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Abstract
As more and more college classrooms utilize online plat-

forms to facilitate teaching and learning activities, analyzing stu-

dent online behaviors becomes increasingly important for instruc-

tors to effectively monitor and manage student progress and per-

formance. In this paper, we present CCVis, a visual analytics tool

for analyzing the course clickstream data and exploring student

online learning behaviors. Targeting a large college introductory

course with over two thousand student enrollments, our goal is

to investigate student behavior patterns and discover the possi-

ble relationships between student clickstream behaviors and their

course performance. We employ higher-order network and struc-

tural identity classification to enable visual analytics of behavior

patterns from the massive clickstream data. CCVis includes four

coordinated views (the behavior pattern, behavior breakdown,

clickstream comparative, and grade distribution views) for user

interaction and exploration. We demonstrate the effectiveness of

CCVis through case studies along with an ad-hoc expert evalua-

tion. Finally, we discuss the limitation and extension of this work.

Introduction
Higher education in the United States has been facing a

great challenge of encouraging college students to complete their

courses. The most recent report from the National Center for

Education Statistics [17] shows that, in 2016, the retention rate

(i.e., the percentage of students returning in the subsequent year)

was 81%, and the six-year graduation rate for students entering in

2010 was only 60%. Further study suggests that the retention rate

is related to student performance [3], and the first year is the most

crucial one for students to complete their program [2]. To help

students succeed in their course programs and encourage them to

return for the subsequent years, it is critical for instructors to un-

derstand the learning behaviors of students, identify the ones at

risk at the earliest possible stage, and help students improve their

performance. It is also important for students to understand peer

learning habits and improve their own.

Nowadays, the use of a Learning Management System

(LMS), such as Sakai, Moodle, or Blackboard, is prevalent in col-

lege education. Such an LMS helps the instructor deliver material

to the students, administer tests and other assignments, track stu-

dent progress, and manage record-keeping. It also records student

online learning activities and provides a new opportunity to under-

stand their learning behaviors. However, in order to fully utilize

this value we must overcome new challenges posed by the com-

plexity of the recorded data. First, most of the integrated analysis

tools in the LMS focus on simple statistics, which could be quite

limited for in-depth analytics. For example, the number of activi-

ties of a student is often used to determine how active the student

performs, which could be misleading. In our study, we find that

“visiting homepage → idle → visiting homepage → idle” is one

of the most common activity sequences. The activities in this

sequence, however, are irrelevant to the study of the course but

could significantly increase the number of activities performed

by students. Second, effectively grouping students is critical for

scalable analytics of introductory courses with a large number of

enrollment. However, the current learning analytics tools often

fail to group students based on their inherent learning behaviors.

Students could often be clustered based on their assignment or

performance, but using a more fundamental machine learning al-

gorithm could reveal the hidden behavior patterns that play a key

role in student performance.

We present the CCVis, Course Clickstream Visualization,

a visual analytics tool for analyzing student course clickstream

data in an LMS and exploring student online learning behaviors.

CCVis goes beyond simple statistics by employing the advanced

techniques including higher-order network and structural identity

classification to analyze, categorize, and summarize student learn-

ing behaviors. We design coordinated multiple views (CMVs) to

enable not only an effective overview of the massive clickstream

data but also the detailed comparison of individual students’ be-

haviors. The ultimate goal of CCVis is to facilitate instructors in

monitoring and managing student progress and performance.

FYE Course and LMS Information
The course clickstream data were collected from the Moreau

First Year Experience (FYE), which is a required, two-semester

course sequence that helps first-year students make a meaningful

transition to collegiate life at the University of Notre Dame. Each

year, over 2,000+ students take FYE with 125 instructors. FYE

is graded and carries one credit hour per semester, meeting 50

minutes each week for 13 weeks. It employs a flipped-classroom

model: individual students preview and prepare online materials

common to all sections (articles, videos, webpages, surveys, etc.)

in advance of class and prepare short written prompts to launch

small group discussions in class. Time in class focuses on student-

centered activities that facilitate the integration of academic, co-

curricular, and residential experiences.

FYE uses Sakai, an LMS for the overarching structure of

the course. Each individual course site has the course syllabus

and all student resource materials; for instructors there are addi-

tional links for suggested in-class activities and particular instruc-

tor resources. The Sakai site functions as follows: (1) students



and instructors access the readings/viewings on a weekly basis;

(2) prior to class students submit their brief weekly reflections in

“quizzes”; (3) instructors evaluate work on a weekly basis and

update “gradebook” based on common rubrics; (4) at midterm

and final instructors add grades for participation; and (5) also at

midterm and final students submit a multimedia ePortfolio assign-

ments through an interface with “Digication”.

Course Clickstream Data
The clickstream data set we use was collected from the FYE

course taken by the first-year students during the spring semester

of 2018. This course was divided into 114 sections to maintain the

optimal student-instructor ratio. The content and assessment ac-

tivities of the course were consistent across all the sections and de-

livered in the same learning environment, which allowed us to col-

lect uniform data on the course activities of all students, resulting

in 2.3 million click tracks. The activities collected for analysis in-

clude course logins, content clicks, and assignment submissions.

