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Abstract—The ability to identify and present the most essential aspects of time-varying data is critically important in many areas
of science and engineering. This paper introduces an importance-driven approach to time-varying volume data visualization for
enhancing that ability. By conducting a block-wise analysis of the data in the joint feature-temporal space, we derive an importance
curve for each data block based on the formulation of conditional entropy from information theory. Each curve characterizes the local
temporal behavior of the respective block, and clustering the importance curves of all the volume blocks effectively classifies the
underlying data. Based on different temporal trends exhibited by importance curves and their clustering results, we suggest several
interesting and effective visualization techniques to reveal the important aspects of time-varying data.

Index Terms—Time-varying data, conditional entropy, joint feature-temporal space, clustering, highlighting, transfer function.
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1 INTRODUCTION derstanding. With this approach, we can automatically identify space-

Time-dependent simulations and time-varying data can be found in tie anomalies and alert the viewers in different ways for striking at-

most every major scientific discipline. Time-varying data are dynamjgntion- Furthermore, we can allocate the rendering or animation time
get based on the importance values of time steps for importance-

in nature and can be categorized by different temporal behaviors t - o . )
ven visualization. Finally, we present an algorithm that suggests

exhibit. The first category of time-varying dataregular, which usu- y time steps from a (long) sequence of ime-varying data or sim-

ally involves a certain phenomenon that grows, persists, and decli ing the i b C d with th
in several (distinct) stages. The rate of change at each stage could y4#/O" USINg the importance measure. Lompared with the common
gt ctice of uniform selection of time steps, our method finds a set of

dramatically in space and time. Many natural phenomena and th : turing th imal t of inf ti
simulations, such as the earthquake, fall into this category. The secS¢f Steps capturing the maximal amount of information.

category of time-varying data eriodic. For this type of data with
recurring patterns, special attentions are paid to space-time abnor%alRELATED WORK
events. For example, climate data normally follow a daily, monthly, arime-varying data visualization remains an important and active topic
yearly pattern. Occasionally, however, the data may also fluctuate taithe visualization community. Utilizing spatial and temporal coher-
of expectation, creating an abnormality that requires attention or invesice in time-varying data for efficient reuse, compression, and render-
tigation. Finally, the third category of time-varying datatsbulent. ing was the focus of many research efforts (Shen and Johnson [14],
A number of computational fluid dynamics (CFD) simulation data ar/estermann [17]). Effective data structures such as the time-space
turbulent, featuring the ubiquitous presence of spontaneous fluctpastitioning (TSP) tree [13] were also developed to capture spatial and
tions distributed over a wide range of spatial and temporal scales. temporal coherence from a time-varying data set for a similar purpose.
The dynamic nature of time-varying data demands novel solutionsThe great advance of graphics hardware opens new opportunities
to analyze and visualize them. In this paper, we present an approacfotocompressing and rendering time-varying data. Guthe and Straf3er
uncovering and visualizing the important aspects of time-varying dafd] applied wavelet and MPEG compression to time-varying data and
This is achieved by evaluating ti@portance of data around a spatial achieved real-time decompression and interactive playback with hard-
local neighborhood (i.e., a data block) in tjwnt feature-temporal ~ ware acceleration. Lum et al. [9] presented a scalable technique for
space. The feature space is a multidimensional space that consistdiofe-varying data visualization where the DCT encoding in conjunc-
data value, local features such as gradient magnitude, and/or doméipn with a hardware-assisted palette decoding scheme was employed
specific derivatives or quantities. User input such as a transfer functiom interactive data exploration. Woodring et al. [18] proposed di-
may also be incorporated. Based on the formulatiowaniiitional  rect rendering of time-varying data using high dimensional slicing and
entropy from information theory, our importance measure indicatggrojection techniques. Their goal was to produce a single image that
the amount of relative information a data block contains with respecaptures space-time features of multiple time steps.
to other blocks in the time sequence. Transfer function specification for static volume data has been ex-
This joint feature-temporal space analysis yields a curve showitgnsively studied over the years [11]. However, fewer work has been
the evolution of importance value across time for each data blockone for time-varying data in this regard. Transfer function specifica-
Such a curve characterizes the local temporal behavior of a data blditkn for time-varying data was first studied by Jankun-Kelly and Ma
When we plot all the curves of data blocks for the whole volume, maf6]. They conducted experiments using different summary function
ifest patterns reveal their respective categories of time-varying dagad summary volume methods to determine how the dynamic behav-
Clustering these curves into different temporal trends brings us a n@w of time-varying data can be captured using a single or small set
way to perform classification of the underlying time-varying data. Thef transfer functions. Akiba et al. [1] presented the use of time his-
results of classification can be utilized in transfer function specificéegram for simultaneous classification of time-varying data, based on
tion to highlight regions with different temporal trends. In this mana solution that partitions the time histogram into temporally coherent
ner, the viewers are able to purposefully focus their attentions on teguivalence classes.
dynamic features of time-varying data for a clear observation and un-Research closely related to ours includes the time-activity curve
(TAC) [3] and the local statistical complexity (LSC) analysis [5]. Fang
et al. [3] focused on time-varying medical image data and treated each
e The authors are with the VIDI research group, Department of Computer voxel over time as a TAC. Given a template TAC, matching all TACs
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Our work shares some similar goals with [3] (such as classification) |nyitively, if H(X) is regarded as a measure of uncertainty about
and [5] (such as highlighting important regions). Unlike [3], we targghe random variabl&, thenH (X|Y) can be treated as the amount of
on time-varying scientific simulation data and generalize the idea l%certainty remaining abodt afterY is known.

