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Abstract

We present a new parallel multiresolution volume rendering framework for large-scale time-varying data visu-
alization using the wavelet-based time-space partitioning (WTSP) tree. Utilizing the wavelet transform, a large-
scale time-varying data set is converted into a space-time multiresolution data hierarchy, and is stored in a time-
space partitioning (TSP) tree. To eliminate the parent-child data dependency for reconstruction and achieve load-
balanced rendering, we design an algorithm to partition the WTSP tree and distribute the wavelet-compressed
data along hierarchical space-filling curves with error-guided bucketization. At run time, the WTSP tree is tra-
versed according to the user-specified time step and tolerances of both spatial and temporal errors. Data blocks
of different spatio-temporal resolutions are reconstructed and rendered to compose the final image in parallel.
We demonstrate that our algorithm can reduce the run-time communication cost to a minimum and ensure a
well-balanced workload among processors when visualizing gigabytes of time-varying data on a PC cluster.

1. Introduction

While direct volume rendering techniques using 3D texture
mapping hardware have made it possible to visualize static
three-dimensional or small time-varying data sets at interac-
tive frame rates, the challenge is to manage and render very
large-scale data sets. Nowadays, a complex scientific simula-
tion can generate output with hundreds or thousands of time
steps, and each time step can contain millions or billions
of voxels. While it is not unusual now for a simulation to
produce terabytes or petabytes of data, the available texture
memory in the state-of-the-art high-end graphics hardware
is limited to only several hundred megabytes. This great dis-
parity makes it very difficult to develop visualization sys-
tems that can scale adequately. As the speed of processors
and the size of disk and memory continue to increase, the
size of data sets will likely increase at an even higher rate.
As a result, the gap between the data size and our ability to
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perform interactive visualization will widen in the foresee-
able future.

A viable solution to address this discrepancy is to reduce
the actual amount of data sent to the rendering pipeline. For
instance, to give the user a quick overview of the data, it is
useful to render a large time-varying data set at lower spatial
and/or temporal resolutions. As the user zooms into the data
and requests further details in local regions or time intervals
of interest, different portions of the data can be retrieved and
rendered at their higher resolutions on demand. To support
this kind of “overview first, zoom and filter, and then details-
on-demand” data exploration paradigm [Shn96], it is cru-
cial to provide an efficient spatio-temporal multiresolution
data management and rendering framework, in which vari-
ous amount of data at different spatio-temporal resolutions
can be extracted from the multiresolution data hierarchy and
used for rendering.

Previously, researchers have introduced a number of tech-
niques for encoding and rendering of large-scale static
volumes [ZCK97, LHJ99, GWGS02] and time-varying data
[SCM99, GS01, SBS02] on a single PC, but fewer stud-
ies have focused on designing multiresolution data manage-
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ment and rendering algorithms for large-scale time-varying
data in parallel computing environment. In this paper, we
present a framework of managing and visualizing large-scale
time-varying data sets for multiresolution volume render-
ing over a PC cluster. In our algorithm, a data structure,
called a wavelet-based time-space partitioning (WTSP) tree,
is utilized to convert the time-varying data into a wavelet-
compressed multiresolution data representation. To deploy
the multiresolution framework over a PC cluster, we intro-
duce an algorithm to partition the WTSP tree into distribu-
tion units, and distribute the partitioned data along hierarchi-
cal space-filling curves among different processors, guided
by a hierarchical spatial and temporal error metric. Our al-
gorithm can eliminate the data dependency among proces-
sors and balance the workload of volume rendering.

The remainder of the paper is organized as follows: First,
we review related work in Section 2. In Section 3, we de-
scribe our multiresolution volume rendering framework in
detail, including multiresolution data representation using
the WTSP tree, WTSP tree partition and data distribution,
and run-time parallel volume rendering. Results on multires-
olution rendering and load balancing over a PC cluster are
given in Section 4. The paper is concluded in Section 5 with
future work for our research.

2. Related Work

In this section, we give a brief review of related work in the
areas of multiresolution data representation, wavelet trans-
form and compression, and parallel volume rendering.