The content includes reading and video materials. Each activity

is presented in the format of “student s visited webpage w at time

t”. In addition to the activity data, we also collected and analyzed

the performance indicator data such as Weekly Prompts (1-11)

scores, ePortfolio Access and Link Check scores, Before/After

Spring Break participation scores, Integration #3 scores, and Cap-

stone ePortfolio scores. The analysis of this large data set has the

potential of revealing the patterns of student learning style that

may be overlooked in small classes.

Related Work
Visual analytics of temporal event sequences. Temporal

event sequences have been extensively studied in previous work.

To effectively extract and present information in event sequences,

two major challenges are tackled: the volume of data and the vari-

ety of patterns. Du et al. [12] surveyed the methods for addressing

both challenges. They described 15 strategies which fall into four

groups: extraction, temporal folding, pattern simplification, and

iterative strategies. Wongsuphasawat et al. [24] presented Life-

Flow to aggregate multiple sequences based on the events. The

aggregated sequences form a tree, preserving the common pat-

terns. CMVs are used to display the detailed event information.

Wongsuphasawat and Gotz [25] further developed Outflow as an

extension to LifeFlow. Outflow allows repetition of events and ag-

gregates the sequences to form a graph. Sankey diagram is used

to visualize the aggregated sequences. Liu et al. [15] proposed

CoreFlow to summarize the sequences based on core events. This

approach extracts the core events and constructs a tree to encode

their relationships. The branching structure of the tree describes

the general patterns in the sequences. Bodesinsky et al. [5] de-

signed a visual analytics system with CMVs to explore sequences

of events. The event view visualizes individual sequences as hor-

izontally aligned bars, where each bar represents an event. A pat-

tern overview is used to summarize the common event patterns

for users to query and highlight patterns of interests in the event

view. Partl et al. [18] proposed Pathfinder to study paths in mul-

tivariate graphs. The interface consists of a node-link diagram to

show the topology of paths and a ranked list to show the attributes

associated with the nodes. Malik et al. [16] compared two groups

of sequences using high-volume hypothesis testing. The statistics

information of the same sequences in two groups is derived for

users to visually compare the two groups. Chen et al. [9] lever-

aged the minimum description length principle to summarize the

event sequences. The cost function considers both the total pattern

lengths and the edit distance between the sequences and generated

patterns. Steptoe et al. [21] converted user trajectories in theme

parks into event sequences. Each event encodes the time spent on

a certain location. The events are visualized as bars, whose color

indicate the duration of time.

Unlike the existing approach, which usually summarized

the common patterns in the sequences, our approach leverages a

higher-order network construction algorithm to extract the critical

sequences that lead to different transition probabilities. Addition-

ally, higher-order network synthesizes the relationships among

these sequences, allowing large-scale features to be studied.

Learning analytics. Hsieh and Wang [14] proposed a

data mining approach to construct a learning path using formal

concept analysis and recommended learning objects using both

preference-based and correlation-based algorithms. However,

their recommendation mainly depends on the content of materi-

als, and the students’ behaviors and learning habits are less con-

sidered. Arnold et al. [1] developed the Course Signals to allow

faculty members to provide each student real-time feedback via

a personalized email, as well as a specific color on a stoplight—

traffic signal. Charleer et al. [7] developed a learning analytics

dashboard called LISSA to facilitate communication between ad-

visors and students by visualizing grade data. Derick et al. [10]

developed AffectVis to visualize learner’s affect states and show

their connection with specific learning activities.

In addition to LMS, the visual analytics approach has been

developed for massive open online courses (MOOC) to study

interactions among users and learning behaviors of students.

Trimm et al. [23] visualized the students’ progress trajectories

over semesters. The trajectories of multiple students are clus-

tered and composited for visualizing the performance of student

groups. Dernoncourt et al. [11] presented MoocViz, which pro-

vides a cross-platform data analytics framework for researchers

to embed additional modules. Learning statistics of students from

different countries for multiple courses are visualized as a demon-

stration. Shi et al. [20] proposed VisMOOC to explore MOOC

video clickstream data. VisMOOC visualizes the temporal vari-

ation of different types of clicks as a stacked bar chart, and the

forward and backward seek events using parallel coordinates. Wu

et al. [28] developed NetworkSeer to understand the interactions

among students. A parallel coordinates view shows multiple prop-

erties of students for users to group and filter the students accord-

ing to these properties. The interactions are depicted by a node-

link diagram. Chen et al. [8] designed PeakVizor to study the

“peaks” in MOOC video clickstream data. Each peak is visually

encoded by a glyph in an overview. The spatial-temporal infor-

mation of the peaks and the correlation between the peaks are vi-

sualized in two additional views. Fu et al. [13] proposed iForum,

a visual analytics system to understand the activities on MOOC

forums. CMVs are used to present an overview of active users

and threads, the detailed interactions of different user groups over

time, and the dynamic patterns of threads.

Unlike the above-mentioned works, CCVis visualizes both

the summarized and detailed clickstream behavior patterns and al-

lows one to drill down for investigating comparative performance

and grade implication.