TAC of voxels in the original scalar value space to the concept of im- 14 evalyate the importance of a data blotkwe first calculate its
portance of data blocks in the joint feature-temporal space. Qur_sogﬁtropyH(X), then compute its mutual informatidiX;Y) with re-

tion is simpler than [5]. We use static blocks instead of dynamic lighfateq data block¥. These quantities are used to derive the importance
cones for importance analysis. Although our classification results gyex using conditional entropi (X|Y). Our approach calculates the
limited at the block level, our method is fast and thus amenable fghtropy in a multidimensional feature space and the importance in the

large-scale data analysis. We have shown our importance-driven gt feature-temporal space, which we describe next.
lution with hundreds of gigabytes time-varying data which have not

been demonstrated before with previous methods. 3.2 Entropy in Multidimensional Feature Space

3 IMPORTANCE ANALYSIS In this paper, to capture the changes of data from more th_an a single
perspective, we consider a feature vector rather than a single scalar
Time-varying data are all about changes. What makes time-varyifigld. The feature space is thus a multidimensional space that includes
data visualization unique yet challenging is the very dynamic behaynportant quantities such as data value, local features such as gradient
iors of the data. Thus, a natural way to study time-varying data jgagnitude or direction, and/or domain-specific derivatives. We then
to analyze their different spatio-temporal behaviors and suggest effeempute the statistics of a data block in the form ofiétidimensional
tive means of visualization. In this paper, we advocate a block-wiggstogram. Each bin in the histogram contains the number of voxels
approach for data analysis. We partition data into spatial blocks ajtthe data block that fall into a particular combination of feature val-
investigate the importance of each individual data block by examinigs. Multidimensional histograms have been used by Kindimann and
the amount of relative information between them. Such a block-wiggrkin [8] for transfer function generation. They derived a boundary
strategy is widely used in image and video processing to exploit sgaodel from the histogram volume with three axes representing data
tial and/or temporal locality and coherence. In volume visualizatiopalue, and the first and second directional derivatives. Pass and Zabih
a block-wise approach is more suitable than a voxel-wise approgain] used multidimensional histograms for content-based color image
when the size of data becomes too large to be handled efficiently. retrieval, which outperform common color histograms.

The importance of a data block is determined in two ways: first, a with the multidimensional histogram, we calculate the entropy
data block itself contains a different amount of information. For exanp(X) of a data blockX in the feature space by looping through ev-
ple, a data block Covering awide range of values contains more Inf@l'ry histogram bin and using its normalized he|gh’[ as probamn@
mation than another block with uniform values everywhere. SecondirfEqn. 3. In this manner, the entropy is also a measure of dispersion
data block conveys a different amount of information with respect #f a probability distribution: a distribution with a single sharp peak
other blocks in the time sequence. For instance, a data block conveggresponds to a low entropy value; whereas a dispersed distribution
more information if it has less common information with other blockgields a high entropy value.
at different time steps. Therefore, intuitively, we can say that a data
block is important if it contains more information by itself and its in-3.3 Importance in Joint Feature-Temporal Space

formation is more unique with respect to other blocks. The concegfyen two data blockX andY at the same spatial location but differ-

of conditional entropy from information theory provides us a means i time steps, the calculation of mutual informatiéX;Y) in Eqn. 1
measure the importance of data blocks in a quantitative manner.  f,rther requires the construction of a two-dimensigoait histogram