Multiresolution Data Representation: Having the capa-
bility of visualizing data at different resolutions allows the
user to identify features in different scales, and to balance
image quality and computation speed. A number of tech-
niques have been introduced to provide hierarchical data rep-
resentation and indexing schemes for three-dimensional vol-
umetric data [BA83, Wes94, GY95, LHJ99, BNS01, PF01].
For time-varying data hierarchical representation, Finkel-
stein et al. [FJS96] proposed multiresolution video, a rep-
resentation for time-varying image data that allows for vary-
ing spatial and temporal resolutions adaptive to the video
sequence. An approach for dealing with large-scale time-
varying fields was described in [SCM99, ECS00]. The data
structure, called the time-space partitioning (TSP) tree, en-
codes the spatial and temporal coherence of the data. Linsen
et al. [LPD∗02] presented a four-dimensional multiresolu-
tion approach for time-varying volume data that supports
a hierarchy with spatial and temporal scalability. In their
scheme, temporal and spatial dimensions are treated equally
in a single hierarchical framework.

Wavelet Transform and Compression: Over the past
decade, many wavelet-based techniques have been applied to
compress, manage, and render three-dimensional volumet-
ric data [Mur92, IP98, KS99, Rod99] and RGB image data
[BIP01], resulting in high compression ratios with fast ran-

dom access of data at run time. The wavelet analysis has
been applied for feature detection and compression-domain
volume rendering [Wes94, Wes95]. More recently, Guthe
et al. [GWGS02] presented a hierarchical wavelet represen-
tation for large volume data sets that supports interactive
walkthroughs on a single PC. To visualize time-varying data
sets, Guthe and Straßer [GS01] introduced an algorithm that
uses the wavelet transform to encode each spatial volume,
and then applies a windowed motion compensation strategy
to match the volume blocks in adjacent time steps. Sohn
et al. [SBS02] described a compression scheme where the
wavelet transform is used to create intra-coded volumes and
the difference encoding is applied to compress the time se-
quence. While all these methods can perform efficient data
compression and rendering, their goals are not for support-
ing flexible spatio-temporal multiresolution data browsing.

Parallel Volume Rendering: Parallel computing has
been widely used in large data visualization to accelerate
volume rendering. Ma et al. [MPHK94] proposed a parallel
algorithm that distributes data evenly to the available com-
puting resources and produces the final image using binary-
swap compositing. Kniss et al. [KMM∗01] developed the
TRex system for large-scale time-varying data visualization.
Near-interactive frame rates were achieved by utilizing par-
allel graphic hardware in combination with software-based
compositing and high performance I/O. A scalable volume
rendering technique was presented in [LMC02], where a
transform encoding and color table animation scheme was
used to render time-varying scalar data sets interactively.
Wang et al. [WGS04] presented a parallel multiresolution
volume rendering algorithm for large three-dimensional vol-
umetric data, where a well-balanced workload among pro-
cessors was achieved by partitioning the wavelet tree, and
distributing the data along hierarchical space-filling curves
with an error-guided bucketization scheme. In this paper, we
extend their ideas for large-scale time-varying data visual-
ization.

3. The Algorithm

When the size of a large-scale time-varying data set is
larger than what is tractable by rendering systems, it be-
comes crucial to manage the data through a framework for
high-performance multiresolution volume rendering. In re-
sponse, we devise a multiresolution spatio-temporal hierar-
chy that encodes the input time-varying data set. The hier-
archy is based upon the wavelet transform, where the data
set is stored in a data structure called the WTSP tree. The
WTSP tree exploits both spatial and temporal locality and
coherence of the underlying time-varying data, thus allowing
flexible spatio-temporal level-of-detail data selection and re-
trieval at run time. A hierarchical spatial and temporal error
metric is used to calculate the approximate spatial and tem-
poral errors for each of the tree nodes. This metric is used to
control the run-time tradeoff between image quality and ren-
dering speed. To alleviate long chains of parent-child node

c© The Eurographics Association 2005.



C. Wang & J. Gao & L. Li & H. W. Shen / A Multiresolution Volume Rendering Framework for Large-Scale Time-Varying Data Visualization

dependencies for data reconstruction, we introduce an algo-
rithm to store the reconstructed data at nodes in selective
WTSP tree levels, which effectively reduces the overall data
reconstruction cost at run time.

