
Visual Informatics 3 (2019) 157–165

Contents lists available at ScienceDirect

Visual Informatics

journal homepage: www.elsevier.com/locate/visinf

A unified framework for exploring time-varying volumetric data based
on block correspondence

Kecheng Lu a,∗, Chaoli Wang b, Keqin Wu c, Minglun Gong d, Yunhai Wang a,∗
a School of Computer Science and Technology, Shandong University, Shandong Province, China
b Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
c National Oceanic and Atmospheric Administration, Washington, D.C., HI, USA
d School of Computer Science, University of Guelph, Guelph, Ontario, Canada

a r t i c l e i n f o

Article history:
Received 31 August 2019
Accepted 6 October 2019
Available online 21 October 2019

Keywords:
Time-varying data visualization
Block correspondence
Feature extraction and tracking

a b s t r a c t

Effective exploration of spatiotemporal volumetric data sets remains a key challenge in scientific
visualization. Although great advances have been made over the years, existing solutions typically focus
on only one or two aspects of data analysis and visualization. A streamlined workflow for analyzing
time-varying data in a comprehensive and unified manner is still missing. Towards this goal, we
present a novel approach for time-varying data visualization that encompasses keyframe identification,
feature extraction and tracking under a single, unified framework. At the heart of our approach lies
in the GPU-accelerated BlockMatch method, a dense block correspondence technique that extends
the PatchMatch method from 2D pixels to 3D voxels. Based on the results of dense correspondence,
we are able to identify keyframes from the time sequence using k-medoids clustering along with
a bidirectional similarity measure. Furthermore, in conjunction with the graph cut algorithm, this
framework enables us to perform fine-grained feature extraction and tracking. We tested our approach
using several time-varying data sets to demonstrate its effectiveness and utility.
© 2019 ZhejiangUniversity and ZhejiangUniversity Press. Published by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The tremendous increase of supercomputing power enables
the generation and study of increasingly large-scale time-varying
volumetric data sets from direct numerical simulations of natural
phenomena. Time-varying data are ubiquitous across almost all
fields of science. They are dynamic in nature, containing hundreds
to thousands of time frames. Therefore, efficient analysis and
visualization of time-varying data plays a vital role for scientists
to test their hypotheses and discover insights. But it is difficult
to identify the regions of interest as the studied phenomena get
increasingly complex.

To tackle the above challenge, researchers have proposed
different solutions including finding keyframes, clustering data,
tracking features, and designing proper transfer functions, etc.
However, many of these solutions only focus on one or two as-
pects of data analysis, missing a streamlined workflow for analyz-
ing the data in a comprehensive and unified manner. For instance,

∗ Corresponding authors.
E-mail addresses: lukecheng0407@gmail.com (K. Lu), chaoli.wang@nd.edu

(C. Wang), keqin.wu@noaa.gov (K. Wu), minglun@uoguelph.ca (M. Gong),
cloudseawang@gmail.com (Y. Wang).

Peer review under responsibility of Zhejiang University and Zhejiang
University Press.

existing solutions often leverage the distributions of data values
or feature quantities and apply information theory concepts or
probabilistic mixture models to analyze the data (Wang et al.,
2008; Dutta and Shen, 2016). These methods either overlook or
deemphasize the important spatial information involved in the
data and therefore are not able to perform accurate feature track-
ing or highlighting at the voxel level. Other works treat voxels’
values over time as time-activity curves (TACs) for temporal clus-
tering or sequencing (Woodring and Shen, 2009; Lee and Shen,
2009). These techniques are able to achieve fine-grained feature
clustering and support temporally coherent transfer function
design, but neighborhood information around a voxel is not con-
sidered for a more robust classification. To identify keyframes or
representative time steps, previous works also resort to density-
or distribution-based solutions (Wang et al., 2008; Tong et al.,
2012; Frey and Ertl, 2017) without paying due attention to the
higher-level structural information exhibited in the time-varying
data sets.

Our work follows the recent trend of feature matching from
sparse-level (e.g., scale-invariant feature transform, SIFT (Lowe,
2004)) to dense-level (e.g., PatchMatch (Barnes et al., 2009))
in computer vision and image processing. A recent work (Frey
and Ertl, 2017) uses the mass transport theory to compute the
transformation between two volumes. Spatial information is uti-
lized there to analyze volumes but dense correspondence has not

https://doi.org/10.1016/j.visinf.2019.10.001
2468-502X/© 2019 Zhejiang University and Zhejiang University Press. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.visinf.2019.10.001
http://www.elsevier.com/locate/visinf
http://www.elsevier.com/locate/visinf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lukecheng0407@gmail.com
mailto:chaoli.wang@nd.edu
mailto:keqin.wu@noaa.gov
mailto:minglun@uoguelph.ca
mailto:cloudseawang@gmail.com
https://doi.org/10.1016/j.visinf.2019.10.001
http://creativecommons.org/licenses/by-nc-nd/4.0/


158 K. Lu, C. Wang, K. Wu et al. / Visual Informatics 3 (2019) 157–165

been exploited yet. We extend 2D pixel-wise PatchMatch to 3D
voxel-wise BlockMatch, enabling dense block correspondence for
time-varying volumetric data sets. This step is critical for us to
analyze the time-varying volumetric data in a holistic way since
the detailed variational pattern of data can be obtained based on
the correspondence information. Leveraging GPU, we are able to
cost-effectively produce dense correspondence, which allows us
to not only perform fine-grained feature extraction and tracking,
but also identify keyframes from the entire time sequence in
a more accurate fashion. As a result, we are able to present
a complete framework that unifies keyframe selection, feature
extraction and tracking into a single framework for time-varying
data analysis and visualization.

