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Abstract—In multiresolution volume visualization, a visual representation of level-of-detail (LOD) quality is important for us to exam-
ine, compare, and validate different LOD selection algorithms. While traditional methods rely on ultimate images for quality measure-
ment, we introduce the LOD map - an alternative representation of LOD quality and a visual interface for navigating multiresolution
data exploration. Our measure for LOD quality is based on the formulation of entropy from information theory. The measure takes
into account the distortion and contribution of multiresolution data blocks. A LOD map is generated through the mapping of key LOD
ingredients to a treemap representation. The ordered treemap layout is used for relative stable update of the LOD map when the
view or LOD changes. This visual interface not only indicates the quality of LODs in an intuitive way, but also provides immediate
suggestions for possible LOD improvement through visually-striking features. It also allows us to compare different views and perform
rendering budget control. A set of interactive techniques is proposed to make the LOD adjustment a simple and easy task. We
demonstrate the effectiveness and efficiency of our approach on large scientific and medical data sets.

Index Terms—LOD map, knowledge representation, perceptual reasoning, multiresolution rendering, large volume visualization.
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1 INTRODUCTION

The field of visualization is concerned with the creation of images
from data. In many cases these images are observed by humans in an
effort to test hypotheses and discover insights. Visualization is, there-
fore, an iterative and exploratory process. Human-computer interac-
tions, such as parameter tweaking, are often involved in a bid to create
better representations. This scenario works well for small data. With
the advances in graphics hardware, the interactivity can be guaranteed
even with a straightforward implementation. For larger data, the re-
sponse time of a visualization system could become uncomfortably
long. Slower responses result in an increase in time needed to obtain
insights from the data. This poses a great challenge for visualization
to be effective and efficient [22].

In this paper, we focus on the subject of multiresolution render-
ing in the context of large volume visualization. A central theme for
multiresolution volume rendering is the selection of data resolution,
or level-of-detail (LOD). Quite often, such LODs are automatically
determined by user-specified error tolerances and viewing parameters
[27, 10, 5]. Many of the metrics, such as mean square error (MSE)
and signal-to-noise ratio (SNR), are data-centric in the sense that they
measure the distortion between low and high resolution blocks in the
data space (Geometric error metrics, on the other hand, are often used
in surface rendering, where the geometry or mesh is known. In this
paper, we do not consider this case.). Although those metrics have
specific meanings and are simple to compute, they are not effective
in predicting the quality of rendered images due to the lack of corre-
lation between data and image [25]. In fact, finding the best LOD is
a NP-complete optimization problem [3], so most algorithms take a
greedy approximation strategy instead. In this case, data blocks are
selected according to their priority values till certain constraints, such
as the block budget, are met. Rarely, we have a mechanism to examine
the quality of LODs from those greedy selections, and decide whether
it is possible to further improve the quality through either automatic
methods or user interactions.

Another important but non-trivial issue is the validation of existing
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LOD selection algorithms. In computer graphics and visualization,
validation is usually done through side-by-side comparison of images
created from different techniques. However, it may not be effective for
multiresolution volume visualization. This is because direct rendering
of 3D volumes to 2D images involves light attenuation, blending, and
transfer function mapping, where much information about a LOD may
be hidden or lost. Without the complete information, it could be in-
sufficient to assess the improvements of new algorithms over existing
ones. Moreover, a large data set is often too complex to be understood
from a single image. Inspecting images from different views requires
rendering large amount of data, which makes it very difficult for us to
perform the validation efficiently.

From the problems mentioned above, it can be seen that there is a
great need to devise techniques for multiresolution volume visualiza-
tion that allow the user to examine, compare, and validate the quality
of LOD selection and rendering. To fulfill this need, we present a new
measure for LOD quality based on the formulation of entropy from
information theory. Our quality measure takes into account the quality
of each individual data block in a LOD and the relationships among
them. This entropy measure allows us to map key ingredients of the
LOD quality to a treemap representation [17], called the LOD map,
for further visual analysis. The LOD map brings us a novel approach
for navigating the exploration of large multiresolution data. By “nav-
igating”, we mean the user is guided with immediate visual feedback
when making decisions about where to go, what to do, and when to
stop. The user is provided with cues that leads her quickly to inter-
esting parts of the data. She would readily know what actions to take
to adjust the LOD, clearly see the gain or loss of the adjustment, and
be informed when the refinement process may be stopped. Leveraging
a heuristic optimization algorithm and a set of interactive techniques
designed for the LOD map, making LOD adjustment and rendering
budget control becomes a simple and easy task. Experimental results
on large data sets demonstrate that this visual representation of LOD
quality is light-weighted yet quite effective for interactive LOD com-
parison and validation.

