

What We Will NOT Talk About

- We shall not consider data arrangements here
 - such as grids, lattices, spatial dimensions, etc.
 - · assume sampling is not an issue
 - · assume interpolation and errors are understood
 - further assume that the methods generalize to higher spatial dimensions

What We Will NOT Talk About

- We shall not consider data arrangements here
 - such as grids, lattices, spatial dimensions, etc.
 - · assume sampling is not an issue
 - · assume interpolation and errors are understood
 - further assume that the methods generalize to higher spatial dimensions
- There is still plenty to if stuff to worry about ☺

Topic 1: The Data and Their Parameterization

- Data may come as:
 - scalar data (densities)
 - multi-valued data (multi-variate)
 - vectors (vector fields)
 - and others
- Data parameterization = data characterization
- · How can data be characterized?
 - their features
- What are these features?

Topic 1: The Data and Their Parameterization

- Data may come as:
 - · scalar data (densities)
 - multi-valued data (multi-variate)
 - · vectors (vector fields)
 - and others
- Data parameterization = data characterization
- How can data be characterized?
 - their features
- What are these features?
 - this is the hard part ©

Direct Visualization Of Scalar Densities

- VISWER DE
- At this point, we have done analysis only on a per pixel-basis
 - may have involved global scene analysis (e.g., for highlighting)
- One may map scalar densities to
 - other scalar densities: windowing of interesting ranges
 - colors
 - transparencies
- · This mapping may be driven by functions of
 - importance
 - aesthetics
 - certainty
 - and others

Direct Visualization Of Scalar Densities • Essentially we get a 1-D transfer function: density→ color

Direct Visualization Of Scalar Densities

Essentially we get a 1-D transfer function: density→ color

- Let us now look at more complex analyses
 - creating new, derived data

Accentuate Events In The Data

- · Flat, uniform regions are not particularly interesting
- We are interested in events and critical points → the features
 - · thus, accentuate discontinuities and variations in the data
- Visually convey these events by graphical techniques
- Can still use transfer functions for this
 - · their complexity grows with the complexity of the event descriptor
- Distinguish between:
 - · analytic feature detection via derivatives and moments
 - · analytic feature detection looking for topology changes
 - · statistical feature detection calculating histograms and variance

SIFT (Scale Invariant Feature Transform)

- VISWEEK DE
- Gradient histogram of local neighborhood
- Highly expressive of a local neighborhood's salient dynamics
- Invariant to scale, translation and rotation
- Algorithm
 - the detection of critical points (the keypoints) in scale-space
 - the encoding of these into keypoint descriptors

SIFT [Lowe 04]

SIFT (Scale Invariant Feature Transform)

- Find keypoints
 - · local extremas in a difference-of-Gaussians in multi-scale space
- Discard low contrast keypoints
- · Filter out keypoints situated on edges

· Pictures from Wikepedia.org

Topic 2: Visual Transform

- Determines how features are expressed into visual manifestations = their visual appearance
- Features may control the rendering pipeline at various stages:
 - local color and opacity (mapping via transfer function)
 - scene composition (local sparseness, warping by lenses)
 - · rendering style (lighting model, illustrative techniques)
 - iconic sprites (specific visual expression)

Topic 2: Visual Transform

- We can use transfer functions to maps feature parameters into visual transform parameters
 - · what to do when parameter vector is large?
 - what to do when transfer function is complex?
- We have seen clustering/MDS as a way to visualize similar features
 - · implicit parameterization is given by location in MDS cluster
- Can we make the parameterization more explicit?
 - · detect parameter combinations sensitive to change
 - · come up with templates given prior experiences

Visual Saliency

VISWEEK DE

- · Notion of visual importance
- Visual transform of data features to direct a viewer's attention
 - · shape (edges, silhouettes)
 - surface (curvatures, suggestive contours)
 - size
 - intensity and color
 - texture
- Enhancement / suppression makes this more effective
 - · opacity controls presence
 - · rendering style and texture control expression and appearance
 - · illumination controls shading
 - intensity and color control attention (by highlighting)
 - · caricature controls shape
 - but these influences are typically mixed (and not exclusive)

Two Levels Of Abstraction

- Low-level abstraction:
 - · concerned with how objects are represented
 - stylized depiction: silhouettes, contours, pen+ink, stippling, hatching, etc.