2. Related work

2.1. Time-varying data visualization

Time-varying data visualization is a key topic in scientific vi-
sualization and has been a focused research direction since early
1990s. Compared with time-invariant data, the main challenge
for time-varying data visualization lies in how to leverage the
temporal coherence of data for efficient processing, organiza-
tion and rendering, and how to capture the dynamic changes of
time-varying data features over space and time for visual under-
standing. In the following, we discuss related work in temporal
pattern matching and clustering, feature extraction and tracking,
and representative time step selection.

Temporal Pattern Matching and Clustering. Another stream
of work on time-varying data visualization focuses on identifying
temporal features or trends for clustering and sequencing. The
results not only provide a compact view of the time evolution
of the data but also give suggestions for transfer function spec-
ification. Motivated by the regular expressions and globbing in
text string searching, Glatter et al. (2008) developed a textual
pattern matching approach for specifying and identifying tem-
poral patterns. Since temporal patterns are sequential by nature,
they can include different variables in the specification. Wang
et al. (2008) took a blockwise approach to derive the importance
values of data blocks using the conditional entropy from informa-
tion theory. The resulting importance curves reveal the temporal
characteristics of data blocks, which are used for block cluster-
ing and time-varying feature highlighting. Woodring and Shen
(2009) assumed that voxels that behave similarly belong to the
same feature and searched the data for classes that have similar
behavior over time for temporal clustering and sequencing. The
cluster sequences are used to derive transfer functions. In another
work Woodring and Shen (2009), they proposed to discover and
highlight data based on time-varying trends at different tempo-
ral resolutions. Wavelet transforms are used to transform voxel
values over time into multi-scale time series curves, which are
clustered and displayed in a spreadsheet view for user explo-
ration. Lee and Shen (2009) investigated important multivariate
temporal trends using SUBDTW and used them to describe the
correlation and causal effects among different variables in a time-
varying multivariate data set. Gu and Wang (2013) unified data
compacting, indexing and classification into a single framework.
Leveraging hierarchical symbolic representation, they built an
indexable version of the underlying time-varying data in the form
of time-activity curves from which they created a visual represen-
tation called iTree for time-varying data exploration. Wang et al.
(2016) bundled information from multiple fields into the pattern
description. They extracted a sparse set of invariant features for
each scalar field using the 3D SIFT algorithm. Users are able to
define a pattern as a set of SIFT features in multiple fields via
brushing and to locate matching features over time.

Feature Extraction and Tracking. Extracting features and
track them over time is an important task for time-varying data
visualization. Samtaney et al. (1994) extracted features (i.e., re-
gions that fulfill certain criteria) and made correspondence among
features in neighboring time steps. They matched features through
their attributes such as the centroid, volume and mass. To allow
fast identification of feature overlapping in space, Silver and
Wang (1997) utilized octrees to store all the features, used spatial
overlap to determine matching feature candidates, and applied a
normalized volume difference test to choose the best matching
from the candidates. Woodring and Shen (2009) identified fea-
tures or clusters based on the input time-activity curves within
a time interval and created a directed graph that connects the
clusters over time. To find the links between features, they
estimated the probability of transferring one feature to another
by computing the distance of their time histograms. Ozer et al.
(2014) introduced the use of Petri nets to model and detect
activities in scientific visualization. They utilized Petri nets to
model the activity of interest and ran the algorithm for hypothesis
validation based on the results of feature extraction and tracking.
Dutta and Shen (2016) designed a distribution-driven approach
that utilizes the motion and similarity properties of an object to
the target feature and fuses the information gained from them
to generate a classification field at every time step. Accurate
and robust feature tracking is achieved based on the resulting
feature-aware classification fields. In this paper, we allow users
to mark features in keyframes and generate mask volumes for
intermediate frames. Feature tracking is achieved by volumetric
feature segmentation via the graph cut algorithm.

Representative Time Step Selection. Selecting important time
steps becomes an issue when the number of time steps in a
time-varying data set is large. This is analogous to keyframe
selection in video analysis. To identify representative time steps,
Wang et al. (2008) partitioned the time sequence into segments
with nearly equal accumulated importance values for the time
steps within in each segment. They selected a representative time
step from each segment to maximize the joint entropy of the
selected time steps. Tong et al. (2012) applied different metrics
to compute the distance between data sets and employed the
dynamic programming strategy to select the most interesting
time steps accordingly. Frey and Ertl (2017) presented a time step
selection method that works in streaming and in-situ settings.
This method is based on progressive volume transformation that
can interpolate and provide meaningful distances between data
sets. Their solution selects a set of time steps from which the
time series can be reconstructed without exceeding a given error
bound. In another work Frey and Ertl (2016), they proposed a
different time step selection solution that optimizes the coverage
of the complete data on the basis of a minimum flow-based
technique to determine meaningful distances between time steps.
Inspired by how keyframes are detected from video process-
ing, we identify representative time steps or keyframes using a
combination of a dense block correspondence method and the
k-medoids clustering method.

2.2. Correspondence in image and video

Estimating correspondence between two images is a funda-
mental problem in computer vision (Szeliski, 2006). It is often
performed by either matching a sparse set of key points, or by
matching all pixels in both images. For efficiency, many methods
have been proposed to build the sparse correspondence, among
which SIFT-based correspondence (Lowe, 2004) searching is com-
monly used. These methods work well for many tasks, such as
3D reconstruction and object detection, but they are less effective
for applications like texture synthesis and image completion that



K. Lu, C. Wang, K. Wu et al. / Visual Informatics 3 (2019) 157–165 159

Fig. 1. Our approach for analysis and visualization of time-varying volumetric data includes correspondence search (a) and keyframe selection (b). The applications
of our approach is feature tracking (c).

inherently require the dense correspondence. Our applications of
feature tracking and transfer function melding both require the
dense correspondence between voxels in 3D volume.