2 RELATED WORK

The past few years witnessed the rapid growth of data. Scientific sim-
ulations are producing petabytes of data as opposed to gigabytes or
terabytes a couple of years ago. Building a multiresolution data hier-
archy from large amount of data allows us to visualize data at different
scales, and balance image quality and computation speed. Examples
of hierarchical data representation for volume data include the Lapla-
cian pyramid [4], multi-dimensional trees [27], and octree-based hier-
archies [10]. Muraki introduced the use of wavelet transforms for vol-
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umetric data [16]. Westermann [26] proposed a framework for approx-
imating the volume rendering integral using multiresolution spaces
and wavelet projections. Guthe et al. [5] presented a wavelet-encoded
hierarchical representation, called the wavelet tree, that supports inter-
active walkthroughs of large data sets on a single commodity PC. In
this paper, we use the wavelet tree as an illustration for our presenta-
tion.

The goal of visual data exploration is to facilitate the extraction of
new insights from the data. For instance, Marks et al. [14] presented
the Design Gallery system that treats image and volume rendering as
a process of exploring a multidimensional parameter space. Using an
image difference metric, the system arranges renderings from various
parameter settings, from which the user selects the most appealing
one. Bajaj et al. [1] introduced the contour spectrum, a user inter-
face component that improves qualitative user interaction and provides
real-time exact qualification in the visualization of isocontours. A set
of well-designed manipulation widgets for multidimensional transfer
function design was given by Kniss et al. [9]. By allowing direct in-
teraction in the spatial and transfer function domains, those widgets
make finding transfer functions an intuitive and efficient process.

On the other hand, the process of visual data exploration contains a
wealth of information - parameters, results, history, as well as relation-
ships among them. To learn lessons and share experiences, the process
itself can be stored, tracked, and analyzed. It can also be incorporated
into, and thus becomes a part of the user interface of a visualization
system. Such examples are image graphs [13], and interfaces with
spreadsheet [6] and parallel coordinate [21] styles. A general model of
the visualization exploration process was formalized by Jankun-Kelly
et al. [7].

Over the last decade, a number of information visualization tech-
niques have been developed to support the visual exploration of large
and high-dimensional data sets [8]. Parallel coordinates and treemaps
are two most widely-used techniques among them. The treemap [17]
is a space-filling method for visualizing large hierarchical information.
It works by recursively subdividing a given display area based on the
hierarchical structure, and alternating between vertical and horizon-
tal subdivisions. The information of an individual node is presented
via visual attributes, such as color and size, of its bounding rectangle.
Originally designed to visualize files on a hard drive, treemaps have
been applied to a wide variety of domains [19].

One of the notable commercial applications of treemaps is the
SmartMoney “Map of the Market”, a simple yet powerful tool for the
general public to spot investment trends and opportunities. The map
shows approximately 600 publicly traded companies grouped by sec-
tor and industry. The size of each company in the map corresponds to
its market capitalization. The color mapping is natural for most users
to look for visually-striking features: green for gain, red for loss, and
dark for neutral. A recursive algorithm was devised to reduces over-
all aspect ratios of the rectangles for more readable display. All these
factors contributes the success of the Map of the Market. Inspired by
this application, we strive for simplicity and effectiveness in search of
our solution for navigating multiresolution data exploration.

3 LOD ANALYSIS

In the visualization of multiresolution volume data, a given LOD con-
sists of a sequence of data blocks at various resolutions. Intuitively,
the LOD quality can be analyzed by investigating the quality of each
individual block as well as the relationships among them: Each block
may contain a different distortion because of the resolution and data
variation. It may also convey a different optical content if a color and
opacity transfer function is applied. Furthermore, the sequence of data
blocks are rendered to the screen. Each block may have a different
contribution to the image depending on its projection and how much it
is occluded by other blocks. To optimize the total information received
on the image, one may attempt to either adjust the LOD or change the
view. The concept of entropy from information theory provides us a
way to measure the LOD quality in a quantitative manner.

3.1 Entropy
In information theory, the entropy gives the average information or the
uncertainty of a random variable. The Shannon entropy of a discrete
random variable X with values in the finite set {a1, a2, ..., aM} is
defined as:

H(X) = −
M

X

i=1

pi log pi (1)

where pi is the probability of a variable to have the value ai; − log pi

represents its associated information. The unit of information is call
a bit. The logarithm is taken in base 2 or e. For continuity, variable
of probability zero does not contribute to the entropy, i.e., 0 log 0 =
0. The entropy achieves its maximum of log M when the probability
distribution is uniform.