. . for joint probability p(x,y). With discrete combinations of feature val-
3.1 Mutual_ Informatlf)r.l.and Condlt.lt.)nal Entropy o ues in each axis, the joint histogram shows the combinations of fea-
Before we give the definition for conditional entropy, we first introture values in data blocké andY for all corresponding voxels. We
duce mutual information. In information theory, theitual informa-  call such a histogram theint feature-temporal histogram. In a joint

tion of two discrete random variablesandY is defined as: feature-temporal histogram, the normalized height of each histogram
) p(X,y) bin corresponds to joint probability(x, y).
HXY) = xg(ye p(x.y)log p(X)p(y)’ @) An issue in the histogram generation is how many bins to use for

) . L . each component in the feature vector. If we use 32 to 256 bins for data
wherep(x,y) is the joint probability distribution function ok andY,  value and 4 to 16 bins for gradient magnitude, this leads to a maximum
and p(x) and p(y) are the marginal probability distribution functionsof 4096 (256x 16) bins for multidimensional histograms and 4896
of X andY respectively. bins for joint feature-temporal histograms. Note that the multidimen-

Mutual information measures the amount of information ¥aind sional histogram oK (or Y) can be inferred from the joint feature-
Y share. It is the reduction in the uncertainty of one random variabdemporal histogram oX andY by summing up each of its columns
due to the knowledge of the other [2]. For exampleXiandY are (or rows). Therefore, only the joint feature-temporal histogram needs
independent, i.e.p(x,y) = p(x)p(y), then knowingX does not give to be stored. A key observation is that due to the spatial and tempo-
any information about and vice versa. ThereforgX;Y) =0. Atthe  ral coherence of data blocké andY, the joint feature-temporal his-
other extreme, iX andY are identical, then all information Conveyedtogram is expected to be sparse (i.e., containing only a few nonzero
by X is shared withY: knowingX determines the value af and vice pins). While the number of bins in histograms increases substantially
versa. As aresult(X;Y) is the same as the uncertainty containe¥ in with additional features, the actual number of nonzero bins that must
(orY) alone, namely the entropy &f (or Y). Mutual information has pe stored remains quite practical. Using run-length encoding, joint
been widely used in medical image registration since the early 199@gture-temporal histograms can be effectively compressed and stored
[12]. Registration is assumed to correspond to maximizing mutuigl a preprocessing step.
information between the reference and the target images. Recently, itach bin in the multidimensional histogram and the joint feature-
has also been used in visualization such as importance-driven focusedfiporal histogram can carry a weight indicating its relative impor-

attention [15] and local statistical complexity analysis [5]. tance for the entropy and mutual information calculation. This is
With mutual information, the conditional entropy of random variwhere domain knowledge can be utilized to set the weights for bins
ablesX andY can be defined as: in the histograms. Moreover, the calculation of importance values
H(X]Y) =H(X) = 1(X;Y), (2) can be visualization specific. Given a user-specified transfer function,
the opacity value can be used to set the weight for its corresponding

whereH (X) is the entropy oK, i.e., histogram bin (the smaller the opacity, the smaller the weight). The

_ opacity-weighted color difference between a pair of data values, cal-
H(X) = er< P(x)logp(x)- 3) culated in a perceptually-uniform color space (such as the CIELUV
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Fig. 2. The importance curves of three time-varying data sets. The three data sets are from (a) a simulation of the 1994Northridge earthquake (599
time steps), (b) a climate simulation of sea temperature over 100years (1200time steps), and (c) a pseudo-spectral simulation of vortex structures
(90 time steps). The horizontal and vertical axes are time step and importance value respectively. Random colors are assigned to importance
curves. By observing (a)-(c), we can infer that they belong to regular, periodic, and turbulent time-varying data, respectively.

4 CLUSTERING IMPORTANCE CURVES

If we plot all the importance curves of data blocks for the whole
volume, manifest patterns reveal their respective categories of time-
varying data. Fig. 2 shows three representative examples. The earth-
Fig. 1. Examples of sample time window in 1D (left) and 2D (right) with ~ quake data set shows a rise-and-fall trend. The climate data set gives a
weights given. The sizes of time window are 7 and 3 x 3 respectively. fluctuating pattern with varying amplitudes. The vortex data set, how-
ever, exhibits an intertwined arrangement of curves. Their temporal
behaviors thus fall into the categories of regular, periodic, and turbu-
Aﬁﬂt time-varying data, respectively. It is clear that drawing all the

color space) can be used to set the weight for the corresponding j : h
histogram bin (the smaller the distance, the larger the weight). Stori?0"tance curves of data blocks poses a (potential) problem of visual
tter. An interesting followup task is to cluster importance curves,

precomputed joint feature-temporal histograms allows a quick update. . -
of importance values when the transfer function changes at runtime. ich helps us better observe distinct temporal trends of importance

