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Abstract

Data visualization is an iterative and exploratory process, which involves choices of parameters for queries of different types.
Examples of visualization parameters include level-of-detail, color and opacity transfer function, camera position and path,
lighting and so on. To reveal the important aspects of data, the users often have to go through a lengthy and expensive process
to obtain a large ensemble of visualization results. With the ever-increasing size of volume data, manual data browsing through
the immense, high-dimensional parameter space is no longer a viable solution. Efficient and effective solutions that search and
narrow down the parameter space for assisting the users in their decision making become imperative.

In this tutorial, we introduce recent advances and emerging techniques in volume visualization towards perception-driven
data analysis, rendering and presentation. The fundamental visual perception and cognitive principles are incorporated into
the visualization process, thus enable presentation of relevant information for gleaning insights from the data. Selective topics
include perception-informed color and highlighting, saliency-aware rendering techniques, perception-guided transfer function
specification, quality enhancement of direct volume rendered images, view selection for three-dimensional and time-varying
volume visualization, level-of-detail (LOD) selection for multiresolution visualization, and multiscale volume data quality as-
sessment. The tutorial covers principles and practice of perception and cognition (such as color perception), mathematics
and statistics (such as entropy theory, frequency-domain foundation, and conjoint analysis), as well as user study and eval-
uation. The tutorial also demonstrates the applications of those principles in visualization. The goal of this tutorial is to
inform visualization researchers and practitioners the state-of-the-art technologies that leverage human perception for effective
visualization of large volume data.

Topics

topic instructor time

Introduction All 10 minutes

So Many Parameters, So Little Time: Klaus Mueller 40 minutes
Guiding Users to Obtain the Best Visualization for the Given Data, Task, and Intent

Perception-Guided Transfer Function Specification and Quality Enhancement Huamin Qu 40 minutes

Break — 30 minutes

View Selection for 3D and Time-Varying Volume Visualization Han-Wei Shen 40 minutes

LOD Selection and Multiscale Volume Data Quality Assessment Chaoli Wang 40 minutes

Discussion All 10 minutes

Level

Beginner/Intermediate.

Prerequisite

An intermediate knowledge level of data visualization, specifically volume rendering algorithms, is required. However, prior
knowledge of or background in perception and cognitive science is not necessary.
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Audience

The intended audience includes visualization researchers and practitioners who are interested in automated techniques and
solutions that apply perception knowledge in volume visualization towards effective data analysis, rendering and presentation.

History

Over the past decade, related tutorials of the IEEE Visualization Conference were centered on perception design, analysis and
evaluation. Since 1996, eight tutorials have been organized in the Visualization Conference with topics including perceptual
psychology, perception design and evaluation (Visualization ’96, ’97, ’98, ’02, and ’07), and color in information display
(Visualization ’05, ’06, and ’07). All previous tutorials have been well-received by the audience, reflecting strong interest from
graphics and visualization research community. As the field of visualization matures, there is a growing trend to move away
from the use of ad-hoc, trial-and-error techniques to the adoption of automated algorithms that are based on the understanding
of how people perceive visual representations of information. This tutorial shares the same theme of applied perception in
visualization, with a focus on introducing new techniques developed in the context of volume visualization.

Importance

In the recommendations from the DOE/ASCR 2007 Workshop on Visual Analysis and Data Exploration at Extreme Scale,
visualization experts around this country listed quantitative metrics for parameter choices as one of the key research areas
for knowledge-enabling visualization and analysis. Visual data exploration is fundamental to our ability to analyze complex
phenomena and discover new knowledge from the vast amounts of data. The process of visual data exploration involves choices
of parameters for queries of different types. As the size of data keeps increasing at an astonishing rate, automated algorithms
and techniques become imperative. Automatic searching and narrowing down the immense parameter space is critically
important for facilitating pattern detection and situation assessment. Visual perception and cognition plays an essential role
in data understanding and thus should be leveraged in visualization to streamline visual analysis.

We believe that the proposed tutorial will inform the audience of recent advances in perception-driven volume visualization
techniques, and motivate researchers to incorporate principles and practice of perception into visualization towards effective
analysis, rendering and presentation of data.

Description

The description and outline of each topic is in the following:

So Many Parameters, So Little Time:
Guiding Users to Obtain the Best Visualization for the Given Data, Task, and Intent

Abstract

The interactive rendering capabilities brought about by modern graphics hardware (GPUs) have been a blessing, but they have
also been a curse. A positive aspect is that they enable interactive image generation even for the most elaborate visualization
methods and datasets. However, there is also a negative aspect associated with this in that the task of traversing and exploring
the associated abundant parameters space starts to hit the limits imposed by the curse of dimensionality. To cope, users need
shortcuts and guidance to locate and navigate the parameter subspace most suited for the data, the task, the intent, and also
their personal preferences (or those of the intended audience). This requires analyses in two domains, data space and observer
space, which are mediated by the generated visualization given task and intent.

Accordingly, in this segment of the tutorial we will provide a survey of the latest research trends to measure saliency in the
data, in terms of features, discussing an array of data analysis methods. Following, we will survey visualization methods that
are sensitive to the results of these analyses, with a focus on how the various data features can be mapped to visual outcomes.
Such knowledge can then be employed to reduce the parameter space, generating functional combinations of parameters to
generate a single meta-parameter that can be conveniently controlled by a single slider. On the other hand, the visual ex-
pressions (manifestations) of the data features can be terms of rendered detail, color for highlighting, and also illumination
and lighting. In that context, the great advantage that computer generated visualization imagery has is that it can “bend”
the physics of illumination and light to bring out features in unfamiliar ways. However, the effects of these non-photorealistic
renditions are widely unknown and must be studied to assess their success and impact, also in the context of the given task,
intent, and target users. Since the human observer is often a black box to the visualization researcher, effective methods are
sorely needed here, especially when faced with the vast number of visualization parameters and their settings. In this respect,
as a final topic of this segment of the tutorial, we will present a statistical framework rooted in market research that allows
for the analysis of parameters in a conjoint fashion, which greatly reduces the number of experiments required to produce a
statistically significant and reliable study outcome.

Outline

• Introduction and motivation

– Brief survey of state-of-the art visualization methods with a focus on rendering parameters

• Data analysis and parameter control

– Survey of data analysis methods, rooted in computer vision and information theory
– Reduction methods for visualization parameter space

• Focusing on the user
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– Survey of relevant work in psychology to assess human cognition and visual saliency

• Expressive, saliency-aware rendering methods

– Survey of relevant aspects of illustrative rendering techniques (sparseness, color, lighting)
– Fusion techniques to unify data from various sources
– Lenses for effective screen and detail management

• Measuring impact on the user

– Effective user study design and statistical evaluation (via conjoint analysis)
– Tuning visualization parameters for task, intent, and user

Contribution

This segment of the tutorial surveys the latest research trends in data analysis, parameter control, and rendering methods
to measure and express saliency in the data. The human aspect of visualization, including cognition assessment, user study
design, and statistical evaluation, are also discussed in this talk.

Perception-Guided Transfer Function Specification and Quality Enhancement

Abstract

In this section, we introduce a framework for transfer function specification based on human perception of direct volume
rendered images (DVRIs). We first present a transfer function design method based on editing direct volume rendered images.
For many end users of visualization systems, it is more intuitive and convenient for them to directly work on DVRIs. Some
DVRI editing operations, such as fusing features from different DVRIs, blending two DVRIs, and erasing unwanted features
in DVRIs, may be very useful in practice. Thus, we introduce a novel framework based on image-similarity and genetic
algorithms which allows users to directly edit features in DVRIs and interactively design transfer functions. A palette style
intuitive interface is further developed to serve as the front-end of the framework. After that, we will describe how to enhance
the quality of direct volume rendered images based on entropy correlation. The enhancement method is driven by the existing
information in both the image and the volume. To deliver faithful DVRIs which can effectively convey the information in
the volume, we proposed an image quality assessment scheme which measures the correlation between the entropy in the
volume and the entropy in the DVRI. By adjusting the rendering parameters using genetic algorithm based on the quality
metric, some more pleasing and informative DVRIs can be obtained. Finally, we present a set of quantitative effectiveness
metrics including visibility, distinguishability, contour clarity, familiarity, and coherence for DVRIs. A transfer function design
framework is then introduced to increase the effectiveness of DVRIs based on the proposed metrics.

Outline

• Introduction and motivation

– Transfer function design
– Object-based methods vs. image-based methods
– Perception-guided transfer function design

• Transfer function design based on editing direct volume rendered images

– Framework
– Transfer function fusing
– Blending and removing features in direct volume rendered images
– Palette style interface

• Quality enhancement of direct volume rendered images

– Entropy of volumes
– Entropy of direct volume rendered images
– Quality enhancement based on entropy correlation

• Transfer function design based on effectiveness metrics

– Generic and quantitative effectiveness metrics
– Visibility metric
– Distinguishability metric
– Contour clarity metric
– Familiarity metrics
– Coherence metrics
– Transfer function design based on effectiveness metrics

Contribution

This part highlights how transfer function design can benefit from a thorough analysis of the human perception problems in
direct volume rendered images. The methods introduced in the talk can automatically address the problems such as poor
quality and low effectiveness existed in the direct volume rendered images and allows users to intuitively design transfer func-
tion solely in the image domain.
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View Selection for 3D and Time-Varying Volume Visualization

Abstract

For three-dimensional volume visualization, suggestion of interesting viewpoints can improve both the speed and efficiency of
data understanding. Automatic view selection becomes particularly useful when the visualization process is non-interactive -
for example, when visualizing large data sets or time-varying sequences. In this talk, I will first present a viewpoint goodness
measure based on the formulation of entropy from information theory. By taking into account the transfer function, the data
distribution and the visibility of the voxels, this measure suggests interesting viewpoints and creates a partitioning of the view
space based on view similarity to guide further exploration. Then, I will introduce a dynamic view selection algorithm that
shows the maximum amount of information from a time-varying data set. The algorithm includes an improved view selection
method for static data and a dynamic programming approach to select views for time-varying data. Finally, I will discuss a user
interface, called the LOD map, for view selection and LOD comparison of multiresolution volume data. Based on an intuitive
representation of LOD quality, the LOD map is a cost-effective visual interface for navigating multiresolution data exploration.

Outline

• Introduction
• Related work
• Information theory and entropy
• Data space approach

– Data importance and noteworthiness

• Image space approach

– Opacity distribution
– Color distribution
– Curvature distribution

• View space partitioning

– View similarity
– View likelihood and stability

• Dynamic view selection

– View selection by dynamic programming
– View smoothness

• Entropy and LOD selection

Contribution

This part of tutorial highlights the use of entropy for view selection in different volume visualization tasks, including static
view selection, dynamic view selection and multiresolution data visualization. The suite of solutions covered in this talk enable
the user to easily narrow down the visualization parameter space through automated algorithms or visual feedbacks, and select
good choices of parameters that reveal a maximum amount of information.

LOD Selection and Multiscale Volume Data Quality Assessment

Abstract

As an important topic in the field of visualization, multiresolution techniques have proven to be a viable solution to address
the challenges posted by data explosion. Building a hierarchy from the original data enables the user to select data of different
resolutions for cost-effective analysis and visualization. In this talk, I introduce an interactive level-of-detail (LOD) selection
algorithm using image-based quality metric and a reduced-reference, multiscale approach to volume data quality assessment.

The first part of this talk discusses quality-driven LOD selection and rendering of large volume data sets. An image-based
quality metric is formulated based on an efficient way to evaluate the contribution of multiresolution data blocks to the final
image. Techniques for interactive LOD decisions are proposed to ensure real-time update of the view-dependent information as
well as adjust to transfer function changes. Compared with traditional metrics such as mean square error and signal-to-noise
ratio, the LODs selected based on this image-based quality metric yield images of better visual quality.

In the second part, a reduced-reference volume data quality assessment algorithm is presented. The algorithm extracts
important statistical information as feature from the original data in the wavelet domain. The feature incorporates visual
importance of data in the visualization process. With extracted feature, we are able to identify and quantify the loss of quality
in the reduced or distorted version of data, eliminating the need to access the original data again. The feature representation
is naturally organized in the form of multiple scales, which facilitates quality assessment of data with different resolutions.

Outline

• Introduction and motivation

– Large volume data and multiresolution visualization
– Traditional solution vs. perception-driven solution
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• Hierarchical data representation using wavelet transform
• Image-based quality metric

– Importance value design
– Multiresolution error evaluation
– Run-time metric update
– LOD selection and rendering

• Volume data quality assessment

– Wavelet subband statistics
– Voxel visual importance
– Feature representation
– Quality assessment and improvement

Contribution

This part of tutorial focuses on new multiresolution algorithms that incorporate perception reasoning towards a more effective
LOD decision and data quality assessment. Technical details are discussed. Comparisons with traditional approaches are also
provided.

Tutorial Notes

The tutorial notes will consist of the description of the tutorial, copies of the slides for each talk, and an extensive bibliography
including specific references used in the tutorial as well as a general selection of relevant references.

Instructors

The background of each instructor is listed in alphabetical order.

Klaus Mueller
Stony Brook University

Klaus Mueller is currently an Associate Professor at the Computer Science Department at Stony Brook University, where
he also holds co-appointments at the Biomedical Engineering and the Radiology Departments. He earned an MS degree in
Biomedical Engineering in ’91 and a PhD degree in Computer Science in ’98, both from Ohio State University. His current
research interests are computer and volume graphics, visualization, medical imaging, and computer vision. He won the NSF
CAREER award in 2001 and has served as a program co-chair at various conferences, such the Volume Graphics Workshop,
IEEE Visualization, and the Symposium on Volume Visualization and Graphics. He is the author of over 80 peer-reviewed
journal and conference papers, has taught tutorials on various topics at IEEE Visualization every year since 2002, and he is a
senior member of the IEEE.

Relevant Publications

N. Neophytou and K. Mueller
Color-Space CAD: Direct Gamut Editing in 3D
IEEE Computer Graphics & Applications, 28(3):88-98, 2008.

J. Giesen, K. Mueller, E. Schuberth, L. Wang, and P. Zolliker
Conjoint Analysis to Measure the Perceived Quality in Volume Rendering
IEEE Transactions on Visualization and Computer Graphics, 13(6):1664-1671, 2007.

H. Wong, H. Qu, U. Wong, Z. Tang, and K. Mueller
A Perceptual Framework for Comparisons of Direct Volume Rendered Images
In Proceedings of IEEE Pacific-Rim Symposium on Image and Video Technology 2006, pages 1314-1323, 2006.
Also in Springer Lecture Notes in Computer Science, Advances in Image and Video Technology, vol. 4319.

L. Wang, Y. Zhao, K. Mueller, and A. Kaufman
The Magic Volume Lens: An Interactive Focus+Context Technique for Volume Rendering
In Proceedings of IEEE Visualization Conference 2005, pages 367-374, 2005.

L. Wang and K. Mueller
Generating Sub-Resolution Detail in Images and Volumes Using Constrained Texture Synthesis
In Proceedings of IEEE Visualization Conference 2004, pages 75-82, 2004.

Huamin Qu
Hong Kong University of Science and Technology

Huamin Qu is an assistant professor at the Department of Computer Science and Engineering, the Hong Kong University of
Science and Technology. His main research interests are in visualization and computer graphics. He has conducted research
on sample-based rendering, volume visualization, graph visualization, visual analytics, and medical imaging. He received a
BS in Mathematics from Xi’an Jiaotong University, China, an MS and a PhD in Computer Science from the Stony Brook
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University.

Relevant Publications

Y. Wu and H. Qu
Interactive Transfer Function Design Based on Editing Direct Volume Rendered Images
IEEE Transactions on Visualization and Computer Graphics, 13(5):1027-1040, 2007.

M. Chan, Y. Wu, and H. Qu
Quality Enhancement of Direct Volume Rendered Images
In Proceedings of IEEE/EG International Symposium on Volume Graphics 2007 (Cover Image), pages 25-32, 2007.

Y. Wu, H. Qu, and K. Chung
Quantitative Effectiveness Metrics for Direct Volume Rendering
Under Review, A shorter version is a best poster candidate at IEEE Visualization Conference 2007.

Han-Wei Shen
The Ohio State University

Han-Wei Shen is an Associate Professor at The Ohio State University. He received his BS degree from Department of Com-
puter Science and Information Engineering at National Taiwan University in 1988, the MS degree in computer science from
the State University of New York at Stony Brook in 1992, and the PhD degree in computer science from the University of Utah
in 1998. From 1996 to 1999, he was a research scientist at NASA Ames Research Center in Mountain View California. His
primary research interests are scientific visualization and computer graphics. Professor Shen is a winner of National Science
Foundation’s CAREER Award and US Department of Energy’s Early Career Principal Investigator Award. He also won an
Outstanding Teaching Award in the Department of Computer Science and Engineering at The Ohio State University.

Relevant Publications

U. D. Bordoloi and H.-W. Shen
View Selection for Volume Rendering
In Proceedings of IEEE Visualization Conference 2005, pages 487-494, 2005.

G. Ji and H.-W. Shen
Dynamic View Selection for Time-Varying Volumes
IEEE Transactions on Visualization and Computer Graphics, 12(5):1109-1116, 2006.

C. Wang and H.-W. Shen
LOD Map - A Visual Interface for Navigating Multiresolution Volume Visualization
IEEE Transactions on Visualization and Computer Graphics, 12(5):1029-1036, 2006.

Chaoli Wang
University of California, Davis

Chaoli Wang is a postdoctoral researcher in the Visualization and Interface Design Innovation (VIDI) research group, Univer-
sity of California, Davis. He received the PhD degree in computer and information science from The Ohio State University
in December 2006. In his PhD work, he developed algorithms for managing and rendering large-scale three-dimensional and
time-varying volume data sets. His current research focuses on importance-driven large data analysis and visualization.

Relevant Publications

C. Wang, A. Garcia, and H.-W. Shen
Interactive Level-of-Detail Selection Using Image-Based Quality Metric for Large Volume Visualization
IEEE Transactions on Visualization and Computer Graphics, 13(1):122-134, 2007.

C. Wang and K.-L. Ma
A Statistical Approach to Volume Data Quality Assessment
IEEE Transactions on Visualization and Computer Graphics, 14(3):590-602, 2008.
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Volume Data
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– Hong Kong University of Science and Technology
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– The Ohio State University
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• ACM Symposium on 
Applied Perception in 
Graphics and 
Visualization 

• Launched in 2004
• Topics:

– Applied perception to 
visual, auditory, and 
haptic representation

– Basic perception and 
cognition research

• ACM Transactions on 
Applied Perception 

• Launched in July 2004
• Topics:

– Visual
– Auditory
– Haptics
– Sensorimotor
– Multimodal rendering 

and multimodal 
interaction

– Sensory integration
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Perception in Volume Visualization

• Parameter selection for visual data 
exploration
– Transfer function (color and opacity), lighting, 

camera position and path, …
• Large data analysis and visualization

Schedule

• 8:30-10:00
– So Many Parameters, So Little Time: Guiding Users 

To Obtain Better Visualizations (Muller)
– Perception-Based Transfer Function Design (Qu)

• 10:00-10:30
– Break

• 10:30-12:00
– Information and Visualization (Shen)
– Perception-Driven Techniques for Large Volume Data 

Analysis and Visualization (Wang) 



 
 
 
 
 
 
 
 
 

Klaus Mueller 

Stony Brook University 
 

 



10/27/2008

1

Perception-Driven                                 
Techniques for the Effective

So Many Parameters, So Little Time….
Guiding Users To Obtain Better Visualizations

Techniques for the Effective 
Visualization of Large Volume Data

Klaus Mueller 
Department of Computer Science 
Stony Brook University, USA                              
mueller@cs.sunysb.edu
http://www.cs.sunysb.edu/~mueller

The Conceptual Data Visualization Pipeline

Vis alData Visual 
Transform User

Parameterize

• Parameterization of all pipeline components is essential
• allows tuning and optimization of the visual transform given the data and 

the user
• shall look at each pipeline component and then join them

Parameterize
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What We Will NOT Talk About 

• We shall not consider data arrangements here 
• such as grids, lattices, spatial dimensions, etc. 
• assume sampling is not an issue 
• assume interpolation and errors are understood 
• further assume that the methods generalize to higher spatial dimensions

What We Will NOT Talk About 

• We shall not consider data arrangements here 
• such as grids, lattices, spatial dimensions, etc. 
• assume sampling is not an issue 
• assume interpolation and errors are understood 
• further assume that the methods generalize to higher spatial dimensions

• There is still plenty to if stuff to worry about ☺
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Topic 1: The Data and Their Parameterization

• Data may come as:
• scalar data (densities)
• multi-valued data (multi-variate)
• vectors (vector fields)
• and others

• Data parameterization = data characterization
• How can data be characterized?