To evaluate the quality of a LOD, we first define the probability of
a multiresolution data block bi as:

pi =
Ci · Di

S
, where S =

M
X

i=1

Ci · Di (2)

where Ci and Di are the contribution and distortion of bi respectively
(more details about these two terms are given in Section 3.2); M is
the total number of blocks in the multiresolution data hierarchy. The
summation S is taken over all data blocks, and the division by S is
required to make all probabilities add up to unity. Eqn. 2 states that the
probability of a data block in a LOD is high if it has large distortion and
high contribution. The entropy of a LOD then follows the definition in
Eqn. 1.

Note that for any LOD, it is impossible for all the data blocks in
the hierarchy to have the equal probability of 1/M , i.e., a LOD could
not achieve an entropy value of log M . This is because in any LOD,
if a parent block is selected, then none of its descendant blocks will
be selected. Any block which is not included in the LOD receives
zero probability and does not contribute to the entropy. Ideally, since
a higher entropy indicates a better LOD quality, the best LOD (with
the highest information content) could be achieved when we select all
the leaf nodes in the data hierarchy. However, this requires rendering
the volume data at the original resolution, and defeats the purpose of
multiresolution rendering.

In practice, a meaningful goal is to find the best LOD under some
rendering budget, such as a certain block budget, which is usually
much smaller than M . Accordingly, the quality of a LOD could be
improved by splitting data blocks with large distortion and high con-
tribution, and joining those blocks with small distortion and low con-
tribution. The split operation aims at increasing the entropy with a
more balanced probability distribution. The join operation is to offset
the increase in block number and keep it under the budget. In addi-
tion, adjusting the view could improve the quality of LOD too, since
the contributions of data blocks vary when the view changes.

3.2 Distortion and Contribution
In a multiresolution data hierarchy such as a wavelet tree, a block hav-
ing larger distortion or variation is more likely to receive a higher pri-
ority for LOD refinement. The distortion of a multiresolution data
block captures this intrinsic property. Let us first consider two data
blocks bi and bj , where bj is an immediate child of bi. We define the
distortion between bi and bj as follows:

dij = σij ·
µ2

i + µ2

j + C1

2µiµj + C1

·
σ2

i + σ2

j + C2

2σiσj + C2

(3)

where σij is the covariance between bi and bj ; µi and µj are the mean
values of bi and bj respectively; σi and σj are their standard devia-
tions. We include small constants C1 and C2 to avoid instability when
µiµj and σiσj are very close to zero.

Eqn. 3 consists of three parts, namely, covariance, luminance dis-
tortion, and contrast distortion. Collectively, these three parts capture
the distortion between the two blocks. The luminance distortion and
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contrast distortion are originally from the image quality assessment lit-
erature [25], and have been shown to be consistent with the luminance
masking and contrast masking features in the human visual system
respectively.

In a wavelet tree, a parent node has eight immediate children. Thus,
we add distortions between the parent block and its eight child blocks.
We also take into account the maximum distortion of the child blocks,
as an approximation of the distortion between the parent block and the
original full-resolution data it represents. Written in equation:

Di =

7
X

j=0

dij + max{Dj |
7

j=0} (4)

where Di and Dj are the distortions of blocks bi and bj respectively.
As a special case, if bi is associated with a leaf node in the hierarchy,
we define Di = C3, where C3 is a small constant. The distortion for
each tree node can be calculated as we build up the multiresolution
data hierarchy. They are then normalized for our use.

To evaluate the contribution of a multiresolution block bi to the im-
age, we treat the coarse-grained data block as a whole and approximate
its contribution as follows:

Ci = µ · t · a · ν (5)

where µ is the mean value of bi; t is its thickness (the average length
of the viewing ray segment inside bi); a is the screen projection area
of the block, and ν is its estimated visibility. Here, similar to the
well-known composition equation [12], (µ · t · a) approximates the
emission of bi, and ν accounts for the occlusion.

Depending on our need, µ, σ, and σij in Eqn. 3 and 5 can be eval-
uated directly in the scalar data space, or in the perceptually-adapted
CIELUV color space (see [23] for more detail). In Section 7.2, we will
describe our pre-computation and real-time update techniques for cal-
culating D and C of multiresolution data blocks, which ensure a quick
update of the entropy value for a LOD.

3.3 Heuristic Algorithm
Based on the entropy measure, we propose a three-stage heuristic algo-
rithm to adjust a LOD automatically. The given LOD could come from
any LOD selection methods. The motivation is to balance the proba-
bility distribution among all data blocks in the LOD, and improve its
entropy. Our three-stage algorithm is as follows:

1. Join: Locate the data block bl with the lowest probability. Check
if joining bl with its siblings would decrease the entropy or not.
If not, join bl with its siblings. Otherwise, mark bl out. This
process then repeats on all unmarked data blocks until all blocks
are scanned. The first stage would potentially free some block
budget for use in the second stage.