Design Requirements
The design requirements are formed based on multiple ses-

sions of discussion with a campus team of learning scientists, de-

signers, and engineers. The primary goal of developing the CCVis

visual analytics framework is to allow instructors to monitor and

manage student progress and performance using the course click-

steam data. In particular, it would be ideal if CCVis could help

instructors identify, as early as possible, students at risk of failing,

so that they can help them adjust or correct their behavior (i.e., the

interaction with the online course material) to boost their course

performance. Therefore, our interface should fulfill the following

design requirements in order to best meet the overall goal.

R1. Provide an overview of the data. The data set used in

this research contains clickstreams from 2,000+ students across

14 assignments, and as such, it is impossible to display every

clickstream individually. Instead, the visualization should provide

an overview of the data that allows users to quickly understand the

overall clickstream patterns and the relationships between differ-

ent types of clicks (e.g., text reading, video watching, etc.).

R2. Visualize student behavior patterns. Instead of draw-

ing connections between individual activities in the clickstream,

which fails to capture the complexity of the data, we focus on un-

derstanding behavior patterns, which are captured by sequences

of such activities. For example, a student who previews assign-

ment questions, views study material, and then submits an assign-

ment is likely to perform better than a student who does not pre-

view questions. If we displayed only adjacent click connections,

both cases would appear to be identical: a student views study

material and then submits the assignment. Thus we make use

of behavior patterns to observe how a sequence of clicks, rather

than individual clicks, influences future actions. The visualization

should allow displaying the connections between different behav-

ior patterns and displaying the actual clicks contained within each

behavior pattern.

R3. Group and filter behavior patterns. Although we have

36 unique URLs, they may be categorized into broad types: read-

ing, video, homepage, and idle times. Thus two behavior patterns

may be classified as having the same functional role in our net-

work if the sequence of URL types is the same, allowing us to

classify behaviors into functional groups, which we hypothesize

have different influences on grade distribution. For example, for

different assignments, if a student first reads questions and then

watches a video, the influence on grade is likely to be the same,

even though the unique URLs would be different. The visualiza-

tion should allow users to easily group or filter behavior patterns

according to these groups across different display types, such that

users could have a clear understanding of how the groups differ.

R4. Display grade distribution given a behavior pattern.

This task is crucial to our goal of determining the probability of a

student failing an assignment based solely on the student’s click-

stream behavior. The visualization should display a behavior pat-

tern together with the corresponding probability distribution of

grades that is statistically associated with the behavior pattern,

and should also provide a means of comparing the grade distribu-

tions of different behavior patterns.

R5. Compare behavior patterns of individual students. In

order to identify a student at-risk-of-failing, an instructor might

find it useful to compare a student’s clickstream with that of an-

other. For example, if a student’s clickstream closely resembles

that of a student who performed poorly in an assignment, there

should be a cause for concern. The visualization should allow

users to compare the clickstreams or behavior patterns of two

given students across different assignments. Because there are a

large number of unique behavior patterns, the visualization should

make use of functional role classification stated in R3.

R6. Compare behavior patterns across student groups.

Having grouped the behaviors into functional groups according

to their functional roles (refer to R3), we conjecture that differ-

ent functional groups have different influences on grade distribu-

tion. To investigate this hypothesis, the visualization should allow

comparing average student functional group distributions for dif-

ferent grade brackets. These comparisons should reveal which

functional groups contain behavior patterns that have a strong in-

fluence on the final grade.

Data Analysis
In this section, we briefly introduce the main techniques used

to analyze the clickstream data: higher-order networks (HONs)

and structural identity classification. HONs extract the critical ac-

tivity sequences to describe the behavior patterns of students (R2).

Unlike previous approaches for sequence visualization, which ex-

tract the common sequences, we apply HON to identify the se-

quences that make a difference to the subsequent activities and

synthesize the transitions among the sequences. The graph struc-

ture of HON further allows the functional roles of behaviors to be

discovered as structural identities (R3) using struc2vec, a graph

analysis technique.

A A

B

C

B C|B

C|AA A

B B

(a) (b)

Figure 1. Comparison between (a) FON and (b) HON representations.

A = reading resource A, URL corresponding to assignment 2; B = reading

resource B, URL corresponding to assignment 3; C = idle time of 30-45 min-

utes.

Higher-order Networks
This clickstream data set has been analyzed previously with a

traditional first-order network (FON) representation, which does

not take into account any higher-order dependency of clicks in

the stream. We observe that assigning a single webpage to each

node in the network fails to encapsulate the complexity of the

clickstream data, as illustrated in the example shown in Figure 1.

In Figure 1 (a), we do not keep track of the history of a se-

quence; when in an idle time C, the probability of progressing to

reading resource A is approximately the same as the probability of

progressing to reading resource B. In Figure 1 (b), we rewrite our

intermediate node so as to include previous steps in the sequence,

creating a HON. Now, we are almost guaranteed to progress from

C to A if A was our previous step, and likewise with B. Intu-

itively this makes sense, as the two reading resources correspond

to different assignments. Thus by making use of the recently in-

troduced HON algorithm [29, 22], we can generate an edge table

for the clickstream data set that keeps track of previous steps only

if they have an influence on future progression.



(a) (b)
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Figure 2. The screenshot of the CCVis interface. (a) to (d) are the behavior pattern view (BPV), behavior breakdown view (BBV), clickstream comparative view

(CCV), and grade distribution view (GDV), respectively. The screenshot shows the interface when the homepage (18) is selected for inspection.

