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The Conceptual Data Visualization Pipeline

Vis alData Visual 
Transform User

Parameterize

• Parameterization of all pipeline components is essential
• allows tuning and optimization of the visual transform given the data and 

the user
• shall look at each pipeline component and then join them

Parameterize
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What We Will NOT Talk About 

• We shall not consider data arrangements here 
• such as grids, lattices, spatial dimensions, etc. 
• assume sampling is not an issue 
• assume interpolation and errors are understood 
• further assume that the methods generalize to higher spatial dimensions

What We Will NOT Talk About 

• We shall not consider data arrangements here 
• such as grids, lattices, spatial dimensions, etc. 
• assume sampling is not an issue 
• assume interpolation and errors are understood 
• further assume that the methods generalize to higher spatial dimensions

• There is still plenty to if stuff to worry about ☺
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Topic 1: The Data and Their Parameterization

• Data may come as:
• scalar data (densities)
• multi-valued data (multi-variate)
• vectors (vector fields)
• and others

• Data parameterization = data characterization
• How can data be characterized?

• their featurestheir features
• What are these features?

Topic 1: The Data and Their Parameterization

• Data may come as:
• scalar data (densities)
• multi-valued data (multi-variate)
• vectors (vector fields)
• and others

• Data parameterization = data characterization
• How can data be characterized?

• their featurestheir features
• What are these features?

• this is the hard part ☺
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The Raw Data

• Scalar density fields (topic of this tutorial)

• Vector fields

• Tensor fields
• MRI DTI

medical scientific multi-modal or multi-variate
(example: T1/T2 MRI)

Direct Visualization Of Scalar Densities  

• Contrast: the role of color
• variations in brightness (grey levels) encode local contrast well
• but the range of distinguishable grey levels is small (~100)
Æ grey levels are good for local but not for global contrast

[Ware 04] 
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Direct Visualization Of Scalar Densities  

• Color for highlighting
• color is effective in guiding viewer attention to salient features
Æ in particular, vividness (saturation) is important here 

[Wang 08b] 

Direct Visualization Of Scalar Densities  

• Aesthetics
• color can make a display more cheerful and pleasing
• aesthetic design can also reduce stress in problem solving tasks
• objects considered beautiful stimulate different areas in the brain than 

those considered unattractive [Kawabata 04]
Æ this motivates the use of harmonized color schemes

non-harmonic T-harmonic V-harmonic
[Wang 08a] 
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Direct Visualization Of Scalar Densities

• At this point, we have done analysis only on a per pixel-basis
• may have involved global scene analysis (e.g., for highlighting)

• One may map scalar densities to
• other scalar densities: windowing of interesting ranges
• colors
• transparencies

• This mapping may be driven by functions of
• importanceimportance
• aesthetics
• certainty
• and others

Direct Visualization Of Scalar Densities

• Essentially we get a 1-D transfer function: densityÆ color
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Direct Visualization Of Scalar Densities

• Essentially we get a 1-D transfer function: densityÆ color

• Let us now look at more complex analyses
• creating new, derived data

Accentuate Events In The Data 

• Flat, uniform regions are not particularly interesting
• We are interested in events and critical points Æ the features

• thus, accentuate discontinuities and variations in the data
• Visually convey these events by graphical techniques
• Can still use transfer functions for this

• their complexity grows with the complexity of the event descriptor

• Distinguish between:• Distinguish between:
• analytic feature detection  via derivatives and moments
• analytic feature detection looking for topology changes 
• statistical feature detection calculating histograms and variance
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Derivatives

data (CT) value

gradient 
magnitude

Derivatives: Two-Dimensional Transfer Function

data (CT) value

gradient 
magnitude

Boundaries in volume create arches in 
(value, gradient) domain [Kindlmann 98] 

These arches can guide placement of 
opacity to emphasize material 
interfaces [Kniss 01]
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Three-Dimensional Transfer Function

Boundaries can be described 
in terms of:

• maximum in 1st derivative
• zero-crossing in 2nd

derivative

Semi-automatic classification 
possible in clean data

Transfer Function for Perceptual Enhancement

Add in additional properties, 
n

κ2p p ,
such as curvature

Curvature: how the change 
in surface position changes 
surface normal (n)

cap

κ1

κ1 >= κ2

• principal curvature features 
(κ1,κ2) form the transfer 

ridge

saddle

cup

valley

,
function domain

• curvatures enable surface 
surface enhancement, better 
control over silhouettes

• convolution used to compute 
1st and 2nd derivatives

[Kindlmann 03]
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Effects Of Curvature Enhancement

silhouettes ridges+
valleys

ridges+
valleys+
silhouettes

Analysis Of Level Set Topology  

• Level-Set  = Iso-contour
• contours of equal interpolated scalar density

d=120 d=120

d=80

d=120

d=40

topological event

d=80

d=40



10/27/2008

11

Analysis Of Level Set Topology  

• Level-Set  = Iso-contour
• contours of equal interpolated scalar density

d=120 d=120

d=80

d=120

d=40

topological event

d=80

d=40

[Pascucci 03]

Contour tree
Reeb Graph

Statistical Features

• What to do when there are no concrete topological events or 
boundaries, yet the density field is not uniform?
• simple example found in nature: smoke

• Assess the spectrum of density variations
• density histograms

• Apply a descriptor rooted in human perception
• humans most sensitive to 1st and 2nd spatial derivatives
• already used in the transfer function context y
• now use in a statistical context
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Density Global Histogram

this and following slides: [Nam 08]

Density Local Histogram

• Density signatures in local histograms at hierarchy of window sizes
• Detect density statistics at multiple levels of scales
• Representation to capture the essence of an object.
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SIFT (Scale Invariant Feature Transform )

• Gradient  histogram of local neighborhood
• Highly expressive of a local neighborhood’s salient dynamics
• Invariant to scale, translation and rotation

• Algorithm
• the detection of critical points (the keypoints) in scale-space
• the encoding of these into keypoint descriptors 

SIFT [Lowe 04 ]

SIFT (Scale Invariant Feature Transform )

• Find keypoints
• local extremas in a difference-of-Gaussians in multi-scale space

• Discard low contrast keypoints
• Filter out keypoints situated on edges

• Pictures from Wikepedia.org
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SIFT (Scale Invariant Feature Transform )

• Keypoint descriptor
• the magnitude and orientation at each sample point around the keypoint

location
• weighted by a Gaussian function to achieve a certain level of smoothing.
• aggregated into orientation histograms describing the neighborhood

3D SIFT
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Cluster Analysis on Visual Contents

Feature Visualization in an Information Space

MDS ( Multi-Dimensional 
Scaling) - Flatten N-D data 
into 2-D display whileinto 2-D display while 
preserving the inter-
distance between dataset
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MDS Analysis: Categorization
Water dropping
from top-right to
bottom-left corner

Smoke flow 
starting from the 
bottom-center 

Smoke flow 
narrower than 
smoke2

Smoke flow similarSmoke flow similar 
with smoke3

Smoke flow similar 
with smoke3 and 5

Smoke flow similar 
with smoke3,5, 
and 6 but different 
direction

1. Categorize different groups of flows
2. Distinguish different features 

within same category

Categorization Of 3D Flows

• 5 frames extracted from each series
• Features

• Global histogram
• Local histogram
• 3D SIFT
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MDS Analysis

Conclusion: Data Features

• The more the data characteristics are understood the more specific 
the features will be (in most cases)
• opposite extremes: feature templates vs. neural networks
• others are somewhere in between

• Feature specification can be embedded in a data exploration process
• neural networks require users to provide feature examples in the dataset
• these may then be re-used in later visualizations
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Topic 2: Visual Transform

• Determines how features are expressed into visual manifestations = 
their visual appearance

• Features may control the rendering pipeline at various stages:
• local color and opacity (mapping via transfer function)
• scene composition (local sparseness, warping by lenses) 
• rendering style (lighting model, illustrative techniques)
• iconic sprites (specific visual expression)

Topic 2: Visual Transform

• We can use transfer functions to maps feature parameters into visual 
transform parameters
• what to do when parameter vector is large? 
• what to do when transfer function is complex?