2. Split: Locate the data block bh with the highest probability.
Check if splitting bh would increase the entropy or not. If yes,
split bh. Otherwise, mark bh out. This process then repeats on
all unmarked data blocks until either the block budget is met or
all blocks are scanned.

3. Join-Split: Consider a pair of data blocks (bl, bh) in the LOD,
where bl is the block with the lowest probability, and bh is the
block with the highest probability. Check if joining bl with its
siblings and splitting bh would increase the entropy or not. If
yes, join bl with its siblings and split bh. Otherwise, mark the
pair (bl, bh) out. This process then repeats on all unmarked pairs
until all pairs are scanned.

Note that join or split operations in our algorithm will only increase
the entropy, if possible, but never decrease. This monotonic condition
guarantees the convergence of the algorithm. Our heuristic algorithm
could also be used to generate a balanced LOD (in terms of probabil-
ity distribution) given the constraint of block budget. The algorithm
refines the LOD starting from the root of the data hierarchy until the
block budget is met.

4 LOD MAP

Although various efforts have been made to choose proper LODs that
condense data and preserve features [28, 10, 5], little work has been
done to represent and validate this decision-making process. Actually,
the information derived for data selection is knowledge that guides the
user through the entire solution space. Such knowledge saves time on
decision and computation, which the user would have otherwise spent
on a trial-and-error search. The time saved may be used to improve
frame rates or alternatively, on other techniques to better understand
the data.

The formulation of LOD quality in Section 3 tells us that a LOD
is good if it has a high entropy value. Thus, a good LOD not only
indicates a good quality of rendered images, but also a balanced prob-
ability distribution for all the data blocks in the LOD. This includes
information of both what we can perceive (data blocks not occluded)
and can not (data blocks occluded) from the rendered image. There-
fore, a suitable visual representation for LOD quality should reveal not
only what is visible, but also what is not. Such information is impor-
tant because it can help us answer questions such as “do we waste the
budget on those blocks which are occluded?”, or, “can we generate an
image of similar quality with a reduced block budget?”. In order to
avoid possible occlusion, we rule out the option of any 3D representa-
tion of LODs. Actually, a 2D treemap provides a simple yet effective
representation of large hierarchical structure. The key issues involved
in this knowledge representation are information mapping and layout
design.

4.1 Information Mapping
In this paper, we call the treemap representation of LOD the LOD map.
As a treemap, the LOD map is formed by recursively subdividing a
given area. Each data block in the LOD is represented as a rectangle
in the LOD map. Treemaps can effectively visualize data with two
attributes, in which one attribute is typically mapped to the size of the
rectangles, and the other attribute to the color of the rectangles. The
critical question to ask is what information should be displayed in the
generated rectangles for the LOD map.

Since the treemaps are commonly used for representing hierarchical
structures. A first thought along this direction could lead us to use the
size of rectangle to encode the resolution of different data blocks in
the LOD map. As in [24], the size of the rectangle can be determined
by the level of the data hierarchy the data block lies on. Although this
way of representing LODs is natural, the mapping only yields limited
usefulness. This is because which level of the hierarchy a data block
lies on may not give hints on its actual quality. A data block at a
low level (low resolution) may contain empty space or have a uniform
value. In contrast, another data block at a high level (high resolution)
may still exhibit much variation or distortion. Therefore, this kind of
coding does not grant insights, and wastes important channels which
could be used to encode more essential LOD information.

The entropy characterizes the quality of a LOD. To reveal this key
information, we map its ingredients, i.e., the distortion D and contribu-
tion C of a data block in the LOD, to the color and size of its bounding
rectangle in the LOD map. More specifically:

• The color assignment is based on the distortion D: red for large
distortion, magenta for medium, and blue for small.

• The contribution C is split into two parts: (µ · t · a) is mapped
to the size of the rectangle, while ν is assigned to its opacity.

This color and size coding scheme makes it easy for the user to look
for “hot spots” - data blocks with large distortion and high contribution
in the LOD map. The motivation for separating visibility ν from C is
intuitive too: more visible blocks in the LOD should appear brighter
in the LOD map, and less visible ones darker.

