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a b s t r a c t

We present AntVis, a web-based visual analytics tool for exploring ant movement data collected
from the video recording of ants moving on tree branches. Our goal is to enable domain experts
to visually explore massive ant movement data and gain valuable insights via effective visualization,
filtering, and comparison. This is achieved through a deep learning framework for automatic detection,
segmentation, and labeling of ants, ant movement clustering based on their trace similarity, and the
design and development of five coordinated views (the movement, similarity, timeline, statistical, and
attribute views) for user interaction and exploration. We demonstrate the effectiveness of AntVis with
several case studies developed in close collaboration with domain experts. Finally, we report the expert
evaluation conducted by an entomologist and point out future directions of this study.
© 2020 ZhejiangUniversity and ZhejiangUniversity Press. Published by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Many living organisms take part in flow-like collective move-
ments. Accurate movement or trajectory data collection and
analysis are essential for understanding these behavior patterns
such as migration (Wang et al., 2016) and foraging (Imirzian
et al., 2019). Unlike most species in which the flow is unidi-
rectional, ant movements are predominately bidirectional (Four-
cassié et al., 2010). The emerging research of ant movements
has provided interesting insights into ant traffic rules, revealing
that an ant colony as a whole can be considered as a typical
self-organized adaptive system. Such studies can shed light on
the basic principles of behavioral ecology and evolution of ants.
For instance, Imirzian et al. (2019) recently discovered that most
foragers walk in nearly straight lines in the same areas as other
ants, but a subset of foragers are more explorative.

An interactive tool is highly desired to better help domain
experts analyze a large amount of ant surveillance data. Several
challenges remain for designing and developing such a tool. The
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first challenge is that we need to understand well domain experts’
requirements and expectations so that we can design effective
functions. We present AntVis, a tool that takes the segmented and
tracked ant movement data as input and presents an interactive
visual interface that consists of coordinated multiple views for
users to visually explore the ant movement data. Working with
the domain experts, we perform task analysis and determine
design requirements. We collected the data from seven sequences
of separate video recordings. The video clips show carpenter
ants (a particular species named Camponotus rufipes) moving on
a tree’s branch so their movements can be abstracted as one-
dimensional traces or trajectories on a two-dimensional plane.
The videos were recorded at the same night and nearly all of the
ants were from the same nest. In the last three video clips, the
background is different from that recorded before due to a camera
rotation. To keep the movement data consistent, we performed
image rotation to correct the shooting angle.

The second challenge is that accurate ant detection is a crucial
prerequisite for movement analysis and behavior study. However,
manual annotation of surveillance videos is tedious and time-
consuming due to the sheer amount of data. Automatic ant de-
tection and segmentation from surveillance videos are, therefore,
essential. Recently, convolutional neural networks (ConvNets)
significantly improve the performance of object segmentation
and detection for images (Ronneberger et al., 2015; Shin et al.,
2016). We design an automatic segmentation-and-detection
framework to attain object (i.e., ant) segments, from which we
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obtain the structured movement data from the video clips. For
each frame of the video clips, the structured data are composed
of three parts: an ant’s ID, the frame’s ID, and the (x, y) pixel
position of the ant. The data extracted for each video clip are
saved into a single file. We also calculated statistical features and
saved them into separate JSON files to make the data easier to
read and manipulate for our visualization tool.

The third challenge is that we need to carefully design dif-
ferent views of the tool to help domain experts explore the
ant trajectory data from multiple perspectives for comprehensive
understanding. The AntVis interface includes the core movement
view, the related similarity view, timeline view, statistical view,
and attribute view, along with the control panel for interaction.
These views are connected together via brushing and linking.
Users can interactively filter the data in a variety of ways to
gain valuable insights. We record the experts’ workflow and
observations and present several case studies to demonstrate the
effectiveness of AntVis.

2. Related work

2.1. Object detection and segmentation in videos

Object detection is a task that requires distinguishing location,
class, and the number of objects in images. It has attracted great
attention in image processing and computer vision. As a complex
problem hardly be well solved by traditional algorithms, new
approaches based on deep learning have been applied. For ex-
ample, the series of region-based convolutional neural networks
(R-CNN) (Girshick, 2015; Ren et al., 2015; He et al., 2017) first
generated region proposals and then conducted regression and
classification within each extracted bounding box simultaneously.
The most recent advances have achieved better detection accu-
racy and higher frame rate (Lin et al., 2017). Another line of works
directly predicted bounding boxes in a single feed-forward pass
without reusing any components of the neural network or gen-
erating proposals of any kind, thus speeding up the detector. The
YOLO family (Redmon et al., 2016; Redmon and Farhadi, 2017,
2018) reframed object detection as a single regression problem
and output the bounding box coordinates and class probability
for each pixel. In this way, images can be processed in real time
at 67 FPS with good accuracy. The SSD family (Liu et al., 2016;
Fu et al., 2017) used reference boxes of various sizes and aspect
ratios to predict object instances by making the whole network as
a regressor as well as a classifier. Recently, RefineDet (Zhang et al.,
2018) tried to combine the advantages of double-stage methods
and single-stage methods by incorporating two new modules in
the single-stage classic architecture. CornerNet (Law and Deng,
2018) offered a new approach for object detection by predicting
bounding boxes as paired top-left and bottom-right keypoints.
Zhou et al. (2019) proposed a new proposal-free method by
grouping five detected keypoints (top-most, left-most, bottom-
most, right-most extreme points and one center point) into a
bounding box if they are geometrically aligned.

However, labeling images for detection is far more expensive.
At most of the time, real-world videos are weakly or barely
labeled. Besides, manually labeled data often include limited
categories of objects. Models trained on such data sets have
limited generalization power on unseen categories. Hartmann
et al. (2012) formulated image labeling as learning the weakly
supervised classifier for recognizing a set of independent spatial–
temporal segments. They utilized the graph cuts to refine the
obtained objects to generate the final object masks. Zhang et al.
(2015) proposed a segmentation-by-detection framework in
which object and region detectors pre-trained on still images
were used to generate the detection and segmentation pro-
posals. Then object trackers were refined by inferring shape

likelihoods to suppress background noise while preserving the
spatial–temporal consistency of foreground objects. More re-
cently, Zhang et al. (2017) integrated the self-paced learning
regime and the deep neural network into a unified and com-
patible framework, i.e., a novel self-paced fine-tuning network
(SPFTN), to learn to explore the context information within the
video frames and capture the adequate object semantics without
using the negative videos. Pathak et al. (2017) used unsuper-
vised motion-based segmentation on videos to obtain segments,
which were used as ‘‘pseudo ground truth’’ to train a ConvNet to
segment objects from a single frame.