When the WTSP tree is used in conjunction with parallel
volume rendering, in order to eliminate the data dependency
among processors for the wavelet reconstruction, and mini-
mize the communication cost, we design an algorithm which
partitions the WTSP tree into distribution units. Our algo-
rithm then distributes these units to different processors. At
run time, the WTSP tree is traversed according to the user-
specified time step and tolerances of both spatial and tem-
poral errors. Data blocks of different spatio-temporal reso-
lutions are reconstructed and rendered to compose the final
image in parallel. Our tree partition and data distribution al-
gorithm ensures a well-balanced reconstruction and render-
ing workload among processors for any user-specified time
sequences and error tolerances.

Figure 1: The algorithm flow for large-scale time-varying
data visualization.

Figure 1 illustrates the flow of our algorithm for large-
scale time-varying data visualization. In the following, we
describe each stage of the algorithm in detail.

3.1. The Wavelet-Based Time-Space Partitioning Tree

Originating from the TSP tree [SCM99], the wavelet-based
time-space partitioning (WTSP) tree [WS04] is a space-
time hierarchical data structure used to organize multires-
olution time-varying volume data. To construct the WTSP
tree, a blockwise two-stage wavelet transform and compres-
sion process is performed, as illustrated in Figure 2. The first
stage is to build a spatial hierarchy in the form of an octree
(similar to a wavelet tree [GWGS02]) for each time step,
where each node in the tree represents a subvolume with
a certain spatial resolution at that particular time step. As
shown in Figure 2 (a), the volumetric data for one time step
is subdivided into a sequence of data blocks/subvolumes of
the same size (assuming each has n voxels). A method sim-
ilar to [GWGS02] is used to perform a 3D wavelet trans-
form for each of the volume blocks. This will produce a

low-pass filtered subblock of size n/8 and wavelet coeffi-
cients of size 7n/8. The wavelet coefficients are compared
against a user-specified threshold and clamped to zero if
they are smaller than the threshold. The low-pass filtered
subblocks from eight neighboring subvolumes are collected
and grouped into a single block of n voxels, which becomes
the parent node of the eight subvolumes in the spatial octree
hierarchy (note that the wavelet coefficients are kept at the
child nodes, while the low-pass filtered subblocks are passed
up to the parent). We recursively apply this 3D wavelet trans-
form and subblock grouping process until the root of the
octree is reached, where a single block of size n is used to
represent the entire volume. We repeat this process and con-
struct one multiresolution spatial octree hierarchy for every
time step.

In the second stage, to create the temporal hierarchy from
the octrees of all time steps, we apply 1D wavelet transforms
to the wavelet coefficients associated with octree nodes hav-
ing the same spatial location and resolution across the time
sequence. Using Haar wavelets, this will produce a binary
time tree similar to the error tree algorithm [MVW98], as
illustrated in Figure 2 (b). The wavelet coefficients resulting
from 1D wavelet transforms are then compressed using run-
length encoding combined with a fixed Huffman encoder
[GWGS02]. This bit-level run-length encoding scheme ex-
hibits good compression ratio if many consecutive zero sub-
sequences are present in the wavelet coefficient sequence,
and is very fast to decompress. For the root nodes of the oc-
trees, the temporal hierarchy is built from the low resolution
data blocks rather than wavelet coefficients. As a result, the
1D wavelet transform process merges all the spatial octrees
across time into a single unified spatio-temporal hierarchical
data structure. In essence, the WTSP tree is an octree (spatial
hierarchy) of binary trees (temporal hierarchy). There is only
one octree skeleton, and at each octree node, there is a binary
time tree. Each time tree spans the entire time sequence and
combines data from multiple octrees.

We can save space and time for the WTSP tree construc-
tion by performing several additional checks to avoid un-
necessary wavelet transform computation. First, if the data
block is uniform, we can skip the 3D wavelet transform pro-
cess and set the low-pass filtered subblock to the uniform
value and all its corresponding wavelet coefficients to zero.
Second, if the wavelet coefficients of the corresponding oc-
tree nodes in the time sequence are all zero, we can skip the
1D wavelet transform process.