4.2 Layout Design
Another key issue for the generation of LOD map is layout design. In
the early 1990s when treemaps were first prototyped, a straightforward
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(a) entropy = 0.238 (b) pivot-by-size (c) pivot-by-middle

Fig. 1. (a) shows a rendering of the RMI data set at low resolution with 36 blocks. (b) and (c) are its two LOD map layouts. In each layout, the “P”
indicates the first pivot rectangle, and the yellow boundaries show the first subdivision. The normalized entropy is low because only a small number
of data blocks are rendered.

slice-and-dice algorithm was used to generate the treemap layout. A
problem with this standard method is that it often produces rectangles
with high aspect ratios. As a result, such skinny rectangles can be
difficult to see, compare, and select. Over the years, several algorithms
have been proposed to improve the aspect ratios of rectangles in the
treemap [18]. However, they introduce instability over time in the
display of dynamically changing data, and fail to preserve an ordering
of the underlying data. These drawbacks are critical in our LOD map
representation because:

• The information of a LOD keeps changing whenever the user
makes LOD adjustment or changes the view. If the LOD map
layout has dramatic changes that causes unattractive flickering,
it is hard to select and track data blocks in the LOD map.

• A LOD often comes with the back-to-front viewing order, in
which neighboring blocks are close to each other in the LOD.
Preserving this order in the LOD map layout is important for
locating neighboring blocks and observing group patterns.

The ordered treemap introduced by Shneiderman and Wattenberg [18]
uses layout algorithms that offer a good tradeoff among stable updates,
order preserving, and low aspect ratios. In this paper, we adopt this
layout design for our LOD map representation. The layout algorithm
is similar to the idea of finding a 2D analogue of the QuickSort
algorithm. The inputs are a rectangle R to be subdivided and a list of
items that are ordered by an index and have given areas. The crux of
the algorithm is to choose a special item, the pivot, which is placed
at the side of R. The remaining items in the list are then assigned to
three large rectangles that make up the rest of the display area. Finally,
the algorithm is applied recursively to each of these rectangles. See
[18] for a more detailed description of the algorithm. Variations of the
algorithm are the choices of pivot. The pivot could be the item with
the largest area in the list (pivot-by-size), or the middle item of the list
(pivot-by-middle). In Section 7.1, we will discuss two scenarios where
each of these choices of pivot should be used for smooth update.

4.3 Put It All Together
Having discussed how to define and represent the quality of LODs, it
is time to put it all together and show how our scheme can be used. We
experimented our idea with the Richtmyer-Meshkov Instability (RMI)
data set [15]. The 7.5GB RMI data set has the spatial dimension of
2048 × 2048 × 1920, from which we built a wavelet tree with a tree
depth of six. Fig. 1 shows a LOD rendering of the RMI data set at
the third tree level and its LOD map layouts. The viewing order is
roughly preserved, as we can see that darker/brighter rectangles (data
blocks with lower/higher visibility) are close to each other in the LOD
map. Since a LOD map encodes the entropy information of a LOD,

if there is an unbalanced probability distribution among data blocks in
the LOD, we can easily perceive this through color and size attributes
of rectangles in its LOD map. Then, as demonstrated in Fig. 1 (b) or
(c), several directions for optimizing the LOD quality can be immedi-
ately followed:

• Look for “hot spots” - large rectangles with bright red colors.
They are highly-visible data blocks that have high contribution
and large distortion. Splitting these blocks will most likely in-
crease the entropy and improve the LOD quality.

• Small blue rectangles are data blocks that have low contribution
and small distortion. If they cluster in a local region, joining
these blocks may save the block budget without decreasing the
entropy.

• Dark rectangles are data blocks with the lowest visibility. If
many of them cluster together, joining these blocks may also save
the block budget without sacrificing the LOD quality.

The next section introduces a set of interactive techniques that allows
the user to perform LOD adjustment efficiently.

5 INTERACTIVE TECHNIQUES

In computer graphics and visualization, brushing has been used as a
method for selecting subsets of data for further operations, such as
highlighting, deleting, or analysis. In our case, brushing is used to
select a subset of data blocks from a LOD for join or split operations.
We provide brushing in both views: the rendering window and the
LOD map. The result of selection is highlighted in both views, as
they are linked together and updated dynamically whenever one of the
views changes. This technique helps the user detect correspondences
between the two different visual representations. We allow the user to
perform brushing in the following ways:

• Direct brushing in the LOD map by clicking a rectangle, or spec-
ifying a rectangular region to select multiple rectangles simulta-
neously via mouse.

• Brushing in the rendering window by specifying the brush cov-
erage as 1D point, 2D plane, or 3D box in the data space via
slider.

• Brushing some parameter (such as visibility ν) or combination
of parameters by specifying its range via slider.