Generally, the existing works usually first train segmentation-
level classifiers or inference models under the weak supervision
to identify the segments related to the given object categories in
the video. Then post-processing methods are applied to refine the
object segmentation masks. Although this pipeline has achieved
good performance in various cases, there might still be some lim-
itations that could be addressed for further improvement in our
specific case. First, it usually needs costly pre-processing meth-
ods to generate auxiliary segment proposals or pseudo masks
(e.g., optical flow images), or even a large amount of manual an-
notations. Second, in open-source data sets, there are no weakly
labels for ant surveillance videos. In our scenario, there is only
one class of object in the video, which is easier to obtain pseudo
masks for the supervised training process. Most errors can be
detected and corrected, and limited manual correction is needed.

2.2. Visualization of movement data

In recent years, movement or trajectory data visualization has
been an active research topic in information visualization and
visual analytics. Many works on movement data visualization fo-
cus on traffic data, which are generated and collected on moving
vehicles and objects. For example, Wang et al. (2013) utilized
GPS trajectories to visualize traffic jams in a city and explored
the propagation of traffic jams. Wang et al. (2014) used sparse
urban traffic data recorded by transportation cells to help users
find macro traffic patterns at the city scale. Huang et al. (2016)
converted taxi trajectories into a graph and divided the graph
into chunks to visualize urban traffic data. Al-Dohuki et al. (2017)
integrated map trajectory data and taxi documents to help non-
professional users explore and query urban traffic data more
easily using semantic information.

The increasing availability of spatiotemporal data from vari-
ous sources provides new opportunities to discover moving pat-
terns for traffic control and city planning. For instance, Tominski
et al. (2012) studied a novel approach that integrates space, time,
and attributes by stacked color-coded trajectory bands, enabling
users to view spatiotemporal attributes clearly. Doraiswamy et al.
(2014) used spatiotemporal urban data to enable users to explore
and query event patterns in cities. von Landesberger et al. (2016)
developed a graph-based method that combines spatial and tem-
poral simplifications to show the movement patterns of the urban
population. In addition, social media data also provide various in-
formation and contexts about urban moving patterns. Chen et al.
(2016a) developed an interface to help users explore and detect
moving patterns from sparsely geo-tagged social media data. Cao
et al. (2018) used a heat map to visualize the spatiotemporal data
from a streaming source and proposed a method to detect the
abnormal moving patterns.

Given massive movement or trajectory data, data aggregation
and clustering must be performed before visualization in order
to achieve cost-effective viewing, navigation, and understand-
ing. Andrienko and Andrienko (2008) introduced various possible
ways to aggregate massive movement data, using abstraction and
generalization to support information visualization. Andrienko
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et al. (2009) presented a method for clustering very large data
sets which cannot be loaded into the main computer memory.
The proposed workflow solves the problem by taking a subset –
clustering – building a classifier—classifying. The workflow can be
applied to other types of structurally complex spatial and non-
spatial objects. To solve the problem of heavy intersection and
overlapping in the visualization of the vast amount of trajectory
data, Andrienko and Andrienko (2011) proposed a method for
data aggregation that hides details of data while maintaining their
essential characteristics.

Apart from urban traffic data, the more closely related works
are those that focus on trajectory data in human society. Stein
et al. (2018) utilized data extracted from soccer video to improve
the accuracy and effectiveness of soccer analysis. Andrienko et al.
(2018) proposed a method for clustering massive airline trajec-
tory data. Their distance measure between trajectories ignores
irrelevant elements. For ant movement data, Imirzian et al. (2019)
recently proposed to use the exploration index (EI) to measure
how explorative an individual trajectory is by calculating how
many ‘‘different’’ places are covered by the specific trajectory
compared to other trajectories. They also presented a metric
for evaluating the straightness of trajectories, which is used to
figure out whether some ants are engaged in forage. In this
work, we study the rarely-explored ant movement data from
data visualization perspective. We first extract ant trajectory data
from recorded video clips using deep learning, then perform
hierarchical clustering and dimensionality reduction, and finally,
present a visual interface called AntVis for users to explore ant
movement patterns and identify abnormalities.

3. Task analysis and design requirements

3.1. Task analysis

Domain experts collected the data at a research station in
southeast Brazil (Imirzian et al., 2019). We held regular meetings
with the experts to discuss the processing and visualization of
the surveillance data collected. The experts wanted to know the
ant movement patterns given the persistent occurrence of disease
threats in the wild. Detecting group movement patterns and
identifying outliers of individual ants are of interest. Accordingly,
we recognized the following tasks.

T1. Overview of the movement data. This task aims to answer
the questions such as ‘‘What are the general patterns of ant move-
ment over space and time?’’, ‘‘Are there any areas of the branch that
are passed by ants more frequently than other areas?’’, and ‘‘How
does the ant count vary over time?’’ In our scenario, a typical video
clip is around 20 min, with nearly 30,000 frames recorded. The
majorities of ant movements are across the branch (moving from
one end to the other end) but some ants just ‘‘wander around’’
(starting and finishing at the same end, or zigzagging or circling).
Our visualization should allow users to obtain an overview of the
movement data in the first place before they examine the details
to gain more insights.

T2. Investigation of individual movements. This task aims to
answer the questions such as ‘‘Could we select individual move-
ments and examine or compare them in detail?’’ and ‘‘What are
the similarities and differences among individual ant movements?’’
There are hundreds of movements in a video clip and each of
them corresponds to an ant’s trace or trajectory. When moving
along the branch, different ants may have distinct goals or desti-
nations, which leads to different moving patterns. It is important
for users to select individual movements of interest for further
examination or comparison. This also helps to verify whether
or not a group of ants has the similar moving pattern, which
may suggest that those ants are moving toward the same des-
tination (e.g., from nest to food or vice versa). Given a large

number of movements, examining the similarities and differ-
ences among them would provide valuable insights into their
patterns, allowing better summarization and differentiation of ant
behaviors.

T3. Exploration of movement attributes and statistics. This
task aims to answer the questions such as ‘‘Can we focus on specific
movements and examine their related attribute or statistical infor-
mation?’’ and ‘‘Is one attribute correlated with another attribute?’’
It is helpful for users to examine various movement attributes
and high-level statistical information such as the average speed
and the total length or duration of a movement. Selecting specific
movements and digging into their attributes would allow users to
gain a more detailed understanding of the data and further ex-
plore a subset of the movement data that share similar attribute
value ranges or statistics. Furthermore, users are often eager to
investigate whether or not certain relations exist among different
attributes. For example, a longer movement may be associated
with a higher or lower moving speed, and vice versa. Enabling the
detection of correlation among multiple attributes would allow
users to discover attribute correlations.

T4. Exploration of cluster-level movement patterns. This
task aims to answer the questions such as ‘‘Can we automati-
cally group similar ant movements to identify movement patterns?’’,
‘‘What do different moving patterns look like?’’, and ‘‘How different
are the statistics of multiple moving patterns?’’ If two ants are
spatially close to each other along their respective traces, we
say that their corresponding movements are ‘‘similar’’. Users are
interested in finding similar movements given a movement of
interest. Besides, since movements alike reflect the same moving
pattern, grouping similar movements into clusters would allow
users to explore cluster-level moving patterns. After getting clus-
ters of movement, users would like to compare different moving
patterns. For instance, do the ants move across the branch or turn
around halfway? Comparing attributes among multiple clusters
would allow users to gain further understanding about the dis-
tributions of high-level attributes. For example, users would be
able to investigate if the movements on the upper part of the
branch are usually associated with a higher speed than those on
the lower part. All these insights would enable users to better
discover the similarities and differences among multiple moving
patterns.