Using Haar wavelets, the wavelet coefficients associated
with octree nodes can be naturally organized into binary time
trees to create the temporal hierarchy. Unlike the 1D tempo-
ral wavelet transforms, the 3D spatial wavelet transforms are
not limited to Haar wavelets and higher order wavelets can
be used to achieve better rendering image quality. However,
when choosing a wavelet transform on the spatial domain,
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Figure 2: The conceptual diagram of constructing the WTSP tree. In this figure, the time-varying data has four time steps. Ct
are the wavelet coefficients at time step t. A[t1, t2] and D[t1, t2] represent the averages and differences of the coefficients across
time span [t1, t2] respectively. During the construction, we compute and store A[0,3], D[0,3], D[0,1] and D[2,3]. At run time,
they are used to reconstruct A[0,1], or A[2,3], or one of Ct (0 ≤ t ≤ 3) by traversing the time tree from top down, depending on
the time step in query and the error tolerances.

there is a tradeoff between the image quality we can obtain
and the reconstruction cost it entails at run time.

3.2. Hierarchical Spatial and Temporal Error Metric

Figure 3: Calculating the spatial error for a time tree leaf
node T . The time tree nodes involved in the calculation are
drawn in black. Due to space limit, only three out of eight
spatial child nodes of T are drawn here.

Coupled with the bottom-up construction of the WTSP
tree, spatial error (se) and temporal error (te) are calculated
for each of the time tree nodes. Our error metric is based on
mean square error (MSE) calculation. A time tree leaf node
T , which corresponds to a single time step rather than a time
interval, is shown in Figure 3. We calculate the spatial error
of node T as the sum of the MSE between the data at node T
and the data of the same time step at T ’s eight spatial child
nodes in the next spatial level of the octree (three of them are
shown in Figure 3), adding the maximum spatial error of the
child nodes. Written in formula:

se(T ) =
7
∑

i=0
MSE(T,Ti)+MAX{se(Ti)|

7
i=0}

where Ti, i ∈ {0,1, ...,7} are the eight spatial child nodes of
node T that represent the same time step at a higher spa-
tial resolution. If node T ’s time tree is associated with an
octree’s leaf node, we define se(T ) = 0. Note that rather

than calculating the error by computing the MSE between
the lower resolution data block and the original space-time
data, the error calculated in this way can be computed more
quickly as we evaluate the approximation errors in a bottom-
up manner. For the non-leaf nodes of a time tree, they rep-
resent data at lower resolutions in the temporal domain. We
want to make sure that when such a node is chosen for ren-
dering, none of the data blocks from the individual time steps
used to construct this lower temporal resolution data will vi-
olate the user-specified spatial error tolerance (the violation
happens when the error value of a parent node is less than
the value of one of its descendent nodes in the time tree). To
ensure this, the spatial error associated with a non-leaf time
tree node is set to be the maximum spatial error of its left and
right children in the time tree.

The temporal error of node T is calculated as follows: If
T is a time tree leaf node, we define te(T ) = 0. Otherwise,
let Tl and Tr be its left and right children respectively. We
calculate te(T ) as the sum of the MSE between the data at
node T and the data at its children, adding the maximum
temporal error of its children:

te(T ) = MSE(T,Tl)+MSE(T,Tr)+MAX{te(Tl), te(Tr)}

We note that many other error norms, such as L-infinity,
can replace the MSE in the above two formulae and be used,
and our error metric is not limited to the selected MSE here.
A feature of this error metric is that it guarantees that the
spatial or temporal error of a parent node is greater than or
equal to those of its children. Our design of this hierarchi-
cal error metric is useful for flexible error control when we
perform the WTSP tree traversal during the rendering.

3.3. Storing Reconstructed Data for Space-Time
Tradeoff

For a large time-varying data set, long chains of parent-child
node dependencies exist in the WTSP tree - in order to re-
construct its own data, a node needs to recursively request
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the low-pass filtered subblock from its ancestor nodes. This
dependency dramatically slows down the overall data recon-
struction process at run time. To alleviate long chains of
parent-child node dependencies and reduce the overall run-
time reconstruction cost, we introduce the EVERY-K scheme
which pre-computes and stores the reconstructed data at
nodes in selective WTSP tree levels. The pre-computation is
performed during the WTSP tree construction, and it serves
as a way to trade disk space with reconstruction time.