Direct transformation is provided for interactivity and examination of
local details. The user can translate, scale, and rotate the 3D volume in
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the rendering window, and translate and scale the 2D LOD map. Data
blocks selected in the LOD are highlighted with red boundaries and
white crosses in the rendering window and the LOD map respectively.
The user then proceeds to join or split these blocks. A join operation
merges a selected block with its siblings into its parent block. A split
operation breaks a selected block into its eight child blocks. For mul-
tiple selected data blocks, they are put into a queue and processed in
sequence. We also provide the “undo” function so that the user can
roll back to the previous LOD if the operation just performed is not
desired.

(a) brushing with 2D plane (b) LOD map

Fig. 2. Brushing the RMI data set by specifying a 2D cutting plane. (a)
shows the rendering of data selection and (b) is the corresponding LOD
map.

Fig. 2 gives an example of brushing manipulation with a 2D cutting
plane. Only the data blocks intersecting the plane (drawn in blue) are
selected and rendered. In the LOD map, the selected data blocks are
highlighted with white crosses.

data set (type) RMI (byte) VisWoman (short)
volume dimension 2048 × 2048 × 1920 512 × 512 × 1728
block dimension 128 × 128 × 64 32 × 32 × 64

volume (block) size 7.5GB (1MB) 864MB (128KB)
# non-empty blocks 10499 9446
compression ratio 5.60 : 1 2.37 : 1

Table 1. The RMI and VisWoman data sets.

Fig. 4. LOD quality comparison on the RMI data set with the same fixed
view as in Fig. 1 (a). The plot shows how the entropy changes with
different block budgets for three LOD selection methods. There are a
total of 10499 non-empty blocks in the data hierarchy.

6 RESULTS

As listed in Table 1, we experimented with our LOD map on two data
sets: the RMI data set (also mentioned in Section 4.3) from scientific
simulation, and the visible woman (VisWoman) data set from medical
application. For both data sets, the Haar wavelet transform with a
lifting scheme was used to construct the wavelet tree data hierarchy. A
lossless compression scheme was used with the threshold set to zero

Fig. 5. LOD quality comparison on the VisWoman data set with the fixed
front view shown above. The plot shows how the entropy changes with
different block budgets for three LOD selection methods. There are a
total of 9446 non-empty blocks in the data hierarchy.

to compress the wavelet coefficients. To ensure seamless rendering,
we extended one voxel overlapping boundaries between neighboring
blocks in each dimension when breaking the original volume data into
blocks. As a result, both hierarchies have a tree depth of six. All tests
were performed on a 3.0GHz Intel Xeon processor with 3GB main
memory, and an nVidia GeForce 7800 GT graphics card with 256MB
video memory.

6.1 LOD Comparison
For LOD comparison, we took three commonly-used LOD selection
methods, i.e., level-based, MSE-based, and SNR-based, for our test.
The level-based method selects a particular resolution level in the mul-
tiresolution data hierarchy. For the MSE-based (SNR-based) method,
we specify the MSE (SNR) error tolerance to determine the LOD (we
followed Eqn. 4 where dij is the MSE (SNR) of blocks bi and bj).
Fig. 3 gives an example where we compared the LOD quality of the
MSE-based and level-based methods under the same block budget.
Clearly, we can see that Fig. 3 (b) contains two “hot spots” (large rect-
angles with bright red colors) and some small blue rectangles clus-
tered together. These are indications of bad distribution of data reso-
lution. On the contrary, Fig. 3 (d) exhibits a much better distribution.
It follows that the level-based method achieves a better LOD quality
than the MSE-based one. Their entropy values and rendered images in
Fig. 3 (a) and (c) also confirm this.

Fig. 4 and 5 show the change of entropy values on the two data sets
under a series of block budgets. For the level-based method, the block
budget increases eight folds when the level increases by one. There-
fore, isolated data points rather than polylines are illustrated in both
figures. For both data sets, we can see that the MSE-based and SNR-
based LOD methods could not outperform the straightforward level-
based method in terms of the tradeoff between LOD quality and block
budget, although the level-based method does not allow flexible block
budgets. For the RMI data set, the MSE-based method performs con-
sistently better than the SNR-based one. However, this is not the case
for the VisWoman data set, as the two polylines intertwine with each
other in Fig. 5. Another finding is that the entropy does not always in-
crease (actually decreases sometimes) with the increase of block bud-
get. This does not indicate the deterioration in rendered image quality,
but rather, a less balanced distribution of probability among all the data
blocks. In fact, we can imagine this potentially leaves room for us to
improve the LOD quality (see Section 4.3) using the LOD map.

6.2 View Comparison
The quality of a given LOD can be improved by adjusting the view.
Similar to the ideas of view selection presented in [2, 20], the entropy
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(a) MSE-based, 67 blocks (b) entropy = 0.163 (c) level-based, 67 blocks (d) entropy = 0.381

Fig. 3. LOD comparison (fixed view, different LODs). A zoom to part of the spine of the VisWoman data set. (a) and (c) show the rendering of two
different LODs with the same block budget. (b) and (d) are the LOD maps for (a) and (c) respectively.