• We have seen clustering/MDS as a way to visualize similar features
• implicit parameterization is given by location in MDS cluster

• Can we make the parameterization more explicit?
• detect parameter combinations sensitive to changep g
• come up with templates given prior experiences
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Example: Complex Transfer Function

A more elaborate value-gradient transfer function parameterization:

Typically, datasets typically deviate only modestly from this
• but they do so in complex ways 
Æ lots of tedious tweaking is required

[Rezk-Salama 06]

Parameter Aggregation

We can learn these small deviations by observing a few 
d t tdatasets 

• encode the parameters into an N-D vector
• find the principal component of the vectors (the main 

Eigenvector)
• project all other vectors onto this Eigenvector
• the min and max then represent the min and max of the 

slider

[Rezk-Salama ‘06]
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Transfer Function Simplification

Transformed aggregation enables transfer function simplification from N-D 
to 1-Dto 1 D

• works here since in CT usually only small deviations exist
• but these small deviations require complex interactions in the transfer 

function domain

[Rezk-Salama ‘06]

Topic 3: The User, The Human Visual System

Visual cortex breaks input up into 
diff t tdifferent aspects: 

• color, shape, motion, depth 
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Visual Saliency

• Notion of visual importance

Visual Saliency

• Notion of visual importance
• Visual transform of data features to direct a viewer’s attention

• shape (edges, silhouettes)
• surface (curvatures, suggestive contours)
• size
• intensity and color
• texture
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Visual Saliency

• Notion of visual importance
• Visual transform of data features to direct a viewer’s attention

• shape (edges, silhouettes)
• surface (curvatures, suggestive contours)
• size
• intensity and color
• texture

• Enhancement / suppression makes this more effectiveEnhancement / suppression makes this more effective
• opacity controls presence
• rendering style and texture control expression and appearance
• illumination controls shading
• intensity and color control attention (by highlighting)
• caricature controls shape
• but these influences are typically mixed (and not exclusive)

Halos

no halos                     with halos 

Bruckner et al., 2006 Wenger et al., 2006
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Two Levels Of Abstraction

• Low-level abstraction:
• concerned with how objects are represented 
• stylized depiction: silhouettes, contours, pen+ink, stippling, hatching, etc.  

Two Levels Of Abstraction

• Low-level abstraction:
• concerned with how objects are represented 
• stylized depiction: silhouettes, contours, pen+ink, stippling, hatching, etc.  

• High-level abstraction
• deal with what should be visible and recognizable and at what level of 

detail
• this should be importance-driven, that is, the current visualization goal 

controls feature rendering style and visibility 
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Mixing Rendering Styles
• First, classify the scene:

• Focus Objects (FO): objects in the center of interest are emphasized in a 
particular way

• Near Focus Objects (NFO): important objects for the understanding of the 
functional interrelation or spatial location.p

• Context Objects (CO): all other objects (rendered e.g., as silhouettes)
• Container Objects (CAO): one object that contains all other objects.

• Render these in a certain order to ensure visual consistency

Tietjen et al., 2005

Attention

• The cognitive process of selectively concentrating on one thing while 
ignoring other things
• detecting features in visual clutter (CAPTCHA, next slide)
• detecting coherent speech in noisy environments (cocktail party effect)
• ignore features while concentrating on others (recall gorilla)
• can also have divided attention (example: cell phone + driving)
• heavily studied in psychology and neuroscience
• closely tied to perception
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Attention

• The cognitive process of selectively concentrating on one thing while 
ignoring other things
• detecting features in visual clutter (CAPTCHA, next slide)
• detecting coherent speech in noisy environments (cocktail party effect)
• ignore features while concentrating on others (Simon’s Gorrilla)
• can also have divided attention (example: cell phone + driving)
• heavily studied in psychology and neuroscience
• closely tied to perception

• Attention theory is important for visualization as well
• in contrast to computer vision, WE design/create the scene 
• this design guides the attention of the viewer
• guidance determined by visualization goals