Figure 4: The EVERY-K partition scheme. Due to space
limit, for the WTSP tree skeleton, a binary tree rather than
an octree is drawn here for illustration purpose. The octree
nodes and time tree nodes that store reconstruction results
are drawn in black. The set of time tree node groups (drawn
with same pattern) that span the same time interval within
one octree node group is an example of a distribution unit.
In the figure, ko = 2, ho = 6, and kt = 2, ht = 4.

In the standard WTSP tree construction algorithm dis-
cussed earlier, the time tree in each octree node is built from
1D wavelet transforms (across the time dimension) on the
3D wavelet coefficients generated from the spatial hierarchy
for each time step. In the EVERY-K scheme, during the first
stage of the WTSP tree construction, we perform the wavelet
reconstruction in advance and store the low resolution data
for octree nodes at every ko level starting from the octree
root, where ko < ho and ho is the height of the octree. We
then build the time trees in the second stage based on the
low resolution data. For the rest of octree levels, 1D wavelet
transforms still apply to the wavelet coefficients as usual.
To further eliminate parent-child node dependency when re-
constructing data of various temporal resolutions, in each of
the time trees, we pre-compute the 1D inverse wavelet trans-
forms from the coefficients and store the reconstructed re-
sults for time tree nodes at every kt level starting from the
time tree root, where kt < ht and ht is the height of the time

tree. In practice, ho and ht may not be an exact multiple of
ko and kt respectively and this can be easily handled.

Figure 4 shows an example of the EVERY-K scheme.
With the EVERY-K scheme, the problem of having long
chains of parent-child node dependencies is mitigated. This
is because now a node only needs to request the low-pass
filtered data and wavelet coefficients up to its closest ances-
tor octree node and time tree node respectively, where the
wavelet reconstructions have already been performed. This
also allows us to partition the WTSP tree into a set of dis-
joint distribution units and hence eliminate data dependency
for wavelet reconstruction among processors, which will be
described in Section 3.4.

3.4. WTSP Tree Partition and Data Distribution

For parallel volume rendering, the WTSP tree needs to be
partitioned and distributed among different processors since
it is impractical to replicate the large amount of data ev-
erywhere in a cluster environment. However, if nodes with
parent-child dependencies are assigned to different proces-
sors, then communication between the processors becomes
inevitable. In this section we present a WTSP tree partition
and data distribution scheme which eliminate the data depen-
dency among processors and ensure a balanced workload for
rendering on a PC cluster.

First of all, the WTSP tree is partitioned at every ko lev-
els of the spatial octree according to our EVERY-K scheme.
Within each of such a partition, for each octree node that
has stored the low resolution data, and the descendent octree
nodes storing the 3D wavelet coefficients that depend on it,
we form an octree node group. Then, for every time tree in
an octree tree node group, we partition the time tree at every
kt levels according to the EVERY-K scheme. Within each of
such a partition, for each time tree node that has stored the
1D wavelet reconstructed results, and the descendent time
tree nodes storing the 1D wavelet coefficients that depend
on it, we form a time tree node group. In each octree node
group, all the time tree node groups that cover the same time
span are joined into a distribution unit, as illustrated in Fig-
ure 4. We use the distribution units to form a partition of
the WTSP tree, and a distribution unit is treated as a min-
imum unit that can be assigned to a processor. Since there
is no data dependency between distribution units during the
data reconstruction, we are able to eliminate the dependency
among processors at run time.

A good data distribution scheme should ensure that all the
processors receive a near equal amount of rendering work-
load when the user specifies the time step and error toler-
ances for the rendering. However, when multiresolution vol-
ume rendering is performed, different data resolutions, and
thus different rendering workloads, will be chosen as an ap-
proximation of the spatio-temporal region. This makes the
workload distribution task more complicated. In the follow-
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ing, we describe our data distribution scheme to address the
load-balancing problem.

Figure 5: The first two iterates of the Hilbert curve. In con-
structing one iterate from the previous one, the direction of
the curve determines the orientation of the smaller cubes in-
side the larger one.