T5. Identification of abnormal movements. This task aims
to answer the questions such as ‘‘Are there any special or ab-
normal ant movements?’’ and ‘‘How different are these abnormal
movements compared with the regular or common movements?’’ It
is important to study the abnormal movements, e.g., those with
a remarkably high speed or long path. Detecting and visualizing
abnormal ant movements would draw user attention to these
particular movements or outliers. Detailed exploration of abnor-
mal movements would also help users get a more comprehensive
understanding of the entire ant movement data.

3.2. Design requirements

In order to allow users to perform T1 to T5, our visualization
tool should meet the following design requirements.

R1. Display the context. This requirement corresponds to T1
and T5. In order to depict the original ant movements, the visu-
alization system should replicate their traces. For efficiency, the
context can be shown in a pseudo video format, with the back-
ground image (showing the tree branch) extracted from video and
ant movements displayed as traces in a static or animated way.
Such visualizations would help users gain a firsthand view of the
movement data (T1) and spot possible abnormal movements (T5).

R2. Examine movement distributions. This requirement cor-
responds to T1. Visualizing spatiotemporal movement distribu-
tions would help users gain a general impression and identify
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Fig. 1. The FCN structure for automatic ant segmentation from video. The kernel size and number of channels for convolution (Conv) operation are labeled. The
up-convolutional layers upsample the size of feature maps by the backwards strided convolution (4 × 4 w/ stride=2).

the regular pattern of ant movements. Providing a heat map of
movement data can detect whether there are popular traces on
the branch and how many ants have particular moving patterns.
In addition, showing the temporal distribution of ants over time
allows users to pinpoint the moments when ants move out of the
nest for foraging and carry food back to the nest.

R3. Filter the movements. This requirement corresponds to
T2 and T5. Providing various filters can help users observe the
movement data from multiple perspectives and select ants they
find interesting for a closer exploration. After narrowing down to
selected movements, users would be able to compare multiple
movements (T2) in terms of their similarities and differences. In
addition, these filters would also enable users to detect abnor-
mal movements more easily (T5) and investigate or analyze the
possible causes.

R4. Compare statistical attributes. This requirement corre-
sponds to T3 and T4. After calculating the statistical attributes of
ant movements and grouping them into clusters, comparing these
statistical attributes over different clusters could lead to interest-
ing findings. Users might want to figure out, for example, whether
or not similar movements have similar statistical attributes (T3),
or what are the differences between clusters from the perspective
of statistical attributes (T4).

R5. Discover attribute correlations. This requirement corre-
sponds to T3. Various movement attributes are not independent,
instead, they may be highly interrelated to each other. Our system
should provide users an overview of the distribution of different
attributes and show users their trends and correlations (e.g., the
average speed of movement and the length of the trace). Mean-
while, detection of whether certain attributes have an ascending
or descending trend over time could be essential for users to
discover findings or draw conclusions.

R6. Visualize clusters and (dis)similarities. This requirement
corresponds to T4 and T5. Clustering similar movements would
help users observe multiple ant traces sharing the same moving
pattern, and study the internal regularities. Once similar move-
ments can be displayed, the next logical step is to observe the
dissimilarities among movements with different moving patterns.
Providing visualization of moving patterns would help users fig-
ure out why these movements are clustered into different groups
and what are the key properties of moving patterns (T4). Further-
more, through clustering, movements sharing little in common
with others would be isolated out, which can help to shed light
on abnormal movements (T5).

4. Data analysis

4.1. Automatic segmentation via deep learning

Although supervised segmentation based on deep neural net-
works (DNNs) has been extensively studied in the domain of
computer vision in both natural scene images (Long et al., 2015)
and biomedical images (Ronneberger et al., 2015; Chen et al.,
2016b; Liang et al., 2019; Zheng et al., 2019), few studies have
explored in the field of biological image computing, where data
are usually of large volume and lack of adequate annotation. We
apply a modified 2D fully convolutional network (FCN) (Long
et al., 2015) to obtain segments in every frame, which follows
the structure of the deep contextual network (DCN) (Chen et al.,
2016b). Based on recent advances of DNN structures such as
residual learning (He et al., 2016) and batch normalization (Ioffe
and Szegedy, 2015), we use the ResNet block and batch nor-
malization layer to alleviate the problem of gradient vanishment
and significantly reduce the number of parameters (for better
generality) while maintaining reasonable results.

Fig. 1 shows the detailed structure of our FCN model. Com-
pared with the original DCN, our FCN model is much deeper
and constructed mainly based on two types of residual mod-
ules. Therefore, our model has a much larger field of view to
accommodate the size of input images. Specifically, it includes
the main encoding path that extracts multi-level information
of the input image (i.e., low-level local/contextual information
from shallower layers and high-level global/semantic informa-
tion from deeper layers). The global information helps to locate
the areas-of-interest and the local information helps to improve
segmentation accuracy. The multi-level contextual information is
fused with a concatenation operation followed by two convolu-
tion operations. Finally, the probability maps are generated by
inputting the fused map into a softmax classification layer.

Fig. 2 outlines the main idea and steps of our deep learning
framework. At the first step, given a group of unannotated videos,
our approach prepares the training data by decomposing these
videos into frames and generating pseudo-labels for these frames.
Once the surveillance camera is set, the background is determined
and ants (and few flying bugs) are the only moving objects
in videos. Therefore, by averaging consecutive frames, we can
remove moving objects and noise. In practice, we calculate the av-
erage images in 50 consecutive frames and obtain pseudo-labels
by subtracting the background image from the original frame.
However, as we can see in Fig. 2(a), these initial pseudo-labels are
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Fig. 2. The ant detection framework consists of (a) background image extraction and pseudo-label generation, (b) semantic object segmentation, and (c) trajectory
data generation.

pretty noisy and broken and could be entirely missed in quite a
few frames. Therefore, more accurate detection of ants is needed.
Motivated by recent works on training deep learning models
with pseudo-labels (Pathak et al., 2017), we further propose to
train a deep learning model to refine these ant segmentation
masks and automatically propagate to other poorly segmented
frames. As shown in Fig. 2 (b), at the second step, we utilize
the automatically generated pseudo-labels as ‘‘ground truth’’ to
train the aforementioned 2D FCN to segment semantic objects
(i.e., ants) in each frame. Although the training data is noisy,
the learned FCN could generate smoother and more accurate
segmentation results. The position of ants is the most essential
for building the trajectory of ants. Therefore, at the final step
(Fig. 2(c)), we calculate the center point of each detected ant
and conduct a post-processing (e.g., merging two detected ants
that are extremely small and close) to eliminate mis-segmented
components and generate structured ant trajectory data.

