



















































## **LOD Selection**

- User specifies the block budget
- Update importance values
  - $\nu$  per view
    - Only update a certain percentage of blocks
    - Postpone update if the view changes slightly
  - $\mathcal{E}$  per transfer function
- Priority queue for LOD refinement
- A list of blocks identified from greedy selection

| data act (tura)                          | Vie)Momen (short) | DMI (b) to)        |
|------------------------------------------|-------------------|--------------------|
| data set (type)                          | viswoman (short)  |                    |
| volume dimension                         | 512 * 512 * 1728  | 2048 * 2048 * 1920 |
| volume size                              | 864MB             | 7.5GB              |
| block dimension                          | 32 * 32 * 64      | 128 * 128 * 64     |
| block size                               | 128KB             | 1MB                |
| # non-empty blocks                       | 9446              | 10499              |
| compression ratio (lossless)             | 2.37:1            | 5.60:1             |
| visibility (GPU, 512 <sup>2</sup> image) | 0.151s            | 0.185s             |
| prioritization (all blocks)              | 0.343s            | 0.563s             |
| transfer function (256 levels)           | 55                | 13s                |













## Solution Extract features from the original data in the wavelet domain Multiscale wavelet decomposition Wavelet subband analysis – global information Collect important coefficients – local information Define distance metrics

- · Use features for quality assessment
  - Features as "carry-on" information
  - Reduced-reference approach





## <text><equation-block><equation-block><equation-block><text><text><text><text>













## Summary

- Applied perception in visualization
  - Image-based quality metric
    - · Backward approach (from image to data)
    - · Evaluate data contribution in rendering
    - · Precompute summary tables
    - · Runtime update visibility for LOD decision
  - Volume data quality assessment
    - Multiscale approach (in the wavelet domain)
    - Use GGD to capture wavelet coefficient distribution
    - · Select visually important coefficients
    - · Quantify data quality loss in different versions