Generally speaking, time-varying data usually exhibit
strong spatial and temporal coherence. This implies that dur-
ing the rendering, if a data block at a certain spatial and
temporal resolution is selected for rendering, it is likely
that the same spatio-temporal resolution for its neighbor-
ing blocks will also be selected. Therefore, if neighboring
data blocks of similar spatio-temporal resolution are evenly
distributed to different processors, each processor will re-
ceive approximately the same rendering workload in that
local neighborhood. To achieve these, space-filling curves
[Sag94] are utilized in our data distribution algorithm to as-
sign the distribution units to different processors. The space-
filling curve is used for its unique ability to preserve local-
ity, meaning the traversal path along the curve always visits
the adjacent blocks before it leaves the local neighborhood.
An exhibition of the three-dimensional space-filling curve
that fills a cube is shown in Figure 5. Previously, space-
filling curves have been applied to large data visualization
in parallel [CDF∗03, GHSK03] and distributed client-server
[PLF∗03] environments to balance the workload. In our al-
gorithm, hierarchical space-filling curves are used to traverse
through the volume to create a one-dimensional ordering of
the underlying volume blocks. This ordering will be used as
a basis to distribute the volume blocks to different processors
in a round-robin manner. Since each distribution unit in our
scheme spans across ko spatial levels, we only need to use
one space-filling curve of a particular resolution for every ko
levels in the spatial hierarchy. Once the ordering of volume
blocks is determined, the same order will be used to traverse
the volumes with different temporal resolutions.

To ensure load balancing at run time for different spa-
tial and temporal error tolerances, data blocks with similar
spatial and temporal errors should be distributed to differ-
ent processors since our error-based WTSP tree traversal al-
gorithm usually select them together for rendering. To en-
sure proper distribution, in addition to the hierarchical space-
filling curve traversal, we include an error-guided bucketi-
zation mechanism into our data distribution scheme. First,

we partition the spatial error range and the temporal error
range of the nodes in the WTSP tree into discrete intervals.
Then, we iterate through all possible combinations of spa-
tial error intervals and temporal error intervals, and create
buckets for the spatial-temporal error interval combinations.
Next, we traverse the WTSP tree along hierarchical space-
filling curves as described above. During the traversal, every
distribution unit encountered is placed into a bucket, if the
maximum spatial and temporal errors of all the nodes in the
distribution unit fall into the spatial-temporal interval of the
bucket. The order of the distribution units stored in a bucket
is determined by the order of the space-filling curve traver-
sal. The intervals of the buckets are adjusted so that each
bucket holds similar number of distribution units. Finally,
all distribution units in each of the buckets are distributed
among processors in a round-robin fashion.

3.5. WTSP Tree Traversal and Data Block
Reconstruction

At run time, the user specifies the time step and the tol-
erances of both spatial and temporal errors to traverse the
WTSP tree. The WTSP tree traversal is similar to the TSP
tree traversal algorithm presented in [SCM99]. We traverse
both the WTSP tree’s octree skeleton and the binary time
tree associated with each encountered octree node. The oc-
tree nodes in the WTSP tree are recursively visited in the
front-to-back order according to the viewing direction. The
tolerance for the spatial error provides a stopping criterion
for the octree traversal so that the regions having tolerable
spatial variations can be rendered using lower spatial resolu-
tions. The tolerance for the temporal error is used to identify
regions where it is appropriate to use data of lower tempo-
ral resolutions due to their small temporal variations. This
allows us to reuse the data of those subvolumes for multi-
ple time steps. The result of the WTSP tree traversal is a
sequence of subvolumes with different sizes and character-
istics of spatial and temporal coherence. If the data blocks
associated with those selected subvolumes have not been re-
constructed, we need to perform reconstruction before the
actual rendering begins.

A data block at a certain spatial and temporal resolution
is reconstructed in the following manner: If the correspond-
ing octree node is the root of the octree, we retrieve the data
block of n voxels from its time tree hierarchy according to
the time step in question. The corresponding bit stream file is
accessed, and inverse 1D wavelet transforms are performed
to reconstruct the data block. If the corresponding octree
node is not the root of the octree, we recursively request
the data block associated with its ancestor nodes, and recon-
struct the corresponding data blocks if necessary. This is for
extracting the low-pass filtered subblock of size n/8 from
the data block associated with its parent node. The wavelet
coefficients of size 7n/8 are obtained from its time tree hi-
erarchy by decoding the corresponding bit stream file and
applying inverse 1D wavelet transforms. Then, we group the
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low-pass filtered subblock and the wavelet coefficients into
a single block of n voxels and apply an inverse 3D wavelet
transform to reconstruct the data block.