In this way, we can use HON nodes to represent behavior

patterns, assisting us in the design requirement R2. The HON al-

gorithm has parameters that can be adjusted such that very rare be-

havior patterns can be ignored. Furthermore, the number of activ-

ities in a given behavior pattern (i.e., the order of the correspond-

ing HON node) is limited by the HON algorithm; the order only

increases if moving to a higher order would measurably improve

our ability to predict the next node in the sequence. To identify the

closely related behaviors, we further apply the widely-used Lou-

vain method [4] to detect communities on HON, using the edge

weights and default resolution of 1.0.

Structural Identity Classification

The structural identity of a node can be briefly summarized

as a measure of how that node fits into its network: how many

direct connections the node has; how many connections its direct

connections have; and so on, with precision ultimately limited by

what the entire network looks like from that node. struc2vec [19]

generates vectors based on this concept of identity, where two

nodes having a similar structural identity will be in similar posi-

tions in the vector space. The structural similarity of two nodes

is derived from their context in the graph, produced by random

walks on a corresponding multilayer graph. For example, suppose

node A acts as a hub node, having a large number of connections

with its connections also being of high degree. Also suppose node

B and node C both act as satellite nodes, with just one or two con-

nections with other nodes, though not necessarily with each other.

Then the vectors A and B generated by the struc2vec algorithm

will be positioned far apart from each other, whereas vectors B

and C will be positioned close together. Applying the k-means

clustering to the generated vectors, therefore, allows us to assign

a structural classification to each node, as nodes that are clustered

together in the struc2vec space have a similar structural identity.

The classification assigned by this technique identifies not only

nodes of similar structural identity within the HON, but also be-

havior patterns of a similar functional role within the clickstreams

to meet the design requirement R3.

Visual Interface and Interaction
We develop CCVis as a web-based tool for exploring the

course clickstream data. The implementation uses D3.js for

producing dynamic and interactive data visualizations in web

browsers. As shown in Figure 2, our CCVis consists of four com-

ponents: the behavior pattern view (BPV), behavior breakdown

view (BBV), clickstream comparative view (CCV), and grade dis-

tribution view (GDV). The BPV gives users an overview of the

entire data set as a graph (i.e., HON) where nodes denote se-

quences of click tracks (higher-order nodes) and edges show their

interconnections. The BBV allows one to check each individ-

ual higher-order node in a coarse-to-fine manner using the sun-

burst diagram. The CCV shows detailed comparison of two stu-

dents’ clickstream data on a weekly basis as well as the average

clickstream content of all grade brackets. Finally, the GDV dis-

plays using the Sankey diagram, the mapping between sequences

of click tracks and grade brackets based on statistics. All these

views are dynamically linked together via standard brushing and

linking. In the following, we describe each view in detail.

Behavior Pattern View (BPV)

The BPV corresponds to the design requirements R1 and

R2. By incorporating the concept of HONs into this view, we

are able to summarize a large number of clicks into a manage-

able set of nodes and edges for effective viewing and exploration.

For a clear overview of the clickstream data, we apply the force-

directed graph layout to draw the BPV where each node in the

graph represents a higher-order node (i.e., a behavior consisting

of a sequence of clicks) and each edge represents the connection

between the two incident nodes. As shown in Figure 2 (a), we map

the strength of connection to edge opacity (dark for high strength

and gray for low strength). Users can choose to map node size



to the number of links both entering and exiting the node. Nodes

are grouped via struc2vec and node color denotes group mem-

bership. These visual mappings allow users to quickly find useful

information (e.g., spotting important nodes or identifying group

distribution) for further exploration. By displaying how different

behavior patterns interact, we are able to identify strong patterns

of behavior and draw conclusions on the role that each behavior

pattern plays on student learning.

Behavior Breakdown View (BBV)
While the BPV provides a clear overview of the learning be-

havior patterns, it fails to explain the actual click tracks within

these identified behaviors. For a complete investigation, a more

thorough understanding of these behavior patterns is required.

Therefore, we design the BBV that utilizes the sunburst diagram

to obtain the additional required insight into what was happening

within each behavior pattern. The BBV corresponds to the de-

sign requirement R3. It details the behavior data as the sequences

of clicks they represent, allowing users to view in detail specific

nodes within the BPV and categorize them into groups based on

which point in the sequence an activity occurs.

As shown in Figure 2 (b), users can find each behavior pat-

tern displayed as a sequence of colored sections. By reading these

sequences from the center outward, they can carefully examine

any node in the BPV. The size of each section indicates the per-

centage of students who followed that specific sequence and each

different color represents a specific type of URL click. As we pro-

ceed outward, an active labeling system is shown on top indicat-

ing which sequence has been selected. However, as the sequences

progress outward, the sections could become too small for nor-

mal viewing. As such, we leverage the zoomable version of the

sunburst diagram so that users can zoom in the diagram.