• their featurestheir features
• What are these features?

Topic 1: The Data and Their Parameterization

• Data may come as:
• scalar data (densities)
• multi-valued data (multi-variate)
• vectors (vector fields)
• and others

• Data parameterization = data characterization
• How can data be characterized?

• their featurestheir features
• What are these features?

• this is the hard part ☺
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The Raw Data

• Scalar density fields (topic of this tutorial)

• Vector fields

• Tensor fields
• MRI DTI

medical scientific multi-modal or multi-variate
(example: T1/T2 MRI)

Direct Visualization Of Scalar Densities  

• Contrast: the role of color
• variations in brightness (grey levels) encode local contrast well
• but the range of distinguishable grey levels is small (~100)
Æ grey levels are good for local but not for global contrast

[Ware 04] 
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Direct Visualization Of Scalar Densities  

• Color for highlighting
• color is effective in guiding viewer attention to salient features
Æ in particular, vividness (saturation) is important here 

[Wang 08b] 

Direct Visualization Of Scalar Densities  

• Aesthetics
• color can make a display more cheerful and pleasing
• aesthetic design can also reduce stress in problem solving tasks
• objects considered beautiful stimulate different areas in the brain than 

those considered unattractive [Kawabata 04]
Æ this motivates the use of harmonized color schemes

non-harmonic T-harmonic V-harmonic
[Wang 08a] 
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Direct Visualization Of Scalar Densities

• At this point, we have done analysis only on a per pixel-basis
• may have involved global scene analysis (e.g., for highlighting)

• One may map scalar densities to
• other scalar densities: windowing of interesting ranges
• colors
• transparencies

• This mapping may be driven by functions of
• importanceimportance
• aesthetics
• certainty
• and others

Direct Visualization Of Scalar Densities

• Essentially we get a 1-D transfer function: densityÆ color
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Direct Visualization Of Scalar Densities

• Essentially we get a 1-D transfer function: densityÆ color

• Let us now look at more complex analyses
• creating new, derived data

Accentuate Events In The Data 

• Flat, uniform regions are not particularly interesting
• We are interested in events and critical points Æ the features

• thus, accentuate discontinuities and variations in the data
• Visually convey these events by graphical techniques
• Can still use transfer functions for this

• their complexity grows with the complexity of the event descriptor

• Distinguish between:• Distinguish between:
• analytic feature detection  via derivatives and moments
• analytic feature detection looking for topology changes 
• statistical feature detection calculating histograms and variance
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Derivatives

data (CT) value

gradient 
magnitude

Derivatives: Two-Dimensional Transfer Function

data (CT) value

gradient 
magnitude

Boundaries in volume create arches in 
(value, gradient) domain [Kindlmann 98] 

These arches can guide placement of 
opacity to emphasize material 
interfaces [Kniss 01]
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Three-Dimensional Transfer Function

Boundaries can be described 
in terms of:

• maximum in 1st derivative
• zero-crossing in 2nd

derivative

Semi-automatic classification 
possible in clean data

Transfer Function for Perceptual Enhancement

Add in additional properties, 
n

κ2p p ,
such as curvature

Curvature: how the change 
in surface position changes 
surface normal (n)

cap

κ1

κ1 >= κ2

• principal curvature features 
(κ1,κ2) form the transfer 

ridge

saddle

cup

valley

,
function domain

• curvatures enable surface 
surface enhancement, better 
control over silhouettes

• convolution used to compute 
1st and 2nd derivatives

[Kindlmann 03]



10/27/2008

10

Effects Of Curvature Enhancement

silhouettes ridges+
valleys

ridges+
valleys+
silhouettes

Analysis Of Level Set Topology  

• Level-Set  = Iso-contour
• contours of equal interpolated scalar density

d=120 d=120

d=80

d=120

d=40

topological event

d=80

d=40
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Analysis Of Level Set Topology  

• Level-Set  = Iso-contour
• contours of equal interpolated scalar density

d=120 d=120

d=80

d=120

d=40

topological event

d=80

d=40

[Pascucci 03]

Contour tree
Reeb Graph

Statistical Features

• What to do when there are no concrete topological events or 
boundaries, yet the density field is not uniform?
• simple example found in nature: smoke

• Assess the spectrum of density variations
• density histograms

• Apply a descriptor rooted in human perception
• humans most sensitive to 1st and 2nd spatial derivatives
• already used in the transfer function context y
• now use in a statistical context
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Density Global Histogram

this and following slides: [Nam 08]

Density Local Histogram

• Density signatures in local histograms at hierarchy of window sizes
• Detect density statistics at multiple levels of scales
• Representation to capture the essence of an object.
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SIFT (Scale Invariant Feature Transform )

• Gradient  histogram of local neighborhood
• Highly expressive of a local neighborhood’s salient dynamics
• Invariant to scale, translation and rotation

• Algorithm
• the detection of critical points (the keypoints) in scale-space
• the encoding of these into keypoint descriptors 

SIFT [Lowe 04 ]

SIFT (Scale Invariant Feature Transform )

• Find keypoints
• local extremas in a difference-of-Gaussians in multi-scale space

• Discard low contrast keypoints
• Filter out keypoints situated on edges

• Pictures from Wikepedia.org
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SIFT (Scale Invariant Feature Transform )

• Keypoint descriptor
• the magnitude and orientation at each sample point around the keypoint

location
• weighted by a Gaussian function to achieve a certain level of smoothing.
• aggregated into orientation histograms describing the neighborhood

3D SIFT
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Cluster Analysis on Visual Contents

Feature Visualization in an Information Space

MDS ( Multi-Dimensional 
Scaling) - Flatten N-D data 
into 2-D display whileinto 2-D display while 
preserving the inter-
distance between dataset
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MDS Analysis: Categorization
Water dropping
from top-right to
bottom-left corner

Smoke flow 
starting from the 
bottom-center 

Smoke flow 
narrower than 
smoke2

Smoke flow similarSmoke flow similar 
with smoke3

Smoke flow similar 
with smoke3 and 5

Smoke flow similar 
with smoke3,5, 
and 6 but different 
direction

1. Categorize different groups of flows
2. Distinguish different features 

within same category

Categorization Of 3D Flows

• 5 frames extracted from each series
• Features

• Global histogram
• Local histogram
• 3D SIFT
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MDS Analysis

Conclusion: Data Features

• The more the data characteristics are understood the more specific 
the features will be (in most cases)
• opposite extremes: feature templates vs. neural networks
• others are somewhere in between

• Feature specification can be embedded in a data exploration process
• neural networks require users to provide feature examples in the dataset
• these may then be re-used in later visualizations
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Topic 2: Visual Transform

• Determines how features are expressed into visual manifestations = 
their visual appearance

• Features may control the rendering pipeline at various stages:
• local color and opacity (mapping via transfer function)
• scene composition (local sparseness, warping by lenses) 
• rendering style (lighting model, illustrative techniques)
• iconic sprites (specific visual expression)

Topic 2: Visual Transform

• We can use transfer functions to maps feature parameters into visual 
transform parameters
• what to do when parameter vector is large? 
• what to do when transfer function is complex?

• We have seen clustering/MDS as a way to visualize similar features
• implicit parameterization is given by location in MDS cluster

• Can we make the parameterization more explicit?
• detect parameter combinations sensitive to changep g
• come up with templates given prior experiences
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Example: Complex Transfer Function

A more elaborate value-gradient transfer function parameterization:

Typically, datasets typically deviate only modestly from this
• but they do so in complex ways 
Æ lots of tedious tweaking is required

[Rezk-Salama 06]

Parameter Aggregation

We can learn these small deviations by observing a few 
d t tdatasets 

• encode the parameters into an N-D vector
• find the principal component of the vectors (the main 

Eigenvector)
• project all other vectors onto this Eigenvector
• the min and max then represent the min and max of the 

slider

[Rezk-Salama ‘06]
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Transfer Function Simplification

Transformed aggregation enables transfer function simplification from N-D 
to 1-Dto 1 D

• works here since in CT usually only small deviations exist
• but these small deviations require complex interactions in the transfer 

function domain

[Rezk-Salama ‘06]

Topic 3: The User, The Human Visual System

Visual cortex breaks input up into 
diff t tdifferent aspects: 

• color, shape, motion, depth 
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Visual Saliency

• Notion of visual importance

Visual Saliency

• Notion of visual importance
• Visual transform of data features to direct a viewer’s attention

• shape (edges, silhouettes)
• surface (curvatures, suggestive contours)
• size
• intensity and color
• texture
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Visual Saliency

• Notion of visual importance
• Visual transform of data features to direct a viewer’s attention

• shape (edges, silhouettes)
• surface (curvatures, suggestive contours)
• size
• intensity and color
• texture

• Enhancement / suppression makes this more effectiveEnhancement / suppression makes this more effective
• opacity controls presence
• rendering style and texture control expression and appearance
• illumination controls shading
• intensity and color control attention (by highlighting)
• caricature controls shape
• but these influences are typically mixed (and not exclusive)

Halos

no halos                     with halos 

Bruckner et al., 2006 Wenger et al., 2006



10/27/2008

23

Two Levels Of Abstraction

• Low-level abstraction:
• concerned with how objects are represented 
• stylized depiction: silhouettes, contours, pen+ink, stippling, hatching, etc.  

Two Levels Of Abstraction

• Low-level abstraction:
• concerned with how objects are represented 
• stylized depiction: silhouettes, contours, pen+ink, stippling, hatching, etc.  

• High-level abstraction
• deal with what should be visible and recognizable and at what level of 

detail
• this should be importance-driven, that is, the current visualization goal 

controls feature rendering style and visibility 
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Mixing Rendering Styles
• First, classify the scene:

• Focus Objects (FO): objects in the center of interest are emphasized in a 
particular way

• Near Focus Objects (NFO): important objects for the understanding of the 
functional interrelation or spatial location.p

• Context Objects (CO): all other objects (rendered e.g., as silhouettes)
• Container Objects (CAO): one object that contains all other objects.

• Render these in a certain order to ensure visual consistency

Tietjen et al., 2005

Attention

• The cognitive process of selectively concentrating on one thing while 
ignoring other things
• detecting features in visual clutter (CAPTCHA, next slide)
• detecting coherent speech in noisy environments (cocktail party effect)
• ignore features while concentrating on others (recall gorilla)
• can also have divided attention (example: cell phone + driving)
• heavily studied in psychology and neuroscience
• closely tied to perception



10/27/2008

25

Attention

• The cognitive process of selectively concentrating on one thing while 
ignoring other things
• detecting features in visual clutter (CAPTCHA, next slide)
• detecting coherent speech in noisy environments (cocktail party effect)
• ignore features while concentrating on others (Simon’s Gorrilla)
• can also have divided attention (example: cell phone + driving)
• heavily studied in psychology and neuroscience
• closely tied to perception

• Attention theory is important for visualization as well
• in contrast to computer vision, WE design/create the scene 
• this design guides the attention of the viewer
• guidance determined by visualization goals

Attention

• The cognitive process of selectively concentrating on one thing while 
ignoring other things
• detecting features in visual clutter (CAPTCHA, next slide)
• detecting coherent speech in noisy environments (cocktail party effect)
• ignore features while concentrating on others (Simon’s Gorilla)
• can also have divided attention (example: cell phone + driving)
• heavily studied in psychology and neuroscience
• closely tied to perception

• Attention theory is important for visualization as well
• in contrast to computer vision, WE design/create the scene 
• this design guides the attention of the viewer
• guidance determined by visualization goals

• Therefore it is important to understand mechanism of attention



10/27/2008

26

Visual Recognition and Attention

• Two opposing theories:
• Gestalt
• Feature integration

• Gestalt theory
• top-down approach
• proposes that the operational principle of the brain is holistic, parallel, and 

analog, with self-organizing tendencies
• important in user interface design (button grouping, etc)

• Feature integration theory
• bottom-up approach
• primary visual features are processed and represented with separate 

feature maps
• these are later integrated in a saliency map that can be accessed in 

order to direct attention to the most conspicuous areas

Gestalt Theory: Confirming Examples

Emergen

Multi-Stability

ce

Reification

Invariance
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Gestalt Theory: Opposing Examples

• Selective-Encoding:
• involving one to distinguish what is important in a problem and what is 

irrelevant (i.e., filtering)
• Selective-Comparison:

• identifying information by finding a connection between acquired 
knowledge and experience

• Selective-Combination:
• identifying a problem through understanding the different components 

and putting everything together.

Feature Integration Theory

• One of the most influential psychological models of human visual 
attention in recent years

• Two types of visual search mechanisms
• Feature search 

• can be performed fast and pre-attentively for targets defined by primitive 
features (such as color, orientation, intensity, etc)

• Conjunction search 
• serial search for targets defined by a conjunction of primitive featuresg y j p
• much slower
• requires conscious attention

• Very promising technique for computer vision to detect partially 
occluded objects (SIFT)
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What Does It Mean For Visualization?

• Feature integration theory:
• justifies enhancement of features
• exploit this to guide attention
• relatively “easy” since it involves mostly local enhancements
• notion of feature saliency is important

• Gestalt theory:
• justifies omission of detail to save spacej p
• viewers assume continuity of occluded lines
• underlies ghosting techniques (mental feature completion)
• silhouettes and contours for context objects
• many techniques used now in illustrative rendering
• recall also optical illusions

What Does It Mean For Visualization?

• Feature integration theory:
• justifies enhancement of features
• exploit this to guide attention
• relatively “easy” since it involves mostly local enhancements
• notion of feature saliency is important

• Gestalt theory:
• justifies omission of detail to save spacej p
• viewers assume continuity of occluded lines
• underlies ghosting techniques (mental feature completion)
• silhouettes and contours for context objects
• many techniques used now in illustrative rendering
• recall also optical illusions
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Ghosting

Topic 4: User Studies Are Important 

• Some design rules exist, but combinations are often untested
• Also consider

• user background (education, age, gender, profession, attitude, etc)
• underlying task and application (medical, business, science, etc)
• computational resources and level of interactivity sought
• other factors

• User studies can reveal this insight
• they allow, in some sense, a parameterization of the userthey allow, in some sense, a parameterization of the user

• An effective and efficient means for user studies is conjoint analysis
• allows parameters to be tested in a conjoint fashion, via pair-wised 

comparison tests (or task-based tests)
• subsequent statistical  analysis then separates the sensitivities of these 

parameters
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Sample Testing Scenario 

• Which color transfer function shows more detail?

Putting Conjoint Analysis to the Test

• Performed a user study on a multi-parametric visualization scenario
• On a set of 2700 images of engine blocks, we varied:

• color transfer function (3)
• rendering mode (5)
• viewpoint (6)
• image resolution (2)
• ray step size (3)
• background (5)g ( )

• Tested 
• 786 respondents
• 20 pair-wise tests each

[Giesen ‘07]
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User Study Results

• Top 10 (detail / aesthetics):

Fl 10 (d t il / th ti )• Flop 10 (detail / aesthetics):

Wrap-Up

• Define the features that best characterize your visualization task
• Devise a suitable feature retrieval method
• Find a suitable mapping of these to salient visual representations
• Confirm and tune via user studies 
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Direct Volume Rendering

• Direct Volume Rendering (DVR) is a powerful and flexible volume 
visualization tool and has been widely used in many fields

DVR by shading 
and compositing

Volume

Direct Volume Rendered Image (DVRI)



3

Object-Based Methods V.S. Image-Based Methods

• Direct Volume Rendering (DVR):
• Object-order DVR (forward mapping)
• Image-order DVR  (backward mapping)

Transfer Functions (1/2)

• Transfer functions (TFs) assign opacity and color to the different 
features in the volume data 

• Emphasize the region of focus
• Subjugate the unimportant details

Data 
Value

Color 
and 
Opacity

Transfer 
Function
Transfer 
Function
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Transfer Function(2/2)

f 

RGBα

CT Human Tooth

a(f)RGB(f)

Shading,
Compositing…

[Kindlmann 2002]

Perception-Guided Transfer Function Specification

• The effectiveness of DVR largely depends on the TF used
• Appropriate TFs allow users to reveal important features in the data
• Inappropriate ones may obscure these features

• Finding appropriate TFs is difficult in practice 
• One major reason is that the search space for finding TFs is huge even 

for one dimensional TFs, not to mention multi-dimensional TFs

• We propose a perception-guided volume exploration framework
• Transfer function design framework based on editing DVRIs and its front-

end intuitive interfaces
• Quality enhancement for the edited DVRIs
• Quantitative effectiveness evaluation for direct volume rendering
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Motivation

• Physicians usually prefer to directly work on 2D slice images rather 
than in the TF domain

• It is more straightforward for them to identify features in 2D slice images

• Some 3D structures can be more easily identified in direct volume 
rendered images (DVRIs) than in 2D gray-scale slice images

• Therefore, it is more intuitive and convenient for users to directly work on 
DVRIs

• Usually, a number of partially good DVRIs can be easily generated by 
previous volume visualization methods, however, these DVRIs may 
only partially satisfy users’ demands

• Some  context in one image may need to be removed
• Some features in different image may need to be combined
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Two Straight Solutions

• Some DVRI editing operations, such as fusing features from different 
DVRIs, blending two DVRIs, and erasing unwanted features in DVRIs, 
may be very useful in practice

• There are two straightforward solutions for fusing:
• Traditional 2D image editing operations
• Linear combination of several TFs

• They both fail to achieve goals in most cases

Traditional 2D image editing operations

• DVRIs are different from traditional 2D images
• DVRIs are used to reveal information contained in 3D volume data so 

multi-layer transparent surfaces are usually displayed
• Traditional images usually show objects in a real world setting, thus 

opaque surfaces are often presented

• Alpha Blending is not suitable for DVRIs
• Lose depth cues and introduce misleading information

(a) Traditional Image created 
by blending two images

(b) DVRI 
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Linear Combination of TFs

• Linear Combination of TFs
• Nonlinear operations of the integration used in DVR makes it 

inappropriate for the general fusing problems

(a) (b) (c) (d) 

(a)-(b) Source images 1 and 2, and their TFs: TF1 and TF2; (c) DVRI rendered 
with a linearly combined TF: TF3 =α*TF1+ ß *TF2, where a = 0.3 and ß = 1; (d) 
DVRI rendered with our method by fusing (a) and (b)

A Robust DVRI Editing Framework

• We introduce a general and robust editing framework to solve the
general DVRI editing problem 

• Allows users to directly manipulates features in DVRIs
• Integrates user knowledge into the optimization process

• The uses of the framework are two-fold:
• As an image editing tool

• For users without expertise in TF, our system is a Photoshop-style 
editing tool for DVRIs while TFs are only used internally and will not 
be exposed to users. 

• As an interactive TF design method
• For expert users, our system can show the generated TF, which can 

be further edited or manually fine-tuned by users. The  system allows 
users to interactively and intuitively design TFs from simple to 
complex by gradually editing simple DVRIs into comprehensive ones
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System Overview

(a) User interface which consists of source DVRIs and their TFs, target DVRI and its TF, and 
a history region; (b) System architecture which consists of energy function generator, 
transfer function producer, direct volume renderer, and image similarity evaluator

(a) (b) 

Feature Selection

• Our approach allows users to select desired features in DVRIs to edit 
using rectangles or semi-automatic feature selection tools

Rectangles Lazy Snapping
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Editing Operations

• Fusing Operation
• Combines multiple user selected features which appear in different 

DVRIs into a comprehensive one

• Blending Operation
• Composites two DVRIs and generate a similar resulting image from alpha 

blending.