Note that the reconstruction of wavelet coefficients only
covers the nodes along the path from the leaf (corresponding
to the time step in query) to the root in the time tree, and
the recursive requesting of the data block covers the nodes
along the path from the current octree node to the root of
the octree. Therefore, the reconstruction time for getting the
data block is O(c1 ×ho + c2 ×ho ×ht), where c1 is the time
to perform an inverse 3D wavelet transform, c2 is the time
to perform an inverse 1D wavelet transform, ho is the height
of the octree, and ht is the height of the time tree. Utilizing
the EVERY-K scheme, the cost of getting a data block is
bounded by the number of levels in an octree node group (ko)
and the number of levels in a time tree node group (kt ) within
a distribution unit. Accordingly, the reconstruction time is
reduced to O(c1 × ko + c2 × ko × kt), where ko < ho, and
kt < ht are small numbers, two or three in our experiments.

3.6. Parallel Volume Rendering

During the actual rendering, each processor only renders the
data blocks identified by the WTSP tree traversal and preas-
signed to it during the data distribution stage, so there is no
expensive data redistribution among processors. The WTSP
tree traversal is done by the host processor, which will broad-
cast the traversal result to all the other processors, or by all
processors simultaneously traversing the WTSP tree, avoid-
ing communication among processors. Each processor only
needs to have a copy of the WTSP tree skeleton with spatial
and temporal errors recorded at each of the time tree nodes.
The screen projection of the entire volume’s bounding box
is partitioned into smaller tiles with the same size, where the
number of the tiles equals the number of processors. Each
processor is assigned one tile and is responsible for the com-
position of the final image for that tile. Each time a processor
finishes rendering one data block, the resulting partial im-
age is sent to those processors whose tiles overlap with the
block’s screen projection. After rendering all the data blocks,
the partial images received at each processor are composited
together to generate the final image for its assigned tile. Fi-
nally, the host processor collects the partial image tiles and
creates the final image.

4. Results

Figure 6: The RMI data set.

The two time-varying data sets used in our tests are listed

Figure 7: The SPOT data set.

in Figure 6 and Figure 7 respectively. We extend one voxel
overlapping boundaries between neighboring blocks in each
dimension when loading data from the original brick data
files in order to produce seamless rendering. The WTSP
trees constructed from the data have 10499 and 5799 non-
empty octree nodes for the RMI and the SPOT data sets re-
spectively. The compressed data sizes are 5.843GB for the
RMI data set and 3.572GB for the SPOT data set. More com-
pression can be exploited by increasing the threshold or us-
ing vector quantization technique, at the price of sacrificing
the image quality. For a given time-varying data set, its cor-
responding WTSP tree only needs to be constructed once
and can then be used repeatedly.

The parallel rendering using software raycasting was per-
formed on a PC cluster consisting of 32 2.4GHz Pen-
tium 4 processors connected by Dolphin Networks. For the
EVERY-K partitioning scheme, we chose ko = 2 and kt = 2
to partition the WTSP tree for both of the data sets. The
wavelet-compressed data associated with the WTSP tree
nodes were distributed among the 32 processors. We used
the Hilbert curve as the space-filling curve for the data dis-
tribution.

Figure 8: The number of distribution units distributed to
each of the 32 processors for the RMI data set.

The hierarchical data distribution with error-guided buck-
etization scheme allowed the parallel volume rendering al-
gorithm to balance the workload. Figure 8 and Figure 9 show
the number of distribution units distributed to each of the
32 processors for the RMI and the SPOT data sets respec-
tively. Figure 10 and Figure 11 show the number of data
blocks rendered at each of the 32 processors for the two data
sets, when three different time steps and tolerances of both
spatial and temporal errors were used. It can be seen that
good load-balancing was achieved, because the processors
rendered approximately equal numbers of blocks. Figure 12
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Figure 9: The number of distribution units distributed to
each of the 32 processors for the SPOT data set.

Figure 10: The number of data blocks rendered at each of
the 32 processors with three different queries of (se, te, t)
for the RMI data set. A total of 1597, 3462, and 5723
blocks were rendered for (56000,10,3), (20000,100,12)
and (1000,10,25) respectively.

gives the timing results for rendering the two data sets. The
well-balanced workload implies that our parallel algorithm
is highly scalable. Our algorithm can achieve approximately
96.53% parallel CPU utilization, or a speedup of 30.89 times
for 32 processors.