4.2. Labeling of segmentation results

Having obtained pixel-level segmentation results of ants, we
first eliminate some major mis-segmented components, such as
few flying objects and other noisy dots in the background beyond
the branch, which can be found easily by the position. Then we
apply a series of image processing techniques to obtain refined
segmentation results. Specifically, we calculate the connected
component (CC) to fill tying holes in segmented ‘‘ants’’. Next, we
compute the center position of each CC to represent an ant. Lastly,
we associate ants in consecutive video frames using the Earth
Mover’s Distance (EMD) matching model (Chen et al., 2016a) and
get structured trajectory data. Each ant is indexed by its ID and
we record its appearing and disappearing frame numbers and
physical positions in each frame.

Due to the limitation of the automatic segmentation and track-
ing algorithm, there still exist some errors so we need to man-
ually inspect and correct the tracking results. There are mainly
three kinds of errors: (1) When an ant goes behind leaves or
the branch and then reappears (usually not far away from the
disappearing position), its ID changes in the process. (2) Due to
the complex morphology of ant, the linking part between alirunk
and gaster (i.e., body and rear) is hard to segment. If an ant is
segmented into two parts in a middle frame, it would be regarded
as two separate ants and our algorithm would assign a new ID
to this ant. (3) When two ants meet and touch each other with
antennae and if they are extremely close, they would be treated
as one ant. The other ant’s trajectory becomes interrupted in
several frames and a new ID would be assigned when these two

ants move apart. In all these scenarios, there are ant IDs appearing
or disappearing in strange positions (most of the time, in the
middle of the tree branch). According to our prior knowledge,
however, ants usually appear in particular positions, i.e., the left
or right side of the frame. We can detect and correct abnormal
tracking results by drawing a plot with the x axis representing
the x-coordinate of ant appearing and the y axis representing the
x-coordinate of ant disappearing. In such a plot, normal ants
should fall into the top-left and bottom-right corners and abnor-
mal ants would fall into other areas.

4.3. Ant movement clustering

Similarity Measure. In our ant movement data, each trace P
consists of a list of discrete points, which are represented by the
(x, y) pixel positions of the ant. Given two traces Pi and Pj, we use
the Euclidean distance to measure their similarity. Point pairs are
formed by mapping each point on a trace to the closest point on
the other trace. Specifically, we apply the mean of closest point
distances (MCP), which is define as follows

dM (Pi, Pj) =
dm(Pi, Pj) + dm(Pj, Pi)

2
where

dm(Pi, Pj) =

∑
pk∈Pi

minpl∈Pj ∥pk − pl∥

N
and N is the number of points in Pi, dm(Pj, Pi) is defined similarly.
The smaller dM (Pi, Pj) is, the more similar Pi and Pj are.

Hierarchical Clustering. We use a bottom-up agglomerative
hierarchical clustering method to cluster ant traces. This method
performs well on the data containing distances between pairs of
points. Besides, it allows us to conveniently identify the appropri-
ate number of clusters. The clustering begins with each trace in a
separate cluster. It then merges the two most similar clusters into
one in an iterative manner until a stopping criterion is satisfied.
We use the average linkage hierarchical clustering, that is, we use
the average MCP distance of all pairs of traces (one from the first
cluster and one from the second cluster) to measure the similarity
between two clusters. The smaller the average MCP distance is,
the more similar the two clusters are.

For each video clip, the left side is where the food is and
the right side is where the nest is. Besides considering all ant
movements, we also group them by their moving directions: from
right to left (begin foraging), from left to right (return to the nest),
from right to right, and from left to left. For each of these five
groups (all, left → right, right → left, right → right, and left
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Fig. 3. The AntVis interface. (a) to (f) are the control panel, similarity view, movement view, timeline view, statistical view, and attribute view, respectively.

→ left), we then perform ant movement clustering separately.
The desired number of clusters is manually selected based on
our empirical observation. The clustering results are used in our
visualization system for user exploration.

Dimensionality Reduction. As a popular dimensionality re-
duction technique that projects high-dimensional data into a
lower-dimension (typically 2D) for visualization and exploration,
multidimensional scaling (MDS) attempts to model data similarity
as distances in a geometric space. There exist two types of MDS
algorithms: metric and non metric. In our implementation we
choose the metric MDS. Since we have defined the MCP distance
for pairs of ant traces, the distance matrix of ant traces is exactly
the similarity matrix required by the MDS algorithm. After the
MDS is performed, each trace is assigned coordinates in a 2D
plane. In this 2D projected plane, each point represents the trace
of an ant. Points closer to each other in the plane indicate that
their corresponding traces are more similar.

5. AntVis tool

We develop our visualization system called AntVis that en-
ables users to visually explore ant movement data. As shown in
Fig. 3, our AntVis system has six components: the control panel,
movement view, timeline view, similarity view, statistical view,
and attribute view. The current system includes multiple video
clips. Ants in each video clip are divided into five different groups
based on the directions of movement (all, left → left, left → right,
right → left, and right → right). Users can select a video clip
and a movement direction on the control panel to quickly narrow
down to the selected group of movements. After that, the clusters
within the selected group and ants in each cluster are displayed in
the two separate lists for further interaction, as shown in Fig. 3(a).

The movement view (Fig. 3(c)) displays the actual traces of
the ant movements, enabling users to examine the data in the
original spatial domain. The tree branch is extracted from video

and displayed in this view as the context. The timeline view
(Fig. 3(d)) provides users the temporal distribution information
of ant movements. Users can playback the frames as a pseudo
video. The similarity view (Fig. 3(b)) visualizes the ant clusters
after the MDS. With each trace represented by a point in the 2D
projected plane, this view shows the similarity between clusters
by the distance between the points. Finally, the statistical view
(Fig. 3(e)) and attribute view (Fig. 3(f)) offer the comparison
between quantitative attributes both for clusters and individual
traces. All these views are connected via brushing and linking. In
the following, we describe these five views in detail.

5.1. Movement view

As the main view of our AntVis system, the movement view
mainly displays the original ant movement data, providing users a
direct view of ant paths and their distribution on the tree branch.
This view corresponds to the design requirements R1, R2, R3, and
R6. Through this view, users can not only examine the traces of
ant but also select and filter ant traces for detailed exploration.
The video clip and movement direction can be selected on the
top left corner of the interface. The clusters and individual ants
displayed in the movement view are linked with the checkboxes
shown on the control panel.