The question remaining is how to choose related blatksr data curves and classify the underlying time-varying data.
block X. For practical reasons such as storage overhead and calcula- Hybrid k-Means Clustering

tion efficiency, we only consider the same spatial blockXasut in . - . . .
the neighboring time steps fof. That is, only the time steps within [N thiS paper, we utilize a hybri-means clustering algorithm [7] for

a given window are chosen. Typically, the window is along the ondTPOrtance curves clustering. The most common form of the pop-
dimensional time axis and centered at the time step whemesides Ular k-means algorithm uses an iterative refinement heuristic called
in. It could also be in two (or higher) dimensions if the data is periodic 0¥d's algorithm. Lloyd's algorithm starts by partitioning the input

and consists of one (or more) known cycle. In this scenario, the tirﬁglnts/vectors int& initial sets, either at random or using some heuris-

window also samples neighboring time steps in neighboring cycles.t'c data. Then, the algorithm calculates the centroid of each set and

We define the importance of | im foll . constructs a new partition by associating each point with its closest
e define the importance of a data bloglat time stept as follows centroid. The centroids are recalculated for the new clusters, and the

M algorithm repeats until some convergence condition is met.
Axia = _Zwi HXjlYi), ) Although it converges very quickly, Lloyd’s algorithm can get stuck
= in local minima that are far from the optimal. For this reason we
whereM is the size of the sample time windoY,; is theith sample also consider heuristics basedlonal search, in which centroids are
data block andy; is its corresponding weight. Two examples of timeswapped in and out of an existing solution randomly (i.e., removing
window are shown in Fig. 1. As we can seg,falls off asYj; moves some centroids and replacing them with other candidates). Such a
away fromX;j . Note that the normalized; is used, i.e.g\ilwi =1. swap is accepted if it decreases the average distortion (the distortion
Finally, the importance of a time stépis the summation of the between a centroid and a point is defined as their squared Euclidean

o Iz

— time

time

importance values of all data blockstinWritten in equation: distance); otherwise it is ignored. The hybkidneans clustering al-
N gorithm combines Lloyd’s algorithm and local search by performing
A= z Ax 1, (5) Some numbv_sr of swaps followed by some nl_Jm_ber of _iterations of
=1 a Lloyd’s algorithm. Furthermore, an approach similar to simulated an-

nealing is included to avoid getting trapped in local minima.

The top row of Fig. 3 shows clustering results on the three data sets
where we clustered all time steps simultaneously. That is, an entire
3.4 Importance Curve importance curve is treated asTadimensional point for clustering,
Calculating the importance value of a data block in the joint featur&hereT is the number of time steps in the data. The number of clusters
temporal space along time yields a vector. Putting such a vector in fieontrolled by the user and can be adjusted interactively at runtime.
two-dimensional importance_time p|0t gi\/es usiaqnortance curve The centroids of clusters reflect different categories of data: they are
showing how the importance value of the data block changes owdearly distinguishable in terms of amplitude for the earthquake and
time. For instance, a high importance value at a time step indicates thiénate data sets, but are twisted together for the vortex data set.
at that time step, the data block contains a large amount of informatio% . .
by itself (high entropy) and it conveys less common information with-2 Clustering Granularity
other neighboring blocks (low mutual information). Conversely, a lo#s highlighted in boxes in Fig. 3, cluster centroids can get too close or
importance value indicates that either the data block contains a snwafiss each other, which are highly correlated with the nature of the data
amount of information by itself (low entropy) or it conveys more combeing clustered. In our case, such results generally can be improved
mon information with other neighboring blocks (high mutual inforby adjusting the granularity of input to the clustering algorithm. More
mation). Drawing the importance curve for the whole volume (usingpecifically, we partition all time steps sequentially into a list of time
importance values for each time step) summarizes the overall tempa®gments and cluster each segment separately, followed by a step of
behavior of the time-varying data. cluster matching for the whole time sequence. We match clusters by

whereN is the number of data blocks at time step



(a) earthquake data set 7 (b) climate data set (c) ;/ortex data set

Fig. 3. Clustering importance curves. Top row: results of simultaneous clustering all time steps. Bottom row: results of separate clustering time
segments followed by cluster matching between segments. Using time segments helps avoid the centroids getting too close or crossing each other.
The number of clusters in (a)-(c) is 3, 4, and 3 respectively. The centroids are displayed in black. In the bottom row, the number of time segments
in (a)-(c) is 50, 120, and 90 respectively. The length of time segment is uniform in (b) and (c), but non-uniform in (a).

sorting the end points of the centroids in neighboring time segmemgsod focus+context effect can be generated with a low value (such as
and making one-to-one correspondence according to their orders. DhE) foral pha. Such a solution can also be used to adjust the opacity
number of segments is determined empirically. A larger number leaofsfragment colors to provide contrast. With cluster highlighting, the
to a finer granularity of clustering along time. The length of each segsers are able to purposefully focus on regions of interest and easily
ment can be either uniform (by default) or non-uniform (derived frorfollow their evolutions over time.
the degree of temporal activity and accumulated importance values . .
see details in Section 5.4). .2 Abnormality Detection