Instead, the dense correspondence for video sequences can
be readily obtained by estimating optical flow. Specifically, it
formulates the correspondence between two adjacent frames as
an estimation of a 2D flow field (Brox and Malik, 2011) solved
by global optimization. Since this method assumes the local-
ity and smoothness of the flow, it can efficiently handle the
images with small changes, but might fail to match objects un-
der large displacements. On the other hand, its involved global
optimization is extremely time-consuming for large images. In
contrast, PatchMatch proposed by Barnes et al. (2009) can not
only find dense correspondences an order of magnitude faster
than previous approaches but also handle the objects with large
displacements. Due to these advantages, it has been used for
many different applications, such as video summarization (Barnes
et al., 2010), image melding (Darabi et al., 2012) and synthesis of
artistic brushes (Lu et al., 2013). In this work, we extend it to
3D volume data and demonstrate its usefulness in time-varying
volume visualization.

3. Overview

Our goal is to find the dense correspondence in time-varying
data, from which we can analyze the relationships among dif-
ferent time frames in a holistic way and better visualize the
underlying data. Fig. 1 illustrates the framework of our block
correspondence based method for time-varying data exploration.
The major components are:

Correspondence Search. Our approach first extends the Patch-
Match method from 2D image processing to a BlockMatch method
that computes 3D block correspondences between each pair of
volume frames (Section 4.1). Dense voxel-level correspondences
are obtained using overlapping blocks centered at each voxels.

Keyframe Selection. In Section 4.2, we use the bidirectional
similarity metric to measure the distance between volumes and
derive the volume distance matrix, from which we employ the
k-medoids clustering method to identify keyframes.

Applications. With keyframes and correspondences built be-
tween frames, we design a block voting approach for propagating
information defined on keyframes to intermediate frames (Sec-
tion 5.1). The information propagated can be used for tracking
and extracting features from the time-varying volume sequence
(Section 5.2).

4. Correspondence analysis

Given a sequence of time-varying volume data, we would
like to analyze the content by first matching between different
volumes and then selecting keyframes among the sequence.

4.1. Blockmatch

Our first task is to find the correspondences for all volume
pairs. That is, for any given two volumes S and T , we solve the
following optimization

MS→T (s) = argmin
t∈T

D(s, t), (1)

where s ∈ S and t ∈ T are voxels in the two volumes and
MS→T is the mapping between them. D(·, ·) measures the dis-
tance in the attribute space, where the attributes can be scalar
values or multivariate value vectors. Although our goal is to
build the dense correspondence between voxels, directly search-
ing the best match for each individual voxel does not take the
neighboring context into consideration and hence often leads to
mismatches (Wexler et al., 2007). Hence, we define D(s, t) as the
sum of attribute distances between corresponding voxels within
two blocks centered at s and t . That is,

D(s, t) =

∑
k∈Γ

∥f (s + k) − f (t + k)∥, (2)

where Γ is a set containing vectors that connect from the center
voxel x to all voxels in the block domain (including x itself). f (x)
is the attribute defined at x. Since the best match for a given
voxel x is determined using a block of voxels centered at x, the
mismatching problem can be effectively addressed. On the other
hand, the blocks for adjacent voxels overlap with each other,
allowing dense correspondences being computed.

The naive brute-force search for the above optimization is
expensive: O(M × N2) for the volume with N voxels and block
size of M . We therefore choose to adopt the PatchMatch algo-
rithm (Barnes et al., 2009), which is known for its efficiency in
building patch-based dense correspondence for image pairs. For
every patch within the source image, it finds the approximate
nearest neighbor (ANN) patch in the target image, which is an
order of magnitude faster than previous approaches. The essence
of PatchMatch lies in the observation that neighboring patches
have probably neighboring matches.

Time-varying volume sequences also follow this observation
(Woodring and Shen, 2009). However, directly extending Patch-
Match from 2D to 3D incurs high computational cost. We there-
fore propose BlockMatch that customizes the original PatchMatch
algorithm for efficient matching among time-varying volume se-
quences. As shown in Fig. 2, our BlockMatch has three main
components. After initialization, it improves the correspondences
by iteratively alternating propagation and random search.

Initialization. During the initialization, the original 2D Patch-
Match assigns each patch in the source image to a random patch
in the target image. Due to the extended search space, using
the same random initialization strategy for 3D BlockMatch is
highly inefficient. Considering that we are handling time-varying
volume data, where changes among adjacent volumes are usually
small, we simply assign a block in the source volume to the block
centered at the same voxel in the target volume, as shown in 2(a).



160 K. Lu, C. Wang, K. Wu et al. / Visual Informatics 3 (2019) 157–165

Fig. 2. Three components of the BlockMatch algorithm: (a) blocks in the source volume initially are assigned to the blocks centered at the same voxel in the
target volume; (b) the red block checks neighbors to see if they will improve the correspondence, propagating good matches; (c) the block searches randomly for
improvements in a restricted subvolume.

For two volumes that are far apart in the sequence, we still use
the random initialization strategy.

Propagation. A key observation used in 2D PatchMatch is that,
if a source patch matches well with a target patch, then the
neighbors of this source patch would likely match well with those
of the target patch. Hence, the original PatchMatch algorithm uses
the propagation operation to spread good matches among the
neighbors. We inherit this idea for 3D BlockMatch. That is, we use
the following formula to update the matching block for s based
on the matches of s’s neighbors

MS→T (s) = argmin
n∈Ω

MS→T (s + n) − n, (3)

where Ω is the set containing six offset vectors (± in x, y, z).

