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1. Overview

Located in Northern Indiana, the University of Notre Dame was
ounded in 1842 by Rev. Edward Sorin. Over the past 175 years,
otre Dame has become one of the premier universities in the
nited States. The university is well known for its Catholic iden-
ity, scenic setting, football program, undergraduate education,
nd alumni network. At Notre Dame’s Department of Computer
cience & Engineering, the Visualization Laboratory (VisLab) was
stablished by Prof. Chaoli Wang in 2014. The VisLab is at the
orefront of visualization research. According to CSRankings
Anon, 2020a), Notre Dame ranks among the top 20 institutions
n the United States based on the IEEE VIS conference publications
rom 2015 to 2020.

Prof. Wang’s primary research interests are data visualization
nd visual analytics, specifically on the topics of time-varying
ultivariate data visualization, flow visualization, graph visu-
lization, information-theoretic algorithms, graph-based tech-
iques, and deep learning solutions for big data analytics. He has
ublished more than 90 peer-reviewed journal and conference
apers, including more than 20 IEEE Transactions on Visualization
nd Computer Graphics (TVCG) journal and IEEE VIS conference
apers. His research has been mainly supported by the U.S.
ational Science Foundation (NSF). Since 2009, he has served as
he principal investigator (PI) or a co-PI of ten NSF grants.

Prof. Wang has graduated six Ph.D. and two M.S. students.
is students have won four Best Paper and Honorable Mention
wards, three University Finishing Fellowships, one Dean’s Award
or Outstanding Scholarship, three Department Outstanding Re-
earch and Teaching Assistant Awards, and one Honorable Men-
ion for the CRA Outstanding Undergraduate Researcher Award.
urrently, the VisLab has five Ph.D. students (including three co-
dvised Ph.D. students), one M.S. student, and five undergraduate
tudents.

E-mail address: chaoli.wang@nd.edu.
ttps://doi.org/10.1016/j.visinf.2020.09.001
468-502X/© 2020 The Author(s). Published by Elsevier B.V. on behalf of Zhejiang Univ

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
2. Current research directions

The VisLab’s current research directions include machine
learning for visualization, flow visualization, time-varying mul-
tivariate data visualization, visual analytics, and visualization in
education.

2.1. Machine learning for visualization

With the advent of deep learning, the renaissance of artificial
intelligence as a viable solution for solving challenging computer
vision and natural language processing problems has quickly
swept across a wide variety of science and engineering fields.
Many problems in scientific data analysis and visualization share
inherent similarities with image or video processing, making deep
neural networks a promising candidate for effectively solving
scientific visualization problems.

Among the pioneers studying this research, members of the
VisLab target 3D scalar and vector data that are most commonly
produced from scientific simulations. In these scenarios, scientists
often can only store a small fraction of simulation data output in
the reduced form due to the stringent constraints on data storage
and movement. Our goal is to augment these reduced simulation
data using a deep learning approach. Image data augmentation
refers to a technique that artificially creates new training data
from existing training data via cropping, flipping, and warping,
etc. Instead, we define data augmentation in our context as the
addition of spatial, temporal, and variable details to reduced data
by incorporating information derived from internal and external
sources.

Working with the existing scientific workflow, we aim to pro-
vide an alternative to augment domain scientists’ ability to tackle
the big data problem. We output reduced simulation data in situ,
perform offline network training, and enable online or offline
super-resolution generation or data reconstruction. As shown in
Fig. 1, our current research along this direction includes spatial

and temporal super-resolution for time-varying data (Han and

ersity and Zhejiang University Press Co. Ltd. This is an open access article under

https://doi.org/10.1016/j.visinf.2020.09.001
http://www.elsevier.com/locate/visinf
http://www.elsevier.com/locate/visinf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:chaoli.wang@nd.edu
https://doi.org/10.1016/j.visinf.2020.09.001
http://creativecommons.org/licenses/by-nc-nd/4.0/