Pseudo Video. When users click on the ‘‘Play’’ button at the
bottom right corner of the timeline view, the currently selected
ant traces will be displayed as a pseudo video. We update the
pixel positions of ants frame by frame in the movement view.
Traces are colored randomly. As shown in Fig. 4(a), for a trace,
when a frame is updated (played), a new step (represented by
a triangle icon) appears in the movement view while previous
steps gradually fade out. Steps are connected by line segments to
form the movement path. The triangle boundary of the current
step is highlighted in yellow. The speed information is encoded by
the size of the triangle: a larger triangle corresponds to a higher
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Fig. 4. (a) The visualization of the traces of five ants shows their movements along the tree branch. Their current positions are marked with white circles. (b) The
heat map of all 278 ant traces corresponding to a cluster shows a certain ‘‘band of paths’’ favored by these ants, as indicated by the reddish squares. (c) The center
lines and envelopes of three selected clusters show their respective summary information of ant traces. The red cluster having ants crossing the entire branch while
the orange and green clusters do not have ants crossing the entire branch.

velocity. In addition, the orientation of the triangle indicates the
velocity direction. The playback speed can be adjusted by the
drop-down list located to the left of the ‘‘Play’’ button. We provide
three playback speeds: quick, medium, and slow. The min–max
frame bar above will show the progress of the pseudo video being
played, Users can also drag the progress indicator to fast forward
or backward.

Heat Map. The original size of our video clips is 960 × 540
pixels. We divide the movement view into squares of 10 × 10
pixels and yield 5184 squares. For each of the squares, we count
the ants that have passed through. If the ‘‘Heat map’’ checkbox is
on, the heat map of ant movements will be shown right on top of
the background image. To color the heat map, we use a rainbow
color map where blue (red) corresponds to less (more) ants. In
this way, the popular areas that are passed by ants will be shown
in saturated red and the opposites will be shown in light blue.
Fig. 4(b) shows an example of the heat map for all ant traces of a
cluster, which clearly shows that these ants favor a certain ‘‘band
of paths’’ along the branch.

Center Line and Envelope. For each cluster selected on the
control panel, we compute its center line and envelope as a sum-
mary of the ant traces in the cluster. We generate the center line
along the x axis. For each xp ∈ [0, 959] on the background, we first
select ant traces which have points (xp, y), where y ∈ [0, 539], on
the trace and assign the average of all y values to the y coordinate
for xp on the center line. Therefore for clusters that having ants
crossing the background image (all, left → right, right → left),
the center line will also cross the background image. Otherwise,
the center line will end somewhere in the middle (i.e., left →

left, right → right). In our implementation, different clusters are
assigned to different colors. If the ‘‘Center Line’’ checkbox is on,
the bold curves of the corresponding colors will be displayed in
the movement view, representing the center lines for the selected
clusters.

For each envelope, in a similar way, we generate its upper
bound and lower bound along the y axis for each xp ∈ [0, 959].
Then if the ‘‘Envelope’’ checkbox is on, we show all envelope
boundaries and shade the corresponding areas for the currently
selected clusters. Both the upper and lower bounds will be drawn
in the movement view and the envelope will be drawn in a
semitransparent manner using the corresponding color of the
cluster. Fig. 4(c) shows an example of the center lines and their
corresponding envelopes of three selected clusters.

Traces. If the ‘‘Trace’’ checkbox is on, we draw all selected ants’
traces in the movement view. Ant positions extracted from video
frames are connected by line segments to form the ant’s trace.
We randomly assigned different colors to different traces for clear
observation. Fig. 3(c) shows such an example.

Users can select or deselect the checkboxes of ants on the
control panel to filter the traces displayed. They can also brush a

rectangular area in the movement view to narrow down to those
traces that pass through the selected area. The filtering results
will be linked to the checkboxes of ants on the control panel
and traces that are not selected will be hidden in the movement
view. We note that each brushing in the movement view is a new
selection (i.e., the filtering does not accumulate). Besides, users
can click on the background image to undo the filtering.

Attribute Filter. We provide a filter for users to narrow down
to traces within a specific range of a given attribute. The at-
tributes are arranged in alphabetical order. Users can select any
of these attributes in the drop-down list and drag the min–max
attribute bar to set the range. Only traces whose attribute values
are in the selected range will be displayed in the movement view
and the filtering results will be linked to the control panel. We
provided the following attributes for users:

• accumulated angle: Along an ant’s trace, an intermediate
point pi has two neighbors: pi−1 and pi+1. A winding angle is
formed between segments pi−1p and ppi+1, indicating how
much the ant has changed its direction. The ‘‘accumulated
angle’’ is the sum of all the winding angles along the trace.
A trace with a large accumulated angle either has a long or
winding path on the tree branch.

• max angle: The maximumwinding angle along an ant’s trace.
This attribute would help users identify ants that make any
abruptly sharp turn along its trace.

• mean angle: The average winding angle of an ant’s trace. A
trace with a small ‘‘mean angle’’ indicates that the ant moves
almost straightly.

• max/mean/min speed: We calculate the speed at each point
p along an ant’s trace using the length of two neighbor-
ing points and the time between the two corresponding
video frames. These three attributes show the maximum/
average/minimum speed of the ant’s trace.

• frames appeared: We count the number of frames between
an ant’s first and last appearances of each trace, which
measures how long an ant has appeared in the video clip.
A large value indicates that the ant may either have a long
and winding path or frequently stop or stay for a while on
the tree branch.

• travel distance: We sum up the lengths of all segments along
an ant’s trace as its ‘‘travel distance’’. A long distance means
the ant moves back and forth on the branch.

• trace x(y) range: We identify the minimum and maximum
x(y) coordinate values of an ant’s trace and assign their ab-
solute difference as ‘‘trace x(y) range’’. This attribute reflects
how a trace spreads along the x(y) axis.

In addition, we provide a ‘‘No Filter’’ option at the bottom of the
attribute filter drop-down list, allowing users to quickly go back
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to the selected ant traces before any attributed-based filtering is
applied.

Interaction. When the ‘‘Trace’’ checkbox is on, users can hover
over any trace to highlight it for detailed observation. Other traces
will fade out and the triangle icons representing the speed will
be automatically drawn on the highlighted trace. A tooltip will
also appear showing the attributes of the corresponding ant. The
‘‘Heat map’’, ‘‘Center line’’, ‘‘Envelope’’, and ‘‘Trace’’ checkboxes
can be applied in any order. For ‘‘Center line’’, ‘‘Envelope’’, and
‘‘Trace’’ checkboxes, they will be drawn to the movement view
in the order of the corresponding checkboxes being turned on.
However, to provide the context and avoid covering other lines
and segments, we always draw the heat map at the bottom layer
(i.e., right on top of the background image).

5.2. Timeline view

The timeline view mainly provides users an overview of the
temporal distribution of ants over time. It allows users to figure
out the moments when ants appear most frequently in the video
clip, and when they move out of the nest to forage and carry food
back to the nest. This view corresponds to the design require-
ments R2, R3, and R6. The direction, clusters, and individual ants
displayed in the timeline view are linked with the drop-down list
and checkboxes on the control panel. Through this view, users
can examine the temporal distribution of ants as well as select
and filter ants by their time of appearance.