Random Search. Optimization with propagation only will lead
to premature convergence to locally optimal solutions. Hence,
we apply a global random search step after the propagation
operation. That is, assume a source block p matches a target block
q0, then a random new block qi within the subvolume centered
at q will be tested

qi = q0 + wξRi, (4)

where Ri is a uniform random vector in [−1, 1]×[−1, 1]×[−1, 1],
w is the maximum search radius, and ξ is a fixed ratio. If the
new block qi is a better match, it will replace q0. This step is
repeated multiple times, where the subvolume centered at q for
random block selection reduces w by half. For our time-varying
volume data, a global random search is time-consuming and not
always necessary due to the spatiotemporal coherence of the
corresponding volumes in adjacent time steps. Accordingly, a
smaller ξ = 1/6 value is used to improve the time efficiency,
whereas the initial value of w is set to the maximum volume
dimension.

GPU implementation. Since performing such an ANN search
in 3D is time-consuming, we implement random search on GPU
in parallel because of each voxel is independent of each other.
Meanwhile, we adopt jump flooding (Rong and Tan, 2006) to
implement propagation on GPU. Our experiment shows that with

this new version, we can speed up the timing performance 20
times and a pair of frames can be handled within 8 s for two
128 × 128 × 128 volumes with the block size of 7 × 7 × 7.

4.2. Keyframe selection

In many cases, the volume data do not change at a uniform
pace over time. Through identifying key time frames, the volume
data sequence can be split into multiple smoothly-varying seg-
ments, each of which is bounded by two keyframes. We will show
later that this treatment allows features defined on keyframes to
be faithfully interpolated through the intermediate frames. Based
on the dense correspondence, we employ a perceptual distance
metric, bidirectional similarity (BDS) metric (Simakov et al., 2008)
to identify keyframes. After calculating the BDS distance for all
volume pairs, a n × n distance matrix (n is the number of time
steps) is constructed for keyframe selection.

Bidirectional Similarity Metric (BDS). BDS offers a new approach
to summarize volume data by measuring the sum of the average
distance of all blocks in S to their most similar (nearest-neighbor)
blocks in T and vice versa

BDS(S, T ) =
1
NS

∑
s∈S

D(s,MS→T (s)) +
1
NT

∑
t∈T

D(t,MT→S(t)), (5)

where s and t are two voxels in S and T . NS and NT are the number
of blocks in S and T . D(s, t) are defined in Eq. (2). We can see that
the smaller the BDS is, the closer S and T are.

Keyframe Identification. Given a n× n distance matrix, our goal
is to identify a set of keyframes k = {k1, . . . , km}. Here, we treat
keyframe selection as a clustering problem, where each keyframe
ki is a representative frame for a cluster (sub-sequence). This goal
can be formulated as the objective function

F (k) =
1
n

n∑
i=1

m∑
j=1

τi,kjBDS(i, kj), (6)

where BDS(i, kj) is the distance between the ith frame and key-
frame kj, and τi,kj is a binary variable. If the ith frame is assigned
to the jth cluster, τi,kj is 1; otherwise τi,kj is 0.



K. Lu, C. Wang, K. Wu et al. / Visual Informatics 3 (2019) 157–165 161

Fig. 3. (a) Using the distance matrix to identify three keyframes where the 1st and 10th frames must be keyframes. (b) The randomly selected 4th frame is taken
as initialization of one additional keyframe. (c) During the first iteration the 5th frame is selected. (d) Finally the 6th frame is selected and 10 frames are assigned
to three clusters.

We minimize Eq. (6) by adapting the k-medoid clustering
algorithm (Kaufman and Rousseeuw, 1987), which attempts to
find a non-overlapping set of clusters such that each cluster has
the most representative point, referred asmedoid. Specifically, the
algorithm proceeds by alternating between two steps: (i) asso-
ciate each point to the closest medoid; and (ii) select the medoids
k with the smallest value of F (k). After a certain number of
iterations, we are able to identify stable keyframes. To guarantee
each time step is bounded by two key frames, we treat the first
and last frames as pre-determined keyframes, while enforcing
the constraint that neighboring frames should be assigned to the
same cluster. Fig. 3 shows an example of the subset of Hurricane
Isabel data set, where the 6th frame is selected as the additional
keyframe after two iterations.

5. Applications

Interactive visual exploration of time-varying volume data is
still a challenge in many areas of science and engineering (Ma,
2003). One main reason is the lack of effective ways for feature
extraction/tracking. In this section, we show that our block-based
dense correspondence allows us to construct novel algorithms for
semi-automatic feature extraction/tracking.

In our scenario, the user interactively specifies features of
interest for extracted keyframes, from which we automatically
derive the features for the intermediate frames. There are three
ways to derive such features. The straightforward way is to di-
rectly apply the features for keyframes to the intermediate frames
but ignores the dynamic nature of time-varying data. The second
way is to sequentially propagate features of one keyframe to
intermediate frames (Wang et al., 2011), where the incoherence
could quickly accumulate and add up to a larger error after a few
propagation steps. We choose the third way, which is to generate
features for each intermediate frame based on the features for its
two bounding keyframes.

In our framework, features specified by users at keyframes
are treated as general augmented information. That is, volumetric
features of interest are considered as binary attribute of the data.
Here we first discuss how to propagate the augmented informa-
tion to intermediate frames using dense voxel correspondences
(Section 5.1), which is followed by discussions on recovering
features (Section 5.2) at intermediate frames.

5.1. Information propagation through block voting

Given an intermediate frame S and a nearby keyframe T , the
dense correspondence indicates that voxel p ∈ S corresponds

to voxel q = MS→T (p) in T . Hence the augmented informa-
tion defined at q can be transferred to p. However, such direct
information transfer approach corresponds to the nearest pixel
sampling used in backward image warping, which often leads
to aliasing artifacts. To address this problem, we introduce block
voting, which considers the correspondences of all neighboring
blocks containing p for information transfer.