C. Wang Visual Informatics 4 (2020) 63–68

u
d
w

W
a
v
u

t
r
f
f
e
d
t
r

2

i
i
s
a
(
o

Fig. 1. Overview of the deep learning solutions for (a) temporal super-resolution for time-varying data (Han and Wang, 2020a), (b) variable selection and translation
for multivariate time-varying data (Han et al., 2021), (c) spatial super-resolution for vector field data (Guo et al., 2020), and (d) vector field reconstruction using
streamlines (Han et al., 2019).
Fig. 2. (a) The blood flow nearby one terminal aneurysm at the middle cerebral artery (Tao et al., 2016a). (b) As the reduced data representation, flow lines are
sed to analyze rapidly-changing electromagnetic properties of superconductivity through vector data reconstruction (Han et al., 2019). (c) Flow lines and surface
epict the swirling and twisting patterns of a procedurally-generated tornado (Tao and Wang, 2016). (d) The two swirls at the wingtips of an aircraft, tracing the
ake vortices (Han et al., 2020).
ang, 2020b,a), variable selection and translation for multivari-
te time-varying data (Han et al., 2021), super-resolution for
ector field data (Guo et al., 2020), and vector field reconstruction
sing flow lines (Han et al., 2019).
Besides data augmentation, we are also interested in represen-

ation learning from scientific data leveraging convolutional neu-
al networks (CNNs) and graph neural networks (GNNs). These
rameworks are general and robust, capable of learning latent
eature descriptors implicitly from volumetric and surface data,
liminating the need for explicit feature engineering. The learned
ata and feature representations can be used for subsequent
asks such as dimensionality reduction, interactive clustering, and
epresentative selection (Han et al., 2020; Porter et al., 2019).

.2. Flow visualization

Understanding large and complex 3D flow fields is vitally
mportant in many aero- and hydro-dynamical systems that dom-
nate various physical and natural phenomena. Applications that
tudy these systems, such as computational fluid dynamics (CFD),
utomotive and aircraft design, modeling of natural disasters
e.g., earthquakes, hurricanes, tornados), generate large amounts
f vector field data that need to be analyzed and visualized.
64
Most fluids (air, water, etc.) are transparent, and thus their flow
patterns are invisible to us. Flow visualization makes the flow
patterns visible so that we can visually acquire qualitative and
quantitative flow information. Fig. 2 shows examples of flow
visualization generated from our research.

Supported by an NSF CAREER grant, the VisLab has con-
ducted a series of research works to address critical challenges
in integration-based flow visualization by presenting new solu-
tions for analyzing and exploring flow lines (e.g., streamlines,
pathlines). These works include (1) selecting representative flow
lines based on information theory (Ma et al., 2013a; Tao et al.,
2013), (2) extracting features from flow lines for segmentation
and similarity analysis (Li et al., 2014, 2015), (3) creating robust
visual characters and words from flow lines for shape analysis and
organization (Tao et al., 2014, 2016b), (4) introducing interfaces
and interactions for intuitive retrieval of partial flow lines (Tao
et al., 2014, 2016b) and examination of hierarchical flow lines
and their spatiotemporal relationships (Ma et al., 2013b, 2014a;
Tao et al., 2018), and (5) devising streamline repositioning for
focus+context viewing (Tao et al., 2014b) and automatic tour for
examining hidden or occluded flow features (Ma et al., 2014b,
2019).

For the popular integration-based techniques for flow visu-
alization, line-based techniques have made significant advances
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Fig. 3. (a) A mining approach that automatically extracts meaningful features from a graph-based representation for exploring time-varying volumetric data (Gu
et al., 2016). (b) A variable traversal path using the matrix of isosurface similarity maps along with four animation frames corresponding to the path (Tao et al.,
2019).
Fig. 4. (a) iGraph for exploring the MIR Flickr data set running on the 24-tile display wall (Gu et al., 2015, 2017a). (b) ETGraph for organizing the eye-tracking data
to illustrate the reading patterns (Gu et al., 2017b). (c) HoNVis for investigating higher-order dependencies of the global ocean shipping network (Tao et al., 2017).
over the years, providing a sharp contrast to surface-based tech-
niques. Flow surfaces can provide better illustrative capabili-
ties and much-improved visualization than flow lines. However,
existing methods for surface-based flow visualization still face
substantial challenges of surface selection, visualization, and an-
alytics, calling for creative ideas and novel solutions. Recently,
we presented a sketch-based interface for semi-automatic stream
surface generation (Tao and Wang, 2016, 2018). The VisLab is
developing a machine learning assisted visual analytics approach
for understanding 3D complex flow surfaces. Leveraging tech-
niques from deep learning, shape analysis, and visual analytics,
we aim to develop a new framework that supports (1) selection of
representative surfaces through feature learning, projection, and
clustering powered by GNNs, (2) exploration of surface patterns
via a principled vocabulary-based method for shape-invariant
partial flow surface querying and matching, and (3) comparative
analytics of flow surfaces for studying seeding sensitivity via a
river-like visual metaphor.