Figure 13 and Figure 14 show the rendering of the RMI
and the SPOT data sets respectively at selected time steps
with different spatial and temporal error tolerances. The im-
ages of the RMI data set in Figure 13 tend to have block
rendering appearance, this is because Haar wavelets were
used to perform the wavelet transform in both spatial and
temporal domains. In contrast, the images of the SPOT data

Figure 11: The number of data blocks rendered at each of
the 32 processors with three different queries of (se, te, t)
for the SPOT data set. A total of 1142, 2019, and 4696
blocks were rendered for (4.0,1.0,7), (1.5,0.1,18) and
(0.1,0.1,24) respectively.

Figure 12: The timing results for rendering the RMI and
the SPOT data sets with output image resolution of 512 ×
512. The difference time is the maximum timing difference
between the processors.

set in Figure 14 have less block effect, as the higher order
Daubechies wavelet transform was used to build the mul-
tiresolution hierarchy. Other higher order wavelets, such as
quadratic spline wavelets, can also be used to perform 3D
spatial wavelet transforms. However, it would require more
time to reconstruct data during the rendering. Figure 15
shows multiresolution rendering results of different levels of
detail for the two data sets. When the spatial and temporal
error tolerances were higher, data blocks of lower resolu-
tions were reconstructed, which resulted in a smaller num-
ber of blocks being rendered. It can be observed that, finer
details of the data are kept when reducing the error toler-
ances, but images of reasonable quality can still be obtained
at lower resolutions. The use of wavelet-based compression
allowed us to produce images of good visual quality with
much smaller storage space commitment.

5. Conclusion and Future Work

We have presented a multiresolution data management and
rendering framework for large-scale time-varying data visu-
alization. A hierarchical WTSP tree is designed for orga-
nizing the time-varying data that supports flexible level-of-
detail data selections at different spatial and temporal res-
olutions. To alleviate long chains of parent-child node de-
pendencies for data reconstruction, we proposed an algo-
rithm to store the reconstructed data at nodes in selective
tree levels and effectively reduce the overall data recon-
struction cost at run time. For parallel rendering over a PC
cluster, we introduced a WTSP tree partition and distribu-
tion scheme to eliminate the data dependency among pro-
cessors and ensure a well-balanced workload for any user-
specified time step and tolerances of both spatial and tem-
poral errors. The experimental results with rendering of gi-
gabytes of time-varying data demonstrated the effectiveness
and utility of our framework. Future work includes utiliz-
ing graphics hardware to perform wavelet reconstruction and
rendering for the run-time speedup, and incorporating opti-
mal feature-preserving wavelet transforms into our multires-
olution framework for feature detections in large-scale time-
varying data sets.
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(a) (20000,10,1) (b) (55000,50,8) (c) (52410,20,15) (d) (52200,30,32)

Figure 13: Rendering of the RMI data set for selected time steps. All images were rendered with the same viewing parameters.
A total of 536, 743, 1317 and 1625 blocks were rendered for (se, te, t) = (20000,10,1), (55000,50,8), (52410,20,15) and
(52200,30,32) respectively.

(a) (3.0,0.1,1) (b) (1.0,0.5,12) (c) (1.2,0.3,21) (d) (1.0,0.2,30)

Figure 14: Rendering of the SPOT data set for selected time steps. All images were rendered with the same viewing parame-
ters. A total of 2558, 2743, 2392 and 2461 blocks were rendered for (se, te, t) = (3.0,0.1,1), (1.0,0.5,12), (1.2,0.3,21) and
(1.0,0.2,30) respectively.

(a) (110000,10,11) (b) (10000,1,11) (c) (10.0,1.0,5) (d) (1.0,0.1,5)

Figure 15: Multiresolution volume rendering of the RMI data set (a and b) and the SPOT data set (c and d) with different
spatial and temporal error tolerances. Portions of the data were zoomed in for better comparison. For the RMI data set at the
11th time step, 7 and 151 blocks were rendered for (se, te) = (110000,10) and (10000,1) respectively. For the SPOT data set
at the 5th time step, 186 and 788 blocks were rendered for (se, te) = (10.0,1.0) and (1.0,0.1) respectively.
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