More specificity, voxel p is contained in all blocks centered at
p + k (k ∈ Γ ) when performing block matching in Section 4.1.
Hence, the correspondences for these blocks, qk = MS→T (p + k),
are used to compute the information transferred to p based on
the following weighted average function:

g(p) =

∑
k∈Γ ω(p + k, qk)g(qk − k)∑

k∈Γ ω(p + k, qk)
, (7)

where g(x) denotes the augmented information defined at x.
ω(s, t) is a weight function defined based on block similarity
between two blocks of voxels centered at s ∈ S and t ∈ T . That
is:

ω(s, t) = exp
(

−
D(s, t)
2σ 2

)
η−dist(s,t), (8)

where the first term uses a Gaussian kernel to measure attribute
similarity between the two blocks, whereas the second term
measures spatial similarity as in Wexler et al. (2007). dist(s, t)
computes the Euclidean distance between voxels s and t , whereas
η is a constant. We empirically set η = 1.8 in our implementation
(see Fig. 4).

5.2. Feature tracking

When studying time-varying data, researchers are often inter-
ested in certain features or structures and their evolution along
time. For example, physicists and meteorologists are interested in
some physically meaningful features like vortices and hurricane
eyes. However, they often do not have a precise definition of fea-
ture. Similar to the work of Dutta and Shen (2016), we allow the
user to define features by interactively thresholding attributes or
masking regions of interest with a box. Users only need to specify
features on keyframes, where a voxel is labeled as either a feature
(value 1) or a non-feature (value 0). This augmented information
(label volume) is propagated to all other intermediate frames.

Mask Fusion. With features masks defined at keyframes ki and
ki+1 on both ends, we now try to synthesize the mask vol-
ume for the intermediate frame at the jth time step via block
voting. Specifically, for each voxel p in the jth frame, we use



162 K. Lu, C. Wang, K. Wu et al. / Visual Informatics 3 (2019) 157–165

Fig. 4. (a) and (c): the volumes of the 15th and 29th time steps, respectively. (b) and (d): the results generated by replacing the color and opacity volume of the
29th time step with that of the 15th time step via direct replacement and block voting, respectively. We can see that the hurricane’s eye in (d) is closer to that in
(c) than the one in (b).

Fig. 5. Extraction of the hurricane’s eye at the 20th time step based on the masks specified for the keyframes at the 15th and 30th time steps. (a) and (f): the eyes
at the 15th and 30th time steps are selected by green lassos, respectively. (b) and (c): the mask volumes are synthesized using the mask volumes at the 15th and
30th time steps, respectively. (d): the mask volume is generated by fusing the ones in (b) and (c). (e): the mask volume is generated by applying graph-cut. For
perceiving the motion of the eye, all mask volumes are shown with the rest of volume as the background.

Eq. (7) to compute gki (p) and gki+1 (p) using keyframes ki and ki+1,
respectively. Then, the final voting value is computed as

υp = ρgki (p) + (1 − ρ)gki+1 (p), (9)

where ρ = (ki+1 − j)/(ki+1 − ki). In this way, two volumes syn-
thesized from each keyframe are fused together. As an example,
Fig. 5(d) shows the result by fusing the volumes shown in Fig. 5(b)
and (c).

Volume Segmentation. The synthesized mask volume describes
the probability of each voxel being a feature. To clearly extract
features regions, we use the graph cut algorithm (Boykov et al.,
2001) to arrive at the final binary segmentation. Given a volume,

we define the graph G = {V ; E} where the nodes V are given
by the voxels and adjacent voxels are connected by edges. Then,
we find the label of each voxel through optimizing the following
objective function

E(L) =

∑
p

Dp(lp) + λ
∑
q∈Np

Vpq(lp, lq), (10)

where Nq is the neighborhood of p, λ is the weight that balances
the influence of the terms Dp(lp) and Vpq(lp, lq). Dp(lp) is the
data cost for assigning label l to voxel p and Vpq(lp, lq) is the
smoothness cost for assigning lp and lq to p and q, respectively.
Since our feature mask is a binary volume, we set Dp(lp) as υp for
being feature, otherwise as 1 − υp. The smooth cost is defined



K. Lu, C. Wang, K. Wu et al. / Visual Informatics 3 (2019) 157–165 163

as the magnitude of the gradient vector given by p and q. In our
experiment, we empirically set γ = 1.3 for all data sets.

For the Hurricane Isabel data set, the optimization can be
completed under 2 min for each mask. Fig. 5(e) shows the result
by applying graph-cut to the fused result (Fig. 5(d)), where we can
see that the eye’s shape gets smoother and the noise is removed.

6. Results and discussion

We evaluate the effectiveness of our approach in the explo-
ration of time-varying volume data using several scientific data
sets. Compared to previous work (Wang et al., 2016; Dutta and
Shen, 2016; Woodring and Shen, 2009; Wang et al., 2011), our
approach enables the user to perform feature extraction/tracking
in the same framework. Accordingly, we evaluate our approach
in two different ways:

1. illustrating its efficacy for each individual task by compar-
ing our method with previous work; and

2. demonstrating the utility of the entire framework through
both tasks along with case studies.

All experiments were performed on a workstation with an NVIDIA
GTX980 graphics card, Intel Core i7-6700K, and 16GB RAM.

6.1. Parameter choice and performance analysis

Besides the selection of regions of interest for keyframes,
our framework has two other parameters: block size and the
number of keyframes. A large block size will introduce large
computational overhead but a small block might not have enough
neighboring context. Thus, we empirically used 7 × 7 × 7 block
size in the correspondence computation for all data sets. Regard-
ing the number of keyframes, we suggest the user to start from a
small one. If some features cannot be characterized, then the user
could manually add keyframes.