• Deleting Operation
• Removes extra features from a DVRI

Energy Function Generator
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Energy Function

• An energy function for evaluating the fitness of candidate solutions 
should be formed after users specify editing operations in DVRIs

• The energy function is based on image similarity and editing 
operations to objectively evaluate the fitness of intermediate TFs

• It returns the measurement to the Genetic Algorithm (GA) module 
• The values are used to determine which genomes in the current 

population are more likely to be selected to survive

The fusing operation: (a)-(d) Source DVRIs; (e) Target DVRI generated with V1 = 0.7, V2 = 
0.3, V3 = 0.4, and V4 = 0.6; (f) Target DVRI generated with V1 = 0.5, V2 = 0.5, V3 = 0.5, and 
V4 = 0.6; (g) Target DVRI generated with V1 = 0.3, V2 = 0.7, V3 = 0.6, and V4 = 0.4

(a) (b) (c) (d) (e) (f) (g)

Fusing Operation

• The energy function:
• n : number of source images to be fused
• Vk: the vote (or user expected similarity value) given by users for the 

features in source image k
• Sk: the computed image similarity value between the candidate image 

and source image k
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(a) (b) (c)

The blending operation: (a)-(b) Source images with bone and skin respectively; (c) 
Target image generated by blending (a) and (b) using our system

Blending Operation

• The energy function:
• α1  andα2 : the alpha values used for blending
• S1  and S2 : the computed image similarity value between the candidate 

image and the source images to be blended

Deleting Operation

• The energy function:
• S1 is the computed image similarity value between the candidate image 

and the source image within region A where a selected feature is to be 
removed, and S2 is defined the same as S1 but outside A

(a) (c)(b)
The deleting operation: (a) A DVRI where the skin is to be removed;
(b) Mask created from (a) using lazy snapping; (c) Resulting DVRI after
executing the deleting operation
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Mix Multiple Editing Operations

• Our system enables users to mix different basic operations together
• Users can fuse multiple features in distinct DVRIs together and can 

meanwhile remove certain features from some DVRIs

• The energy function:

The editing operation on DVRIs generated from different viewpoints: (a)-(b) 
Source images generated from different viewpoints; (c) Resulting image 
generated by blending the (a) and (b)

(a) (c)(b)

Editing Features from Different Viewpoints

• Given n viewpoints and their corresponding DVRIs
• Select a common good viewpoint
• Re-render the user selected features from this viewpoint
• Apply the basic DVRI editing operations to these new DVRIs
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Transfer Function Producer

Genetic Algorithm

• A Genetic Algorithm (GA) is a search algorithm imitating the process 
of natural evolution 

• It is particularly useful for searching solutions to optimization 
problems, especially when the search space is huge and unknown
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Solution Encoder/Decoder

• The solution encoder/decoder specifies the genome representation
by analyzing the source TFs

• 1D array of floating numbers

• The process:
• Smoothens the source TFs
• Samples TFs adaptively above the Nyquist frequency

Genome Representation

• The samples are then used to specify the genome representation
• They can be used to restrict the search space to improve the GA 

performance
• The yellow points below are the genome representation

Scalar Value

Opacity

TF1

TF2

TF1 TF2
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Image Similarity Evaluator

Image Similarity Metric

• A contour-based similarity metric is developed to compare two DVRIs

• The preprocessing:
• Converts DVRIs into grey-scale images
• Detects the edge images from the grey-scale images with Canny edge 

detector
• Smoothes the edge images with a Gaussian filter
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How to Compute Image Similarity 

• The image similarity value Sk is:

• Nsource :  the number of all pixels on the edges of the 
source k’s edge image

• K and K’ :are the Gaussian filtered target and source edge 
images with resolution (width, height)

Supplement to Image Similarity

• Notice that we consider only the pixels on the source edge image k
for Sk

• Sk is only computed if K’(x,y) !=0

• If there are user-selected features in the DVRIs which are to be 
compared, our system considers only the pixels within these features

• Nsource becomes the number of pixels within the features on the edges of
the source edge image
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Results for The Basic Editing Operations (Fusing)

• Create a new DVRI (d) by fusing the features in multiple DVRIs (a), 
(b), and (c)  into a comprehensive one (d) with V1=0.3, V2=0.4, and 
V3=0.3

(a) (c)(b)

(d)

Results for The Basic Editing Operations (Blending)

• Generate a new DVRI (c) by blending DVRIs (a) and (b) 
• (c) Obtained by traditional alpha-bending
• (d) Created by our approach (better details)

(a) (c)(b) (c)
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Results for The Basic Editing Operations (Deleting)

• Generate a new DVRI (b) by deleting feature (a)  indicated by blue 
strokes while retaining the feature  selected by yellow strokes

(a) (b)

Examples for TF Design (1/2)

• Creating a DVRI of better quality (i.e., clearer contours) by fusing the 
selected features in (a) and (b)

(a) (b) (c)
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Examples for Generating Animations

(a) keyframe1 (b) keyframe2

Intermediate frames created by the blending operation

• Generating intermediate frames for animations

Palette-Style Interface and Radial Graph Interface

• A palette style intuitive interface is further developed to server as the 
front-end of the editing framework

• A radial graph interface arranges the resulting images based on 
viewpoints and image quality for detailed exploration

Palette-Style Volume Exploration 
Interface

Radial Graph
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Palette-Style Interface

• A palette-style interface  motivated by the color palette is proposed for 
intuitive DVRI generation to increase exploration intuitiveness, reduce 
exploration redundancy, and save and share exploration results

Moses Harris: the first color wheel to classify red, 
blue and yellow as the three primary colors

Palette-Style Volume Exploration 
Interface

Visualization Process with The Interface

1. Primary opacity TFs and DVRIs (analogy of the primary color in the 
color palette) are created automatically or semi-automatically

2. More DVRIs of different opacity TFs can be created by fusing the 
primary DVRIs in the DVRI wheel

3. The system enables users to further explore the data using the 
created opacity TF with different parameters in a separate radial 
graph
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Primary DVRI Generation

• Primary DVRIs (analogy of primary colors in the color palettes) can be 
created by experts manually or semi-automatically which makes 
boundaries of structures in volumetric data visible

• For non-expert users, other high-level methods can be adopted for 
primary DVRI generation without the knowledge of TFs

Salama et al. 2006Kindlmann and Durkin 1998

Editing Operations on The DVRI Wheel

• After creating primary DVRIs, our system allows users to generate 
more DVRIs from the primary ones intuitively

• Users just need to select a point on the DVRI wheel and indicate how 
to fuse the DVRIs using the DVRI editing framework 
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Animation Generation

• Animation can be used to reveal 3D relationships between the 
different structures more effectively than a still image

• Users can create an animation for volume visualization using the
DVRI wheel intuitively based on the fusing operation

Animation operation

Support for Multiple Viewpoints 

• Primary DVRIs can be generated from different viewpoints
• However, image similarity can be computed only for DVRIs rendered from 

the same viewpoint
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Radial Graph for Detailed Exploration

• Users may need to further explore the volume using the opacity TF 
with different lighting parameters, color TFs, and viewpoints

• A new radial graph style interface was proposed to arrange the 
resulting images based on viewpoints and image quality

Graph Layout

• The graph layout consists of multiple concentric circles, and the radii 
for these concentric circles are r1… rn from inside to outside and 
defined as

• where i >=3 and r2 = 2r1, and r1 =C , and
C is determined by users

• The graph is further divided into multiple sectors for storing the DVRIs
created from different viewpoints

A radial graph for detailed volume 
exploration with the same opacity TF
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Image Quality Evaluation

• In each sector, the DVRIs are sorted in terms of image quality so that 
better DVRIs have larger sizes and are closer to the center

• The features and details in an image with a higher contrast are 
always better perceived by viewers

• Contrast can be interpreted as the standard deviation of the pixel values 
in the image:

where Ω is the image and v(i) is the intensity of pixel i, and μ is the 
mean value of all pixels in the image

Volume Exploration (1)

• Intuitive Volume Exploration
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Volume Exploration (2)

• A palette-style DVRI wheel 
for creating animation
• An animation was 

generated along the 
user selected path 
P1 P2 P3

Image Quality Evaluation

• A radial graph for detailed 
volume exploration

• The radial graph was 
divided into multiple 
sectors for different 
viewpoints, and the DVRIs
in each sector were sorted 
according to the image 
quality such that DVRIs
with higher image quality 
lie closer to the center
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Introduction (1/3)

• Direct volume rendering for scientific visualization 
• Revealing different structures by specifying proper transfer functions
• Allowing visual analysis on the volumetric data

• Quality of the DVRIs is an important issue
• Ensuring features are clearly shown (enhanced features)
• Preserving the information in the volume
• Delivering a pleasing result (better contrast)
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Introduction (2/3)

• Quality enhancement in image domain
• Commonly used image processing approaches, e.g., contrast and feature 

enhancement
• Formation of a new image with certain mapping of pixel values
• Objective: easy interpretation of image information
• Drawbacks: information may be missing in the image and cannot be

restored 

Introduction (3/3)

• Our approach: working in transfer function and volume domains
• Image measurement: evaluating the effectiveness of the image in 

conveying the volume information
• Parameter refinement: adjusting the rendering parameters for better 

image quality 

• Restoring the missing information due to poor lighting and rendering 
settings

• Revealing the information in the volume by analyzing the composition 
of the rays in the rendering process
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Limitations of Image-Based Approaches

• Limitations of image-based approaches
• Cannot recover the missing details due to poor lighting
• Cannot enhance the structure with respect to the topology and shape in 

the volumetric data

• Our method:
• Taking the volume into consideration to preserve the details

Typical Problems in DVRIs (1/2)

• Structures are not clearly shown due to poor lighting and rendering 
parameter settings

• Pixels in the DVRIs cannot give any implication on the existence of 
structure

• Homogenous regions in DVRI may represent some fine features
• They should demonstrate certain variations in the image to convey 

the information of the structures
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Typical Problems in DVRIs (2/2)

• Idea: with the help of the volumetric data and the knowledge of the 
rendering process of DVRIs, we can 

• Further improve the image quality accordingly 
• Reinforce the hidden details about the volume in the image

An example using the CT engine dataset: 
(a) shows the original image with a poor 
contrast; (b) and (c) are the images 
enhanced by Photoshop and manual 
adjustment using various image filters; (d) 
is the result generated by adjusting the 
rendering parameters.

Image Quality Measurement

• The quality of DVRIs is defined as the effectiveness of the rendered 
images in presenting the information in the volumetric data

• Determine whether the image can show a significant variation in regions 
where the rays carry different information 

• To quantitatively analyze a DVRI, we establish several 
measurements for both image and volume data information
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Image Measure

• Variations / information in an image are interpreted as contrast

• Homogeneity measurement [Cheng et al. 03’]

• Image standard deviation σ as

• Image entropy h as

• Estimate the visual information in the image

• Final image measure:

Ray Measure

• Each sample point contributes to the final image in different degrees 
and their contribution can be estimated by

• We estimate the information carried by the rays and their variations 
by considering those visible sample points along the rays

• Ray measure can be represented as

• Entropy term on the composition of the rays
• Signifying the information variation among rays
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Composite Measure

• Compositing measure on the quality of an image

• Indicating the deviation between the image and ray information at 
each pixel in the image

• Minimizing the overall information deviation - preserving the 
information of the volume in the image domain.

Parameter Refinement

• Adjusting different rendering parameters for better results
• Manual adjustment 

• Tedious and non-trivial task
• Optimization of the parameters using a genetic algorithm

• Image quality measure as the fitness measure
• Parameters involved:

– Reflection / illumination model
» Ambient, diffuse and specular coefficients

– Transfer function
» HSV (brightness and saturation)
» YIQ (luma information)
» Only “safe” channels are modified to preserve the original 

color
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Genetic Algorithm

• Combinatorial optimization of parameters

• Efficient search of an optimal solution in the parameter space through 
the evolution process

• Process driven by the image quality measure to obtain a better result

• Advantages: 
• stochastic search - avoiding local optima 
• efficient 

Adaptive Enhancement and User Interaction

• Adaptive enhancement
• Preserve the under-enhanced details missing in the global configuration
• Enhance and refine on certain parts of the DVRI

• User interaction
• Highlight regions in the image
• Select Structure in volume / intensity domain
• Process on the selected regions and the corresponding rays
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Experimental Results

Experimental Results
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Outline

• Introduction
• Transfer Function Design Based on Editing Direct Volume Rendering 

Images
• Quality Enhancement of Direct Volume Rendered Images
• Quantitative Effectiveness Metrics for Direct Volume Rendering

Visualization Tasks and Features of Interest

• The effectiveness of a visualization highly depends on the tasks that 
can be classified into two categories

• Routine tasks 
• Users usually have prior knowledge of the features that they intend to 

visualize
• Exploration tasks

• Features of interest are unknown
– Use other visualization techniques to explore the volume and 

gain some knowledge
– Use our system in a divide-and-conquer manner
– Estimate the useful information in the data automatically

• In summary, features of interest (or desired features)  can be either 
specified by users or predicted by the system
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Effectiveness Metrics (1/3)

• It is very difficult to design an ideal visualization system which can 
automatically reveal desired features to users 

• Huge parameter space (e.g., transfer function, viewpoint, lighting)

• Merely displaying these desired features one by one is not enough
• Users want to know context and spatial relations between the features

• Even if only one feature needs to be displayed, self occlusion may 
become an issue.

• Artifacts and illusions may be introduced because of inappropriate 
lighting or view angles

Effectiveness Metrics (2/3)

• User interactions such as changing viewpoints and specifying transfer 
functions are needed

• Routine tasks and exploration tasks

• Even if we know what users want, we may not have a perfect solution 
to present the information to users automatically so user interactions 
are still needed

• The interactions by non-expert users are often error prone and may 
introduce misleading information leading to unreliable conclusions

• A scheme is needed to let users know whether their fine tuned 
transfer functions or view angles are effective or not
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Effectiveness Metrics (3/3)

• There are two sets of effectiveness metrics
• Adequate effectiveness metrics 

• If these metrics are satisfied then the visualizations tasks can be 
achieved 

• They are the holy grail of volume visualization and may not be 
possible for many applications in the near future

• Necessary effectiveness metrics
• If these metrics are not satisfied then visualization tasks cannot be 

achieved. However, even if these necessary metrics are satisfied, 
there is still no guarantee that the visualization tasks can be achieved

• They are more practical and what we want to deal with

New Visualization Pipeline



37

Effectiveness Evaluator

• The effectiveness evaluator is used to quantitatively and objectively 
assess the effectiveness of a DVRI or a whole visualization process 
based on three effectiveness metrics

• Visibility metric
• Distinguishability metric
• Contour Clarity metric

Visibility Metric (1/2)

• The visibility metric measures the visibility of an important feature in a 
volume by counting the visible voxels of the feature

Two common cases where the visibility metric is needed: (a) 
DVRI of the CT Knee where the fibula of the left knee is 
invisible; (b) DVRI of the simulated Neghip having large 
variance of the intensity values
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Visibility Metric (2/2)

• The visibility of voxels can be estimated in the process of full image-
order volume rendering

• Estimate visibility values for the sampling points along each ray

• Vi would be distributed to the neighboring voxels based on the 
corresponding weights used in the interpolation

• The visibility value of a DVRI can then be estimate as E = ni / n
• ni and n are the number of visible voxels and the number of all voxels

inside the important feature, respectively

Visibility value Vi for sampling point i

Distinguishability Metric (1/2)

• The distinguishability metric evaluates how well a feature can be 
visually differentiated from its surroundings

(a) (b) (c)

(a) Structure A in blue; (b) Structure B in purple; (c) Blending A and B 
as well as a green structure C into a new DVRI where A and B are
indistinguishable
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Distinguishability Metric (2/2)

• The distinguishability metric aims at detecting the ambiguity caused 
by the blending effect

1. Segment a given DVRI into a number of fragments
2. Classify the fragments into two classes - fragments with the desired 

feature and fragments without the desired feature
3. If the fragment with the desired feature has color similar to any fragments 

without the feature, the metric will record the feature’s voxels that 
contribute to the fragment as indistinguishable voxels

• The distinguishability value of a DVRI can then be estimated as the 
ratio of the distinguishable voxels to indistinguishable voxels

Contour Clarity Metric (1/2)

• The contour clarity metric measures how clear the contours of a 
desired feature are presented in a DVRI

A common scenario in volume rendering where the contour clarity 
metric is needed: the contours of an important feature as shown 
in (a) are fuzzy and unclear in (b) although the feature is visible 
and distinguishable

(a) (b)
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Contour Clarity Metric (2/2)

• The metric measures the contour clarity by estimating the similarity 
between the DVRI and the iso-surface of the salient feature
1. Derive the edge images of both DVRI and the iso-surface
2. Estimate the similarity between the two edge images

Salient iso-surfaceA given DVRI

Effectiveness for A Whole Visualization Process

• For the visibility and distinguishability metrics, we accumulate each 
voxel’s effectiveness values at each DVRI in the visualization process

• The overall effectiveness values can then be measured as the 
percentage of the visible and distinguishable voxels after the 
accumulation to all voxels, respectively.

• For each of other metrics, 
• Collect all explored viewpoints in the visualization process

• Each viewpoint stores a highest effectiveness value for the metric 
and treat it as the metric value at this viewpoint for the whole process

• Select the lowest effectiveness value among all explored viewpoints as 
the metric’s effectiveness value of the process
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Effectiveness Feedback Manager

• It organizes and presents the effectiveness values to the end-users in 
an intuitive manner

Conclusions

• Perception-based transfer function design and evaluation
• Transfer function design based on editing DVRIs
• Quality enhancement of DVRIs
• Effectiveness assessment of DVRIs
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Information and 
Visualization

The Goal of Visualization

!The goal of visualization is to faithfully convey 
the maximal amount of information from the 
data through the display channel

2
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111110101000
000111110011

visualization channel

How do we measure the information content?

View Point Selection

!Due to 3D occlusion, images generated from 
different view will convey different amount of 
information

!How to choose views that can convey maximal 
amounts of information?

3

Multiresolution Visualization

!How do we measure and compare the 
quality of different LOD selections? 

!Are the computation resources effectively 
utilized?

4

Low resolution            High resolutionLow resolution        High resolution

Information Theory

!Study the fundamental limits to reliably 
transmit messages through a noisy channel

!Model the message as a random variable 
whose value is taken from a sequence of 
symbols

! Information content of the message is 
measured by Shannon’s Information Entropy

5

! The random variable takes a sequence of symbol 
{a1,a2,a3, …, an} with probabilities {p1,p2,p3, …, pn} 

! The information contained in each symbol ai  is 
defined as: 

! The average amount of information expressed by 
the random variable  is the entropy:

 

Shannon Entropy

log (1/pi) = − log pi

H(x) = −
n∑

i=1

pi log pi



Properties of Entropy

! Entropy is to measure the average uncertainty of the 
random variable 

! Entropy is a concave function, which has a maximum 
value when all outcomes are equally possible:
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An example of three dimensional
Probability vector {p1,p2,p3}

p1 = p2 = p3 = ... = pn

Information Theory  and 
Visualization

!A data set can be considered as a random 
variable  

!Each data point can be considered as an 
outcome for a random variable X 

!We can measure the information content of the 
visualization output (image) 
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visualization channel

Finding a Good View 

!Viewpoint entropy for a camera view:

!Sample the view sphere and evaluate from 
multiple sample views
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H(x) = −
n∑

i=1

pi log pi

(Image courtesy: Takahashi et al) 

Object Space Approach

!Consider that the visualization is generated 
from 3D data 

!Evaluate the information content from each 
data point (voxel) to the screen

10
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visualization channel

!Each voxel’s information content depends on 
its visibility and importance
! visibility   : transparency from the camera to the voxel

! importance    : the voxel’s alpha value (defined by the 
transfer function) 

!Visual probability for a voxel i:

! Information Content for the voxel: 

Information Content of a Voxel
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v

w

pi =
1
σ

.
vi

wi
σ =

n−1∑

i=0

vi

wi
,    where

log (1/pi) = − log pi

Example
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H(x) = −
n∑

i=1

pi log pi



Examples
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View Partitioning

!Choose only one from the nearby similar view 
samples

!Use Jensen-Shannon (JS) divergence 
measure to estimate the distance between two 
view entropies q1 and q2

!Cluster the view samples based on the JS 
divergence

14

JS(q1, q2) = 2H(
1
2
q1 +

1
2
q2)−H(q1)−H(q2)

Image Space Approach

!Consider only the visualization output, i.e., the 
images

!Evaluate the information content based on the 
pixel value distribution in the image

158
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visualization channel

View Selection Criteria

!Larger projection size 
! more voxels to be visible 

!Even opacity distribution 
! opaque voxels do not clump together 

!Even color distribution 
! data in different ranges can be seen 

!More salient geometric features (curvature)

16

Projection & Opacity Distribution

!For an imagine contains n pixels with 
accumulated opacities                               , the 
probability of pixel i is defined as: 

!Background pixels are excluded 

!The view entropy is defined in the same way:

17

{α0, α1, α2, ...,αn−1}

pi =
αi∑n−1

i=0 αj

H(x) = −
n∑

i=1

pi log pi

Color Distribution

! A well designed transfer function should highlight 
salient features with attentive colors 

! A good view should maximize the area of the salient 
colors while maintaining an even distribution

! Assuming there are n colors in the transfer 
function                        , with      being the background

! For each pixel, we measure the perceptual color 
distance (using CIELUV) to the salient colors and 
classify the pixel

18

{C0, C1, ..., Cn−1} C0



Entropy Calculation

! Calculate the area       for each color 

! The probability for        is defined as:

! The entropy for the image is calculated similarly: 

! The entropy of an image is a maximum when all salient 
colors are shown 
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Ai Ci

Ci

pi =
Ai

T
where T =

n−1∑

i=0

(Ai)

H(x) = −
n∑

i=1

pi log pi

Examples
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Opacity and Projection Area 

Color

Curvature Distribution

!Low curvatures imply flat areas and high 
curvatures mean highly irregular shapes.