2.3. Time-varying multivariate data visualization

Many scientific simulations produce time-varying multivariate
volume data that can span hundreds or thousands of time steps
and consist of tens of variables. Additionally, ensemble data sets
are common nowadays, where a simulation is conducted in multi-
ple runs with different configurations. This leads to the multiplied
amount of data to be studied. Understanding the underlying
physical phenomena in this kind of data often requires key in-
sights to be discovered through observations. This need places
analysis and visualization of time-varying multivariate data at
the heart of scientific visualization. Fig. 3 shows examples of
time-varying multivariate data visualization generated from our
research.
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Time-varying multivariate data visualization has been a re-
search focus of Prof. Wang dated back to his Ph.D. research.
At that time, the study focused on organizing the data in a
multiresolutional manner to support efficient and effective re-
trieval and rendering (Wang and Shen, 2004; Wang et al., 2005;
Wang and Shen, 2005, 2006; Wang et al., 2007). The focus later
shifted to statistical, correlation, importance, and influence anal-
ysis and visualization (Wang and Ma, 2008; Wang et al., 2008;
Sukharev et al., 2009; Gu and Wang, 2010; Chen et al., 2011;
Wang et al., 2011) as well as transforming the high-dimensional
spatiotemporal data into abstract views for visual reasoning, min-
ing, and analytics (Gu and Wang, 2011, 2013; Gu et al., 2016;
Tao et al., 2016a). The VisLab is investigating representative se-
lection for summarizing isosurfaces, time steps, and variables to
support effective visual exploration and understanding of large-
scale time-varying multivariate data sets (Imre et al., 2017, 2018;
Tao et al., 2019; Porter et al., 2019). Deep learning techniques for
representation learning will be employed in this study.

2.4. Visual analytics

Visual analytics enables analytical reasoning facilitated by in-
teractive visual interfaces and gains popularity as the fastest-
growing branch of visualization research because it applies to a
wide variety of domains and applications. Since 2015, the VisLab
has applied visual analytics techniques to explore large image and
text collections (Gu et al., 2015, 2017a), eye-tracking data (Gu
et al., 2017b), global ocean shipping networks (Tao et al., 2017),
conference navigator data (Bailey et al., 2018), course clickstream
and student performance data (Goulden et al., 2019; Deng et al.,
2019), and ant movement data (Hu et al., 2020). Fig. 4 shows
examples of our visual analytics research works.

Teaming up with scientists, designers, and engineers from

Notre Dame Learning, members of the VisLab are focusing on
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Fig. 5. The user interfaces of (a) FlowVisual desktop and (b) FlowVisual app show rake seeding for streamline tracing and animated streamline visualization in 2D
and 3D, respectively. (c) The web interface of GraphVisual shows the same graph data set in two different layouts.
learning analytics research. Our goal is twofold. First, we aim to
dentify and help to close the academic performance gaps result-
ng from disparities in student backgrounds and preparations in
ollege-level science, technology, engineering, and mathematics
STEM) gateway courses. Second, we aim to analyze the impact
f STEM gateway course performance on downstream required
ourses and identify common pathways to academic success.
he research outcome is expected to benefit major stakeholders,
ncluding students, instructors, advisors, and administrators.