Two Levels Of Abstraction

- Low-level abstraction:
 - · concerned with how objects are represented
 - stylized depiction: silhouettes, contours, pen+ink, stippling, hatching, etc.
- High-level abstraction
 - deal with what should be visible and recognizable and at what level of detail
 - this should be importance-driven, that is, the current visualization goal controls feature rendering style and visibility

Mixing Rendering Styles

- · First, classify the scene:
 - Focus Objects (FO): objects in the center of interest are emphasized in a particular way
 - Near Focus Objects (NFO): important objects for the understanding of the functional interrelation or spatial location.
 - Context Objects (CO): all other objects (rendered e.g., as silhouettes)
 - Container Objects (CAO): one object that contains all other objects.
- Render these in a certain order to ensure visual consistency

Tietjen et al., 2005

Attention

- VISWERK DE
- The cognitive process of selectively concentrating on one thing while ignoring other things
 - detecting features in visual clutter (CAPTCHA, next slide)
 - · detecting coherent speech in noisy environments (cocktail party effect)
 - · ignore features while concentrating on others (recall gorilla)
 - can also have divided attention (example: cell phone + driving)
 - · heavily studied in psychology and neuroscience
 - · closely tied to perception

Attention

- VISWEEK DE
- The cognitive process of selectively concentrating on one thing while ignoring other things
 - · detecting features in visual clutter (CAPTCHA, next slide)
 - detecting coherent speech in noisy environments (cocktail party effect)
 - · ignore features while concentrating on others (Simon's Gorrilla)
 - can also have divided attention (example: cell phone + driving)
 - · heavily studied in psychology and neuroscience
 - closely tied to perception
- Attention theory is important for visualization as well
 - · in contrast to computer vision, WE design/create the scene
 - · this design guides the attention of the viewer
 - guidance determined by visualization goals

Attention

- The cognitive process of selectively concentrating on one thing while ignoring other things
 - detecting features in visual clutter (CAPTCHA, next slide)
 - · detecting coherent speech in noisy environments (cocktail party effect)
 - · ignore features while concentrating on others (Simon's Gorilla)
 - can also have divided attention (example: cell phone + driving)
 - · heavily studied in psychology and neuroscience
 - · closely tied to perception
- Attention theory is important for visualization as well
 - · in contrast to computer vision, WE design/create the scene
 - · this design guides the attention of the viewer
 - guidance determined by visualization goals
- Therefore it is important to understand mechanism of attention

Visual Recognition and Attention

VISWEEK DE

- Two opposing theories:
 - Gestalt
 - Feature integration
- Gestalt theory
 - · top-down approach
 - proposes that the operational principle of the brain is holistic, parallel, and analog, with self-organizing tendencies
 - important in user interface design (button grouping, etc)
- · Feature integration theory
 - bottom-up approach
 - primary visual features are processed and represented with separate feature maps
 - these are later integrated in a saliency map that can be accessed in order to direct attention to the most conspicuous areas

Gestalt Theory: Opposing Examples

- Selective-Encoding:
 - involving one to distinguish what is important in a problem and what is irrelevant (i.e., filtering)
- Selective-Comparison:
 - identifying information by finding a connection between acquired knowledge and experience
- Selective-Combination:
 - identifying a problem through understanding the different components and putting everything together.

Feature Integration Theory

- One of the most influential psychological models of human visual attention in recent years
- Two types of visual search mechanisms
- Feature search
 - can be performed fast and pre-attentively for targets defined by primitive features (such as color, orientation, intensity, etc)
- Conjunction search
 - · serial search for targets defined by a conjunction of primitive features
 - much slower
 - · requires conscious attention
- Very promising technique for computer vision to detect partially occluded objects (SIFT)

What Does It Mean For Visualization? • Feature integration theory: • justifies enhancement of features • exploit this to guide attention • relatively "easy" since it involves mostly local enhancements • notion of feature saliency is important • Gestalt theory: • justifies omission of detail to save space • viewers assume continuity of occluded lines • underlies ghosting techniques (mental feature completion) • silhouettes and contours for context objects • many techniques used now in illustrative rendering • recall also optical illusions

