Perception-Driven Techniques for the Effective Visualization of Large Volume Data

So Many Parameters, So Little Time…. Guiding Users To Obtain Better Visualizations

Klaus Mueller
Department of Computer Science
Stony Brook University, USA
mueller@cs.sunysb.edu
http://www.cs.sunysb.edu/~mueller

The Conceptual Data Visualization Pipeline

- Parameterization of all pipeline components is essential
 - allows tuning and optimization of the visual transform given the data and the user
 - shall look at each pipeline component and then join them
What We Will NOT Talk About

• We shall not consider data arrangements here
 • such as grids, lattices, spatial dimensions, etc.
 • assume sampling is not an issue
 • assume interpolation and errors are understood
 • further assume that the methods generalize to higher spatial dimensions

• There is still plenty to if stuff to worry about ☺
Topic 1: The Data and Their Parameterization

• Data may come as:
 • scalar data (densities)
 • multi-valued data (multi-variate)
 • vectors (vector fields)
 • and others
• Data parameterization = data characterization
• How can data be characterized?
 • their features
• What are these features?
 • this is the hard part ☻
The Raw Data

- Scalar density fields (topic of this tutorial)
 - Medical
 - Scientific
 - Multi-modal or multi-variate (example: T1/T2 MRI)
- Vector fields
- Tensor fields
 - MRI DTI

Direct Visualization Of Scalar Densities

- Contrast: the role of color
 - Variations in brightness (grey levels) encode local contrast well
 - But the range of distinguishable grey levels is small (~100)
 - Grey levels are good for local but not for global contrast

[Ware 04]
Direct Visualization Of Scalar Densities

• Color for highlighting
 • color is effective in guiding viewer attention to salient features
 ➔ in particular, vividness (saturation) is important here

[Wang 08b]

Direct Visualization Of Scalar Densities

• Aesthetics
 • color can make a display more cheerful and pleasing
 • aesthetic design can also reduce stress in problem solving tasks
 • objects considered beautiful stimulate different areas in the brain than those considered unattractive [Kawabata 04]
 ➔ this motivates the use of harmonized color schemes

[Wang 08a]
Direct Visualization Of Scalar Densities

- At this point, we have done analysis only on a per pixel-basis
 - may have involved global scene analysis (e.g., for highlighting)
- One may map scalar densities to
 - other scalar densities: windowing of interesting ranges
 - colors
 - transparencies
- This mapping may be driven by functions of
 - importance
 - aesthetics
 - certainty
 - and others

Direct Visualization Of Scalar Densities

- Essentially we get a 1-D transfer function: density \rightarrow color
Direct Visualization Of Scalar Densities

• Essentially we get a 1-D transfer function: density \rightarrow color

• Let us now look at more complex analyses
 • creating new, derived data

Accentuate Events In The Data

• Flat, uniform regions are not particularly interesting
• We are interested in events and critical points \rightarrow the features
 • thus, accentuate discontinuities and variations in the data
• Visually convey these events by graphical techniques
• Can still use transfer functions for this
 • their complexity grows with the complexity of the event descriptor

• Distinguish between:
 • analytic feature detection via derivatives and moments
 • analytic feature detection looking for topology changes
 • statistical feature detection calculating histograms and variance
Boundaries in volume create arches in (value, gradient) domain [Kindlmann 98]

These arches can guide placement of opacity to emphasize material interfaces [Kniss 01]
Three-Dimensional Transfer Function

Boundaries can be described in terms of:
- maximum in 1st derivative
- zero-crossing in 2nd derivative

Semi-automatic classification possible in clean data

Transfer Function for Perceptual Enhancement

Add in additional properties, such as curvature

Curvature: how the change in surface position changes surface normal (n)
- principal curvature features (κ₁, κ₂) form the transfer function domain
- curvatures enable surface surface enhancement, better control over silhouettes
- convolution used to compute 1st and 2nd derivatives

[Kindlmann 03]
Effects Of Curvature Enhancement

- silhouettes
- ridges+
- valleys
- ridges+
- valleys+
- silhouettes

Analysis Of Level Set Topology

- Level-Set = Iso-contour
 - contours of equal interpolated scalar density

![image2.png]
Analysis Of Level Set Topology

- Level-Set = Iso-contour
 - contours of equal interpolated scalar density

Contour tree
Reeb Graph

Statistical Features

- What to do when there are no concrete topological events or boundaries, yet the density field is not uniform?
 - simple example found in nature: smoke
- Assess the spectrum of density variations
 - density histograms
- Apply a descriptor rooted in human perception
 - humans most sensitive to 1st and 2nd spatial derivatives
 - already used in the transfer function context
 - now use in a statistical context

[Pascucci 03]
Density Global Histogram

Density Local Histogram

- Density signatures in local histograms at hierarchy of window sizes
- Detect density statistics at multiple levels of scales
- Representation to capture the essence of an object.