(a) entropy = 0.330 (b) entropy = 0.343 (c) entropy = 0.384 (d) entropy = 0.390

Fig. 6. View comparison (fixed LOD, different views). Four snapshots from a rendering sequence of the RMI data set. The LOD remains the same
with 246 blocks while the entropy increases from (a) to (d). The pivot-by-middle layout is used to maintain relative stable update of the LOD map
throughout the rendering sequence. The dramatic change in the LOD map layout from (a) to (b) is due to the abrupt change of the viewing order.

and the LOD map can help us find good views for a certain LOD. Fig. 6
gives an example where we compare different views for a fixed LOD
of the RMI data set. The entropy increases as more information con-
tent is received from Fig. 6 (a) to (d). Looking at the sequence of LOD
maps, we can observe that the visibility of the LOD gets improved
since the entire LOD map is getting brighter. Another finding from the
LOD map sequence is that smaller blocks at the bottom of the volume
corresponds to blue rectangles (small distortion) at the upper-right part
of Fig. 6 (a), and larger blocks at the top of the volume corresponds
to red rectangles (large distortion) in the LOD maps. The relative sta-
ble update of the LOD map allows us to detect such correspondences
between the rendered blocks and the rectangles. This information is
useful when it comes to LOD adjustment.

6.3 LOD Adjustment

The goal of LOD adjustment is to improve the quality of LOD.
By splitting data blocks with large distortion and high contribution,
and joining data blocks with small distortion and low contribution,
we achieve a more balanced probability distribution among all data
blocks, and therefore, increase the entropy of the LOD. Fig. 7 show
two examples of LOD adjustment on the RMI and VisWoman data
sets within fixed block budgets. For the RMI data set, we clearly see

some “hot spots” (large rectangles with bright red colors) and a cluster
of dark rectangles (occluded data blocks) in the LOD map of Fig. 7
(a). In this example, we used the heuristic algorithm (Section 3.3) to
optimize the LOD automatically. The LOD map after adjustment in
Fig. 7 (b) shows a more balanced result. For the VisWoman data set,
hot spots are popping out in the LOD map of Fig. 7 (c). Although
there are no dark rectangles, many small blue rectangles cluster at the
lower-left corner of the LOD map. The LOD quality is improved by
splitting those hot spots and joining small blue rectangles. With the
assist of a set of brushing techniques (Section 5), selecting such target
rectangles in the LOD map and performing LOD adjustment becomes
a simple and efficient task.

6.4 Budget Control

As demonstrated in Fig. 4 and 5, the commonly-used MSE-based and
SNR-based LOD selection methods do not perform well (in terms of
improving the quality of LOD) with the increase of block budget. This
gives us opportunities to control the block budget. That is, if such a
LOD selection algorithm could not optimize the quality of LOD under
a certain block budget, could we instead give a LOD of similar quality
but with a reduced block budget? Generating images of similar quality
with smaller budgets is appealing for large data visualization because
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before, 90 blocks after, 90 blocks before, 108 blocks after, 108 blocks

(a) entropy = 0.192 (b) entropy = 0.386 (c) entropy = 0.251 (d) entropy = 0.414

Fig. 7. LOD adjustment. A zoom of the RMI data set: (a) shows a given LOD based on the MSE, and (b) shows the result after the LOD adjustment.
A zoom to the left pelvis of the VisWoman data set: (c) shows a given LOD based on the SNR, and (d) shows the result after the LOD adjustment.
The pivot-by-size layout is used to maintain relative stable update of the LOD map during the adjustment process.

(a) entropy = 0.448, 365 blocks (b) entropy = 0.476, 274 blocks

Fig. 8. Budget control on the RMI data set. A LOD based on the MSE
is given, where the view is the same as in Fig. 1 (a). (a) and (b) are
the LOD maps before and after the budget control. The percentage of
blocks with visibility less than 0.20 decreases from 48% in (a) to 29% in
(b).

it could save us limited resources. Fig. 8 shows an example of budget
control on the RMI data set. By joining data blocks with low visibility
(dark rectangles) and improving the overall distribution of resolution,
we reduce the block budget by 25% while increasing the entropy of
the LOD. This budget control does not affect the quality of rendered
image, as the renderings before and after the budget control are almost
identical.

7 DISCUSSION

As a reflection of what we state at the beginning of the paper, we
discuss the effectiveness and efficiency of our LOD map approach to
multiresolution volume visualization.