!We can represent curvatures in a volume by 
color coding each voxel based on its curvature

!High luminance colors for high curvatures

21

The Final Utility Function

!Decide the best view based on opacity, color, 
and curvature

!Normalize each component to [0,1]

!User can decide a different combination of 
weights and/or introduce new factors 
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u(v) = α.opacity(v) + β.color(v) + γ.curvature(v)

α + β + γ = 1

Multiresolution Visualization

!How do we measure and compare the 
quality of different LOD selections? 

!Are the computation resources effectively 
utilized?

23

Low resolution            High resolutionLow resolution        High resolution

Global LOD Quality Metric

!Measure the amount of information 
contained in the selected LOD
!Compare LODs 

!Decide whether the computation resources are 
distributed evenly to render-worthy blocks

!LOD adjustment 

!Approach:  Information theory
    



LOD Entropy 

! A LOD contains a sequence of blocks Bi at particular 
resolutions

! Pi, the ‘probability’ of a data block Bi at a particular 
resolution, is defined as: 

! Ci and Di  are the block’s contribution and distortion (if it 
is a low resolution block) 

       

Pi =
Ci ×Di

S
S =

M∑

i=1

Ci ×Di

Contribution and Distortion

! Contribution: the block’s color (µ), projection size 

(a), thickness (t), visibility (v) 

                     

! Distortion: the difference between the block’s data 

values and those of a higher resolution block

covariance    luminance        contrast

Ci = µ.t.a.v

! Maximize the entropy function when Pi are all equal

! The entropy function prefers that the block’s 

contribution matches its resolution  

LOD Entropy

Ci               Di         : use high resolution

Ci               Di         : use low resolution  

Pi =
Ci ×Di

S

LOD Comparisons using Entropy

……
… ……

…

H1 H2

A higher entropy value indicates a balanced probability
distribution, thus a better overall quality

Entropy vs. Quality

Entropy = 0.166  (34 blocks)            Entropy = 0.316 (259 blocks) 

Entropy vs. # of Blocks



Visual Representation of LOD Quality

!An optimal selection of LOD is an NP 
complete problem 

!Fine tuning of LOD selection is often 
necessary 

!Can we visualize what are selected, and 
make adjustments if necessary?

LOD Map

! A visual user interface to visualize the LOD 
selection

! Allow the user to see individual block’s 
contribution vs. distortion, i.e., visualize the 
entropy terms

Treemap

! A space-filling method to visualize hierarchical 
information [Shneiderman et al. 1992]

!Recursive subdivision of a given display area

! Information of each individual node

!Color and size of its bounding rectangle

……
…

LOD Map

!Display the blocks belong to the selected 
LOD in a tree-map like manner

!Color (blue to red) is used to encode the 
block’s distortion

!The contribution of the block (µ.t.a.v) is 
divided into two parts
!The size of rectangle is to encode µ.t.a 

!The opacity of rectangle is to encode v

LOD Map

……
…

How Can LOD Map Help

Comparisons of different LOD selection schemes



How Can LOD Map Help 

! Spot problematic regions in the current LOD 

!Large red rectangles – high contribution blocks 
rendered with low resolutions
!Action: split the blocks and increase the resolutions 

!Small blue rectangles – low contribution blocks 
rendered with high resolutions
!Action: join the blocks and reduce the resolutions 

!Dark rectangles – low visibility blocks
!Action: join them and reduce the resolutions 

LOD Adjustment

How Can LOD Map Help

!View selection on the fly - High entropy and 
brighter LOD map for better views 

How Can LOD Map Help

• Budget Control - Render fewer blocks, i.e., lower 
Resolutions in certain regions, for the same entropy

Conclusions

!Entropy can be used to quantify the 
information content in a visualization

!Applications: view selection & LOD selection

!The goal of visualization is to reduce the 
uncertainty perceived by the viewer 

!More applications of information theory are 
expected to quantify the goodness of 
visualization
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View Selection for Volume Rendering
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ABSTRACT

In a visualization of a three-dimensional dataset, the insights gained
are dependent on what is occluded and what is not. Suggestion of
interesting viewpoints can improve both the speed and efficiency of
data understanding. This paper presents a view selection method
designed for volume rendering. It can be used to find informative
views for a given scene, or to find a minimal set of representative
views which capture the entire scene. It becomes particularly use-
ful when the visualization process is non-interactive – for example,
when visualizing large datasets or time-varying sequences. We in-
troduce a viewpoint “goodness” measure based on the formulation
of entropy from information theory. The measure takes into account
the transfer function, the data distribution and the visibility of the
voxels. Combined with viewpoint properties like view-likelihood
and view-stability, this technique can be used as a guide which
suggests “interesting” viewpoints for further exploration. Domain
knowledge is incorporated into the algorithm via an importance
transfer function or volume. This allows users to obtain view se-
lection behaviors tailored to their specific situations. We generate a
view space partitioning, and select one representative view for each
partition. Together, this set of views encapsulates the “interesting”
and distinct views of the data. Viewpoints in this set can be used
as starting points for interactive exploration of the data, thus reduc-
ing the human effort in visualization. In non-interactive situations,
such a set can be used as a representative visualization of the dataset
from all directions.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms

Keywords: viewpoint selection, view space partitioning, volume
rendering, entropy, visibility

1 INTRODUCTION

With the advent of faster hardware and better algorithms, volume
rendering has become a popular method for visualizing volumet-
ric data. The traditional challenge of speeding up the rendering
to achieve interactive frame-rates has been overcome for small
datasets, but large datasets still pose problems for users who do not
have access to supercomputing facilities. Slow frame-rates, cou-
pled with large datasets, result in an increase in time needed to gain
insights from the data. The efficiency of the visualization process
can be increased by guiding the user to more informative parts of
the data (or parameters) and thus saving time she would have oth-
erwise spent in a trial-and-error search. Another option is to show
more information on the screen without having a negative effect
(such as, due to occlusion or cluttering). For example, various al-
ternative rendering techniques can be used to provide a more un-
derstandable picture to the user [5][8][4]. Users can be guided to

∗Email: udeepta at acm.org
†Email: hwshen at cse.ohio-state.edu

interesting features, isosurfaces and transfer functions by methods
that suggest such candidates [10][19].

In this paper, we present a novel view selection method for vol-
ume rendering that can help improve the effectiveness of visual-
ization by guiding the user to views that convey more information.
Such interesting viewpoints are helpful both for data exploration
and data presentation. For complex datasets, it is very difficult
to manually find a view that maximizes the visibility of the rele-
vant part of the data and minimizes occlusion. Currently, users can
only use subjective judgment to evaluate and compare views. Our
view selection technique introduces a measure to evaluate a view
based on the amount of information displayed (and not displayed).
It gives the users the ability to objectively compare two different
views. The algorithm can be used to generate viewing positions to
be used as starting viewpoints for browsing. Such suggested start-
ing camera positions prove very beneficial in rendering situations
with non-interactive frame-rates. Because of the time-lag between
frames, users do not want to, and should not be made to [17][7][2],
search the whole view-space for desirable views. The algorithm
can also be used when presenting data in a non-interactive setting.
It creates a smart partitioning of the view space, and selects repre-
sentative views from each view group for rendering.

For this paper, we assume that the dataset is centered at the ori-
gin and that the camera is always looking at the origin from a fixed
distance. We will refer to this set of camera positions as the view
sphere. To evaluate and compare viewpoints, we use three view-
point characteristics associated with each view:

• View goodness: The view-goodness measure tries to capture
how closely the voxel visibilities for a given view match a
user-input importance function. We define a view to be good
if more important voxels in the volume are highly visible, and
vice versa. It is maximized when the voxel visibilities are
proportional to their importance. When selecting viewpoints,
it is desirable that they have high goodness scores.

• View likelihood : Intuitively, the view likelihood of a given
view is the number of other viewpoints on the view sphere
which yield a view that is similar (defined by a threshold) to
the given view. We define the view similarities in terms of
voxel visibilities and importance that are used for view good-
ness. A highly likely view is a good candidate for represent-
ing the dataset from different views. On the other hand, low
likelihood views are interesting because they display informa-
tion that is not seen from most other viewpoints, and hence is
likely to be missed by users during an interactive search.

• View stability : View stability of a view denotes the maxi-
mal change in view that can occur when the camera position
is shifted within a small neighborhood (defined by a thresh-
old). A small change implies a stable view, and a large change
would make a view unstable. Unstable views make good start-
ing viewpoints during interactive visualization, because the
user can see a large change in view with a small mouse move-
ment.

The contribution of this paper is as follows. We introduce a
goodness measure of viewpoints based on the information theory
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concept of entropy, also called average information. We propose
that good viewpoints are ones which provide higher visibilities to
the more important voxels. This interpretation leads us to the for-
mulation of viewpoint information presented in this paper. We uti-
lize a property of our entropy definition which indicates that when
the visibilities are close to their desired values, the viewpoint infor-
mation is maximized. This measure allows us to compare different
viewpoints and suggest the best ones to the user. The voxel impor-
tance can be specified by the users based on their domain knowl-
edge and the desired output. Given a desired number N of views,
our algorithm can be used to find the best N viewpoints over the
view space. A GPU-based algorithm is used to find the visibilities
at the exact voxel centers of the volume. We also use the frame-
work to find similarity between views, which is then used to create
a view space partitioning and to find the likelihood and stability of
views. Representative views for each partition can be chosen either
by taking the highly likely or highly unlikely views. In interactive
situations, our method can suggest unstable viewpoints, so that a
small change in the camera position will yield a large change in
view. For time-dependent data, we present a modification of the
goodness measure of a viewpoint by taking into account not only
the static information but also the change in each time-step.

2 RELATED WORK

The idea of comparing different views developed much before com-
puter graphics and visualization matured. As early as 1976, Koen-
derink and van Doorn [11][12] had studied singularities in 2D pro-
jections of smooth bodies. They showed that for most views (called
stable views), the topology of the projection does not change for
small changes in the viewpoint. The topological changes between
viewpoints can be stored in an aspect graph. Each node in the graph
represents a region of stable views, and each edge represents a tran-
sition from one such region to an adjacent one. These regions form
a partitioning of the view space, which is typically a sphere of a
fixed radius with the object of interest at its center. The aspect graph
(or its dual, the view space partition) defines the minimal number
of views required to represent all the topologically different projec-
tions of the object. A lot of research has been done since the early
papers, mainly in the field of computer vision, which extended the
ideas to more complex objects. In the case of volume rendering,
a similar topology based partitioning can not be constructed. In-
stead, we find a visibility based partitioning by comparing visibil-
ities of voxels in neighboring views, and clustering together view-
points that are similar.

Viewpoint selection has been an active topic of research in many
fields. For instance, viewpoint selection solutions have been pro-
posed for the problem of modeling a three-dimensional object from
range data [22] and from images [6], for object recognition [1], and
also for cinematography [9]. However, the topic has not been well
investigated in the fields of computer graphics and visualization,
possibly because applications in these domains have relied heavily
on human control. Recently, Vázquez et al. [20][21] have pre-
sented an entropy based technique to find good views of polygonal
scenes. They define an entropy for any given view, which is de-
rived from the projected area of the faces of the geometric models
in the scene. Their motivation is to achieve a balance between the
number of faces visible and their projection areas. The entropy
value is maximized when all the faces project to an equal area on
the screen. In this conference, two solutions are being presented
for selecting good viewpoints for volumetric data. Takahashi et al.
[18] calculate the view entropy for different isosurfaces and inter-
val volumes, and then find a weighted average of the individual
components. The weights are assigned using the transfer function
opacities. The viewpoint measure presented in this paper is also
based on the entropy function, but is defined on voxels as opposed

to geometric objects. Each voxel in the data is assigned a visual
significance, and the entropy is maximized when the visibilities of
the voxels approach the respective significance values.

3 VIEWPOINT EVALUATION

The essential goal of this paper is to have a computer suggest ‘good’
viewpoint(s) to the user. This naturally leads us to the question:
“what is a good viewpoint?”, or, “what makes a viewpoint better
than another?”. The answer will depend greatly on the viewing
context and the desired outcome. For example, a photographer will
choose the view which best contributes to the chosen mood and
visual effect. For this paper, the context is the process of volume
rendering, which is being used to get visual information from the
data. Hence, for our purposes, a viewpoint is better than another
if it conveys more information about the dataset. In this section,
we present a method for quantifying the information contained in
a view using properties of the entropy function from information
theory.

The information that is transferred from a volumetric dataset to
the two-dimensional screen is governed by the optical model which
is used for the projection. In this paper, we assume the popular
absorption plus emission model [15]. The intensity Y at a pixel D
is given by

Y (D) = Y0T (0)+
∫ D

0
g(s)T (s)ds (1)

where, T (s) is the transparency of the material between the pixel
D and the point s. We will refer to T (s) as the visibility of the
location s. The first term in the equation represents the contribution
of the background, Y0 being its intensity. The second term adds
the contributions of all the voxels along the viewing ray passing
through D. A voxel at point s has an emission factor of g(s), and its
effect on the pixel intensity is scaled by its visibility T (s). If two
voxels have the same emission factor, then the one with a higher
visibility will contribute more toward the final image.

The emission factors of voxels are usually defined by the users.
They set the transfer function to highlight the group of voxels they
want to see, and to make the others more transparent. We use this
fact to define a noteworthiness factor for each voxel (section 3.2),
which captures, among other things, the importance of the voxel as
defined by the transfer function. Users can also specify the notewor-
thiness by other means – for example, using a separate importance
volume. Based on the preceding discussion, we have the following
two (not necessarily disjoint) guidelines for defining a good view-
point:

1. A viewpoint is good if voxels with high noteworthiness factors
have high visibilities.

2. A viewpoint is good if the projection of the volumetric dataset
contains a high amount of information.

In the following section, we present the details of our view infor-
mation function and its properties.

3.1 Entropy and View Information

Consider any information source X which outputs a ran-
dom sequence of symbols taken from the alphabet set
{a0,a1, . . . ,aJ−1}. Suppose the symbols occur with the probabili-
ties p = {p0, p1, . . . , pJ−1}. Alternatively, we can think of it as the
random variable X which gets the value a j with probability p j . The
information associated with a single occurrence of a j is defined
in information theory as I(a j) = − log p j . The logarithm can be
taken with base 2 or e, and the unit of information is bits or nats
respectively. In a sequence of length n, the symbol a j will occur
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Figure 1: Entropy Function for three dimensional probability vectors
p = {p0, p1, p2}. The function is defined only over the plane p0 + p1 +
p2 = 1, within the triangular region specified by 0≤ p1, p2, p3 ≤ 1. The
maximum occurs at the point p0 = p1 = p2 = 1/3, and the value falls
as we move away from that point in any direction. So, increasing
the entropy has the effect of making the probabilities more uniform.

np j times, and will carry −np j log p j units of information. Then
the average information of the sequence, also called its entropy, is
defined as

H(X) ≡ H(p) = −
J−1

∑
j=0

p j · log2 p j bits/symbol (2)

with 0 · log2 0 defined as zero [3]. Even though the entropy is fre-
quently expressed as a function of the random variable X , it is ac-
tually a function of the probability distribution p of the variable X .
We will use the following two properties of the entropy function in
constructing our viewpoint evaluation measure:

1. For a given number of symbols J, the maximum entropy oc-
curs for the distribution peq, where {p0 = p1 = . . . = pJ−1 =
1/J}. (See figure 1, which gives an example of the entropy
values for a three dimensional distribution.)

2. Entropy is a concave function, which implies that the local
maximum at peq is also the global maximum. It also implies
that as we move away from the equal distribution peq, along
a straight line in any direction, the value of entropy decreases
(or remains the same, but does not increase).

We will use probability distributions associated with views to
calculate their entropy (average information). For each voxel j, we
define an importance factor W j . We will call it the noteworthiness
of the voxel, and it indicates the visual significance of the voxel.
(More details about W j are given in section 3.2). Suppose, for a
given view V , the visibility of the voxel is v j(V ). We are using the
term ‘visibility’ to denote the transparency of the material between
the camera and the voxel. It is equivalent to T (s) in equation (1).
Then, for the view V , we define the visual probability, q j , of the
voxel as

q j ≡ q j(V ) =
1
σ
·

v j(V )

W j
where, σ =

J−1

∑
j=0

v j(V )

W j
(3)

where the summation is taken over all voxels in the data. The di-
vision by σ is required to make all probabilities add up to unity.
Thus, for any view V , we have a visual probability distribution
q ≡ {q0,q1, . . . ,qJ−1}, where J is the number of voxels in the
dataset. Then, we define the entropy (average information) of the
view to be

H(V ) ≡ H(q) = −
J−1

∑
j=0

q j · log2 q j (4)

The view with the highest entropy is then chosen as the best view.
This satisfies the two guidelines presented earlier in section 3:

1. The best view has the highest information content (averaged
over all voxels).

2. The visual probability distribution of the voxels is the closest
(of all the given views) to the equal distribution {q0 = q1 =
. . . = qJ−1 = 1/J}, which implies that the voxel visibilities
are closest to being proportional to their noteworthiness.

To calculate the view entropy, we need to know the voxel visi-
bilities and the noteworthiness factors. Visibilities can be queried
through any standard volume rendering technique such as ray cast-
ing. The noteworthiness, described in the next section, is view in-
dependent, and needs to be calculated only once for a given transfer
function.

3.2 Noteworthiness

The noteworthiness factor of each voxel denotes the significance of
the voxel to the visualization. It should be high for voxels which are
desired to be seen, and vice versa. Considering the diverse array of
situations volume rendering is used in, it is practically impossible to
give a single definition of noteworthiness that satisfies expectations
of all users. Instead, we can rely on the user-specified transfer func-
tions to deliver us a definition which is tailor-made for the particular
situation. The opacity of a voxel, as assigned by the transfer func-
tion, is part of the emission factor g(s) in equation (1), and controls
the contribution of the voxel to the final image. We use opacity
as one element of the noteworthiness of the voxel. Another con-
sideration is that voxels of a particular color can be more visually
meaningful to the viewer than voxels of another color. Consider a
scene with voxels of two different colors. If there are fewer voxels
of the first color compared to the second, then it is possible that
the second group of voxels completely occludes the first one. Also,
Gestalt principles [16] suggest that the human mind extrapolates
the larger object (called ground) behind the smaller one (called fig-
ure). Hence, other factors (such as opacities) being equal, we would
want the voxels of the first color to have a higher importance than
the others.