Topic 4: User Studies Are Important

- VISWERK DE
- · Some design rules exist, but combinations are often untested
- Also consider
 - user background (education, age, gender, profession, attitude, etc)
 - underlying task and application (medical, business, science, etc)
 - · computational resources and level of interactivity sought
 - · other factors
- User studies can reveal this insight
 - · they allow, in some sense, a parameterization of the user
 - An effective and efficient means for user studies is conjoint analysis
 - allows parameters to be tested in a conjoint fashion, via pair-wised comparison tests (or task-based tests)
 - subsequent statistical analysis then separates the sensitivities of these parameters

References (1)

- [Bruckner 06] S. Bruckner, S. Grimm, A. Kanitsar, E. Gröller, "Illustrative Context-Preserving Exploration of Volume Data," IEEE Trans. Vis. Comput. Graph., 12(6):1559-1569, 2006.
- [Giesen 08] J. Giesen, K. Mueller, E. Schuberth, L. Wang, and P. Zolliker, "Conjoint analysis to measure the perceived quality in volume rendering," IEEE Trans.
 Visualization and Computer Graphics, 13(6): 1664-1671, 2007.
- [Kawabata 04] H. Kawabata, S. Zeki, "Neural correlates of beauty," J. Neurophysiology, 91:1699–1705, 2004.
- [Kindlmann 98] G. Kindlmann and J. Durkin, "Semi-automatic generation of transfer functions for direct volume rendering," Symp. Volume Visualization '98, pp. 79-86, 1998
- [Kindlmann 03] G. Kindlmann, R. Whitaker, T. Tasdizen, T. Möller, "Curvature-Based Transfer Functions for Direct Volume Rendering: Methods and Applications," IEEE Visualization, 513-520, 2003.
- [Kniss 02] J. Kniss, G. Kindlmann, and C. Hansen, "Multidimensional transfer functions for interactive volume rendering," IEEE Trans. Visualization and Computer Graphics, vol. 8, no. 3, pp. 270-285, 2002.

References (2)

- [Lowe 04] D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," Intern. Journal of Computer Vision, 60(2):91-110, 2004.
- [Nam 08] J. Nam, M. Maurer, K. Mueller, "High-Dimensional Feature Descriptors to Characterize Volumetric Data, "2nd Workshop on Knowledge-Assisted Visualization (KAV), (to be presented), Columbus, OH, October, 2008.[Pascucci 03] V. Pascucci, K. Cole-McLaughlin, "Parallel Computation of the Topology of Level Sets. Algorithmica 38(1):249-268, 2003.
- [Rezk-Salama 06] C. Rezk-Salama M. Keller, and P. Kohlmann, "High-level user interfaces for transfer function design with semantics," IEEE Visualization '06 (IEEE Trans. Visualization and Computer Graphics), 2006.
- [Tietjen 05] C. Tietjen, T. Isenberg, B. Preim, "Combining Silhouettes, Surface, and Volume Rendering for Surgery Education and Planning," EuroVis, pp. 303-310, 2005.
- [Wang 08a] L. Wang, K. Mueller, "Harmonic Colormaps for Volume Visualization," Volume Graphics Symposium, Los Angeles, August, 2008.
- [Wang 08b] L. Wang, J. Giesen, K. McDonnell, P. Zolliker, K. Mueller, "Color Design for Illustrative Visualization," (to appear), IEEE Transactions on Visualization and Computer Graphics, (Special issue IEEE Visualization Conference), 2008.

References (3)

- VISWEEK DE
- [Ware 04] C. Ware. Information Visualization: Perception for Design. Morgan Kaufmann, 2nd edition, 2004.
- [Wenger 04] A. Wenger, D. Keefe, S. Zhang, D. Laidlaw, "Interactive Volume Rendering of Thin Thread Structures within Multivalued Scientific Data Sets," IEEE Trans. Vis. Comput. Graph. 10(6): 664-672, 2004.

More and Up-To-Date Information

- Visit http://vis.cs.ucdavis.edu/~wangcha/vis08-tutorial.htm
- Support was provided by NSF grants ACI-0093157 and CCF-0702699, and NIH grant 5R21EB004099-02,