7.1 Effectiveness
Using entropy, our LOD quality measure becomes a global quality in-
dex, i.e., it not only indicates the quality of rendered images, but also
the probability distribution of all multiresolution data blocks in the

LOD. The probability takes into account the distortion and contribu-
tion of data blocks. Therefore, a high entropy (good distribution) im-
plies a balanced distribution of resources (e.g. data resolution), which
is not captured by traditional LOD selection methods. Through the
mapping of key LOD ingredients to a treemap representation, we cre-
ate the LOD map as a visual interface for LOD comparison and val-
idation. The LOD map is an intuitive representation of LOD quality,
since key ingredients of a LOD are mapped to pre-attentive attributes
(color and size of rectangles) in the LOD map. Integrating a heuris-
tic algorithm and a set of interactive techniques, it also serves as a
convenient user interface for visual data exploration. Note that the
LOD map can be manipulated independently, and the actual render-
ing of data could be deferred until a desired LOD of good quality is
achieved. The results in Section 6 demonstrate that this visual inter-
face is light-weighted and quite effective for multiresolution volume
visualization.

For the LOD map, we utilize both pivot-by-size and pivot-by-
middle layouts for relative stable update when the view or LOD
changes. The choice of which layout should be used depends on which
layout is more likely to keep the pivot unchanged. For example, if the
view changes, the middle item in the LOD list is more likely to remain
the same, as opposed to the item with the largest area. Therefore, the
pivot-by-middle layout should be used. On the other hand, if a LOD
undergoes any join or split operations, then the pivot-by-size layout
should be used, since the item with the largest area in the LOD list
is more likely to keep unchanged rather than the middle item. This
simple rule proves very effective in maintaining smooth update of the
LOD map.

7.2 Efficiency
In order to generate the LOD map in real time, we need quick up-
date of the distortion D and contribution C for multiresolution data
blocks. In this paper, we calculate D in the roughly perceptually-
uniform CIELUV color space (note that in this case, D depends on the
input color and opacity transfer function). Similar to error calculation
in [11], we pre-compute and store summary tables to ensure real-time
update of the distortion D. The summary tables are the histogram ta-
ble (frequency of quantized scalar values) and correspondence table
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(frequency of pairs of quantized scalar values in the parent and its
child blocks) for each data block in the multiresolution data hierarchy.
A zigzag run-length encoding scheme is used to reduce the storage
overhead and facilitate the table lookup at run time. During the ren-
dering, we can recompute the distortion within seconds for large data
sets (such as the 7.5GB RMI data set) whenever the transfer function
changes.

On the other hand, the quick update of the contribution C requires
real-time estimate of the visibility ν (Eqn. 5). Here, the essential ques-
tion is how to calculate the visibility of many data blocks quickly,
given an input occlusion map. Our solution is based on summed area
tables (SATs), which take the occlusion map as the input. We utilize
the GPU to estimate the average visibility. The GPU implementa-
tion builds the SATs in passes with the support of framebuffer objects
(GL_EXT_framebuffer_object). Getting the average visibility
for a block is performed by a fragment program that looks up four cor-
ners of its projection in the SATs. In this way, the visibility for all the
data blocks can be evaluated interactively at run time. For instance, it
only takes around 0.2 second to update the visibility of thousands of
data blocks for the RMI data set. We refer readers to [23] for the algo-
rithm, implementation, and performance of our summary table scheme
and GPU-based visibility estimation.

The efficiency of our LOD map is thus ensured with a real-time
update of the distortion D and contribution C. Our experiments show
that at run time when we change the view or perform LOD adjustment,
the entropy and the LOD map can be updated interactively for a LOD
consisting of up to thousands of data blocks (a typical magnitude for
our multiresolution data hierarchies).

8 CONCLUSION AND FUTURE WORK

We have presented a new LOD quality measure using entropy and its
visual representation using the LOD map for multiresolution volume
visualization. Leveraging this quality measure and visual interface,
it becomes not only feasible, but also effective and efficient for us
to examine, compare, and validate the quality of LOD selection and
rendering. We believe that this technique could be generalized, and
applied to explore other solution spaces that exhibit similar properties
as the LOD optimization problem.

The LOD map could carry more customized information for a LOD.
For example, if the user wants to inspect how the transfer function
contents of data blocks vary from their scalar field contents, we can
add shading to the rectangles in the LOD map to indicate this. Tex-
ture could also be applied to the LOD map to represent some other
information of interest. User study along this direction, such as inves-
tigating how many channels the user can perceive easily in the LOD
map without information overload, is necessary. In the future, we also
would like to extend our approach to multiresolution visualization of
large-scale time-varying data.
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