The BBV clarifies the details within behavior patterns found

in the BPV. From this, users are able to determine the frequency

of sequences by observing the size of each section and see how

a sequence of clicks leads to a certain behavior. Users can also

see how a sequence of clicks can branch into multiple behaviors

as they follow different click paths. The BPV shares a direct con-

nection with the BBV, in which the BBV can draw more specific

conclusions from the BPV and vice versa. Through brushing and

linking, when a node in the BPV is selected, the corresponding se-

quence in the BBV is also selected. When users select a sequence

from the BBV, multiple nodes may be selected. If users choose to

select a more general pattern (e.g., a first-order pattern), all nodes

that branch from this pattern will be selected, making it easier to

see the role of the pattern in the BPV.

Clickstream Comparative View (CCV)
Corresponding to the design requirements R5 and R6, the

CCV allows users to observe a student’s clickstream data through-

out the course, as well as an aggregated breakdown of how stu-

dent behaviors correlate with grades. Furthermore, we wish to

categorize behavior patterns according to functional group in or-

der to simplify the display, rather than cluttering up the display

with a record of individual behavior patterns. We make use of the

stacked bar chart layout to display this categorized data.

In the “Two students data” option of the CCV, we use a mir-

rored stacked bar chart to compare the clickstream content of two

students. The two students are selected by their IDs, as shown

in Figure 2 (c). The frequency of functional group members is

defined as the number of times a behavior pattern from that func-

tional group is identified in the indicated clickstream and is dis-

played on the x-axis; week number is indicated on the y-axis. In

this view, the goal is to compare clickstream content between two

students for any given week. In the “Aggregate data” option of

the CCV, we use a non-mirrored stacked bar chart to compare the

average clickstream content of all grade brackets. Since the view

is no longer mirrored, we find it clearer to display the average fre-

quency of functional group members on the y-axis and the grade

bracket on the x-axis. Figure 10 shows such an example.

The CCV allows us to compare behavior patterns of different

students in a search for either similarity (in the case of two stu-

dents scoring the same grade) or differences (where two students

score differently). Furthermore, it allows an instructor to see at

a glance how much work a student is putting in when grading an

assignment: if an instructor notices an unusually low frequency of

certain functional groups, it should serve as a warning to examine

the student’s work more closely. In the BPV, users may choose

to color the nodes according to functional group, which are the

same as those displayed in the CCV. This allows users to deter-

mine meaningful relationships between the nature of a functional

group and its influence on grade.

Grade Distribution View (GDV)
While the BPV and BBV allow users to observe the behav-

ior patterns themselves and how they interact with one another,

at this point we still have not tied behavior patterns found in the

clickstream data to grade distributions. The challenge then is to

tie a behavior to a grade distribution. Given the information from

the BBV, BPV, and CCV, we can now objectively compare stu-

dents. This is achieved by using the Sankey diagram to correlate

URL sequences (i.e., behavior patterns) to grade distributions. As

shown in Figure 2 (d), the GDV allows users to see the informed

grade distributions of each sequence based on the data provided,

corresponding to the design requirement R4. Users are able to

quickly observe which grades are (not) likely to occur given a

behavior pattern. In addition, the GDV can potentially be used

to make grade predictions for future students based on the click-

stream data of past students.

Results and Discussion
Our CCVis is released online at: http://www.nd.edu/

˜cwang11/ccvis/. To avoid any compatibility issues (known

problems include deleting a higher-order node from the GDV),

we recommend users to use the Mozilla Firefox browser. In the

following, we present five case studies and highlight the insights

gleaned. The five studies jointly cover all six design requirements.

Then, we report the evaluation given by a group of experts includ-

ing learning scientists, designers, and engineers.

Case Studies
Case Study 1: Overview of behavior data. This case study

demonstrates users gaining an overview of the data using the BPV

in order to develop an intuitive understanding of both HON com-

munity groupings and struc2vec clusters. The design require-

ments R1 and R2 are covered here.

Users begin with the default view for the BPV, where they

observe clear community groupings within the network as shown



Figure 3. The default view for the BPV showing HON community groupings.

Figure 4. The highlight view for the BPV where the higher-order node 9| is

selected.

in Figure 3. Users then select a higher-order node as shown in

Figure 4, allowing them to focus on the details of that particular

node. The size of the selected node is increased, and any nodes in

the network that are not directly connected to the node of interest

become transparent.

Furthermore, the node data displayed at the top-left cor-

ner can be used to determine that the community groupings

roughly correspond to clicks made during individual weeks in the

semester. For example, the highlighted node 9| is an activity be-

longing to week 7, as can be determined by using the activity ta-

ble shown at the top-right corner of Figure 2 (b). Users may then

choose to click one of the nodes connected to this selected node in

order to observe the activities present in that node, following one

possible path for a student’s clickstream to better understand the

local neighborhood. In this case, it is found that the majority of

nodes contained in group 3 contain activities belonging to week

7, with one node, 9|18.37.29, illustrating a “boundary node” in

that it contains both an activity belonging to week 7 (id: 9) and an

activity belonging to week 6 (id: 29).

By double-clicking outside of the selected node users return

to the default view, and change the group coloring according to

struc2vec clustering. Since the struc2vec clusters are deter-

mined according to structural identity, which has a close relation-

ship to node degree, users find it useful to change node size so as

to indicate the number of connections each node has, as shown

in Figure 5. By hovering over each node, users can quickly de-

velop a coherent idea of what type of nodes are contained in each

Figure 5. BPV color-coded according to struc2vec clusters, with node size

proportional to the number of connections.

structural classification.