Timeline. Each of our video clips consists of nearly 30,000
frames and is divided into time intervals, and each interval in-
cludes 1000 frames. Then we calculate the number of ants ap-
pearing in each of the time intervals. As shown in Fig. 3(d), we
place a stacked histogram showing ant counts over time on top
of the frame bar. This allows users to quickly drag the min–
max frame bar to examine the time interval of interest in the
movement view. Three histograms are stacked in the display.
The first with the lightest gray color shows the number of ants
in the selected direction (all, left → left, left → right, right →

left, and right → right), the second with the medium gray color
corresponds to the number of ants in the selected clusters as
shown on the control panel, and the third with the strongest gray
color is linked with the checkboxes of ants on the control panel.
By turning on and off the checkboxes of ants, users can get a
highly customized view of temporal distribution for selected ants.

Users can set a range to filter ants that appeared in a specific
range of frames by dragging the min–max frame bar or typing in
the two input boxes given. Accordingly, only ants whose frames
of the first appearance fall into the range are displayed in the
movement view. The filtering results are linked to the checkboxes
on the control panel.

5.3. Similarity view

As discussed in Section 4.3, we performMDS on ant movement
data to present a projected view of ant traces in 2D. This view
corresponds to the design requirements R3 and R6. Each trace
will be represented by a point on a 2D projected plane. If two
traces are similar, their corresponding points are close to each
other.

MDS Similarity. The points displayed on the similarity view
is linked to selected clusters on the control panel. For better
observation, we assigned different colors to different clusters (the
color assignment is consistent with that of the center line or
envelope as shown in the movement view).

Similarity Filter. We provide users a filter to select traces
close to each other for careful examination. Users can brush a
rectangular area in the similarity view to make the selection.

Points in selected area will be marked in more saturated colors.
The filtering results will be linked to the checkboxes of ants on
the control panel and ant traces displayed in the movement view.
Besides, users can undo the filtering by a single click on the
similarity view. Like the brushing in the movement view, each
brushing in the similarity view is a new selection, i.e., the filtering
does not accumulate.

5.4. Statistical view

Corresponding to the design requirement R4, this view aims
to help users compare statistical attributes of different clusters.
Besides the attributes provided in the attribute filter, we add
seven more attributes for users to explore:

• frame start/end id: The frame ID of ants’ first/last appearance.
• speed range/std: We identify the minimum and maximum

speeds of an ant’s trace. We assign their absolute difference
as ‘‘speed range’’ and calculate the standard deviation of the
ant’s speed as ‘‘speed std’’.

• max pos/neg acceleration: We calculate the acceleration for
each point along an ant’s trace using the speed change
between two neighboring points and the time elapsed be-
tween the two corresponding video frames. We record its
maximum positive acceleration and minimum negative ac-
celeration as these two attributes.

• acceleration range: This attribute is the absolute difference
between ‘‘max pos acceleration’’ and ‘‘max neg accelera-
tion’’.

Box Charts. The attributes are arranged in alphabetical order.
Users can select the attribute they want to compare in the drop-
down list and click on the ‘‘Add’’ button. Then a box chart will
be displayed showing the attribute distributions of the clusters
selected on the control panel. Each box corresponds to one cluster
and is filled with the corresponding cluster’s center line or enve-
lope color as shown in the movement view. When the checkbox
of a cluster is turned on or off, the corresponding box will be
updated in the statistical view. Users can create two box charts
to view two attributes at the same time. Besides, by double-
clicking a box chart, users can remove it and make space for a
new box chart. Users can hover over any box to bring out a tooltip
showing the ID of the corresponding cluster. If the ‘‘Show Outlier’’
checkbox is turned on, outliers (if any) are shown as circles. This
checkbox is turned off by default as adding outliers in the display
will squeeze the boxes and make it more difficult for users to read
the boxes.

5.5. Attribute view

This view corresponds to the design requirements R3, R5, and
R6. Because attributes are often interrelated, this view is mainly
designed for users to quickly discover correlations between two
selected attributes. This view can also serve as a filter for users
to narrow down to ants with specific attribute value ranges.

Scatterplots. The attributes provided here are the same as
those in the statistical view. The difference is that users can select
two attributes they want to explore at a time from the two drop-
down lists. After clicking on the ‘‘Add’’ button, a scatterplot will
be displayed showing the joint distribution of the two attributes,
helping users detect whether the selected two attributes exhibit
a positive or negative correlation. Besides, users can select ‘‘frame
start id’’ as one of the attributes to find whether another attribute
has an ascending or descending trend over time. Each point in the
scatterplot represents an ant and is filled with the corresponding
cluster’s color, as shown in the movement view, thus helping
users compare among different clusters. Users can create up to
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Fig. 5. (a) to (e) The heat maps of all ant traces for five video clips: ‘‘video 2’’, ‘‘video 3’’, ‘‘video 5’’, ‘‘video 6’’, and ‘‘video 7’’, respectively. For (c) to (e), the camera
positions were shifted and therefore, we calibrate the images via matching feature points extracted from the background tree branch. The calibration shows that the
top-right corner of the tree branch was not captured in ‘‘video 5’’, ‘‘video 6’’, and ‘‘video 7’’.

four scatterplots to view different pairwise attribute distributions
and correlations simultaneously. Double-clicking on a scatterplot
will remove it.

We provide users a filter to select ants with specific attribute
value ranges. Users can brush a rectangular area on one scatter-
plot to make the selection. Points in the selected area will remain
in all the scatterplots and all scatterplots will be automatically
zoomed in to let users see the distribution of selected ants more
clearly. The filtering results will be linked to the checkboxes of
ants on the control panel, ant traces displayed in the movement
view, and points shown in more saturated colors in the similarity
view. Besides, users can undo the filtering by a single click on the
brushed scatterplot. However, unlike the brushing in the move-
ment view and similarity view, each brushing in the attribute
view will take the previous filtering results as the input, i.e., the
filtering accumulates.

6. Results and evaluation

AntVis is a web-based tool implemented with D3.js and jQuery
for dynamic and interactive visualization. The tool is released
online at: https://sites.nd.edu/chaoli-wang/demos/. To avoid any
compatibility issues, we recommend users to use the Google
Chrome browser to explore our AntVis system. In the following,
we present three case studies and highlight the insights gleaned
from the ant movement data. The three case studies jointly cover
all tasks described in Section 3.1.

6.1. Case studies

Case Study 1: Overview of Ant Movement Data. This case
study aims to provide users an overview of the data, especially
the spatiotemporal distribution of ant traces. Our data consist of
several video clips, so it is essential for users to gain a high-level
cross-video comparison before they narrow down to a specific
video clip of interest. This case study corresponds to Task T1.
After the overview, users also perform some basic selections in
the similarity view to explore ant clusters.

Users begin with the exploration of the spatial distribution.
We should have seven video clips in all. However, due to the
small number of ants appeared in the first clip and the missing

of the fifth clip, our system currently contains five video clips.
Take the second video clip (video 2) as an example. Users first
select ‘‘video 2’’ and ‘‘all’’ from the drop-down lists on the top of
the control panel. By turning on the ‘‘Select All’’ checkbox and the
‘‘Heat map’’ checkbox in the movement view, they can get a rough
overview of the spatial distribution of ant movements in the
current video clip. Afterward, users can switch between the video
clips and indirectly compare the specific areas of the tree branch
that ants passed more or less frequently. Fig. 5 clearly shows that
as time went by (the video clips were taken in sequence), ants
gradually formed a ‘‘band of paths’’ on the branch.