In Table 1 the timings are reported for the tested cases. We
can see that our GPU implementation of BlockMatch is about
20–70 times faster than the CPU implementation. For the data
sets with smaller size, the speedup is larger. The timing results
for feature tracking include block voting, whose running time
can be negligible compared to the optimization cost. Since the
time complexity for graph cut optimization is proportional to the
number of voxels, it takes more time for larger volume.

6.2. Evaluation of feature tracking

To demonstrate the effectiveness of our approach in feature
extraction and tracking, we first compare it with the state-of-the-
art method (Dutta and Shen, 2016) and then conduct a case study
to further verify its accuracy.

6.2.1. Comparative evaluation: Hurricane Isabel data set
Dutta and Shen (2016) present a distribution-driven approach

for feature extraction and tracking (DDFT). By modeling the fea-
ture of interest with probability distribution, they measured the
possibility of each block being a part of feature with classifica-
tion fields and then extracted the feature by thresholding the
possibility value. In our method, the fused mask volume can be
regarded as a classification field but we can automatically extract
features using graph cut without a hard threshold. Moreover, they
proceeded in an incremental way that could result in an accumu-
lation of errors from multiple steps, while our block voting based
on two keyframes within each time segment can alleviate this
problem.

For comparison, we use the pressure variable of the Hurricane
Isabel data set, courtesy of NCAR and NSF generated using the

WRF model. This data set consists of 48 time steps, where each
step has the dimension of 500 × 500 × 100. To extract and
track the temporal evolution of the hurricane’s eye, DDFT first
computes the λ2 field using the velocity field for initial selection
of the vortex regions, then tracks the feature in the classification
field and finally extracts the feature with a carefully selected
threshold. Instead, our method extracts four keyframes (the 1st,
15th, 32nd, and 48th frames) and asks the user to select the
features of interest.

Fig. 6 shows the results at three time steps generated by DDFT
and our method. We can see that our method can extract more
the vortex feature more accurately, whereas the eye’s shape ex-
tracted by DDFT varies a lot over time. To investigate the overall
temporal evolution, we compare the trace volumes generated by
two methods as shown in Fig. 6(d). It is clear that our method
preserves the eye’s shape during the motion while DDFT extracts
a larger shape at initial time steps and gradually decreases the
size. We assume the reason for the size change of DDFT is due to
the fact that they used the same threshold of possibility values
for the entire time sequence.

6.2.2. Case study: Tornado data set
To verify the accuracy of our extracted feature, we use the

Tornado data set (128 × 128 × 128) generated by an analytical
function (Crawfis and Max, 1993), containing the velocity vector
at each grid point. This data simulates the temporal evolution of
the tornado such as the vortex core structure with 50 time steps.
Here, we increase the motion speed by modifying the equation
to see whether our method can still accurately track the feature
when the time dimension is sampled sparsely. After extracting
four keyframes (the 1st, 16th, 30th, and 50th frames), we com-
pute the vortexness at each point using the λ2 vortex criterion,
then manually select the vortex core structure, and finally apply
our method to extract the structure for the rest of frames.

Fig. 7 depicts the tracked features of interest at eight se-
lected time steps. We can see that almost all interesting vor-
tex structures are clearly extracted. Note that some neighboring
frames have different structures because of the high-speed mo-
tion, but their structures are still faithfully extracted. Compared
with the visualizations generated by previous work (Crawfis and
Max, 1993), we believe that our results are reasonable. We did
not compare with DDFT (Dutta and Shen, 2016), because they
have also modified the analytical equation and involved different
thresholds of the λ2 value.

In summary, we can see that our method is capable of extrac-
tion and tracing of features and produces the results similar with
the state-of-the-art methods. Since our method considers both
correspondence between data attributes and spatial locations, it
produces more accurate results for some data sets as shown in
Fig. 6.

7. Conclusions and future work

We have presented a unified approach for time-varying data
exploration based on block correspondence. The main contri-
butions of our work are the following. First, we introduce the
concept of dense correspondence to time-varying data analysis
and demonstrate its practical feasibility with the use of GPU
implementation to speed up the computation. Second, we extract
keyframes based on dense correspondence using the bidirec-
tional similarity metric and k-medoids clustering method. Third,
we present new methods for feature tracking via the graph cut
segmentation technique via the block voting scheme.

In the future, we would like to further investigate the exten-
sion of our approach to handle time-varying multivariate data
sets. The BlockMatch method can readily take the multivariate



164 K. Lu, C. Wang, K. Wu et al. / Visual Informatics 3 (2019) 157–165

Table 1
The descriptions of data set and transfer function, BlockMatch time for a pair of volumes on CPU and GPU, and time for tracking feature
and transfer function melding of one time step. Times are in seconds.
Data TF Time

Name Size #Gaussian #Dim BlockMatch(CPU) BlockMatch(GPU) Tracking

Tornado 128 × 128 × 128 × 50 2 1D 335.28 7.95 36.38
Hurricane Isabel 500 × 500 × 100 × 48 3 2D 4626.50 80.10 112.87
Earthquake 256 × 256 × 96 × 599 4 1D 445.17 20.33 51.10
Vortex 128 × 128 × 128 × 100 3 1D 293.57 7.95 32.15
Turbulent Flow 192 × 64 × 48 × 113 3 2D 66.20 1.46 10.12

Fig. 6. Comparison the method of Dutta and Shen (2016) (the top row) and our method (the bottom row) for extraction and tracking of the vortex, which corresponds
to the eye of the Hurricane Isabel data set. (a)–(c) show the 11th, 28th, and 41st time steps, respectively. (d) shows the temporal trace volume of the tracked feature.