Users first observe that the larger, orange nodes correspond

to ‘hub’-type nodes. When located centrally, they act as global

hubs: higher-order nodes consisting of various combinations of

idle time and the course homepage, e.g., 37|18.36, 18|36. These

are nodes that would be found throughout the duration of the

semester and are thus important components for most of the click-

streams. When located away from the center, they act as local

hubs: typically either a single activity such as 5|, or an activ-

ity following the course homepage, such as 7|18. The dark blue

nodes appear very similar to the orange nodes, though typically

with fewer connections than the orange nodes.

The pale blue grouping has a high proportion of nodes that

contain two activities from the same week, e.g., 0|20 from week

11, 12|27 from week 9, and 33|21 from week 4, etc. The pale

orange grouping also has several nodes with two or even three

activities from the same week, but users note that this classifi-

cation also contains many “boundary nodes”. Examples include

the aforementioned 9|18.37.29 with week 7 (id: 9) and week 6

(id: 29). As a result of containing nodes with activities spanning

across assignments, the pale orange grouping nodes typically have

very small degrees and occur rarely in student clickstreams.

Case Study 2: Detailed view of behavior patterns. Now

that users have a thorough grasp of the relationship between

nodes, we move to a case study in which users aim to investi-

gate the detailed click pathways of the behavior patterns using the

BBV. The design requirement R3 is covered here.

Users begin with the default view, as shown in Figure 6 (a),

where they can see at a glance what the content of each behav-

ior pattern’s click pathway is—light yellow URLs correspond to

reading, medium yellow to video, dark yellow to the homepage,

and light blue to idle times. Users click on a given sequence to

zoom in on the rest of that sequence’s click path, as shown in Fig-

ure 6 (b) where the sequence 18|37 is selected for inspection. As

shown at the bottom-right corner, the sequence data table lists ev-

ery student whose clickstream contains the highlighted sequence,

together with the frequency of that sequence within their click-

stream and a copy of their clickstream. This helps users identify

how common the sequence is and in what context it generally ap-

pears.

Case Study 3: Determining grade distribution for a given

clickstream. This case study features users investigating what



(a)

(b)

Figure 6. Comparison between (a) default BBV and (b) BBV when the

sequence 18|37 is selected for inspection.

grade distributions certain behavior patterns are associated with,

leveraging the GDV and fulfilling the design requirement R4.

Figure 7. Grade distributions for two typical nodes (18|37.10 and 18|37.11)

and two outlier nodes (18|37.12 and 18|37.13) in the GDV. Node colors are

based on their struc2vec cluster colors shown in Figure 5.

Users may select up to four behavior patterns at a time in

order to compare how they influence grades. The node selection

box, as shown on the right in Figure 7, colors nodes that give

a ‘typical’ grade distribution white, whereas ‘outlier’ nodes are

colored in red. Selecting two outliers to compare with two typical

nodes does not yield much insight. Due to the fact that this data

set has very little variation in the results received, our ‘outliers’

are not very different from the typical nodes. If there were more

variance in the results, users might leverage the GDV to identify

nodes of interest to study further using the BBV and BPV.

Case Study 4: Comparing clickstream content of individ-

ual students. In this case study, users wish to better understand

why some students perform better than others by comparing click-

stream content of individual students throughout the semester.

Users make use of the CCV and BPV to compare individual stu-

dent clickstreams and to explain the discrepancy in grade for a

given assignment for two students. In addition, users make use of

the BBV to identify students sharing a common feature. This case

study covers the design requirement R5.

(a)

(b)

Figure 8. Comparison between (a) the default view for CCV and (b) CCV

after “student number 1” is changed manually, automatically updating “stu-

dent number 2”. Colors shown in the stacked bar chart are based on HON

community group colors shown in Figure 3.

Users begin with the default view for the CCV, as shown in

Figure 8 (a), and immediately seek to explain why, if the commu-

nities are typically associated with specific weeks, the light gray

community appears to dominate every assignment. By analyzing

the BPV in the same way as we did in Figure 4 for Case Study 1,

users determine that the gray grouping consists largely of activi-

ties from week 10, with a single node of 18|36 (homepage | idle

time, a sequence found consistently throughout all clickstreams)

causing the community to be over-represented in all assignments.

Satisfied that the light gray community has been explained,

users wish to compare students with dissimilar clickstream con-

tents, as one would expect them to have different grades. When

“student number 1” is changed by users, “student number 2” is au-

tomatically updated to the student with the greatest distance from

“student number 1” (indicated at the bottom-left corner) i.e., the

student whose clickstream content is most different, as shown in

Figure 8 (b). Users note that the student on the right in Figure 8

(b), student 777, performed poorly in assignment A9, scoring only

50%. In contrast, student 651 scored 100%.

Users observe that student 777 has significantly more clicks

in assignment A9 than student 651, and would, therefore, be ex-

pected to perform better. Users note that the only communities

in which student 777 has fewer clicks than student 651 are the

dark gray community and the pale orange community. Users learn

through analyzing the BPV in Case Study 1 that the pale orange

community is associated with week 7, and by analyzing the BPV

again we find that the dark gray community is most strongly asso-

ciated with week 4. Thus users conclude that student 777’s poor

performance is likely influenced most by his/her relative lack of

behavior patterns corresponding to the pale orange community,

i.e., a lack of clicks corresponding to that week’s assignment.