this and following slides: [Nam 08]
SIFT (Scale Invariant Feature Transform)

- Gradient histogram of local neighborhood
- Highly expressive of a local neighborhood’s salient dynamics
- Invariant to scale, translation and rotation

Algorithm
- the detection of critical points (the keypoints) in scale-space
- the encoding of these into keypoint descriptors

- Find keypoints
 - local extremas in a difference-of-Gaussians in multi-scale space
 - Discard low contrast keypoints
 - Filter out keypoints situated on edges

Pictures from Wikipedia.org
SIFT (Scale Invariant Feature Transform)

- Keypoint descriptor
 - the magnitude and orientation at each sample point around the keypoint location
 - weighted by a Gaussian function to achieve a certain level of smoothing.
 - aggregated into orientation histograms describing the neighborhood

3D SIFT

- Keypoint descriptor
 - the magnitude and orientation at each sample point around the keypoint location
 - weighted by a Gaussian function to achieve a certain level of smoothing.
 - aggregated into orientation histograms describing the neighborhood

\[8 \times (4 \times 4) = 128 \]
3D SIFT Descriptor

\[(8 \times 8) \times (4 \times 4 \times 4) = 4096 \]
3D SIFT Descriptor
Cluster Analysis on Visual Contents

Feature Visualization in an Information Space

MDS (Multi-Dimensional Scaling) - Flatten N-D data into 2-D display while preserving the inter-distance between dataset
MDS Analysis: Categorization

1. Categorize different groups of flows
2. Distinguish different features within same category

Categorization Of 3D Flows

- 5 frames extracted from each series
- Features
 - Global histogram
 - Local histogram
 - 3D SIFT
Conclusion: Data Features

• The more the data characteristics are understood the more specific the features will be (in most cases)
 • opposite extremes: feature templates vs. neural networks
 • others are somewhere in between
• Feature specification can be embedded in a data exploration process
 • neural networks require users to provide feature examples in the dataset
 • these may then be re-used in later visualizations
Topic 2: Visual Transform

- Determines how features are expressed into visual manifestations = their visual appearance
- Features may control the rendering pipeline at various stages:
 - local color and opacity (mapping via transfer function)
 - scene composition (local sparseness, warping by lenses)
 - rendering style (lighting model, illustrative techniques)
 - iconic sprites (specific visual expression)

Topic 2: Visual Transform

- We can use transfer functions to maps feature parameters into visual transform parameters
 - what to do when parameter vector is large?
 - what to do when transfer function is complex?
- We have seen clustering/MDS as a way to visualize similar features
 - implicit parameterization is given by location in MDS cluster
- Can we make the parameterization more explicit?
 - detect parameter combinations sensitive to change
 - come up with templates given prior experiences
Example: Complex Transfer Function

A more elaborate value-gradient transfer function parameterization:

Typically, datasets typically deviate only modestly from this
• but they do so in complex ways
 → lots of tedious tweaking is required

[Rezk-Salama 06]

Parameter Aggregation

We can learn these small deviations by observing a few datasets
• encode the parameters into an N-D vector
• find the principal component of the vectors (the main Eigenvector)
• project all other vectors onto this Eigenvector
• the min and max then represent the min and max of the slider

[Rezk-Salama '06]
Transfer Function Simplification

Transformed aggregation enables transfer function simplification from N-D to 1-D

- works here since in CT usually only small deviations exist
- but these small deviations require complex interactions in the transfer function domain

[Rezk-Salama '06]

Topic 3: The User, The Human Visual System

Visual cortex breaks input up into different aspects:
- color, shape, motion, depth
Visual Saliency

- Notion of visual importance

Visual Saliency

- Notion of visual importance
- Visual transform of data features to direct a viewer's attention
 - shape (edges, silhouettes)
 - surface (curvatures, suggestive contours)
 - size
 - intensity and color
 - texture
Visual Saliency

- Notion of visual importance
- Visual transform of data features to direct a viewer’s attention
 - shape (edges, silhouettes)
 - surface (curvatures, suggestive contours)
 - size
 - intensity and color
 - texture
- Enhancement / suppression makes this more effective
 - opacity controls presence
 - rendering style and texture control expression and appearance
 - illumination controls shading
 - intensity and color control attention (by highlighting)
 - caricature controls shape
 - but these influences are typically mixed (and not exclusive)

Halos

Bruckner et al., 2006
Wenger et al., 2006
Two Levels Of Abstraction

- Low-level abstraction:
 - concerned with how objects are represented
 - stylized depiction: silhouettes, contours, pen+ink, stippling, hatching, etc.