Fig. 7. Extraction and tracking of the vortex core of the Tornado data set. Eight selected time steps are shown here.

data as input as the distance measure in the attribute space can
take multivariate value vectors. For feature tracking, the attribute
volume could be generalized to consider multivariate attributes
instead of single scalar values. We would investigate how the
computational performance would be affected by this extension
and seek the acceleration solution as needed.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work is supported by the grants of BKBD-2017KF02.

References

Barnes, C., Goldman, D.B., Shechtman, E., Finkelstein, A., 2010. Video tapestries
with continuous temporal zoom. ACM Trans. Graph. 29 (4), 89:1–89:9.
http://dx.doi.org/10.1145/1778765.1778826.

Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B., 2009. Patchmatch: a ran-
domized correspondence algorithm for structural image editing. ACM Trans.
Graph. 28 (3), 24:1–24:11. http://dx.doi.org/10.1145/1531326.1531330.

Boykov, Y., Veksler, O., Zabih, R., 2001. Fast approximate energy minimization
via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23 (11), 1222–1239.
http://dx.doi.org/10.1109/34.969114.

Brox, T., Malik, J., 2011. Large displacement optical flow: descriptor matching in
variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33 (3),
500–513. http://dx.doi.org/10.1109/TPAMI.2010.143.

Crawfis, R. A., Max, N., 1993. Texture splats for 3D scalar and vector field
visualization. In: Proceedings of IEEE Visualization Conference, pp. 261–266.
http://dx.doi.org/10.1109/VISUAL.1993.398877.

Darabi, S., Shechtman, E., Barnes, C., Goldman, D.B., Sen, P., 2012. Image melding:
combining inconsistent images using patch-based synthesis. ACM Trans.
Graph. 31 (4), 82:1–82:10. http://dx.doi.org/10.1145/2185520.2185578.

http://dx.doi.org/10.1145/1778765.1778826
http://dx.doi.org/10.1145/1531326.1531330
http://dx.doi.org/10.1109/34.969114
http://dx.doi.org/10.1109/TPAMI.2010.143
http://dx.doi.org/10.1109/VISUAL.1993.398877
http://dx.doi.org/10.1145/2185520.2185578


K. Lu, C. Wang, K. Wu et al. / Visual Informatics 3 (2019) 157–165 165

Dutta, S., Shen, H.-W., 2016. Distribution driven extraction and tracking of
features for time-varying data analysis. IEEE Trans. Vis. Comput. Graphics
22 (1), 837–846. http://dx.doi.org/10.1109/TVCG.2015.2467436.

Frey, S., Ertl, T., 2016. Flow-based temporal selection for interactive volume
visualization. Comput. Graph. Forum 36 (8), 153–165. http://dx.doi.org/10.
1111/cgf.13070.

Frey, S., Ertl, T., 2017. Progressive direct volume-to-volume transformation. IEEE
Trans. Vis. Comput. Graphics 23 (1), 921–930. http://dx.doi.org/10.1109/
TVCG.2016.2599042.

Glatter, M., Huang, J., Ahern, S., Daniel, J., Lu, A., 2008. Visualizing temporal
patterns in large multivariate data using textual pattern matching. IEEE
Trans. Vis. Comput. Graphics 14 (6), 1467–1474. http://dx.doi.org/10.1109/
TVCG.2008.184.

Gu, Y., Wang, C., 2013. iTree: exploring time-varying data using indexable
tree. In: Proceedings of IEEE Pacific Visualization Symposium, pp. 137–144.
http://dx.doi.org/10.1109/PacificVis.2013.6596138.

Kaufman, L., Rousseeuw, P.J., 1987. Clustering by means of medoids. In: Dodge, Y.
(Ed.), Statistical Data Analysis Based on the L1–Norm and Related Methods.
North-Holland, pp. 405–426.

Lee, T.-Y., Shen, H.-W., 2009. Visualization and exploration of temporal trend
relationships in multivariate time-varying data. IEEE Trans. Vis. Comput.
Graphics 15 (6), 1359–1366. http://dx.doi.org/10.1109/TVCG.2009.200.

Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints. Int.
J. Comput. Vis. 60 (2), 91–110. http://dx.doi.org/10.1023/B:VISI.0000029664.
99615.94.

Lu, J., Barnes, C., DiVerdi, S., Finkelstein, A., 2013. Realbrush: painting with
examples of physical media. ACM Trans. Graph. 32 (4), 117:1–117:12. http:
//dx.doi.org/10.1145/2461912.2461998.

Ma, K.-L., 2003. Visualizing time-varying volume data. IEEE Comput. Sci. Eng. 5
(2), 34–42. http://dx.doi.org/10.1109/MCISE.2003.1182960.

Ozer, S., Silver, D., Bemis, K., Martin, P., 2014. Activity detection in scientific
visualization. IEEE Trans. Vis. Comput. Graphics 20 (3), 337–390. http://dx.
doi.org/10.1109/TVCG.2013.117.

Rong, G., Tan, T.-S., 2006. Jump flooding in GPU with applications to Voronoi
diagram and distance transform. In: Proceedings of ACM Symposium on
Interactive 3D Graphics and Games, pp. 109–116. http://dx.doi.org/10.1145/
1111411.1111431.

Samtaney, R., Silver, D., Zabusky, N., Cao, J., 1994. Visualizing features and
tacking their evolution. IEEE Comput. 27 (7), 20–27. http://dx.doi.org/10.
1109/2.299407.

Silver, D., Wang, X., 1997. Tracking and visualizing turbulent 3D features. IEEE
Trans. Vis. Comput. Graphics 3 (2), 129–141. http://dx.doi.org/10.1109/2945.
597796.

Simakov, D., Caspi, Y., Shechtman, E., Irani, M., 2008. Summarizing visual
data using bidirectional similarity. In: Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1–8. http://dx.doi.org/10.1109/
CVPR.2008.4587842.