Finally, users would like to compare how two students with



View Description Requirements User & Practical Application Question

BPV HON R1, R2 Data Scientist, Learning Designer: What are the strongest relationships

of click behavior patterns?

BBV Sunburst R3 Data Scientist, Learning Designer: What are the most popular students

clickstream pathways for accessing and engaging with the course?

CCV Stacked Bar Chart R5, R6 Instructor: Did my students click on any videos or articles before turning

in the homework?

GDV Sankey Diagram R4 Data Scientist: How can I reverse-engineer and figure out the students

who got the lowest grade so I can describe and predict future student

behavior? Program Director: What behavior pattern correlates to a grade

distribution?
The summary of the four views of CCVis, their description, requirements, and user and practical application question.

Figure 9. Two students with the same frequency of the sequence 9|18.36,

associated with assignment A9.

similar frequencies of a given sequence compare with one another,

in order to investigate two students with similar clickstream con-

tent rather than very different clickstream content. Users select

the node 9|18.36 in the pale orange community of the BPV, know-

ing that it corresponds to assignment A9. The sequence 9|18.36

is then highlighted in the BBV as well, similar to Figure 6 (b).

The sequence data table accompanying the zoomed BBV indi-

cates that students 272 and 155 jointly have the highest frequency

of this node, with two occurrences in each student’s clickstream.

Users then manually set “student number 1” to be 272 and “stu-

dent number 2” to be 155, as shown in Figure 9. It is immediately

apparent to users that both students have an almost identical pro-

portion of pale orange community content—the community most

strongly associated with week 7 (the week of assignment 9) —and

that both students have the same grade. In this way, users are able

to identify high-frequency behavior patterns from any commu-

nity, observe general trends, and investigate how they influence a

student’s grade.

Case Study 5: Comparing clickstream content of stu-

dents grouped by grade. In this case study, users wish to use

the average clickstream content of students across all assignments

(separated according to grade received) to determine which of

the structural classifications described in Case Study 1 might best

serve as a proxy for grade prediction. This case study covers the

design requirement R6, and makes use of both the CCV and BPV.

Users change group coloring to struc2vec clusters, and

change the CCV comparison to “Aggregate data”, as shown in

Figure 10. The coloring in the aggregated view is the same as that

used in Figure 5, though users note the absence of the pale orange

grouping. As the pale orange grouping occurs very infrequently

throughout student clickstreams, the average number of pale or-

ange nodes is very small, and is not discernible in the aggregated

view. Users note that students who scored in the range of 90-99%

have the largest number of clicks, which at first glance seems un-

usual. However, students who are very confident in the material

Figure 10. Student clickstream data averaged over each grade bracket in

the CCV. Colors shown in the stacked bar chart are based on their struc2vec

cluster colors shown in Figure 5. Note that the pale orange band is too small

to be visible as nodes in this group occur quite rarely.

for their course are less likely to review it before completing as-

signments, and would get high grades anyway. A student who

has not gotten a firm grasp of the material to begin with is likely

to spend far more time familiarizing themselves with the content,

i.e., producing more clicks.

Close inspection of Figure 10 indicates that, excluding grade

1.0, the strongest indicator of student grade is obtained by look-

ing at the frequency of dark blue grouping behavior patterns,

followed closely by the orange grouping behavior patterns. Re-

calling the discussion in Case Study 1 about the nature of these

communities, users note that these groupings correspond to hubs,

typically consisting of either a single activity (e.g., 5|), an activ-

ity following the homepage (e.g., 7|18), or one of a number of

combinations of idle time and course homepage (e.g., 37|18.36,

18|36). It makes sense that nodes which indicate a student be-

ginning work on an assignment—homepage to single activity—

would be strongly correlated with grade. Furthermore, a large

number of idle time nodes could be indicative of a student taking

his/her time to read through course material thoroughly, as short

idle times correspond to just 15 minutes of inactivity.

Expert Evaluation
In the above table, a summary of the four views of CCVis

is provided with a description of the visual representation, their

associated requirements, and practical application questions for

end users. A detailed analysis of each view’s benefits and limi-

tations from a campus team of learning scientists, designers, and

engineers follows the summary.

Behavior Pattern View (BPV): The overall clickstream pat-

terns revealed by the BPV can help users quickly spot the most

important patterns and identify the relationships between differ-

ent patterns. Users can also further investigate the patterns by



clicking on an individual node to discover which group the node

belongs to and how many entering and exiting links it has. The

option of mapping node size to its total link numbers and entering

or exiting link quantity helps users easily identify the popularity

of a node. Furthermore, the “HON Community groupings” op-

tion clearly shows the activity patterns in each individual week

throughout the semester. We found the option of grouping pat-

terns by “struc2vec clusters” less intuitive and the meaning of

each color is less clear. The inclusion of a color legend would

help users better interpret the graph.