Our new clustering results are shown in the bottom row of Fig. ®ur solution can be used to automatically detect abnormalities if the
Using time segments helps reduce the overall average distortion astthee-varying data contains such events. Following Eqn. 5, we know
centroids are pulled away from each other. Another advantage of tthat all time steps may not be equally important in the data. Time
treatment is that unlike simultaneous clustering, a data block now mstgps with high importance values indicatben abnormalities oc-
change its cluster membership throughout the time, which compliesr, since they correspond to data values fluctuating over the normal
with the dynamic nature of time-varying data. As expected, changesge. Similarly, we can further identifiyhere abnormalities occur
in cluster membership happen more frequently for turbulent data thianthose time steps. For each of the time steps with high importance
regular and periodic data, which is evident by comparing the imageslues, additional markers can be placed to highlight a certain number

in Fig. 3. of data blocks with the highest ranks of importance values (i.e., high-
est degrees of temporal activity). In this manner, space-time abnormal
5 IMPORTANCE-DRIVEN VISUALIZATION events are highlighted for attention or alert.

A visualization system can utilize importance values and importance . )
curve clustering results in several different ways to, for example, idea-3 Time Budget Allocation
tify abnormal or unique features, enhance visualization, and lowgiven a limited time budget for rendering or animation, we can allo-

both storage and computational costs. cate the time according to the importance values of time steps. The
o intuition is to spend more time on important time steps and less time

5.1 Cluster Highlighting on non-important ones. In this paper, we use the following equation to

Clustering importance curves of all data blocks in the volume gives aocate the rendering or animation time to a time $tep

a new way to classify the underlying time-varying data. Examples in y

the bottom row of Fig. 3 show importance curves classified in terms w=Q v, (6)

of their amplitudes. A cluster of data blocks with higher amplitudes ZicaA

implies more dramatic changes of feature values; whereas a clustewbkreQ is the total time budget giverT, is the number of time steps
data blocks with lower amplitudes indicates less changes. Therefdrethe data/; is the importance value of time stepandy is the expo-
these classification results are very helpful for the users to isolate nential factor. In our experiment, typical values foare in[0.5,2.0].
gions with various degrees of temporal activity for a clear observatioNote that for the case of rendering time allocation, the time allocated
In the visualization, we ask the users to select one cluster at a titoeeach time step dictates the appropriate sampling spacing that should
and the color and/or opacity transfer function can be adjusted accopg-used in rendering.
ingly to provide focus of attention to selected regions of interest. For When only a limited amount of time budg@tis given for render-
instance, we can adjust the saturation of fragment colors in the shaiter or animation, our time allocation solution is most effective for a
depending on their class memberships. If a fragment does not beldoigg sequence of data with varying importance values. For the case
to the chosen cluster, then we scale down its saturation as follows: of rendering time allocation, more important time steps are rendered
in higher quality and less important time steps are rendered in lower
quality. Such an importance-driven rendering can be utilized in time-
critical visualization. If necessary, a finer grain, block-wise rendering
time breakdown could be sought in a similar fashion. For the case of
wherecol or. r gb is the RGB color obtained from transfer functionanimation time allocation, more important time steps are slowed down
lookup,al pha € (0,1) is the scaling factor, and functioRESB2HSV  and less important time steps are speeded up. Therefore, due attention
andHSV2RGB are for RGB and HSV color conversions. In practice, and ignorance are enforced.

vec3 hsv = RGB2HSV(col or.rgb);
hsv. g *= al pha;
color.rgb = HSV2RGB( hsv.rgb);



| data | variable [| volume dimension | block dimension]| #bins(fy, fp, f3) [ TW size [ JFTH size| time |
combustion| OH mass fraction || 960x 660x 360x 222 | 48x 33x 18 (256, 16, -) 3 2.15GB 19hrs
earthquake | amplitude 256x 256x 96x 599 | 16x 16x 16 (256, 16, -) 3 9.51MB 3.5hrs
hurricane | vapor 500x 500x 100x 48 | 20x 20x 20 (256, 16, -) 3 82.9MB 75mins
climate temperature 360x 66x 27x 1200 | 15x11x9 (32,4,-) 3x3 117MB 65mins
vortex vorticity magnitude|| 128x 128x 128x90 | 8x8x 8 (32,4, 4) 7 73.4MB 9mins

| f: data valuejf,: grad. mag.;fs: mag. of the 2nd derivative; TW: time window; JFTH: joint feature-temporal histogram |

Table 1. The test data sets with their parameter settings, sizes of joint feature-temporal histograms, and timings for histogram calculation.