Based on these observations, we construct the noteworthiness W j
of the jth voxel as follows. We assign probabilities to voxels in our
dataset by constructing a histogram of the data. All the voxels are
assigned to bins of the histogram according to their value, and each
voxel gets a probability from the frequency of its bin. The infor-
mation I j carried by the jth voxel is then − log f j , where f j is its
probability (bin frequency). Then, W j for the voxel is α jI j , where
α j is its opacity. We ignore voxels whose opacities are zero or close
to zero, and these voxels are not included in the evaluation of equa-
tion (4). This reduces the computational and memory requirements
for the entropy and similarity calculations (section 4.1).

The answer to what is interesting and what is not is very sub-
jective. Our algorithm can be made to suit the goals of any par-
ticular visualization situation just by changing the noteworthiness
factors. Domain specific knowledge can be readily incorporated
into the framework – for example, using a separate importance vol-
ume which gives importance values for each voxel. It can be used
in conjunction with, or in place of, the noteworthiness criteria de-
scribed in this section. Irrespective of the method used to specify
the interestingness of the voxels, maximizing the entropy serves to
give better visibility to the more interesting voxels.

3.3 A Simple Example

To demonstrate our concept of view information, we constructed
the test dataset shown in figure 2. The voxel opacities of the cube
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Figure 2: An illustration of the change in view entropy (equation 4) with camera position for a test dataset. Figure (a) shows the initial position
of the camera. Figure (b) shows the behavior of entropy as the camera revolves around the dataset (around the vertical axis in the figure) at
1◦ increments. The entropy increases steadily and reaches a maximum for a movement of 45◦ (figure (c)), and then begins to decrease again.
The maximum entropy for the whole view space is obtained for the view in figure (d).

dataset increase linearly with distance from the boundary of the
cube. Figure 2(a) shows the volume rendering the dataset when
the camera is looking directly at one of its faces. Next, we revolve
the camera about the vertical axis of the dataset at 1◦ increments
(or equivalently, rotate the dataset in the opposite direction about
the vertical axis). The view entropy steadily increases (figure 2(b))
as more and more voxels on the side face start becoming visible. It
reaches a maximum when camera has moved by 45◦, which is the
view that shows the two faces equally (figure 2(c)). Further move-
ment of the camera results in greater occlusion of voxels near the
first face, and the entropy begins to drop again. Upon evaluating
the entropies for all camera positions around the dataset, the view
in figure 2(d) results in the highest entropy. Clearly, this is one
of the more informative views about the cube dataset for a human
observer.

3.4 Finding the Good View

The view selection proceeds as follows. The dataset is centered
at the origin, and the camera is restricted to be at a suitable fixed
distance from the origin. This spherical set of all possible camera
positions defines the view sphere, and represents all the view di-
rections. The view space is then sampled by placing the camera at
sample points on this sphere. We create a uniform triangular tes-
sellation of the sphere and place the viewpoints at the triangle cen-
troids. The camera position and the origin specify the eye and the
center points respectively for the modelview transformation. Since
the roll of the camera does not affect the visibilities, the up vector
can be arbitrarily chosen.

Next, the voxel visibilities are calculated for each sample view
position. Our technique is not dependent on any particular vol-
ume rendering method, and both software and hardware renderers
can be used by modifying them to output voxel visibilities. (Please
note that the transparency or voxel visibility as given in equation
(1) is numerically the same as the accumulated opacity subtracted
from unity.) Since we will be comparing the visual probability dis-
tributions (q) and the entropies (H(q)) of different views, it is de-
sirable that we compute the visibilities at the same locations for
all views (say, at the voxel centers). Most renderers, however, do
not perform the opacity calculations exactly at the voxel centers.
Ray-casters accumulate opacities along the rays, and texture based
renderers accumulate opacities at frame-buffer pixel locations, nei-
ther of which are necessarily aligned with voxel centers. We use the
GPU to calculate the visibilities at the exact voxel centers by ren-
dering the volume slices in a front-to-back manner using a modified
shear-warp algorithm. We give a brief description of our implemen-
tation below.

The object-aligned slicing direction is taken along the axis which
is most perpendicular to the viewing plane. We use a floating point
p-buffer with the same resolution as the volume slices. The first
slice has no occlusion, so all the voxels in this slice have their vis-
ibilities set to unity. We iterate through the rest of the slices in a
front-to-back order. In each loop, we calculate the visibilities of
a slice based on the data opacities and the visibilities of the im-
mediate previous slice. In each iteration, the following actions are
performed. The frame-buffer (p-buffer) is cleared, and the cam-
era set such that the current slice aligns perfectly with the frame-
buffer. Then, the immediate previous slice is rendered with a rela-
tive shear[13], and a fragment program combines its opacities with
its visibility values. The frame-buffer now contains the visibilities
of the current slice, and these will be used in the next loop. Render
to texture techniques are used to prevent a copy from the frame-
buffer to a texture. After all the slices are processed, the entropy for
the given view direction is calculated using equations (3) and (4).

Figure 3 shows a time-step of a 256-cube shockwave dataset.
The camera was rotated about the vertical axis in a complete circle,
with the dataset centered at the origin. Entropy was evaluated at 5◦
increments. The first figure shows the view at 55◦ rotation which
was the view with the highest entropy. Figure(b) shows the worst
view, which occurred at 180◦. Figure 4 shows a 128× 128× 80
tooth dataset. The view sphere was sampled at 128 points. Figures
(a) and (b) have the highest view entropy values. Figures (c) and (d)
have the lowest entropy, and not surprisingly, are highly occluded
views. It is notable that the viewpoints for (c) and (d) are not very
far apart, and that (a) and (b) show much of the same voxels. This
shows that if the user wants a few (say, N) good views from the
algorithm, returning the N highest entropy views might not be the
best option. Instead we can try to find a set of good views whose
view samples are well distributed over the view sphere. The next
section presents such a solution.

4 VIEW SPACE PARTITIONING

The goodness measure presented in the previous section can be used
as a yardstick to measure the information captured by different vol-
ume rendering views and select the best view. But the calculation
of goodness considers information from only the given view, and
ignores the information that might be contained in other views. In
particular, neighboring viewpoints tend to have similar visibilities,
and comparing a viewpoint with its neighbors can provide addi-
tional properties of the viewpoint. Also, for most datasets, a single
view does not give enough information to the user. The user will
almost certainly want to look at the dataset from another angle. In-
stead of a single view, it is desirable to present to the user a set of
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Figure 3: The figure shows a time-step of a 256-cube shockwave dataset. The camera was rotated about the vertical axis in a complete circle,
with the dataset centered at the origin. Entropy was evaluated at 5◦ increments. Figure (a) shows the view at 55◦ rotation which was the view
with the highest entropy. Figure(b) shows the worst view, which occurred at 180◦. Figure (c) plots the change of entropy with change in angle.
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Figure 4: The two highest entropy views for the tooth dataset are shown in (a) and (b), and the two worst ones in (c) and (d).

views such that, together, all the views in the set provide a complete
visual description of the dataset. This can also be thought of as a
solution to the best N views problem: given a positive number N,
we want to find the best N views which together give the best visual
representation of the dataset.

We propose to find the N views by partitioning the view sphere
into N disjoint partitions, and selecting a representative view for
each partition. A similar partitioning is defined by aspect graphs
[11][12], where each node (aspect) of the graph represents a set of
stable views. Each set shows the same group of features on the
surface of the object. However, the aspect graph creation methods
deal mostly with algebraic and polygonal models and their topol-
ogy, and cannot be applied in a straightforward manner to volume
rendering. Instead, we compute the partitioning by grouping simi-
lar viewpoints together.

4.1 View Similarity

To find the (dis)similarity of viewpoints, we use the visual probabil-
ity distributions associated with each viewpoint (section 3.1). Pop-
ular measures for computing the dissimilarity between two distribu-
tions p and p′ are the relative entropy (also known as the Kullback-
Leibler (KL) distance), and its symmetric form (known as diver-
gence) which is a true metric [3]. (Please note that some texts refer
to the KL distance as divergence instead.)

D(p‖p′) =
J−1

∑
j=0

p j log
p j

p′j
(5)

Ds(p,p′) = D(p‖p′)+D(p′‖p) (6)

Although these measures have some nice properties, there are
some issues with these measures that make them less than ideal. If
p′j = 0 and p j 6= 0 for any j, then D(p‖p′) is undefined. In our
case, any voxel which is fully occluded (zero visibility) will get a
visual probability q j of zero (equation (3)). If it is visible in one
view but occluded in the other, we cannot evaluate equation 5 for
these views. Also, D(p‖p′) and Ds(p,p′) do not offer any nice
upper-bounds. To overcome these problems, we instead use the
Jensen-Shannon divergence measure [14]:

JS(p,p′) = JS(p′,p) = K(p,p′)+K(p′,p) (7)

where, K(p,p′) = D(p‖(
1
2

p+
1
2

p′)) (8)

The distance between two views V1 and V2, with distributions q1
and q2, is then defined as JS(q1,q2). This measure does not have
the zero visual probability problem, since the denominator of the
log term is zero iff the numerator is zero. It is also nicely bounded
by 0 < JS(q1,q2) < 2. Moreover, it can be expressed in terms of
entropy [14], which allows us to reuse the view information calcu-
lations given in equation (4):

JS(q1,q2) = 2H(
1
2

q1 +
1
2

q2)−H(q1)−H(q2) (9)

4.2 View Likelihood and Stability

We can now use the definition of view-distance given by equation
(9) to define two additional characteristics of viewpoints – view
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likelihood and view-stability. View likelihood of a view V is de-
fined as the probability of finding another view anywhere on the
view-sphere whose view-distance to V is less than a threshold. In
our scenario, it is given the number of view samples on the view
sphere that are within the threshold of V . If a view has a (rela-
tively) high likelihood, it implies that the object or dataset projects
a similar image for a (relatively) large number of views. On the
other hand, a view with low likelihood provides information that is
unique to a few views. This property is indirectly taken into consid-
eration when we partition the set of all the view samples (that is, the
view sphere). Large partitions have views with high likelihoods.

Sometimes it is not the view itself but the change in view that
provides important information. If the view is changed from one
viewpoint to another very similar view, the user is not shown much
new information. But, if the rendering changes by a large amount,
the user sees not just the new information in the visualization but
also derives knowledge from the change that has occurred. Occlu-
sion is one of the most important depth cues that is available to
the user when visualizing three-dimensional renderings on a two-
dimensional surface. A large change in occlusion implies a large
change in visibilities, which results in a large JS distance between
two viewpoints. View stability is a view property that captures this
information and can be used to select viewpoints during interaction.
It is defined as the maximal change that occurs when the viewpoint
is moved anywhere within a given radius from its original position.
The greater the change, the more unstable a viewpoint is. We cal-
culate the (un)stability as the maximum view-distance between a
view sample and its neighboring view samples in the triangular tes-
sellation of the view-sphere. The 180◦ viewpoint in figure 3(b) is
an unstable viewpoint for this particular viewpoint sequence.

4.3 Partitioning

Once the visual probability distributions (q) and their entropies
(H(q)) are calculated as described in section 3, we use the JS-
divergence to find the (dis)similarities between all pairs of view
samples. We then cluster the samples to create a disjoint partition-
ing of view sphere. The number of desired clusters can be specified
by the user. Each partition represents a set of similar views, i.e.,
these views show the voxels at similar visibilities. If desired, the
JS-measure can be weighted using the physical distance between
the view samples to yield tight regional clusters.

The best (highest entropy) views within each partition are se-
lected as representatives of the cluster and displayed to the user.
Together, this set of images gives a good visualization of the dataset
from many different viewpoints. Sometimes, it might happen that
the selected representatives of two neighboring partitions lie on the
common boundary and next to each other. If the view distance be-
tween two selected view samples is less than a threshold, we use a
greedy approach and select the next best sample.

Figure 5 shows the results of a 5-way partitioning of the view
space for the tooth dataset. 128 view samples were used with a
JS-divergence measure. The largest partition contains 39 samples,
while the smallest one has 18. The representative views from four
of the partitions are shown. The view for the fifth partition is figure
4(a). We would like to point out that figures 4(a) and 4(b) both are
in the same partition. In fact, the top ten high entropy viewpoints
all belong to the same partition, illustrating the need for selecting
representative views from different partitions.

5 TIME VARYING DATA

Suggestion of good views becomes all the more useful in the case
of time dependent data. The time required to compute a volume
rendering animation of the dataset grows with the number of time
steps. In an interactive setting, this creates a large lag between a

viewpoint update and the completion of rendering all the frames.
Moreover, it takes more tries by the user to find the desired view-
point because the data changes with time, and the user has to con-
sider not only the current time step but also the previous and future
ones. The user’s job is made harder by cases where an interesting
view in a few time steps turns out to be a dull view in the rest.

In section 3, we discussed the notion of a good view and pre-
sented a measure of view information for a volume dataset. For
time-dependent data, using equation (4) separately for each time-
step is not the best solution – it can yield viewpoints in adjacent
time-steps that are far from each other, thus resulting abrupt jumps
of the camera during the animation. A natural solution is to con-
strain the camera, but it still does not guarantee the most informa-
tive viewpoint. For instance, it can result in a viewpoint which has
a high information value for each individual time-step, but does
not show any time-varying changes. It is contrary to what is ex-
pected from an animation – it should show both the data at each
time-step, and also the changes occurring from one frame to the
next. In the next section, we present an alternate version of view-
point information tailored to capture the view information present
in one time-step, taking into account the information present in the
previous step.

5.1 View Information

Consider two random variables X and Y with probability distribu-
tions r and s respectively. If X and Y are related (not independent),
then an observation of X gives us some information about Y . As
a result, the information carried by Y , conditional on observing X ,
becomes H(Y |X) ≡ H(s|r). Then the information carried together
by X and Y is H(X ,Y ) = H(Y,X) = H(X)+ H(Y |X), as opposed
to H(X) + H(Y ). We will use this concept to create a modified
viewpoint goodness measure for time dependent data.

Suppose there are n time-steps {t1, t2, . . . , tn} in the dataset.
For a given view V , we denote the entropy for time-step ti as
H(V, ti) ≡ HV (ti). The view entropy for all the time-steps together
is HV (t1, t2, . . . , tn). We will assume a Markov sequence model for
the data, i.e., the data in any time-step ti is dependent on the data
of the time-step ti−1, but independent of older time-steps. Then the
information measure for the view, for all the time-steps taken to-
gether, is given by equation (11). (10) is a standard relation [3], and
(11) follows from the independence assumption.

H(V ) = HV (t1, t2, . . . , tn)
= H(t1)+H(t2|t1)+ . . .+H(tn|t1, . . . , tn−1) (10)
= H(t1)+H(t2|t1)+ . . .+H(tn|tn−1) (11)

The conditional entropies will be defined following the same
principles outlined in section 3. We consider a view to be good
when the visibilities of the voxels are in proportion to their note-
worthiness. But in the time-varying case, the significance of a voxel
is derived not only from its opacity, but also from the change in its
opacity from the previous time-step. For the time-step ti, we then
define the noteworthiness factor of the jth voxel as W j(ti|ti−1) =

{k · |α j(ti)−α j(ti−1)|+(1− k) ·α j(ti)} · I j(ti) (12)

where, 0 < k < 1 is used to weight the effects of voxel opacities
and the change in their opacities. A high value of k will highlight
the changes in the dataset. Suppose the visibility of the voxel for
the view V is v j(V, ti). Then, the conditional visual probability,
q j(ti|ti−1), of the voxel is

q j(ti|ti−1) ≡ q j(V, ti|ti−1) =
1
σ
·

v j(V )

W j(ti|ti−1)
(13)

where, σ is the normalizing factor as in equation (3). The entropy of
the view V is then calculated using equations (11) and (13). Voxels
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Figure 5: Representative views for a 5-way partitioning of the view-sphere for the tooth dataset. The view for the fifth partition is figure 4(a).

(a) (b)

Figure 6: View Evaluation results for a 128-cube vortex dataset.
Figure (a) shows the recommended view with a high entropy value,
(b) shows a bad view for comparison.

with both low opacities and small changes (as defined by thresh-
olds) are ignored for these calculations.

6 RESULTS AND DISCUSSION

We have implemented our technique using a hardware-based vis-
ibility calculation (section 3.4). 128 sample views were used for
each dataset. The camera positions were obtained by a regular tri-
angular tessellation of a sphere with the dataset place at its center.
The tests were run on a 2GHz P4, 8x AGP machine with a GeForce
5600 card. For a 128-cube dataset, the visibility calculations for all
128 views were completed in 42s, resulting in an average time per
view of 0.33s. In case of a 256-cube dataset, the calculations for
128 views took 310s, with an average time per view of 2.42s.

View selection results for the 128×128×80 tooth dataset have
been shown in figure 4. Figure 5 shows the results of a 5-way view
space partitioning for the dataset using the JS divergence measure.
The partitioning helps to avoid selection of a set of good views
which happen to be similar to each other. Even though we have
not considered the physical distance between the viewpoints during
partitioning, it forces the selected viewpoints to be well distributed
over the view sphere. Figure 6 shows view evaluation results for
a 128-cube vortex dataset. Both high and low quality views are
shown for comparison.

For time-varying data, we used the view information measure
presented in section 5. A sequence of 14 time-steps of the 128-
cube vortex data was used. The entropy for each view was summed
over all the time-steps, as given by equation (11). The conditional
entropy for each time-step was calculated with k = 0.9 in equation
(12). A high value of k gives more weight to the voxels which

 2  3  4  5  6  7  8  9 10 11 12 13 14
10.8

10.85

10.9

10.95

11

11.05

Time Series

E
nt

ro
py

(a) (b)

Figure 7: View Evaluation for time-varying dataset. (a) The best
overall view for 14 time-steps. (b) The conditional entropies of four
selected views for each of the 14 time-steps. The view in (a) is
represented by the blue plot (highest curve, top-right corner).

are changing their values with time compared to high opacity vox-
els which remain relatively unaltered. Figure 7(a) shows the view
with the best cumulative entropy for the time-series. Although the
summed entropy gives a good overall view for the whole time-
series, there might be other views which are better for particular
segments of the time-series. Figure 7(b) plots the conditional en-
tropies (H(tn|tn−1)) for four selected views of the vortex dataset.
The best overall view (figure 7(a)), which is represented by the blue
curve (highest curve on the right edge), is not the best choice for the
first half of the series. For long time sequences, it might be benefi-
cial to consider different good views for different segments of time.

View entropy was calculated over fifty time-steps of the 256-
cube shockwave dataset with 128 view samples. Figure 8 shows
four time-steps from a viewpoint which had a good entropy us-
ing the time-varying criteria, and figure 9 shows the corresponding
time-steps for a viewpoint which resulted in a bad score.

7 CONCLUSION AND FUTURE WORK

We have presented a measure for finding the goodness of a view
for volume rendering. We have used the properties of the entropy
function to satisfy the intuition that good views show the notewor-
thy voxels more prominently. The user can set the noteworthiness
of the voxels by specifying the transfer function, or by using an
importance volume, or a combination of both. The algorithm can
be used both as an aid for human interaction, and also as an oracle
to present multiple good views in less interactive contexts. Fur-
thermore, view sampling methods such as IBR can use the sample
similarity information to create a better distribution of samples.
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(a) (b) (c) (d)

Figure 8: View entropy results over 50 time-steps of the 256-cube shockwave dataset. Time steps 1, 16, 31 and 46 for a good view.

(a) (b) (c) (d)

Figure 9: Low entropy viewpoint for 50 time-steps of the 256-cube shockwave dataset. Time steps 1, 16, 31 and 46 are shown.
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Dynamic View Selection for Time-Varying Volumes

Guangfeng Ji and Han-Wei Shen

Abstract—Animation is an effective way to show how time-varying phenomena evolve over time. A key issue of generating a good
animation is to select ideal views through which the user can perceive the maximum amount of information from the time-varying
dataset. In this paper, we first propose an improved view selection method for static data. The method measures the quality of a static
view by analyzing the opacity, color and curvature distributions of the corresponding volume rendering images from the given view.
Our view selection metric prefers an even opacity distribution with a larger projection area, a larger area of salient features’ colors
with an even distribution among the salient features, and more perceived curvatures. We use this static view selection method and a
dynamic programming approach to select time-varying views. The time-varying view selection maximizes the information perceived
from the time-varying dataset based on the constraints that the time-varying view should show smooth changes of direction and
near-constant speed. We also introduce a method that allows the user to generate a smooth transition between any two views in a
given time step, with the perceived information maximized as well. By combining the static and dynamic view selection methods, the
users are able to generate a time-varying view that shows the maximum amount of information from a time-varying data set.

