA

For each group of questions, we investigated the significance

of mean difference between EECS and ME, between UG and

Grad, and between MEUG and MEG for the first survey and be-

tween groups of with and without CFD background for the second

survey by applying MANOVA using the Wilks’ λ test. We used

the significance level of 0.05, meaning that the null hypothesis is

rejected if the p-value is smaller than 0.05. From our analysis, all

p-values from group pairs are greater than the significance level.

Therefore, the null hypothesis can not be rejected and no signifi-

cant difference was found between the ratings of the two groups.

This shows that student ratings were very similar in spite of their

discipline and level of education differences.

Student Comments

The open questions were designed to allow the students to

provide detailed comments about the reasoning behind their rat-

ings and suggestions for future development of our app. The over-

all feedback was positive. Some students stated that “It helped

me understand different types of field-lines and the animation of

two types of field-lines impressed me”, “The types of line/point

were distinguished clearly by colors”, and “Animation effectively

showed the motion of the flow”. They also mentioned that “Dif-

ferent types of critical points are very easy to tell using this tool”,

“Clicking on a critical point and displaying its pattern is very

helpful”, and “Stream surface helps a lot to catch the patterns

and identify the features of the flow field”.

Most students were satisfied with the user interface. We also

received some valuable suggestions. These included relocating

the hint to the top of the screen, using a different font size or

color, and coloring the surfaces according to the types of related

critical points. All these suggestions have been incorporated into

the latest version of the app. In the version used in the user study,

each surface uses a unique color to distinguish itself from other

surfaces. This provides participants with no hints to answer the

auto-grading questions as they need to entirely rely on the shapes

of surfaces to determine the type of a critical point. Figure 3 (a)

shows the original coloring scheme used in the user study, and

Figure 3 (b) and (c) display the surfaces colored according to the

related critical points as suggested by the participants.

Auto-grading Test

The auto-grading test assessed student learning and automat-

ically checked the correctness of their work. The test score of

each student was rescaled to [0, 100]. The bottom table in Tables

1 and 2 show the mean values and standard deviations of student

groups. Generally, students with CFD background/ME students

performed better than students without CFD background/EECS

students. However, the scores were reasonably close to an over-

all average score. In the first study, students without CFD back-

ground have an average score of 72.78 with the overall average

of 74.60 from all students. In the second study, students without

CFD background have an average of 80.00 with the overall av-

erage of 82.50. The questions in the first study were categorized

into twelve groups: text-based, image/animation-based, flow field

basics, streamline, streakline, pathline, timeline, straightforward

concepts, profound understanding, classification of saddle points,

classification of other critical points, and location of critical

points. MANOVA tests did not report significant differences for

question groups between EECS and ME, between UG and Grad,

or between MEUG and MEG. In addition, we tested the signif-

icance among these student groups for each individual question

using ANOVA. The smallest p-value was 0.1411 at Q4. We also

investigated the possible differences caused by major and educa-

tion level using MANOVA on question groups. The p-value from

MANOVA test is 0.8912. Therefore, no significant difference was

found from MANOVA or ANOVA tests at the 0.05-level.

We conducted MANOVA and ANOVA tests on the auto-

grading results from the second study to compare the two student

groups with different levels of background on fluid dynamics. We



did not find any significant difference at the 0.05-level either.

In summary, FlowVisual received an overall positive feed-

back and the students without CFD background/EECS students

performed as well as the students with CFD background/ME stu-

dents after using our app, even though the former had less back-

ground or knowledge of the field.

User Study Summary

Our user study indicated that FlowVisual was effective in

facilitating learning 3D flow field concepts and that the students

were able to pick up the concepts efficiently. Therefore, regard-

less of the background of the students (with or without prior fluid

dynamics knowledge), our visualization app turns out to be effec-

tive and helpful for classroom teaching and self-learning.

The rating scores indicated that reactions from the students

were overall positive. During our user study, some students at-

tended CFD course informed us that there was no interactive tool

being used in the class when they were introduced to those con-

cepts. As a result, most of them only had some vague impression.

It is quite common having videos demonstration in classroom

teaching. However, there are concerns from students that they

would easily lose interest due to the lack of interaction. As the

video content is fixed, it is difficult to know what would happen

if they placed some seeds at certain spots in the flow field. These

concerns no longer exist if an interactive visualization tool is used

to assist teaching. In this regard, FlowVisual not only presents a

tool for classroom teaching and demonstration, but also serves as

an effective and efficient aid for self-study after class.

Conclusions

Our FlowVisual app provides various ways of visualizing

and comparing flow field concepts. The single field-line visu-

alization depicts individual concepts correctly and clearly. The

comparisons between field-lines present the formations and the

relationships of complicated field-lines. For example, FlowVi-

sual helps to clarify the idea that timelines and streaklines are

built based on pathlines. Stream surface provides another way to

understand the flow field. It shows flow features coherently and

clearly, enhancing the perception of flow patterns in conjunction

with streamlines and streamline animation. Furthermore, users

are able to learn and explore field-lines and stream surfaces in-

teractively. Besides the basic concepts related to field-lines and

stream surface, our app also provides critical point detection and

classification. Seeding templates are applied to critical points to

visualize the essential flow patterns in their neighborhood, pre-

senting the unique influence of each type of critical point to the

flow field. The feedback received from user evaluation is positive.

It shows that our app is effective in facilitating learning 3D flow

field concepts and the students are able to pick up the concepts

efficiently.

FlowVisual is available at the App Store for free download.

The app currently supports two data sets, one steady and one un-

steady. The accompanying LIC images, seeding curves of stream

surfaces, along with surface data are precomputed to reduce com-

putation overhead on the mobile devices with constrained re-

source. In the future, we will provide the capability to support

the importing of user-defined data sets.
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