TIMESTEP: 100 CLUSTERID : 00 COUNT ™

QUAPOR 4 : QUAPOR

TMESTEP: 12 CLUSTERID: 01 COUNT 0507 356 e &l vesier: 12 cLusrer: oo coun s 000 o b | mestep: 12 cLusterm: oz counr: 1720 000

Fig. 4. Cluster highlighting. Top row: the earthquake data set. Bottom row: the hurricane data set. Left to right: clusters with high, medium, and
low importance values. Clusters at the same time step (indicated by the red lines in their importance curves) are shown. Selected clusters are
highlighted with high saturated colors while the rest of data are rendered with low saturated colors for the context.

5.4 Time Step Selection of the original time sequence. Therefore, they can be used for further

Another interesting but often overlooked issue for time-varying dafifit analysis and visualization, such as feature extraction and time-
visualization is the selection of time steps from a long time sequend@'Ying transfer function specification, in a more efficient manner.
When running a scientific simulation, scientists can adjust parameters
to easily dump hundreds or thousands of time steps. Due to practi-
cal reasons such as storage constraint and processing efficiency, ey test data sets and their variables we used in our experiments are
may only select a subset of time steps for analysis and visualizatidiated in Table 1. All five floating-point data sets are from scientific
The most common way of time step selection is to pick time steg@mulations. The combustion simulation was conducted by scientists
uniformly from the time sequence (e.g., pick evétly time step). Al- at Sandia National Laboratories (SNL) in order to understand the dy-
though convenient, uniform selection of time steps may not be thamic mechanisms of combustion process. The earthquake simula-
ideal choice since the temporal behavior of the time-varying data codidn models the 3D seismic wave propagation of the 1994 Northridge
be quite uneven throughout the time. earthquake. The hurricane data set is from the National Center for

For such type of data, we propose an algorithm to select time steftsnospheric Research (NCAR) and made available through the IEEE
based on importance values: we start with selecting the first time st¥fsualization 2004 Contest. The simulation models Hurricane Isabel,
Then, we partition the rest of time steps it — 1) segments with a strong hurricane in the west Atlantic region in September 2003. The
near equal accumulated importance valdes each segment, where climate data set was provided by scientists at the National Oceanic and
K is the number of time steps to be selected. Finally, from each sefmospheric Administration (NOAA). The equatorial climate simula-

RESULTS

ment, we pick one time step: tion covers 20 S to 20 N over a period of 100 years (one time step
t = argmax (z]t') (7) ©of data per month). Finally, the vortex data set has been widely used
T ’ in feature extraction and tracking. The data is from a pseudo-spectral

wheret’ is the previously selected time step. Assuming a Markosimulation of vortex structures.

sequence model for the time-varying data (i.e., any time tsteple- Table 1 also lists the block dimension, the number of bins for fea-

pendent on time stepp— 1, but independent of older time steps), théure components, and the size of sample time window. With these
heuristic of our algorithm is to maximize the joint entropy of the sesettings, the size of joint histograms ranges from less than 1% (earth-
lected time steps. guake data set) to about 10% (vortex data set) of the original size of

Animating the selected time steps gives a visual summary of thata. All calculations were done using a 2.33GHz Intel Xeon proces-

time-varying data. When a proper number of time steps are selectsol. Note that the time to compute joint feature-temporal histograms
such an animation conveys the important aspects of the data. Mademinates the total time for importance values calculation. The time

over, the selected time steps can be considered as a representativioshistogram calculation increases significantly as the size of data set
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(b)

Fig. 5. Cluster highlighting (a) and abnormality detection (b and c) of the climate data set. (a): the cluster with the highest importance values at time
step 900. (b) and (c): time steps289and 623 have high importance values and are abnormal. Markers are placed to indicate where abnormalities
occur. Time steps 289and 623 are associated with the El Nifio and La Nifia conditions respectively.