Index Terms—Static view selection, image based method, dynamic view selection, information entropy, optimization.

F

1 INTRODUCTION

Visualization of time-varying data has been a challenging problem
due to the large size and the time varying nature of the underly-
ing datasets. Previously, researchers have proposed various tech-
niques [11, 30, 10, 21, 18] to allow for a better understanding of the
time-dependent features and their evolutions through high dimensional
projection, feature tracking, and illustration. However, the most gen-
eral and commonly used method for visualizing time-varying data is
still animation, which is created by rendering each static volume data
in the time sequence. One problem for producing animations for time-
varying data is that the features of interest often evolve over time, with
their shapes, positions, and orientations changing continuously. To
provide the user with the best visualization of those features in an an-
imation, it is very important to select dynamic views that can follow
those features so that a maximum amount of information throughout
the time sequence can be perceived. As a time-varying dataset is usu-
ally large in size and time-consuming to render, selecting views by
hand can be a daunting task if it is simply done by trial-and-error. To
ensure that the large scale time-varying dataset can be explored in an
efficient and effective way, the process of view selection should be
done automatically as much as possible.

In the context of data visualization, researchers have considered
ways to automate the process of view selection [22, 4, 25, 26]. How-
ever, their focuses had not been on time-varying data, which requires
special treatments in order to maximize the amount of information
embedded in the whole time sequence. In addition, certain important
factors when selecting a good view for static data such as the perceived
colors, curvatures, and opacities in the final image were not considered
in their algorithms. In this paper, we first present an improved static
view selection technique to address some issues that were not previ-
ously considered, and then use the new static view selection method
and a dynamic-programming optimization approach to find the best
time-varying view. The goal of identifying the optimal time-varying
view is to maximize the amount of information the user can perceive
from the rendering sequence, with constraints on movement of the
views to ensure a smooth viewing path. Our static view method mea-
sures the quality of a view based on the opacity, color and curvature
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images generated by a volume rendering technique. The contribution
of the paper is as follows:

• An optimization approach that finds the best time-varying view
in a polynomial time within a search space of exponential size.
The approach also takes into account the constraints of the move-
ment of the views.

• We properly design the probability function for the opacity dis-
tribution and incorporate it into the opacity entropy evaluation.
Our opacity entropy prefers an image with a large projection area
with an even opacity distribution. This technique avoids some
problems that can be encountered in [4].

• The color transfer function conveys important information for
volume rendering. We explicitly take into account the color in-
formation by properly designing a probability function and in-
corporating it into the color entropy evaluation.

• The curvature of the dataset contains essential geometric infor-
mation about the dataset. We explicitly take the curvature into
account during the static view selection.

In this paper, we assume that all the view points are located on
the surface of a viewing sphere. At each view point the user looks at
the center of the sphere, where the volume is located. During view
selection, the view moves on the sphere, which means the distance
between the view and the volume center is fixed. We also assume
the viewing and projection parameters are appropriately set up so that
the projection of the volume from any view will not fall outside the
window.

The organization of the paper is as follows. In section 2, we discuss
the related work. In section 3, we introduce our static view selection
method, which includes the evaluation of opacity entropy, color en-
tropy and information from curvatures. We also discuss how to incor-
porate all the three factors into a utility function. In section 4, we intro-
duce our optimization method to perform time-varying view selection
in a polynomial time from an exponential-size search space. We also
give a method to select a dynamic path between any two views which
also maximizes the perceived information. In section 5, we present
results to prove the effectiveness of our method.

2 RELATED WORK

The study of view point evaluation can be dated back to 1976, when
Koenderink and van Doorn [14, 15] introduced the idea of aspect
graph to partition the viewing regions surrounding an object. The node
of the aspect graph is a stable view, around which the topology of the
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object projection does not change within a small region. The edge of
the aspect graph represents a transition from a stable view to an ad-
jacent one. The aspect graph defines the minimum number of views
required to represent all the topologically different projections of the
object. After its introduction, aspect graph has been studied inten-
sively in computer vision, where many researchers used aspect graph
for object recognition [5, 7, 2].

In computer graphics, several methods have been proposed to lo-
cate the optimal views for polygonal meshes. Kamada and Kawai [12]
defined a view to be optimal if it minimizes the number of degenerated
faces under orthogonal projection. Barral et al. [3] extended the idea
to cope with perspective projection. In [25, 26], Vazquez et al.utilized
the concept of information entropy from Information Theory [19] to
evaluate the quality of a viewpoint. The relative visibility of each face
is defined as its probability, and the optimal view is found by maximiz-
ing the probability distribution using the entropy function. Vazquez
et al. [24] also introduced techniques to accelerate the viewpoint en-
tropy calculation for molecular models based on different OpenGL
features. Recently, Takahashi et al. [22] discussed view selection in
the context of volume visualization. They decompose the volume into
a set of feature interval volume components, and use the surface-based
view point selection method suggested in [25, 26] to find the optimal
view for each of the components. Then they calculate the globally
optimal view by a compromise between the locally optimal views of
all the feature components. In [4], Bordoloi and Shen took a volume
rendering approach and proposed that in a good view point, the visi-
bility of a voxel should be proportional to the noteworthiness value of
the voxel. The noteworthiness value, or the weight of the voxel can be
determined by factors such as the opacity and color of the voxel. They
also discussed view similarity and how to partition the view space.

There is a rich literature in computer graphics and animation about
dynamic view selection [20, 1, 29, 9, 23]. Applicable techniques range
from direct orientation interpolation [20] to complex view planning
for complicated 3D scenes. Andujar et al. [1] proposed a camera path
planning method for walkthrough of complex scene models. Their
method is based on identifying the free-space structure of the scene
and an entropy-based measurement of the relevance of a viewpoint.
Wernert and Hanson [29] discussed the camera path planning based
on a personal ”guide” that keeps the user oriented in the navigation
space which also points to interesting subject area. Barral et al. [3]
presented a method for automatic exploration of static scenes. In their
method, the quality of a view is computed by defining a new impor-
tance function that depends on the visible pixels of each polygon.
Hong et al. [9] studied how to select camera path to navigate in the
human colon. van Wijk and Nuij [23] introduced an elegant method to
generate a smooth animation from one view to the other by zooming
and panning. There are two major differences between our work and
the previous work. First we deal with the problem of view selection for
time-varying data where the underlying phenomena are changing over
time. Second our problem involves a different scene setting from the
previous work, where our views move on a viewing sphere and look
at the center of the sphere. Our goal is to maximize the information
perceived from the time-varying data while following the view move-
ment constraints. In [4], Bordoloi and Shen considered the problem
of finding a good viewpoint for time-varying dataset. However, their
method is to find a static view point throughout the animation so that
the user can perceive the maximum summation of conditional entropy
from the time series. The conditional entropy is the relative entropy of
a datastep based on its previous step. Compared with the method, our
method tries to find a dynamic viewing path.

It is also worth mentioning that information entropy has been uti-
lized in lighting design and shape analysis [8, 27, 17]. Gumhold [8]
designed lighting for static scenes and placed light sources at locations
where the illumination information is maximized. The illumination
information is measured by the entropy function, which is calculated
based on the pixel brightness values. Based on the user perception
study, Gumhold further refined the illumination entropy definition by
perceptually binning the brightness values and incorporating an im-
portance weight based on surface curvature measured in the image.

Vazquez et al. [27] improved the method of Gumhold by defining the
information entropy over regions with similar colors measured in the
CIELUV color space, rather than only based on the brightness val-
ues. In [17], Page et al. measured the shape complexity for 2D image
contours and 3D triangle meshes by a shape information metric, and
they proposed an algorithm to compute the metric based on curvature
estimates for both discrete curves and surfaces.

3 STATIC VIEW SELECTION

Fig. 1. The figure to illustrate that the result from [4] should be improved.

The essential problem any view selection technique tries to solve is
to find a good view point through which the users are able to perceive
the maximum amount of information from the underlying scene. In
the context of volume visualization, Takahashi et al. [22] proposed a
surface-based view point optimization algorithm where the geometric
properties of interval volumes faces are considered. Their method pro-
duces good static views for data that can be decomposed into different
interval volumes. Bordoloi and Shen [4] took a direct volume render-
ing approach without the need of intermediate geometry. Their method
generates good views in general with the exception of some cases. For
example, in Figure 1, there are two voxels in the scene, one with a
weight of 0.7 and the other 0.3. Since their method prefers views from
which the visibility of the voxel is proportional to its weight, the voxel
with weight 0.7 has to occlude the other voxel to some degree in order
to achieve a higher score for their entropy formula. However, these
two voxels are readily visible through some views such as V1. From
this example, we can see that if the visibility of a voxel can be max-
imized, it does not have to be proportional to its weight. To remedy
this problem and consider additional important properties of the data,
we propose an image-based view selection method. Our method mea-
sures the quality of a static view not only based on its opacity and
projection size (which is the primary criterion of some of the previous
algorithms), but also explicitly considers the color and curvature dis-
tribution of the rendered images. Our motivation comes from the fact
that color and curvature convey very important information about the
underlying phenomenon in many applications.

3.1 Measurement of Opacity Distribution and Projection
Size

Imagine a user is visualizing a volumetric dataset using a volume ren-
dering technique. Some voxels in the volume have higher opacity val-
ues, meaning these voxels are more important. Less important voxels
are assigned with smaller opacities. Initially the user may choose a
view through which many opaque voxels are aligned in the viewing
direction and hence more occlusion occurs. In this case, some pixels
in the final image will have very high opacity values, while the opacity
values at other pixels are low. The user realizes that this is not a good
view, so s/he changes to a view where less occlusion occurs in the vol-
ume, so that the user can see many voxels more clearly. In this case,
the opacity value in the image will be more evenly distributed. Besides
this, the user may also generally prefer a rendering image with a larger
projection area. From this example, it can be seen that an important
factor that contributes to the selection of good views is the distribution
of opacity values and the size of the projection area in the resulting
image. An image with an even opacity distribution and a large projec-
tion area should be more favorable than one with an uneven opacity
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distribution and/or a small projection area. A function is desired to re-
flect the property. The Shannon entropy function [19] can be utilized
to perform the measurement.

In Information Theory, the Shannon entropy function is used to
measure the amount of information contained in a random sequence
of symbols. Suppose the symbols occur in the set {a0,a1, ...,an−1}
with the occurrence probability {p0, p1, ..., pn−1}, the average infor-
mation of the sequence, called entropy, is defined as

H(x) =−
n−1

∑
i=0

pi · log2(pi) (1)

One nice property of the entropy function is that it is a concave
function. It only has one local maximum value, which is also the
global maximum value. It reaches this maximum value log2n when
p0 = p1 = ... = pn−1 = 1/n, that is, the distribution of the probabil-
ity is perfectly even among all the symbols. As the probability moves
away from the perfectly even distribution along a straight line in any
direction, the probability becomes less and less evenly distributed, and
the value of the entropy function will also decrease.

The Shannon entropy function can be utilized to measure the infor-
mation contained in an opacity image. We now explain how the prob-
ability is designed so that the entropy function gives a higher value
when the opacity value is more evenly distributed and the projection
area is larger, while it gives lower values otherwise. Given an opacity
image which contains n pixels with opacity value {α0,α1, ...,αn−1},
we define the probability pi of the ith pixel as

pi =
αi

∑n−1
j=0 α j

(2)

The image entropy is calculated by equation 1. Although the en-
tropy is evaluated over all the image pixels, the background pixels ac-
tually do not contribute to the entropy. The reason is that the opacity
value of any background pixel is 0, so it will not affect the probability
and entropy contribution of any foreground pixel. Furthermore, since
0 · log20 is defined as 0, background pixels will not contribute to the
final entropy value of the whole image. Therefore, we can define the
image entropy just over the foreground area. The image entropy gets
the maximum value when all the foreground pixels occur in the same
probability, that is, all the foreground pixels have the same opacity
values.

The entropy function also takes into account the size of the projec-
tion area, which is the foreground of the image. The reason is that the
maximum entropy value of an image is log2 f , where f is the size of
the foreground. Therefore, the entropy of an image with a large fore-
ground area and even distribution gets a higher value than one with
smaller foreground areas. In summary, our opacity entropy function
prefers an image with a large projection area with an even opacity dis-
tribution.

3.2 Measurement of Color Distribution
Opacity is just one factor that influences the selection of good views.
Another important factor that determines the quality of a view is color.
In volume rendering, colors are often assigned to voxels by using a
color transfer function. A well-designed color transfer function should
highlight salient features by using perceptually attentive colors, and
map unimportant voxels to some less attentive colors. The measure-
ment of a view’s quality should keep the fidelity of the color transfer
function. This means that in the color-mapped volume, even though
some colors (the less attentive colors assigned to unimportant vox-
els, for example) may occur more frequently than some other colors
(attentive colors assigned to salient features, for example), the less fre-
quently salient feature colors actually carry more information. There-
fore a good volume rendering image should contain more of these col-
ors and thus more information about the salient features. Furthermore,
we always want to highlight as many salient features as possible in
the limited screen area. If the volume contains multiple salient fea-
tures, these features should be mapped to the final images equally, i.e,
the projected areas for different colors should be as even as possible

among all the salient features. Based on the analysis, it can be seen
that a good view should maximize the area of the salient colors while
maintaining an even distribution among these colors.

To measure the color distribution of the volume rendering image,
we also utilize the Shannon entropy function. The entropy function
and the probability evaluation should be designed so that the entropy
function gives a higher value for an image with more evenly distributed
and larger areas of salient colors, while giving lower values for images
with less evenly distributed and/or smaller areas of salient colors. Sup-
pose there are n colors {C0,C1, ...Cn−1}, where C1,C2, ...Cn−1 occurs
in the color transfer function and C0 is the background color (actually
C0 can be a spectrum of colors, which includes every pixel of the im-
age which is not perceptually similar to any of C1,C2, ...Cn−1). Given
any pixel in the rendered image, we can determine which feature it be-
longs to by measuring the perceptual color distance between the pixel
color and the feature color. If it does not belong to any feature (ei-
ther the feature it should belong to is highly occluded, or it comes
from unimportant voxels), it will be assigned to C0. Please note that
a perception-based color space should be used during the process. We
choose the CIELUV color model [6] since it provides a perceptually
equal color space, i.e., the distance in CIELUV space reflects the per-
ceptual color difference. Suppose the total window area is T and the
color areas of C1,C2, ...Cn−1 are A1,A2, ...An−1 respectively. The area
for C0 is then A0 = T −∑n−1

i=1 (Ai). The probability is defined as

pi =
Ai

T
(3)

It is a probability definition since T = ∑n−1
i=0 (Ai). The color en-

tropy function is defined as in equation 1. We can see that the entropy
reaches its maximum value when A0 = A1 = ... = An−1, that is, all
the color areas are even. Due to the inclusion of A0, large background
area will incur small total salient color area, and thus uneven prob-
ability distribution and small entropy value accordingly. Therefore,
the entropy function and our probability definition prefer larger total
salient color area and more even distribution among all salient colors.
It should be noted that the probability definition can lead to a small
undesired effect. This happens when we see each of the salient colors
and the background with the same area, which reaches the maximum
of the entropy. The entropy will get smaller if the area of salient colors
is enlarged, and this is undesired. However, this is less likely to hap-
pen in practice since the background area for any given view is usually
large enough so that the volume rendering images from all the views
can be projected into the window. We can also intentionally increase
the window size to avoid the problem. Furthermore, even if the error
occurs, it can be as large as log(n)− log(n− 1), which is a negligi-
ble number for a relatively large n. A similar approach has been used
in [25] to deal with the background issue.

It is also noteworthy to mention that we choose a lighting model
which involves only ambient and diffuse lighting calculation. Spec-
ular lighting is not included since it can alter the color of pixel by
the color of the light. The color entropy evaluation works well for a
well-designed color transfer function where colors are used to high-
light different features (for example, colors are used to depict different
components in a segmented volume). If a color transfer function just
simply assigns gray-scale or rainbow colors according to different val-
ues, the color entropy may not reflect the feature information contained
in the view.

3.3 Measurement of Curvature Information
Opacity and color are two important factors that measure the quality
of a view. In addition to opacity and color, there are other proper-
ties that also contribute to the information provided in a volume ren-
dering image. One of such properties is the curvature. Previously,
Lee et al. [16] utilized curvature to identify the mesh importance in-
formation. They introduced the idea of mesh saliency as a measure
of regional importance for graphics meshes, and the mesh saliency is
defined in a scale-dependent manner using a center-surround opera-
tor on Gaussian-weighted mean curvatures. In our method, we notice
that low curvatures imply flat areas and high curvatures mean highly
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irregular surfaces, which often contain more information (If the vol-
ume is noisy, a smoothing operation should be performed beforehand).
Therefore, it is important to take the curvature information into ac-
count during the selection of good views.

One problem of considering curvature information in view selec-
tion is how to present the curvatures in a volume rendering image. We
achieve this with two steps. First we calculate the curvature at each
voxel position of the volume, using the method proposed by Kindl-
mann et al. [13]. When the volume is rendered, the color of a voxel is
determined by its curvature. Voxels with high curvature are assigned
with high intensity colors, while voxels below a certain low-curvature
threshold are assigned with the color (0,0,0). The opacity of the voxel
is determined independently, which can be based on its original data
value, or some other properties such as the gradient. After the render-
ing is performed and the image is generated, the intensity of the image
reflects the amount of curvature perceived from the visible part of the
volume, that is, an image with high intensity means that the user can
see many high-curvature voxels from that view.

3.4 The Final Utility Function
Opacity, color and curvature all contribute to the information per-
ceived from a rendering of the volume. We need a function to in-
corporate all the factors. This utility function [28] u from a view v
should have the following basic form:

u(v) = α ·opacity(v)+β · color(v)+ γ · curvature(v) (4)

where α + β + γ = 1. One problem with the utility function is that
the opacity, color and curvature contributions are not normalized. We
should normalize each of the factors into [0,1] before the summation.
The maximum value of the entropy function of an image with a pro-
jection size of n is log2n. So if we find the maximum projection size
M of the images among all the views, each of the entropies can be
normalized by dividing over log2M. The maximum value of the color
entropy is log2n, where n is the number of colors (see section 3.2).
Therefore, the color entropy can be easily normalized by a division
over log2n. The normalization of the curvature contribution can also
be easily done by a division over the maximum projection size M,
since the maximum intensity of each pixel is 1.

If we possess any prior knowledge of the volume, it is often desir-
able to give different weights to different factors. One scenario is that
people often design very sophisticated opacity transfer function, but
use a simple gray-scale or rainbow color transfer function. In this case,
it is desirable to put more weight into opacity(v) than color(v), since
opacity conveys more information. However, in another case where
different colors are used to highlight different features in a segmented
volume, it is desirable to put large weight to color(v). In practice, we
can choose proper weight for every factor based on the characteristic
of the data and transfer function and the nature of the application.

4 DYNAMIC VIEW SELECTION

In this section, a dynamic view selection algorithm is presented. The
goal of dynamic view selection is to allow the user to find a view-
ing path which shows the maximum amount of information from the
time-varying dataset, and the path should show near-constant angular
velocity (all the views lie on the surface of a viewing sphere). We
formulate this into the following three principles that a good dynamic
viewing path should follow:

• The view should move at a near-constant speed.

• The view should not change its direction abruptly.

• The information perceived from the time-varying data should be
maximized among all the viewing paths.

In the following subsections, we first discuss the issue of how to
select time-varying views that follow the three principles. Then we
present a method that allows the user to find a path between any two
views in a given timestep that maximizes the perceived information
while obeying the other two principles.