After gaining the overview of the spatial distribution in all
video clips, users can compare the temporal distributions among
video clips via the timeline view. Take the second video clip
(video 2) as an example. Users can select ‘‘video 2’’ and ‘‘all’’ from
the drop-down lists on the top of the control panel. The histogram
of the lightest gray color shows the appearance frequency of ants
in the current video clip. Besides, we know that the left side is
where the food is and the right side is where the nest is. So
by switching the direction to right→left, we can observe the
distribution of ants that move out of the nest to forage. Similarly,
the direction left→right corresponds to ants carrying food back to
the nest. Users can switch between the video clips and directions
to observe more detailed temporal distributions of different video
clips. As shown in Fig. 6, we can find that in video 2, both groups
of ants appeared more frequently during the 2nd half of the clip.
However, in video 3, ants moving out of the nest appeared more
frequently during the 1st half of the clip while ants carrying food
back appeared more frequently during the 2nd half of the clip.

In this case study, users can perform some basic selections in
the similarity view and get a direct understanding of ant traces
and their MDS distances. Users can select ‘‘video 3’’ and ‘‘all’’ from
the drop-down lists on the top of the control panel. Then turn on
the ‘‘Traces’’ checkbox in the movement view for further interac-
tion. If users make a selection that covers all orange points on the
similarity view, the filtering results are linked to the movement
view so only traces on the top part of the branch are displayed.
On the contrary, if users brush all pink points, only traces on
the bottom part are displayed. This basic selection directly allows
users to gain an overview of ant traces and clusters.

https://sites.nd.edu/chaoli-wang/demos/
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Fig. 6. The timeline views of ant frequency for the five video clips. Left to right are ‘‘video 2’’, ‘‘video 3’’, ‘‘video 5’’, ‘‘video 6’’, and ‘‘video 7’’, respectively. Top and
bottom rows are left → right and right → left ant groups, respectively.

Fig. 7. The traces of clusters (right→left) in video 2 (top row) and video 3 (bottom row). (a) to (d) are clusters 0 to 3 in video 2, respectively. (e) to (g) are clusters
0 to 2 in video 3, respectively. The result of cluster matching is: (a) to (g), (b) to (f), (c) to (g), and (d) to (e).

Fig. 8. (a) Using the attribute filter of ‘‘travel x range’’ to show only traces starting and ending in the same direction. (b) and (c) Further spatial filtering of the result
shown in (a). After performing a selection covering the left or right side of the movement view, users can observe the group of ants in the left→left or right→right
direction only. (d) The traces of the two ants which stayed for a long time on the tree branch.

For high-level cross-video comparison, we performed cluster
matching across different video clips via a post-analysis which
is not included in the AntVis visual interface. We calculated the
average MCP distance between clusters and selected the cluster
with minimum average MCP distance for matching. Taking clus-
ters in video 2 and video 3 as an example, we can observe the
changes of moving pattern at the cluster level by matching clus-
ters, as shown in Fig. 7. Note that according to our computation,
(c) and (g) form a better match than (c) and (e) as the average
MCP distance between (c) and (g) is 98.0 and that between (c)
and (e) is 100.4.

Case Study 2: View Interaction and Attribute Exploration.
This case study aims to show users the various interactions
among multiple AntVis views, and how those interactions can
lead to deeper insights gained from the ant movement data. Tasks
T2, T3, and T4 are covered here.

Users can begin this study by selecting ‘‘video 2’’ and ‘‘all’’
from the drop-down lists on the top of the control panel. They
then turn on the ‘‘Traces’’ checkbox in the movement view for
view interaction. We add a scatterplot of ‘‘mean speed’’ vs. ‘‘travel
distance’’ to explore their correlation. When all ants are taken
into account, the regression line’s slope is almost zero thus no

obvious trend is shown. However, users can add an attribute filter
of ‘‘travel x range’’ and set the min and max values to 27 and 750,
respectively. Since the ‘‘travel x range’’ attribute reflects how a
trace spreads along the x axis and the entire x range is 960, only
traces starting and ending in the same direction (e.g., left→left
and right→right) remain in the movement view, as shown in
Fig. 8(a). Users can identify that attributes ‘‘mean speed’’ and
‘‘travel distance’’ have a positive correlation.

Afterward, users can apply spatial and temporal filters to seek
further insights. As shown in Fig. 8(b) and (c), by performing
a selection covering the left side of the movement view, users
can observe the group of ants in the left→left direction only.
The filtering results are linked to the scatterplot and users can
similarly apply the filter and observe ants in the right→right
direction. The results show that the positive correlation of ‘‘mean
speed’’ and ‘‘travel distance’’ is much more obvious among ants
in the right→right direction. Furthermore, users can drag the
min–max frame bar of the timeline filter (e.g., gradually changing
the max value from 20,000 to 10,000) and find that the positive
correlation is stronger among ants appeared in the early part of
the video, as shown in Fig. 9.
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Fig. 9. Temporal filtering results. (a) to (d) are scatterplots and regression lines with the max-value of the timeline filter set to 38095, 26910, 16456, and 11558,
respectively. We can observe that the slope of the regression line gets steeper as the max-value decreases.

Fig. 10. Using the box charts to show attribute variations among clusters. (a) to (d) show the result of attribute ‘‘travel distance’’, ‘‘frames appeared’’, ‘‘mean speed’’,
and ‘‘mean angle’’, respectively. There are seven boxes in each box chart and they correspond to clusters 0 to 6, respectively. Ants in clusters 1, 2, 4, and 6 appeared
and disappeared from the same side (i.e., left→left, right→right) and ants in clusters 0, 3, and 5 appeared and disappeared from different sides (i.e., left→right,
right→left).

Case Study 3: Cluster Comparison and Abnormal Movement
Detection. In this last case study, we show users how to compare
attribute distributions between different clusters and detect ab-
normal movements. Users first perform cluster-level exploration
on the movement data, then narrow down to specific ants and
detect abnormal traces. Tasks T3, T4, and T5 are covered here.

First, users can begin this study by selecting ‘‘video 2’’ and ‘‘all’’
from the drop-down lists on the top of the control panel. Then
by turning on the ‘‘Select All’’ checkbox and the ‘‘Center line’’
checkbox in the movement view, they are able to get a rough
overview of the clusters’ directions (e.g., left→left, left→right,
right→right, or right→left). Afterward, users can add several box
charts to compare the attribute distributions of selected clusters.
By adding box charts of ‘‘travel distance’’, ‘‘frames appeared’’,
‘‘mean speed’’, and ‘‘mean angle’’ as shown in Fig. 10, users
can observe the difference between groups whose ants appeared
and disappeared from the same side and groups whose ants ap-
peared and disappeared from different sides. On average, groups
whose ants appeared and disappeared from the same side tend to
have shorter ‘‘travel distance’’, fewer ‘‘frames appeared’’, smaller
‘‘mean speed’’, and larger ‘‘mean angle’’.