Attention

• The cognitive process of selectively concentrating on one thing while 
ignoring other things
• detecting features in visual clutter (CAPTCHA, next slide)
• detecting coherent speech in noisy environments (cocktail party effect)
• ignore features while concentrating on others (Simon’s Gorilla)
• can also have divided attention (example: cell phone + driving)
• heavily studied in psychology and neuroscience
• closely tied to perception

• Attention theory is important for visualization as well
• in contrast to computer vision, WE design/create the scene 
• this design guides the attention of the viewer
• guidance determined by visualization goals

• Therefore it is important to understand mechanism of attention
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Visual Recognition and Attention

• Two opposing theories:
• Gestalt
• Feature integration

• Gestalt theory
• top-down approach
• proposes that the operational principle of the brain is holistic, parallel, and 

analog, with self-organizing tendencies
• important in user interface design (button grouping, etc)

• Feature integration theory
• bottom-up approach
• primary visual features are processed and represented with separate 

feature maps
• these are later integrated in a saliency map that can be accessed in 

order to direct attention to the most conspicuous areas

Gestalt Theory: Confirming Examples

Emergen

Multi-Stability

ce

Reification

Invariance
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Gestalt Theory: Opposing Examples

• Selective-Encoding:
• involving one to distinguish what is important in a problem and what is 

irrelevant (i.e., filtering)
• Selective-Comparison:

• identifying information by finding a connection between acquired 
knowledge and experience

• Selective-Combination:
• identifying a problem through understanding the different components 

and putting everything together.

Feature Integration Theory

• One of the most influential psychological models of human visual 
attention in recent years

• Two types of visual search mechanisms
• Feature search 

• can be performed fast and pre-attentively for targets defined by primitive 
features (such as color, orientation, intensity, etc)

• Conjunction search 
• serial search for targets defined by a conjunction of primitive featuresg y j p
• much slower
• requires conscious attention

• Very promising technique for computer vision to detect partially 
occluded objects (SIFT)
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What Does It Mean For Visualization?

• Feature integration theory:
• justifies enhancement of features
• exploit this to guide attention
• relatively “easy” since it involves mostly local enhancements
• notion of feature saliency is important

• Gestalt theory:
• justifies omission of detail to save spacej p
• viewers assume continuity of occluded lines
• underlies ghosting techniques (mental feature completion)
• silhouettes and contours for context objects
• many techniques used now in illustrative rendering
• recall also optical illusions

What Does It Mean For Visualization?

• Feature integration theory:
• justifies enhancement of features
• exploit this to guide attention
• relatively “easy” since it involves mostly local enhancements
• notion of feature saliency is important

• Gestalt theory:
• justifies omission of detail to save spacej p
• viewers assume continuity of occluded lines
• underlies ghosting techniques (mental feature completion)
• silhouettes and contours for context objects
• many techniques used now in illustrative rendering
• recall also optical illusions
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Ghosting

Topic 4: User Studies Are Important 

• Some design rules exist, but combinations are often untested
• Also consider

• user background (education, age, gender, profession, attitude, etc)
• underlying task and application (medical, business, science, etc)
• computational resources and level of interactivity sought
• other factors

• User studies can reveal this insight
• they allow, in some sense, a parameterization of the userthey allow, in some sense, a parameterization of the user

• An effective and efficient means for user studies is conjoint analysis
• allows parameters to be tested in a conjoint fashion, via pair-wised 

comparison tests (or task-based tests)
• subsequent statistical  analysis then separates the sensitivities of these 

parameters
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Sample Testing Scenario 

• Which color transfer function shows more detail?

Putting Conjoint Analysis to the Test

• Performed a user study on a multi-parametric visualization scenario
• On a set of 2700 images of engine blocks, we varied:

• color transfer function (3)
• rendering mode (5)
• viewpoint (6)
• image resolution (2)
• ray step size (3)
• background (5)g ( )

• Tested 
• 786 respondents
• 20 pair-wise tests each

[Giesen ‘07]
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User Study Results

• Top 10 (detail / aesthetics):

Fl 10 (d t il / th ti )• Flop 10 (detail / aesthetics):

Wrap-Up

• Define the features that best characterize your visualization task
• Devise a suitable feature retrieval method
• Find a suitable mapping of these to salient visual representations
• Confirm and tune via user studies 
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