4.1 Time-Varying View Selection
The problem of time-varying view selection is that given a view at
t = 0, among all the possible paths along which the view can move
smoothly to the final timestep at a near-constant angular velocity, find
the path that gives the maximum perceived information. If in average
a view can move to one of n possible views at the next timestep, and
there are total t timesteps, the complexity of the problem can be nt .
This search space is exponentially large. It is impractical to try all
these paths and find the optimal one.

To solve the problem more efficiently, we can employ the dynamic
programming approach. Let’s first consider selecting time-varying
views with the first and third principles in mind, that is, we want to
find a time-varying view that moves at a near-constant speed, and
the information perceived from that path is maximized out of all
possible paths. Suppose the camera is moving with speed V , with
Vmin ≤ V ≤ Vmax. Vmin and Vmax are used to bound the speed of the
view so that when Vmin is close to and Vmax, the view moves at a
near-constant speed. We use Pi, j to denote the position of the jth view
at t = i, and MaxIn f o(Pi, j) is the maximum amount of information
perceived from Pi, j to some view at the final timestep. The following
recursive function holds:

MaxIn f o(Pi, j) = maxNumo fViews−1
k=0 {u(Pi, j)−Cost(Pi, j,Pi+1,k)

+MaxIn f o(Pi+1,k)}

where u(Pi, j) measures the information perceived at the view Pi, j .
Cost(Pi, j,Pi+1,k) measures the cost to move from Pi, j to Pi+1,k. If the
jth view point and the kth view are within [Vmin,Vmax], the cost is 0,
otherwise the cost is +∞. The equation basically says the maximum
amount of information perceived from Pi, j to some view point at the
final timestep will be equal to the sum of the information perceived
at Pi, j , and the maximum information perceived from Pi+1,k to some
view at the final time step. Pi+1,k represents a view point at t = i + 1
that can be reached within [Vmin,Vmax] distance from Pi, j . We will con-
sider all the views Pi+1,k at timestep i+1. The following C-style code
performs the calculation of all the MaxIn f o(Pi, j).

for (i=0; i<NumofViews; i++)
MaxInfo[NumofTimeSteps-1, i]=
u[NumofTimeSteps-1, i];

for (i=NumofTimesteps-2; i>=0; i--)
for (j=0;j<NumofViews; j++)
{

MaxInfo[i, j]=0;
for (k=0; k<NumofViews; k++)
{

double Info=u[i, j]-Cost(j,k)
+MaxInfo(i+1, k);
if (Info>MaxInfo[i, j])
{

MaxInfo[i, j]=Info;
NextViewIndex[i, j]=k;

}
}

}

The initial condition is MaxIn f o(Pn−1,i) = u(Pn−1,i) for i ∈
[0..Numo fViews− 1]. The dynamic programming process calculates
all the MaxIn f o{Pi, j} backwards in time, according to the recursive
function. NextNodeIndex{Pi, j} records the view index at the next
timestep that gives the maximum information from Pi, j to some view
at the final timestep, and it can be used to recover the time-varying
path. The dynamic programming process finishes all the computation
in O(n · v2) time, where n is the number of total timesteps, and v is
the number of total views. This process only takes a polynomial time
complexity.

The above dynamic programming calculates an optimal path based
on the restriction that the view should move with the speed within
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(a) (b)

Fig. 2. An example of a partition of a view point’s local tangent plane
and one of the possible allowed turns encoded in matrix.

[Vmin,Vmax]. But it does not prohibit the view from making sharp
turns, which is undesirable when viewing the animation. It is also
impossible to use the information stored at NextViewIndex to find the
optimal path that does not make sharp turns, since NextViewIndex
only records the optimal paths that move at a near-constant speed.
To address this problem, at each view point on the viewing sphere,
we partition its local tangent plane into many different regions,
and restrict the allowed turns. Figure 2 illustrates a partition of
eight regions and a matrix that encodes the allowed turns. We use
MaxIn f o(Pi, j,r) to denote the maximum amount of information
perceived from Pi, j to some view point at the final timestep, and Pi, j
was entered from region r from its previous view. Then the following
recursive function holds:

MaxIn f o(Pi, j,r) = maxt=0..Numo f Regions−1,k∈Regiont{u(Pi, j)
−Cost(Pi, j,Pi+1,k)+MaxIn f o(Pi+1,k,t)}

The following C-like code calculates all the MaxIn f o(Pi, j,r):

for (i=0; i<NumofViews; i++)
for (j=0; j<NumofRegions; j++)

MaxInfo[NumofTimeSteps-1, i, j]=
u[NumofTimeSteps-1, i];

for (i=NumofTimesteps-2; i>=0; i--)
for (j=0; j<NumofViews; j++)

for (r=0; r<NumofRegions; r++)
{

MaxInfo[i, j, r]=0;
for (all ts and each k in region t)
{

int o=FindRegionNum(k, j);
if (!AllowedTurn[r, o])

continue;
double Info=u[i, j]-Cost(j, k)
+MaxInfo(i+1, k, t);
if (Info>MaxInfo[i, j, r])
{

MaxInfo[i, j, r]=Info;
NextViewIndex[i, j, r]=k;
NextRegionIndex[i, j, r]=t;

}
}

}

where o is the region number leaving the jth view, and o can be eas-
ily determined based on the the projection to local tangent plane at
the jth view. NextViewIndex and NextRegionIndex record the view
and region index at the next timestep that offers the maximum infor-
mation to some view at the final timestep. These two data structures
can be used to recover the path. The dynamic programming process
finishes all the computation in O(n · r · v2) time, where n is the num-
ber of timesteps, v is the number of views, and r is the number of
regions. This process only takes a polynomial time complexity. After

the dynamic programming is done, given the initial view at t = 0, the
results stored at MaxIn f o, NextViewIndex and NextRegionIndex can
be used to find the maximum perceived information and the optimal
time-varying view associated with the initial view.

4.2 Viewing Path Between any Two Views in a Given
Timestep

Another case of dynamic view selection is to find a viewing path be-
tween any two viewpoints in a given timestep. This viewing path
should also follow the three principles, i.e., moves between these two
viewpoints smoothly with a near-constant angular velocity, and maxi-
mizes the perceived data information at the same time. This technique
can be very useful to showcase a static dataset. When generating an
animation, keyframes are usually specified by the user, and interme-
diate frames are generated by interpolation. If different viewpoints
are assigned in the different keyframes, spherical linear interpolation
(SLERP) is a common technique to interpolate the intermediate view
positions. SLERP does give a viewing path with constant angular ve-
locity, but it does not take the perceived information into considera-
tion. Next we will explain how we maximize the perceived informa-
tion and take all three principles into consideration.

Fig. 3. The solid curve is the SLERP path. Our algorithm will consider
all the neighbors of the SLERP path that lie within the dotted area. All
the neighbors are parameterized by u and v.

Given any two views on a viewing sphere, there are an infinite num-
ber of paths that connect these two views. One factor in our design of
the dynamic path is that it should follow the general direction of the
SLERP path, since the SLERP path is the shortest path that connects
the two points with constant angular velocity. Therefore, we only al-
low the view to move at the neighboring views of the SLERP path (as
shown in Figure 3). We also need to put restriction on the direction of
the allowed movement so that the view will not go back and forth in a
circular manner. We achieve this by parameterizing all the neighbors
relative to the SLERP path, as illustrated in Figure 3. A movement
is allowed only if the u parameter is increasing and the v parameter
difference is within a threshold. We call these paths monotonic paths.
We can also enforce the direction change by adopting the local coor-
dinates and the admissible turn matrix in Figure 2. When evaluating
the quality of different paths, the summation of information should not
be used, since some paths can go through more view points than oth-
ers. One good criterion can be the average information. The pseudo
code below illustrates how to use the propagation method similar to
the single-source shortest path algorithm to find the optimal path.

ActiveSet={Source viewpoint S};
PathLength=0;
PathInfo[S, PathLength]=u(S);

Initialize all the other PathInfos to a
minimum value;
NextActiveSet=empty;

while(ActiveSet is not empty)
{

PathLength++;
for each view V in ActiveSet

for each neighbor N of V

1113



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

(a) (b) (c) (d) (e)

Fig. 4. The figure shows the static view selection results based on opacity entropy for the shockwave dataset. (a) shows the worst view, (b) is the
best view, and (c) and (d) are the opacity images for (a) and (b) respectively. (e) plots the change of opacity entropy with respect to different viewing
angles where the shockwave is rotated around the Y axis in a full circle.

(a) (b) (c) (d) (e)

Fig. 5. The figure shows the static view selection results based on opacity entropy for the tooth dataset. (a) shows the worst view, (b) is the best
view, and (c) and (d) are the opacity images for (a) and (b) respectively. (e) plots the change of opacity entropy with respect to the viewing angle
when the tooth is rotated around the X axis in a full circle.

if (the movement from V to N is
monotonic)

{
PathInfo[N, PathLength]=max(
PathInfo[N, PathLength],
u(V)+PathInfo[V, PathLength-1]);
Put N in NextActiveSet;

}
ActiveSet=NextActiveSet;

}

For all the PathInfo[D, n] where D is the
destination
{

Find the one with the maximum average
information and it will be the optimal
path.

}

Notice the above process only runs on the neighborhood of the
SLERP path. If the neighborhood vertices and edges among the ver-
tices are stored in an adjacency matrix, the algorithm takes O(V 2)
time. If the vertices and edges are stored in an adjacency list, the al-
gorithm takes O(E +V logV ) time, where V is the number of vertices,
and E is the number of edges.

5 RESULTS AND DISCUSSION

We have implemented and tested both the static and dynamic view se-
lection algorithms on a Pentium IV 1.4GHz machine with an nVidia
GeForce 6800 graphics card. Our view selection algorithms take as in-
put the opacity, color and curvature images rendered from the dataset,
which can be generated by any volume rendering technique. In our im-
plementation, we choose a hardware-based volume slicing technique
with 3D texture mapping to generate those images. 256 sample views
were used for each dataset, and these views are evenly distributed on
the viewing sphere.

The test result for the 512×64×64 shockwave dataset is shown in
Figure 4. The opacity entropy value is used during the test to show
its effectiveness in determining view quality. Figure 4 (a) shows the
worst view which has the smallest opacity entropy, and Figure 4 (b)
shows the best view with the highest opacity entropy. Figures 4 (c)
and (d) illustrate the opacity images of the worst and best views re-
spectively. It took 6.92 seconds to compute the opacity entropy values
for the 256 views and find the best and worst views, and the size of
all the images is 256×256. By using entropy and the proposed prob-
ability function, our opacity entropy evaluation takes both the opacity
distribution and the projection area into consideration, and the opacity
entropy prefers an image with an even opacity distribution and a larger
projection area. To illustrate how the opacity entropy varies according
to different viewing angles, the view is rotated along the Y axis in a
complete circle. Figure 4 (e) plots the change of opacity entropy with
respect to different views.

We also used the 128× 128× 80 tooth data to test the view selec-
tion algorithm based on the opacity entropy, and the result is shown in
Figure 5. Figure 5 (a) shows the worst view with the smallest opacity
entropy, and Figure 5 (b) shows the best view with the largest opac-
ity entropy. Figures 5 (c) and (d) are their opacity images. It took
7.18 seconds to compute the opacity entropy values for the 256 views
and find the best and worst views, and the size of all the images is
256× 256. The variation of opacity entropy with respect to different
views is also plotted in the Figure 5 (e), where the viewing angle is
rotated incrementally around the X axis.

We used the 1283 vortex dataset to show the effectiveness of the
color entropy function. The data set contains many components and
we use the color transfer function to highlight components which may
go through topological changes in future timesteps. Other components
are assigned a gray-scale color. Figure 6 (a) shows the worst view with
the smallest color entropy, and Figure 6 (b) shows the best view. It can
been easily seen that Figure 6 (b) conveys more information about the
five topologically important features than Figure 6 (a). In Figure 6
(a), the total projection area of the five highlighted features is small,
and the projection area ratio among the highlighted features is very
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(a) (b) (c)

Fig. 6. The figure shows the static view selection results based on color
entropy for the vortex dataset. (a) shows the worst view, (b) is the best
view, and (c) plots the change of color entropy with respect to different
viewing angles when the vortex is rotated around the Y axis in a full
circle.

(a) (b) (c)

Fig. 7. The figure shows the dynamic view selection results for the TSI
dataset. (a) shows the worst view, (b) is the best view, and (c) plots the
change of the final information with respect to the viewing angle when
the TSI dataset is rotated around the Y axis in a full circle.

uneven. This leads to a very small color entropy value. In contrast, in
Figure 6 (b), the five highlighted features have a large projection area
and an even projection area distribution, and therefore a large value for
the color entropy. It took 16.3 seconds to compute the color entropy
values for the 256 views and find the best and worst views, and the
size of the color images is 256×256. Figure 6 (c) plots the change of
color entropy with respect to different views where the viewing angle
is rotated incrementally around the Y axis.

Fig. 8. The figure shows two paths which move from one view point to
the other. The right path is generated by SLERP interpolation with an
average information of 0.51. The left path is generated by our method.
The path is smooth and gives an average information of 0.56.

Figure 7 gives the view-selection result for the Terascale Super-
nova Initiative (TSI) dataset. The dataset modelled the core collapse
of supernovae and was generated by collaboration among Oak Ridge
National Lab and eight universities. In the paper, we visualize the en-
tropy scalar component of the dataset, which is derived from pressure
and density scalar values. When exploring the dataset, we used the
rainbow color transfer function. Therefore, in our view selection test,
color information is not considered. Two factors, curvature and opac-
ity, are considered in the calculation of view information. We want to
design a utility function which puts more weight for views that show

more jagged area. In our design, we set the coefficients for curvature
and opacity to 0.8 and 0.2 respectively. Figure 7 (a) shows the worst
view, and Figure 7 (b) is the best view. It is obvious that Figure 7
(b) shows more detailed information about the jagged area than Fig-
ure 7 (a). It took 18.7 seconds to evaluate the curvature information
and opacity entropy for all the 256 views and find the best and worst
views, and the size of the images is 256×256. To show how the view
utility function varies, Figure 7 (c) plots the change of utility value
with respect to different views, where the view is rotated incremen-
tally around the vertical (Y) axis.

We also used the TSI dataset to test our dynamic view selection al-
gorithm. The supernova is a very dynamic phenomenon where the fea-
tures are morphing and rotating rapidly in space. Our previous static
view selection algorithm shows that at a given timestep, very little in-
formation about the phenomenon can be perceived if the volume is
viewed from some bad views. If the view for an animation is fixed,
much of the phenomenon would be occluded for many timesteps (see
Figure 9 (f)-(i)). Recall that the goal of our algorithm is to find a view-
ing path with the maximum amount of information, which also follows
the constraint that the camera moves at a near-constant angular veloc-
ity. We used our static view selection to calculate the view information
of every view point at every timestep and used our dynamic program-
ming algorithm to find the best path. All the timesteps use the same
view point set on the sphere. Figure 9 (a) shows the best path in which
viewpoint P0,0 moves in time with the speed within (0.9, 1.2) (The ra-
dius of the viewing sphere is 1). Although the supernova phenomenon
is morphing rapidly, we still perceive a maximum amount of infor-
mation following our dynamic viewing path. It took 4.31 seconds for
the dynamic programming process to find the optimal path. Figure 9
(a) shows part of the path, which demonstrates near-constant angu-
lar velocity (the distance in Figure 9 (a) is distorted). Furthermore,
following the path, the overall information perceived from the time-
varying data is maximized. Figures 9 (b)-(e) show four snapshots of
the time-varying dataset captured by the time-varying view path, and
Figures 9 (f)-(i) show the images seen from the original view at the
timesteps corresponding to (b)-(e) respectively. The user can appar-
ently see more turbulent side of the phenomenon all the time from the
time-varying views.

We also used the TSI dataset to show a viewing path selected from
any two views in a given timestep. The TSI dataset at t = 0 is used, and
Figure 8 shows both the SLERP and the optimized paths. It took 0.08
seconds to find the optimized path. The average information perceived
by the SLERP path is 0.51, while the optimized path gives 0.56.

6 CONCLUSION AND FUTURE WORK

In this paper, we present methods for both static and dynamic view
selection. Our static view selection algorithm analyzes opacity, color
and curvature images generated from different view points. We prop-
erly design the probability functions and use entropy to evaluate opac-
ity and color distributions. Our algorithm also prefers a view which
shows high curvature information. Depending on the characteristic of
the data set and the opacity and color transfer function, and the nature
of the application, we can design different utility functions to assign
different weights to the three factors. Based on our static view selec-
tion and dynamic programming, our dynamic view selection method
maximizes the information perceived from the time-varying dataset
following a near-constant angular velocity path. The optimization is
achieved in a polynomial time. Our results show the effectiveness of
the static and dynamic view selection.

In addition to dynamic view point planning, another important pa-
rameter for animation would be lighting design. Gumhold [8] dis-
cussed light source placement for static polygonal meshes. We would
like to conduct the research for lighting design for time-varying polyg-
onal and volumetric data in our future work.
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corresponding to (b)-(e) respectively.
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LOD Map - A Visual Interface for Navigating
Multiresolution Volume Visualization

Chaoli Wang, Student Member, IEEE, and Han-Wei Shen

Abstract—In multiresolution volume visualization, a visual representation of level-of-detail (LOD) quality is important for us to exam-
ine, compare, and validate different LOD selection algorithms. While traditional methods rely on ultimate images for quality measure-
ment, we introduce the LOD map - an alternative representation of LOD quality and a visual interface for navigating multiresolution
data exploration. Our measure for LOD quality is based on the formulation of entropy from information theory. The measure takes
into account the distortion and contribution of multiresolution data blocks. A LOD map is generated through the mapping of key LOD
ingredients to a treemap representation. The ordered treemap layout is used for relative stable update of the LOD map when the
view or LOD changes. This visual interface not only indicates the quality of LODs in an intuitive way, but also provides immediate
suggestions for possible LOD improvement through visually-striking features. It also allows us to compare different views and perform
rendering budget control. A set of interactive techniques is proposed to make the LOD adjustment a simple and easy task. We
demonstrate the effectiveness and efficiency of our approach on large scientific and medical data sets.

Index Terms—LOD map, knowledge representation, perceptual reasoning, multiresolution rendering, large volume visualization.

F

1 INTRODUCTION

The field of visualization is concerned with the creation of images
from data. In many cases these images are observed by humans in an
effort to test hypotheses and discover insights. Visualization is, there-
fore, an iterative and exploratory process. Human-computer interac-
tions, such as parameter tweaking, are often involved in a bid to create
better representations. This scenario works well for small data. With
the advances in graphics hardware, the interactivity can be guaranteed
even with a straightforward implementation. For larger data, the re-
sponse time of a visualization system could become uncomfortably
long. Slower responses result in an increase in time needed to obtain
insights from the data. This poses a great challenge for visualization
to be effective and efficient [22].

In this paper, we focus on the subject of multiresolution render-
ing in the context of large volume visualization. A central theme for
multiresolution volume rendering is the selection of data resolution,
or level-of-detail (LOD). Quite often, such LODs are automatically
determined by user-specified error tolerances and viewing parameters
[27, 10, 5]. Many of the metrics, such as mean square error (MSE)
and signal-to-noise ratio (SNR), are data-centric in the sense that they
measure the distortion between low and high resolution blocks in the
data space (Geometric error metrics, on the other hand, are often used
in surface rendering, where the geometry or mesh is known. In this
paper, we do not consider this case.). Although those metrics have
specific meanings and are simple to compute, they are not effective
in predicting the quality of rendered images due to the lack of corre-
lation between data and image [25]. In fact, finding the best LOD is
a NP-complete optimization problem [3], so most algorithms take a
greedy approximation strategy instead. In this case, data blocks are
selected according to their priority values till certain constraints, such
as the block budget, are met. Rarely, we have a mechanism to examine
the quality of LODs from those greedy selections, and decide whether
it is possible to further improve the quality through either automatic
methods or user interactions.

Another important but non-trivial issue is the validation of existing
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LOD selection algorithms. In computer graphics and visualization,
validation is usually done through side-by-side comparison of images
created from different techniques. However, it may not be effective for
multiresolution volume visualization. This is because direct rendering
of 3D volumes to 2D images involves light attenuation, blending, and
transfer function mapping, where much information about a LOD may
be hidden or lost. Without the complete information, it could be in-
sufficient to assess the improvements of new algorithms over existing
ones. Moreover, a large data set is often too complex to be understood
from a single image. Inspecting images from different views requires
rendering large amount of data, which makes it very difficult for us to
perform the validation efficiently.