Abnormal movements can be detected using the scatterplot
and its filter. Users can turn off the ‘‘Center line’’ checkbox, turn
on the ‘‘Traces’’ checkbox, and add a scatterplot of ‘‘mean speed’’
and ‘‘accumulated angle’’. They can identify two abnormal points
which are far away from other points but close to the axis of
‘‘accumulated angle’’. By brushing the two abnormal points, the
filtering results are linked to the movement view and users can
find out that these two ants stayed for a long time on the tree
branch, as shown in Fig. 8(d).

Insights Using Our Tool. The entomologists used the ant
movement data to investigate if how the patterns of ant move-
ment impacted the colony’s susceptibility to infection. AntVis
provided their first impression on the ant movement data and
allowed them to conduct an initial qualitative investigation be-
fore a more thorough analysis of the data (Imirzian et al., 2019).
Being able to quickly visualize the trajectories of different ants
stimulated questions on the variation in the trajectories observed.

Here is a summary of the initial insights that overlap with and
support their final discoveries.

• Observing the heat map of the trail indicated that the ma-
jority of ants walk directly across the trail and cover similar
areas, limiting the exposure of most ants to environmental
threats. Meanwhile, some individual trajectories showed ev-
idence of searching behavior and covered unexplored areas.

• Looking at the trajectories over time using the envelope in
the movement view indicated that at different time peri-
ods, ants show different preferences in foraging patterns.
For example, ants would more actively explore the area
at the beginning of a foraging period, as this is when the
pheromone trail would be the weakest. Additionally, outgo-
ing and incoming ants vary in how directly they walk across
the trail.

• The clustering and center line capability of the AntVis tool
allowed the authors to investigate different groups of ants,
and they found that a group of ants wander across the
trail more (case study 3), and these ants are more likely
to explore a unique area. This has biological implications
since it could increase infection risk while also assisting the
colony with food discovery.

6.2. Expert evaluation

An entomologist studying ant behaviors assessed the AntVis
tool and in the context of the five tasks T1–T5 and gave a detailed
analysis of each view’s benefits and limitations as follows.

Movement View. A first step in analyzing the movement
data is visualizing where the individuals are moving. The move-
ment view provides users an interface to not just see where
the individuals are moving (i.e., individual traces) but also to
investigate potentially interesting patterns (i.e., the center line
and envelope of each group of ants). Most importantly, the heat
map is especially informative since a question regarding this data
is whether or not ants use this tree space evenly. If the heat map
reveals the areas of the trace that are used more frequently, then
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users could ask about the average speed of the individuals of
that area and whether it creates traffic jams. Furthermore, users
can select different attributes and see whether trajectories with
similar attributes also have similar trajectories. The entomologist
found that the heat map attracted users most at the beginning,
and the attributes and filter functions were more frequently used
by users to exam a specific group of ants or an individual ant.

Timeline View. This view allows researchers to investigate
ant patterns over time. For example, studies on ant foraging
behavior suggest the presence of different types of foragers such
as patrollers that leave the nest first at the beginning of a foraging
period and other ants that retrieve the food after (Greene and
Gordon, 2007). Researchers can answer such questions by com-
paring the movement of ants over time. Furthermore, this view
provides them a play function to watch a clip of the pseudo video
and allows them to analyze the movement data dynamically. The
filter allows users to choose a frame of interest to explore the
data further. The main drawback the entomologist found is that it
can only show the ant count data over time for the chosen video;
users need to save the screenshots and conduct the cross-video
comparison.

Similarity View. The clustering results according to trace sim-
ilarity allows researchers to analyze different groups that might
be represented in the ant foraging groups. By filtering different
groups, researchers can see when they appear (using the timeline
view) or what area of the trace they cover (using the heat map
view), thus investigating what behavioral groups the clustered
trajectories belong to. The entomologist found that it could be dif-
ficult to filter a complete cluster because only a rectangular area
can be selected and some outliers could be selected inevitably.

Statistical View. This view allows researchers to analyze the
statistical attributes of possible different behavioral groups. Know-
ing whether the group has a higher or lower speed, and the
time that they start allows researchers to relate the behavior
to the biology of the ants. Besides, it also makes cross-cluster
comparison much easier and intuitively, enabling researchers to
look into a specific group of ant of interest. The entomologist
found that users may not be equally interested in every attribute
and not all attributed are entirely independent of each other.
Grouping similar attributes into several groups could help users
explore the most important ones first.

Attribute View. While traditional analyses would require re-
searchers to analyze these features one at a time, with this tool,
researchers can quickly examine between different attributes,
then relate a particular attribute view to the actual movement
on the trace. Furthermore, this view is useful for determining the
relationship between different groups of ants. If possible, it would
be better if multiple regression lines can be computed for each
group of ants.

The entomologist concluded that AntVis is a helpful tool that
can assist entomologists and data scientists in discovering the
overall patterns of foraging traces of carpenter ants (i.e., C. ru-
fipes), the detailed statistical attributes of each ant, and the corre-
lation between attributes of interest. It is a critical step to inspire
researchers to raise more meaningful questions on representative
and peculiar movements, leading to a comprehensive analysis of
ant moving behaviors.

To further develop AntVis into a tool that can benefit en-
tomologists or biologists, the entomologist made the following
suggestions:

• develop an aggregated view that summarizes the movement
data of the same colony over the whole night so experts can
more conveniently investigate the variation of trace patterns
over time.

• provide a cross-colony comparison view so that experts can
cross-validate whether or not different groups of ants share
similar trace patterns and measure how similar they are.

• allow users to define customized attribute measurements
and conduct the computation using the trajectory data di-
rectly, and add to the attribute view as required.

• show the robustness of the tool by manipulating with other
types of trajectory data, such as mammal immigration GPS
signal.

7. Conclusions and future work

We have presented AntVis, a web-based visual analytics tool
for exploring ant movement data. Our work automatically seg-
ments ants from video frames via deep learning techniques and
labels ants to generate their traces. This allows us to store only
ant movement data with a single background image to provide
the context for the subsequent analysis and visualization. Hier-
archical clustering and dimensionality reduction are then applied
to ant traces to support interactive visual exploration. Through
interacting with a visual interface, we enable users to gain an
overview of the movement data, detailed explore trace attributes,
and identify common patterns and detect abnormal movements
using five coordinated views, namely, the movement, similarity,
timeline, statistical, and attribute views. We demonstrate the
effectiveness of AntVis with selected case studies and an expert
evaluation.

In the future, we would like to collect and process more
video recordings to analyze ant movement data at larger spa-
tial and temporal ranges. Cross-video visual summarization and
comparison will be implemented and integrated into the AntVis
tool. Ultimately, we would release this tool to domain experts,
enabling them to streamline the analysis and visualization of
massive ant movement data in their daily workflow.
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