.5. Visualization in education

Visualization has become an indispensable means for analyz-
ng data generated from a wide variety of applications that span
any STEM fields. As more and more colleges and universities
ay attention to research and education in data science and
uman-centered computing, adding a new course of Data Visual-
zation into the curricula becomes a growing trend. Following this
rend is a significant need for high-quality curriculum materials
hat can assist in teaching visualization knowledge and train-
ng the STEM workforce for tomorrow. Although visualization
esearch has advanced for 30 years, visualization education has
agged: visualization textbooks only started to emerge in the past
ecade, and pedagogical software tools that assist the teaching
nd learning of data visualization are scarce.
Along the direction of visualization in education, the Vis-

ab’s research is to develop the VisVisual software toolkit (Anon,
020b) for teaching and learning important yet challenging visu-
lization concepts and algorithms. The proposed toolkit consists
f four tools: VolumeVisual, FlowVisual, GraphVisual, and TreeVi-
ual. Together they cover scalar and vector field visualization in
cientific visualization and graph and tree drawing in information
isualization. The pilot FlowVisual tool (Wang et al., 2013, 2016)
as proven successful: since 2013, the website has been visited
2,000+ times, and the tool has been downloaded 1700+ times.
ig. 5(a) and (b) show the interfaces of FlowVisual desktop and
pp versions. GraphVisual (Imre et al., 2020) has recently com-
leted its development and deployment. Fig. 5(c) shows the web
nterface of GraphVisual. The VisLab is developing VolumeVisual
nd TreeVisual.

. Facilities

Members of the VisLab have access to Notre Dame’s Center
or Research Computing (CRC). The CRC is a member of the Open
cience Grid and is home to the Northwest Indiana Computational
rid—a consortium of research institutions including Argonne Na-
ional Laboratory, Purdue University, and the University of Notre
ame. The CRC provides the following services and resources in
upport of research and education within Notre Dame and the
ocal community:
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• computational resources: over 25,000 CPU cores in systems
of various architectures and interconnects with associated
disk systems for short-term storage;

• storage resources: approximately 3 PB of data storage in-
cluding disk-based systems for high-performance and user-
space storage of data and tape-based systems for long-term
storage;

• specialized resources: visualization systems, systems for vir-
tual hosting, prototype architectures, and infrastructure for
high-throughput computing; and

• access and interface to the TeraGrid and Open Science Grid.

Prof. Wang is a co-PI of an NSF CRI grant in which we re-
quested a GPU cluster for computer science research. The first
version of the cluster has been up and running since October
2016, which includes

• eight Quantum TXR231-1000R servers with dual Intel Xeon
12-core CPU E5-2650 v4 @ 2.20 GHz, 128 GB RAM, and four
NVIDIA Titan Xp GPU accelerators;

• eight Quantum TXR231-1000R servers with dual Intel Xeon
12-core CPU E5-2650 v4 @ 2.20 GHz, 128 GB RAM, and four
NVIDIA Tesla P100 GPU accelerators.

The Fall 2018 upgrade includes three NVIDIA Titan Xp and two
NVIDIA Tesla V100 GPU accelerators, further boosting the per-
formance of deep learning algorithms. The GPU cluster has led
to transformative research in computer science by enabling the
discovery of novel algorithms and methods previously inaccessi-
ble, incubating new research projects, and enhancing multidisci-
plinary collaboration between computer scientists and their peers
in other disciplines. Members of the VisLab are active users of this
GPU cluster.

4. International collaborations

The VisLab has received support from Notre Dame’s Luksic
Family Collaboration Grant Program, Global Collaboration Initia-
tive Program, and Asia Research Collaboration Grant Program.
Members of the VisLab have collaborated with oversea institu-
tions, including the Pontifical Catholic University of Chile, the Chi-
nese Academy of Sciences, Zhejiang University, Shandong Univer-
sity, Sun Yat-sen University, and Technical University of Munich.
These collaborative efforts have led to 13 papers (11 published,
two under review). Since 2016, the VisLab has hosted 20 under-
graduate students from leading universities in China and Ireland
for various summer research projects through Notre Dame’s In-
ternational Summer Undergraduate Research Experience (iSURE)
Program and Naughton Fellowships Program. These joint efforts
have led to ten papers (eight published including one award-
winning paper, two under review). Many of these undergraduate
students later pursued their graduate study and research at pres-
tigious universities such as Carnegie Mellon University, Columbia
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