'VORTICITY MAGNITUDE
[ - TIMESTEP : 148 CLUSTER ID : 00 COUNT : 1068

TIMESTEP :045 CLUSTERID : 02 COUNT : 0751 o o

Fig. 6. Cluster highlighting with the vortex (left) and combustion (right) data sets. The clusters with the highest importance values are shown. Both
color and opacity are adjusted in the figure to hide the remaining clusters not selected.

all time steps time segments (i.e., the most temporal changes) and examine its evolution over time.
data | clusters|| time | AD num | time | AD Finally, Fig. 6 shows the clusters with the highest importance values
combustion| 3 7.38s] 50.76 || 37 1.75s]| 7.45 of the vortex and combustion data sets, respectively. For clarity, both
earthquake | 3 5.05s | 14.87 || 50 1.67s| 4.39 color and opacity were adjusted to hide the remaining clusters in these
hurricane | 3 0.53s| 831 |[ 16 | 0.34s| 411 | two turbulentdata sets.
climate 4 3.83s| 65.74 || 120 | 4.41s| 52.54 We used the climate data set to illustrate the application of impor-
vortex 3 3.02s | 6.38 90 0.28s| 1.25 tance values for abnormality detection. In this experiment, we also

| took the input transfer function into account for importance calcula-
tion (refer to Section 3.3). Among the 1200 time steps, time steps 289
Table 2. Timing for clustering all time steps of the five test data sets. and 623 with high importance values are shown in Fig. 5 (b) and (c),
respectively. Both time steps are indications of abnormal events. We
added markers to the centers of six regions with the highest impor-

increases. Since obtaining block-wise importance values only involviggice ranks for spatial highlighting. The size of each marker is scaled
localized computation, parallel preprocessing on a multi-core procé®: the importance value of the corresponding block. The NOAA sci-
sor or a PC cluster can be adopted straightforwardly to reduce the tipfitists confirmed that time steps 289 and 623 are abnormal and relate
ing. to the El Nlo and La Niia conditions respectively. Both conditions
The clustering time depends on the input data (including the nute linked with the sea-surface temperature (SST) anomalies in the
bers of data blocks, time steps, and time segments) and the paramdtepical Pacific. The core feature for the EIfi(La Nifia) condition
of the clustering algorithm (such as the numbers of clusters and itelathat warmer (cooler) than normal ocean temperatures develop in the
tions). For all five data sets, clustering can be done within seconds g8tral and eastern equatorial Pacific Ocean. With this technique, the
listed in Table 2. Note that clustering based on time segments inst&&éentists only need to focus on those time steps having high impor-
of all time steps generally takes less time and improves the averdgBce values, making their analysis process much more efficient.
distortion. The timing performance allows the users to adjust parame-We experimented with the earthquake data set for time budget allo-
ters such as the number of clusters at runtime. cation. For the case of rendering time allocation, we assumed a total of
We tested cluster highlighting with all five data sets. As shown ih0.0 seconds (the I/O time was excluded) and allocated them to time
the top row of Fig. 4, the earthquake data set is segmented into thgé@ps according to Eqn. 6 with=1.0. The proper sampling spacing
clusters with high, medium, and low importance values. The thr&eas derived from the rendering time allocated to each time step. We
clusters generally conform to the inner, medium, and outer layers frafaed a GPU raycaster on an nVidia GeForce 7900 GTX graphics card
the earthquake’s focus. However, the rightmost image in the top revith 512MB video memory and produced a video showing the varying
of Fig. 4 reveals that regions of low importance values (i.e., low degréampling spacing used for rendering different time steps. Since more
of temporal activity) are not necessary far away from regions of higmportant time steps (with higher conditional entropies) likely contain
importance values (i.e., high degree of temporal activity). This magore fine details or high frequency contents, more rendering time is
relate to the underlying geographical differences. The hurricane dagent (i.e., smaller sampling spacings are chosen) for those time steps
set is also segmented into three clusters. The results in the bottom tevensure high quality rendering.
of Fig. 4 show that the clusters with high and medium importance For the case of animation time allocation, we assumed a total of
values are twisted around the center of the hurricane. For the climat&0 seconds and allocated them to time steps according to Egn. 6 with
data set, out of the four clusters, the one with the highest importange- 0.5. Images of six time steps and their corresponding time points
values is shown in Fig. 5 (a). Such clustering results help scientistee shown in Fig. 7. Our solution suggests an animation that favors
focus on, for example, the cluster of the highest importance valugsie steps with higher importance values. In the earthquake data set,

| AD: average distortion




0.0s | | | | | | 15.0s

Fig. 7. Animation time allocation with the 599 time steps earthquake data set. Left to right: six time steps correspond to six tick marks from left to
right on a linear animation timeline. The statistics show that the first 300time steps are given 11.6seconds, leaving 3.4 seconds for the rest of time
steps. Our time allocation favors (i.e., gives more time to) time steps with higher importance values.
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Fig. 8. Time step selection with the earthquake data set. 50 of the 599
time steps are selected (shown with blue dots on the importance curve).
The goal is to maximize the joint entropy of the selected time steps.