Szeliski, R., 2006. Image alignment and stitching: a tutorial, foundations
and trends R⃝ . Comput. Graph. Vis. 2 (1), 1–104. http://dx.doi.org/10.1561/
0600000009.

Tong, X., Lee, T.-Y., Shen, H.-W., 2012. Salient time steps selection from large
scale time-varying data sets with dynamic time warping. In: Proceedings
of IEEE Symposium on Large Data Analysis and Visualization, pp. 49–56.
http://dx.doi.org/10.1109/LDAV.2012.6378975.

Wang, Y., Chen, W., Zhang, J., Dong, T., Shan, G., Chi, X., 2011. Efficient volume
exploration using the gaussian mixture model. IEEE Trans. Vis. Comput.
Graphics 17 (11), 1560–1573. http://dx.doi.org/10.1109/TVCG.2011.97.

Wang, Z., Seidel, H.-P., Weinkauf, T., 2016. Multi-field pattern matching based on
sparse feature sampling. IEEE Trans. Vis. Comput. Graphics 22 (1), 807–816.
http://dx.doi.org/10.1109/TVCG.2015.2467292.

Wang, C., Yu, H., Ma, K.-L., 2008. Importance-driven time-varying data visual-
ization. IEEE Trans. Vis. Comput. Graphics 14 (6), 1547–1554. http://dx.doi.
org/10.1109/TVCG.2008.140.

Wexler, Y., Shechtman, E., Irani, M., 2007. Space-time completion of video. IEEE
Trans. Pattern Anal. Mach. Intell. 29 (3), 463–476. http://dx.doi.org/10.1109/
TPAMI.2007.60.

Woodring, J., Shen, H.-W., 2009. Multiscale time activity data exploration
via temporal clustering visualization spreadsheet. IEEE Trans. Vis. Comput.
Graphics 15 (1), 123–137. http://dx.doi.org/10.1109/TVCG.2008.69.

Woodring, J., Shen, H.-W., 2009. Semi-automatic time-series transfer functions
via temporal clustering and sequencing. Comput. Graph. Forum 28 (3),
791–798. http://dx.doi.org/10.1111/j.1467-8659.2009.01472.x.

http://dx.doi.org/10.1109/TVCG.2015.2467436
http://dx.doi.org/10.1111/cgf.13070
http://dx.doi.org/10.1111/cgf.13070
http://dx.doi.org/10.1111/cgf.13070
http://dx.doi.org/10.1109/TVCG.2016.2599042
http://dx.doi.org/10.1109/TVCG.2016.2599042
http://dx.doi.org/10.1109/TVCG.2016.2599042
http://dx.doi.org/10.1109/TVCG.2008.184
http://dx.doi.org/10.1109/TVCG.2008.184
http://dx.doi.org/10.1109/TVCG.2008.184
http://dx.doi.org/10.1109/PacificVis.2013.6596138
http://refhub.elsevier.com/S2468-502X(19)30046-4/sb12
http://refhub.elsevier.com/S2468-502X(19)30046-4/sb12
http://refhub.elsevier.com/S2468-502X(19)30046-4/sb12
http://refhub.elsevier.com/S2468-502X(19)30046-4/sb12
http://refhub.elsevier.com/S2468-502X(19)30046-4/sb12
http://dx.doi.org/10.1109/TVCG.2009.200
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1145/2461912.2461998
http://dx.doi.org/10.1145/2461912.2461998
http://dx.doi.org/10.1145/2461912.2461998
http://dx.doi.org/10.1109/MCISE.2003.1182960
http://dx.doi.org/10.1109/TVCG.2013.117
http://dx.doi.org/10.1109/TVCG.2013.117
http://dx.doi.org/10.1109/TVCG.2013.117
http://dx.doi.org/10.1145/1111411.1111431
http://dx.doi.org/10.1145/1111411.1111431
http://dx.doi.org/10.1145/1111411.1111431
http://dx.doi.org/10.1109/2.299407
http://dx.doi.org/10.1109/2.299407
http://dx.doi.org/10.1109/2.299407
http://dx.doi.org/10.1109/2945.597796
http://dx.doi.org/10.1109/2945.597796
http://dx.doi.org/10.1109/2945.597796
http://dx.doi.org/10.1109/CVPR.2008.4587842
http://dx.doi.org/10.1109/CVPR.2008.4587842
http://dx.doi.org/10.1109/CVPR.2008.4587842
http://dx.doi.org/10.1561/0600000009
http://dx.doi.org/10.1561/0600000009
http://dx.doi.org/10.1561/0600000009
http://dx.doi.org/10.1109/LDAV.2012.6378975
http://dx.doi.org/10.1109/TVCG.2011.97
http://dx.doi.org/10.1109/TVCG.2015.2467292
http://dx.doi.org/10.1109/TVCG.2008.140
http://dx.doi.org/10.1109/TVCG.2008.140
http://dx.doi.org/10.1109/TVCG.2008.140
http://dx.doi.org/10.1109/TPAMI.2007.60
http://dx.doi.org/10.1109/TPAMI.2007.60
http://dx.doi.org/10.1109/TPAMI.2007.60
http://dx.doi.org/10.1109/TVCG.2008.69
http://dx.doi.org/10.1111/j.1467-8659.2009.01472.x

	A unified framework for exploring time-varying volumetric data based on block correspondence
	Introduction
	Related work
	Time-varying data visualization
	Correspondence in image and video

	Overview
	Correspondence analysis
	Blockmatch
	Keyframe selection

	Applications
	Information propagation through block voting
	Feature tracking

	Results and discussion
	Parameter choice and performance analysis
	Evaluation of feature tracking
	Comparative evaluation: Hurricane Isabel data set
	Case study: Tornado data set


	Conclusions and future work
	Declaration of competing interest
	Acknowledgment
	References