- High-level abstraction
 - deal with what should be visible and recognizable and at what level of detail
 - this should be importance-driven, that is, the current visualization goal controls feature rendering style and visibility
Mixing Rendering Styles

- First, classify the scene:
 - **Focus Objects (FO):** objects in the center of interest are emphasized in a particular way
 - **Near Focus Objects (NFO):** important objects for the understanding of the functional interrelation or spatial location.
 - **Context Objects (CO):** all other objects (rendered e.g., as silhouettes)
 - **Container Objects (CAO):** one object that contains all other objects.
- Render these in a certain order to ensure visual consistency

Tietjen et al., 2005

Attention

- The cognitive process of selectively concentrating on one thing while ignoring other things
 - detecting features in visual clutter (CAPTCHA, next slide)
 - detecting coherent speech in noisy environments (cocktail party effect)
 - ignore features while concentrating on others (recall gorilla)
 - can also have divided attention (example: cell phone + driving)
 - heavily studied in psychology and neuroscience
 - closely tied to perception
Attention

• The cognitive process of selectively concentrating on one thing while ignoring other things
 • detecting features in visual clutter (CAPTCHA, next slide)
 • detecting coherent speech in noisy environments (cocktail party effect)
 • ignore features while concentrating on others (Simon’s Gorilla)
 • can also have divided attention (example: cell phone + driving)
 • heavily studied in psychology and neuroscience
 • closely tied to perception

• Attention theory is important for visualization as well
 • in contrast to computer vision, WE design/create the scene
 • this design guides the attention of the viewer
 • guidance determined by visualization goals

• Therefore it is important to understand mechanism of attention
Visual Recognition and Attention

- Two opposing theories:
 - Gestalt
 - Feature integration
- Gestalt theory
 - top-down approach
 - proposes that the operational principle of the brain is holistic, parallel, and analog, with self-organizing tendencies
 - important in user interface design (button grouping, etc)
- Feature integration theory
 - bottom-up approach
 - primary visual features are processed and represented with separate feature maps
 - these are later integrated in a saliency map that can be accessed in order to direct attention to the most conspicuous areas

Gestalt Theory: Confirming Examples

- Emergence
- Invariance
- Reification
- Multi-Stability
Gestalt Theory: Opposing Examples

• **Selective-Encoding:**
 • involving one to distinguish what is important in a problem and what is irrelevant (i.e., filtering)

• **Selective-Comparison:**
 • identifying information by finding a connection between acquired knowledge and experience

• **Selective-Combination:**
 • identifying a problem through understanding the different components and putting everything together.

Feature Integration Theory

• One of the most influential psychological models of human visual attention in recent years
• Two types of visual search mechanisms
 • Feature search
 • can be performed fast and pre-attentively for targets defined by primitive features (such as color, orientation, intensity, etc)
 • Conjunction search
 • serial search for targets defined by a conjunction of primitive features
 • much slower
 • requires conscious attention
 • Very promising technique for computer vision to detect partially occluded objects (SIFT)
What Does It Mean For Visualization?

• Feature integration theory:
 • justifies enhancement of features
 • exploit this to guide attention
 • relatively “easy” since it involves mostly local enhancements
 • notion of feature saliency is important

• Gestalt theory:
 • justifies omission of detail to save space
 • viewers assume continuity of occluded lines
 • underlies ghosting techniques (mental feature completion)
 • silhouettes and contours for context objects
 • many techniques used now in illustrative rendering
 • recall also optical illusions
Some design rules exist, but combinations are often untested

Also consider
- user background (education, age, gender, profession, attitude, etc)
- underlying task and application (medical, business, science, etc)
- computational resources and level of interactivity sought
- other factors

User studies can reveal this insight
- they allow, in some sense, a parameterization of the user

An effective and efficient means for user studies is **conjoint analysis**
- allows parameters to be tested in a conjoint fashion, via pair-wised comparison tests (or task-based tests)
- subsequent statistical analysis then separates the sensitivities of these parameters
Sample Testing Scenario

- Which color transfer function shows more detail?

Putting Conjoint Analysis to the Test

- Performed a user study on a multi-parametric visualization scenario
- On a set of 2700 images of engine blocks, we varied:
 - color transfer function (3)
 - rendering mode (5)
 - viewpoint (6)
 - image resolution (2)
 - ray step size (3)
 - background (5)
- Tested
 - 786 respondents
 - 20 pair-wise tests each

[Giesen '07]
User Study Results

- Top 10 (detail / aesthetics):

- Flop 10 (detail / aesthetics):

Wrap-Up

- Define the features that best characterize your visualization task
- Devise a suitable feature retrieval method
- Find a suitable mapping of these to salient visual representations
- Confirm and tune via user studies
References (1)

References (2)

- [Nam 08] J. Nam, M. Maurer, K. Mueller, "High-Dimensional Feature Descriptors to Characterize Volumetric Data," 2nd Workshop on Knowledge-Assisted Visualization (KAV), (to be presented), Columbus, OH, October, 2008
References (3)

More and Up-To-Date Information

- Visit http://vis.cs.ucdavis.edu/~wangcha/vis08-tutorial.htm

- Support was provided by NSF grants ACI-0093157 and CCF-0702699, and NIH grant 5R21EB004099-02,