Behavior Breakdown View (BBV): The sunburst diagram

clarifies the details within the pattern identified in the BPV so

users can dive deeper and discover the detailed click pathways of

any interesting patterns. Users can also determine the frequency

of a specific pathway by the size of the section. Additionally,

the direct connection between the BBV and BPV enables users

to investigate how a click pathway leads to a certain behavior and

what role it plays in the overall pattern. We found it a challenge to

determine the exact click types when brushing outward because

the labeling system only displays the coded number. Although

there is a table legend at the top-right corner for lookup, users

have to use the scroll bar to find the click type for the code they

are investigating.

Clickstream Comparative View (CCV): The mirrored

stacked bar chart clearly shows the difference between student

activity patterns in each week, which reveals their different learn-

ing interests, styles, and strategies. It also uncovers the weeks

where students did not have any course activities, which could be

an indicator that a student might be experiencing some academic

or personal challenges. Proper and timely action taken by instruc-

tors or advisors can help the student overcome the challenges and

thrive. The grades scale (0-1) displayed in the “Aggregate data”

view does not match with the practiced scale (0-20), requiring an

extra step as users comprehend the chart.

Grade Distribution View (GDV): The Sankey diagram re-

veals the correlation between behavior patterns and grade distri-

butions. The visual impact is very effective. Users can select

an interesting behavior pattern and investigate what grade distri-

bution it leads to. The view also enables users to discover what

grades may (not) occur given a certain behavior pattern. Again,

we found it a challenge to determine the exact activity type by the

coded numbers. Also, it would help users interpret the chart more

efficiently if the grade distribution on the right could be displayed

in a fixed order while investigating different nodes.

In summary, CCVis is an engaging tool that can help data

scientists, learning designers, and program directors discover the

overall patterns of student learning activities, the detailed path-

ways of their clickstreams, and the correlation between an activity

pattern and the grade distribution. It is a critical foundational step

in our effort to comprehensively analyze student learning behav-

iors, draw actionable insights from the analysis, and take proper

actions based on these insights to help students thrive.

To further develop CCVis into a tool that can benefit instruc-

tors, advisors, and students as well, we have the following sug-

gestions: (1) Develop an aggregated view of the entire class click-

stream pattern so instructors or advisors could use it as a bench-

mark when investigating a specific students’ week-by-week click

behavior. Students could also benefit from this by seeing where

they stand in terms of course activity compared with their peers.

(2) Connect all the four views so users could interact with them

live together. For example, when users click on a node in the

BPV, the detailed pathway within that node would be highlighted

in the BBV. Meanwhile, the CCV could compare the overall activ-

ity pattern of the student who demonstrated that behavior pattern

the most with his/her aggregated class. Concurrently, the GDV

could display the grade distribution to which the pattern leads.

(3) Provide a query option for instructors or advisors to quickly

identify students and their clickstream patterns. Permission con-

trol should be implemented so instructors or advisors could only

query the students who are in their class or are their advisees. (4)

Provide a query for users to discover the behavior patterns of stu-

dents who have lower grades.

Limitations
We observe the following limitations of the current work.

First, although the course clickstream data we collected from the

FYE course include 2.3 million of click tracks from 2,000+ stu-

dents, the grade distribution was predominantly in the A range.

Since the grades are highly skewed toward one extreme, it be-

came very difficult for us to make an accurate prediction of the

final grade using the clickstream behavior patterns. We actually

attempted the use of deep neural networks to make predictions

but the results are not good as the data records are highly un-

balanced. This, however, would not become a problem as our

learning engineers would collect similar data for more challeng-

ing introductory courses such as Introduction to Chemistry. We

expect the grade distribution to be more balanced, increasing the

possibility of more accurate student performance prediction us-

ing clickstream behavior patterns. Second, the current version of

CCVis focuses on behavior patterns described by the activity se-

quences corresponding to the higher-order nodes. However, it is

possible that more complicated patterns should be analyzed using

larger-scale features in the HON, e.g., paths and motifs. These

features in the HON will provide more contextual information of

how a sequence of activities associated with a higher-order node

is performed. For example, a path in the HON can describe the

entire activity sequence for a student to complete one assignment.

Displaying paths on the BPV, instructors can immediately per-

ceive all activities performed by one student or visually compare

multiple students to understand their behavioral differences.

Conclusions and Future Work
In this work, we design, demonstrate, and evaluate CCVis, a

visual analytics tool for analyzing student course clickstream data

and exploring student online learning behaviors. In the future, we

would improve the visual encodings of CCVis. For example, the

node-link diagram shown in the BPV could easily suffer from the

scalability and occlusion issues. The sunburst diagram shown in

the BBV is aesthetically pleasing and space-filling but could be

difficult to read. All these issues should be addressed. CCVis is

currently designed for instructors to monitor and manage student

progress and performance. We could go beyond the clickstream

data and collect student writing and instructor feedback for text

mining. This could help instructors facilitate their grading of writ-

ing assignments and better spot students at risk. Besides instruc-

tors, we could also design and customize different versions of this

analytics tool to serve individual students and administrators. Stu-

dents could benefit from such a tool by recognizing their behav-



iors and performance comparing to peers, potentially promoting

self-motivation in their study. The administrators (e.g., the pro-

gram director, dean, and provost) could benefit from such a tool

by gaining an informative overview to accurately understand or

estimate student retention.
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