they correspond to time steps (71 to 235) when seismic waves of hig
amplitude travel just under the Earth’s surface and make most of the ) ) )
destruction. The accompanying video demonstrates an importantig: 9- The cluster of the highest importance values under different
driven animation of the time sequence. Note that such a permutatfdlgices of number of clusters and block size. Top row, left to right: the
of animation time is subjective and could be interpreted differentl .‘”t‘:;’rirsmﬂl C:g;tfgsr?ﬁ?’;ﬁé ab?gci'szizge:rtg’zlg' ng’r ggjuzsémezné or‘,‘;g‘
Thus, the viewers should be advised of the context in advance. : gnht: the I DUXDUX LU, £Ux £Ux 20,
. . . . nd 10x 10x 20, respectively; color and opacity adjustment.
provide an orientation for the viewers, we also showed a progress Bar
in the accompanying video indicating the varying playback speed.

Fig. 8 shows our time step selection results for the earthquake data

1.16

. N 3 — W=7, F=(32,4,4) ——W=3, F=(32,4,4)
set. We selected 50 time steps from the 599 time steps. Compared witr  1.12 1 W=7, F=(16,8,4) —W=11,F=(32,4,4)
uniform time step selection, our importance-based selection scheme | ——W=7,F=8,8,8)

yields a sequence of time steps with a much higher joint entropy of
14750.6, which is almost twice as the uniform selection of 7681.1.
We also include a video to compare the time steps selected by the
uniform-based and our importance-based selection methods.
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7 DiscuUssION

Viola et al. [16] introduced the idea of importance-driven volume ren- 088 +—7—7
dering for automatic focus and context display of volume data. They ! s ‘Time step51 oo
?‘Ssu.med t.he ObJeCt.s within a volume are pre-segmentt_ed a.nd eaChFcl)t?_lo. The importance curve of the volume with different time window
ject is assigned an importance value by the users. Object |mportagéS (W) and numbers of bins for feature components (F = (fa, f2, f3)
is used to encode visibility priority for guiding importance-driven 4, 1o Taple 1), illustrated with the vortex data set e
volume rendering. Our work targets time-varying scientific simula- ' '

tion data where no clear definitions of objects as those in medical or
anatomical data are given. Unlike previous importance-driven ren-
dering methods that require (discrete) volume segmentation or critic ions with the same total 512 bins for multidimensional histoarams
points calculation beforehand, our method uses the feature-tempé | fixed wind ; £70 h | quideline i 9
space for importance curve calculations and the subsequent clusteftfig 2 "*€d window size of /. In practice, a general guideline Is to as-

L . . - .~ sigh more bins to more important quantities (usually the original data
allows classifying regions of different degrees of temporal activity. value) than less important ones (such as derived quantities). Finally,

7.1 Parameter Choices our experience shows that a small number of clusters (e.g., 2 or 3)
. . is a good choice for regular time-varying data. A larger number of
Fig. 9 shows examples of the choices of number of clusters and blaghsters may be necessary for periodic and turbulent data. There is a
size on the clustering results. As we can see, using a larger NYeq of further research and automation to suggest how many clus-
ber of clusters or a smaller block size leads to finer clustering resyiss 1o choose depending on the characteristics and actual content of
and thus distinguishes smaller features better. The overall hurricapg time-varying data. The number of clusters may also vary through

structure is still captured when a larger block size is used. Note thgferent stages of the temporal activity. As for the choice of number
the artifact along block boundaries becomes apparent when both celpfime segments, we suggest to use a large number for turbulent data
and opacity are adjusted. Our experiments show that the overall regs i order to generate good clustering results. Regular and periodic

of importance curve is not sensitive to the size of time window chosegha sets, however, are less influenced by this parameter value change.
Such an example is shown in Fig. 10. This justifies that sampling of .
Importance vs. Difference

time steps within a small local neighborhood suffices for importan(?e2
evaluation. On the other hand, the numbers of bins selected for featlieenporal difference between time steps can be straightforwardly cal-
components have an influence on the importance curve. Fig. 10 atstated by accumulating voxel-wise value differences. Our importance

ws three importance curves resulting from different bin configu-



3.2 it encompasses all three categories of time-varying data (regular, peri-
31 — importance odic, and turbulent). In a quantitative manner, we show that different
281 —— difference spatial blocks have varying importance values over time and different
time steps may not be equally important either. We show that there are
several interesting and more cost-effective ways to visualize and un-
derstand large time-varying volume data by utilizing their importance
measures. Our importance analysis and visualization techniques thus
provide a new direction to unveil and express the dynamic features of

101 ‘ 1‘11 ‘ 1‘21 ‘ 1‘31 ‘ 1z‘t1 ‘ 1‘;:1 ‘ 1é1 ‘ 17‘1 ‘ 1é1 ‘ 15;1 ! .
time step time-varying data.
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