From the problems mentioned above, it can be seen that there is a
great need to devise techniques for multiresolution volume visualiza-
tion that allow the user to examine, compare, and validate the quality
of LOD selection and rendering. To fulfill this need, we present a new
measure for LOD quality based on the formulation of entropy from
information theory. Our quality measure takes into account the quality
of each individual data block in a LOD and the relationships among
them. This entropy measure allows us to map key ingredients of the
LOD quality to a treemap representation [17], called the LOD map,
for further visual analysis. The LOD map brings us a novel approach
for navigating the exploration of large multiresolution data. By “nav-
igating”, we mean the user is guided with immediate visual feedback
when making decisions about where to go, what to do, and when to
stop. The user is provided with cues that leads her quickly to inter-
esting parts of the data. She would readily know what actions to take
to adjust the LOD, clearly see the gain or loss of the adjustment, and
be informed when the refinement process may be stopped. Leveraging
a heuristic optimization algorithm and a set of interactive techniques
designed for the LOD map, making LOD adjustment and rendering
budget control becomes a simple and easy task. Experimental results
on large data sets demonstrate that this visual representation of LOD
quality is light-weighted yet quite effective for interactive LOD com-
parison and validation.

2 RELATED WORK

The past few years witnessed the rapid growth of data. Scientific sim-
ulations are producing petabytes of data as opposed to gigabytes or
terabytes a couple of years ago. Building a multiresolution data hier-
archy from large amount of data allows us to visualize data at different
scales, and balance image quality and computation speed. Examples
of hierarchical data representation for volume data include the Lapla-
cian pyramid [4], multi-dimensional trees [27], and octree-based hier-
archies [10]. Muraki introduced the use of wavelet transforms for vol-
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umetric data [16]. Westermann [26] proposed a framework for approx-
imating the volume rendering integral using multiresolution spaces
and wavelet projections. Guthe et al. [5] presented a wavelet-encoded
hierarchical representation, called the wavelet tree, that supports inter-
active walkthroughs of large data sets on a single commodity PC. In
this paper, we use the wavelet tree as an illustration for our presenta-
tion.

The goal of visual data exploration is to facilitate the extraction of
new insights from the data. For instance, Marks et al. [14] presented
the Design Gallery system that treats image and volume rendering as
a process of exploring a multidimensional parameter space. Using an
image difference metric, the system arranges renderings from various
parameter settings, from which the user selects the most appealing
one. Bajaj et al. [1] introduced the contour spectrum, a user inter-
face component that improves qualitative user interaction and provides
real-time exact qualification in the visualization of isocontours. A set
of well-designed manipulation widgets for multidimensional transfer
function design was given by Kniss et al. [9]. By allowing direct in-
teraction in the spatial and transfer function domains, those widgets
make finding transfer functions an intuitive and efficient process.

On the other hand, the process of visual data exploration contains a
wealth of information - parameters, results, history, as well as relation-
ships among them. To learn lessons and share experiences, the process
itself can be stored, tracked, and analyzed. It can also be incorporated
into, and thus becomes a part of the user interface of a visualization
system. Such examples are image graphs [13], and interfaces with
spreadsheet [6] and parallel coordinate [21] styles. A general model of
the visualization exploration process was formalized by Jankun-Kelly
et al. [7].

Over the last decade, a number of information visualization tech-
niques have been developed to support the visual exploration of large
and high-dimensional data sets [8]. Parallel coordinates and treemaps
are two most widely-used techniques among them. The treemap [17]
is a space-filling method for visualizing large hierarchical information.
It works by recursively subdividing a given display area based on the
hierarchical structure, and alternating between vertical and horizon-
tal subdivisions. The information of an individual node is presented
via visual attributes, such as color and size, of its bounding rectangle.
Originally designed to visualize files on a hard drive, treemaps have
been applied to a wide variety of domains [19].

One of the notable commercial applications of treemaps is the
SmartMoney “Map of the Market”, a simple yet powerful tool for the
general public to spot investment trends and opportunities. The map
shows approximately 600 publicly traded companies grouped by sec-
tor and industry. The size of each company in the map corresponds to
its market capitalization. The color mapping is natural for most users
to look for visually-striking features: green for gain, red for loss, and
dark for neutral. A recursive algorithm was devised to reduces over-
all aspect ratios of the rectangles for more readable display. All these
factors contributes the success of the Map of the Market. Inspired by
this application, we strive for simplicity and effectiveness in search of
our solution for navigating multiresolution data exploration.

3 LOD ANALYSIS

In the visualization of multiresolution volume data, a given LOD con-
sists of a sequence of data blocks at various resolutions. Intuitively,
the LOD quality can be analyzed by investigating the quality of each
individual block as well as the relationships among them: Each block
may contain a different distortion because of the resolution and data
variation. It may also convey a different optical content if a color and
opacity transfer function is applied. Furthermore, the sequence of data
blocks are rendered to the screen. Each block may have a different
contribution to the image depending on its projection and how much it
is occluded by other blocks. To optimize the total information received
on the image, one may attempt to either adjust the LOD or change the
view. The concept of entropy from information theory provides us a
way to measure the LOD quality in a quantitative manner.

3.1 Entropy
In information theory, the entropy gives the average information or the
uncertainty of a random variable. The Shannon entropy of a discrete
random variable X with values in the finite set {a1, a2, ..., aM} is
defined as:

H(X) = −
M

X

i=1

pi log pi (1)

where pi is the probability of a variable to have the value ai; − log pi

represents its associated information. The unit of information is call
a bit. The logarithm is taken in base 2 or e. For continuity, variable
of probability zero does not contribute to the entropy, i.e., 0 log 0 =
0. The entropy achieves its maximum of log M when the probability
distribution is uniform.

To evaluate the quality of a LOD, we first define the probability of
a multiresolution data block bi as:

pi =
Ci · Di

S
, where S =

M
X

i=1

Ci · Di (2)

where Ci and Di are the contribution and distortion of bi respectively
(more details about these two terms are given in Section 3.2); M is
the total number of blocks in the multiresolution data hierarchy. The
summation S is taken over all data blocks, and the division by S is
required to make all probabilities add up to unity. Eqn. 2 states that the
probability of a data block in a LOD is high if it has large distortion and
high contribution. The entropy of a LOD then follows the definition in
Eqn. 1.

Note that for any LOD, it is impossible for all the data blocks in
the hierarchy to have the equal probability of 1/M , i.e., a LOD could
not achieve an entropy value of log M . This is because in any LOD,
if a parent block is selected, then none of its descendant blocks will
be selected. Any block which is not included in the LOD receives
zero probability and does not contribute to the entropy. Ideally, since
a higher entropy indicates a better LOD quality, the best LOD (with
the highest information content) could be achieved when we select all
the leaf nodes in the data hierarchy. However, this requires rendering
the volume data at the original resolution, and defeats the purpose of
multiresolution rendering.

In practice, a meaningful goal is to find the best LOD under some
rendering budget, such as a certain block budget, which is usually
much smaller than M . Accordingly, the quality of a LOD could be
improved by splitting data blocks with large distortion and high con-
tribution, and joining those blocks with small distortion and low con-
tribution. The split operation aims at increasing the entropy with a
more balanced probability distribution. The join operation is to offset
the increase in block number and keep it under the budget. In addi-
tion, adjusting the view could improve the quality of LOD too, since
the contributions of data blocks vary when the view changes.

3.2 Distortion and Contribution
In a multiresolution data hierarchy such as a wavelet tree, a block hav-
ing larger distortion or variation is more likely to receive a higher pri-
ority for LOD refinement. The distortion of a multiresolution data
block captures this intrinsic property. Let us first consider two data
blocks bi and bj , where bj is an immediate child of bi. We define the
distortion between bi and bj as follows:

dij = σij ·
µ2

i + µ2

j + C1

2µiµj + C1

·
σ2

i + σ2

j + C2

2σiσj + C2

(3)

where σij is the covariance between bi and bj ; µi and µj are the mean
values of bi and bj respectively; σi and σj are their standard devia-
tions. We include small constants C1 and C2 to avoid instability when
µiµj and σiσj are very close to zero.

Eqn. 3 consists of three parts, namely, covariance, luminance dis-
tortion, and contrast distortion. Collectively, these three parts capture
the distortion between the two blocks. The luminance distortion and
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contrast distortion are originally from the image quality assessment lit-
erature [25], and have been shown to be consistent with the luminance
masking and contrast masking features in the human visual system
respectively.

In a wavelet tree, a parent node has eight immediate children. Thus,
we add distortions between the parent block and its eight child blocks.
We also take into account the maximum distortion of the child blocks,
as an approximation of the distortion between the parent block and the
original full-resolution data it represents. Written in equation:

Di =

7
X

j=0

dij + max{Dj |
7

j=0} (4)

where Di and Dj are the distortions of blocks bi and bj respectively.
As a special case, if bi is associated with a leaf node in the hierarchy,
we define Di = C3, where C3 is a small constant. The distortion for
each tree node can be calculated as we build up the multiresolution
data hierarchy. They are then normalized for our use.

To evaluate the contribution of a multiresolution block bi to the im-
age, we treat the coarse-grained data block as a whole and approximate
its contribution as follows:

Ci = µ · t · a · ν (5)

where µ is the mean value of bi; t is its thickness (the average length
of the viewing ray segment inside bi); a is the screen projection area
of the block, and ν is its estimated visibility. Here, similar to the
well-known composition equation [12], (µ · t · a) approximates the
emission of bi, and ν accounts for the occlusion.

Depending on our need, µ, σ, and σij in Eqn. 3 and 5 can be eval-
uated directly in the scalar data space, or in the perceptually-adapted
CIELUV color space (see [23] for more detail). In Section 7.2, we will
describe our pre-computation and real-time update techniques for cal-
culating D and C of multiresolution data blocks, which ensure a quick
update of the entropy value for a LOD.

3.3 Heuristic Algorithm
Based on the entropy measure, we propose a three-stage heuristic algo-
rithm to adjust a LOD automatically. The given LOD could come from
any LOD selection methods. The motivation is to balance the proba-
bility distribution among all data blocks in the LOD, and improve its
entropy. Our three-stage algorithm is as follows:

1. Join: Locate the data block bl with the lowest probability. Check
if joining bl with its siblings would decrease the entropy or not.
If not, join bl with its siblings. Otherwise, mark bl out. This
process then repeats on all unmarked data blocks until all blocks
are scanned. The first stage would potentially free some block
budget for use in the second stage.

2. Split: Locate the data block bh with the highest probability.
Check if splitting bh would increase the entropy or not. If yes,
split bh. Otherwise, mark bh out. This process then repeats on
all unmarked data blocks until either the block budget is met or
all blocks are scanned.

3. Join-Split: Consider a pair of data blocks (bl, bh) in the LOD,
where bl is the block with the lowest probability, and bh is the
block with the highest probability. Check if joining bl with its
siblings and splitting bh would increase the entropy or not. If
yes, join bl with its siblings and split bh. Otherwise, mark the
pair (bl, bh) out. This process then repeats on all unmarked pairs
until all pairs are scanned.

Note that join or split operations in our algorithm will only increase
the entropy, if possible, but never decrease. This monotonic condition
guarantees the convergence of the algorithm. Our heuristic algorithm
could also be used to generate a balanced LOD (in terms of probabil-
ity distribution) given the constraint of block budget. The algorithm
refines the LOD starting from the root of the data hierarchy until the
block budget is met.

4 LOD MAP

Although various efforts have been made to choose proper LODs that
condense data and preserve features [28, 10, 5], little work has been
done to represent and validate this decision-making process. Actually,
the information derived for data selection is knowledge that guides the
user through the entire solution space. Such knowledge saves time on
decision and computation, which the user would have otherwise spent
on a trial-and-error search. The time saved may be used to improve
frame rates or alternatively, on other techniques to better understand
the data.

The formulation of LOD quality in Section 3 tells us that a LOD
is good if it has a high entropy value. Thus, a good LOD not only
indicates a good quality of rendered images, but also a balanced prob-
ability distribution for all the data blocks in the LOD. This includes
information of both what we can perceive (data blocks not occluded)
and can not (data blocks occluded) from the rendered image. There-
fore, a suitable visual representation for LOD quality should reveal not
only what is visible, but also what is not. Such information is impor-
tant because it can help us answer questions such as “do we waste the
budget on those blocks which are occluded?”, or, “can we generate an
image of similar quality with a reduced block budget?”. In order to
avoid possible occlusion, we rule out the option of any 3D representa-
tion of LODs. Actually, a 2D treemap provides a simple yet effective
representation of large hierarchical structure. The key issues involved
in this knowledge representation are information mapping and layout
design.

4.1 Information Mapping
In this paper, we call the treemap representation of LOD the LOD map.
As a treemap, the LOD map is formed by recursively subdividing a
given area. Each data block in the LOD is represented as a rectangle
in the LOD map. Treemaps can effectively visualize data with two
attributes, in which one attribute is typically mapped to the size of the
rectangles, and the other attribute to the color of the rectangles. The
critical question to ask is what information should be displayed in the
generated rectangles for the LOD map.

Since the treemaps are commonly used for representing hierarchical
structures. A first thought along this direction could lead us to use the
size of rectangle to encode the resolution of different data blocks in
the LOD map. As in [24], the size of the rectangle can be determined
by the level of the data hierarchy the data block lies on. Although this
way of representing LODs is natural, the mapping only yields limited
usefulness. This is because which level of the hierarchy a data block
lies on may not give hints on its actual quality. A data block at a
low level (low resolution) may contain empty space or have a uniform
value. In contrast, another data block at a high level (high resolution)
may still exhibit much variation or distortion. Therefore, this kind of
coding does not grant insights, and wastes important channels which
could be used to encode more essential LOD information.

The entropy characterizes the quality of a LOD. To reveal this key
information, we map its ingredients, i.e., the distortion D and contribu-
tion C of a data block in the LOD, to the color and size of its bounding
rectangle in the LOD map. More specifically:

• The color assignment is based on the distortion D: red for large
distortion, magenta for medium, and blue for small.

• The contribution C is split into two parts: (µ · t · a) is mapped
to the size of the rectangle, while ν is assigned to its opacity.

This color and size coding scheme makes it easy for the user to look
for “hot spots” - data blocks with large distortion and high contribution
in the LOD map. The motivation for separating visibility ν from C is
intuitive too: more visible blocks in the LOD should appear brighter
in the LOD map, and less visible ones darker.

4.2 Layout Design
Another key issue for the generation of LOD map is layout design. In
the early 1990s when treemaps were first prototyped, a straightforward
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(a) entropy = 0.238 (b) pivot-by-size (c) pivot-by-middle

Fig. 1. (a) shows a rendering of the RMI data set at low resolution with 36 blocks. (b) and (c) are its two LOD map layouts. In each layout, the “P”
indicates the first pivot rectangle, and the yellow boundaries show the first subdivision. The normalized entropy is low because only a small number
of data blocks are rendered.

slice-and-dice algorithm was used to generate the treemap layout. A
problem with this standard method is that it often produces rectangles
with high aspect ratios. As a result, such skinny rectangles can be
difficult to see, compare, and select. Over the years, several algorithms
have been proposed to improve the aspect ratios of rectangles in the
treemap [18]. However, they introduce instability over time in the
display of dynamically changing data, and fail to preserve an ordering
of the underlying data. These drawbacks are critical in our LOD map
representation because:

• The information of a LOD keeps changing whenever the user
makes LOD adjustment or changes the view. If the LOD map
layout has dramatic changes that causes unattractive flickering,
it is hard to select and track data blocks in the LOD map.

• A LOD often comes with the back-to-front viewing order, in
which neighboring blocks are close to each other in the LOD.
Preserving this order in the LOD map layout is important for
locating neighboring blocks and observing group patterns.

The ordered treemap introduced by Shneiderman and Wattenberg [18]
uses layout algorithms that offer a good tradeoff among stable updates,
order preserving, and low aspect ratios. In this paper, we adopt this
layout design for our LOD map representation. The layout algorithm
is similar to the idea of finding a 2D analogue of the QuickSort
algorithm. The inputs are a rectangle R to be subdivided and a list of
items that are ordered by an index and have given areas. The crux of
the algorithm is to choose a special item, the pivot, which is placed
at the side of R. The remaining items in the list are then assigned to
three large rectangles that make up the rest of the display area. Finally,
the algorithm is applied recursively to each of these rectangles. See
[18] for a more detailed description of the algorithm. Variations of the
algorithm are the choices of pivot. The pivot could be the item with
the largest area in the list (pivot-by-size), or the middle item of the list
(pivot-by-middle). In Section 7.1, we will discuss two scenarios where
each of these choices of pivot should be used for smooth update.

4.3 Put It All Together
Having discussed how to define and represent the quality of LODs, it
is time to put it all together and show how our scheme can be used. We
experimented our idea with the Richtmyer-Meshkov Instability (RMI)
data set [15]. The 7.5GB RMI data set has the spatial dimension of
2048 × 2048 × 1920, from which we built a wavelet tree with a tree
depth of six. Fig. 1 shows a LOD rendering of the RMI data set at
the third tree level and its LOD map layouts. The viewing order is
roughly preserved, as we can see that darker/brighter rectangles (data
blocks with lower/higher visibility) are close to each other in the LOD
map. Since a LOD map encodes the entropy information of a LOD,

if there is an unbalanced probability distribution among data blocks in
the LOD, we can easily perceive this through color and size attributes
of rectangles in its LOD map. Then, as demonstrated in Fig. 1 (b) or
(c), several directions for optimizing the LOD quality can be immedi-
ately followed:

• Look for “hot spots” - large rectangles with bright red colors.
They are highly-visible data blocks that have high contribution
and large distortion. Splitting these blocks will most likely in-
crease the entropy and improve the LOD quality.

• Small blue rectangles are data blocks that have low contribution
and small distortion. If they cluster in a local region, joining
these blocks may save the block budget without decreasing the
entropy.

• Dark rectangles are data blocks with the lowest visibility. If
many of them cluster together, joining these blocks may also save
the block budget without sacrificing the LOD quality.

The next section introduces a set of interactive techniques that allows
the user to perform LOD adjustment efficiently.

5 INTERACTIVE TECHNIQUES

In computer graphics and visualization, brushing has been used as a
method for selecting subsets of data for further operations, such as
highlighting, deleting, or analysis. In our case, brushing is used to
select a subset of data blocks from a LOD for join or split operations.
We provide brushing in both views: the rendering window and the
LOD map. The result of selection is highlighted in both views, as
they are linked together and updated dynamically whenever one of the
views changes. This technique helps the user detect correspondences
between the two different visual representations. We allow the user to
perform brushing in the following ways:

• Direct brushing in the LOD map by clicking a rectangle, or spec-
ifying a rectangular region to select multiple rectangles simulta-
neously via mouse.

• Brushing in the rendering window by specifying the brush cov-
erage as 1D point, 2D plane, or 3D box in the data space via
slider.

• Brushing some parameter (such as visibility ν) or combination
of parameters by specifying its range via slider.

Direct transformation is provided for interactivity and examination of
local details. The user can translate, scale, and rotate the 3D volume in
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the rendering window, and translate and scale the 2D LOD map. Data
blocks selected in the LOD are highlighted with red boundaries and
white crosses in the rendering window and the LOD map respectively.
The user then proceeds to join or split these blocks. A join operation
merges a selected block with its siblings into its parent block. A split
operation breaks a selected block into its eight child blocks. For mul-
tiple selected data blocks, they are put into a queue and processed in
sequence. We also provide the “undo” function so that the user can
roll back to the previous LOD if the operation just performed is not
desired.

(a) brushing with 2D plane (b) LOD map

Fig. 2. Brushing the RMI data set by specifying a 2D cutting plane. (a)
shows the rendering of data selection and (b) is the corresponding LOD
map.

Fig. 2 gives an example of brushing manipulation with a 2D cutting
plane. Only the data blocks intersecting the plane (drawn in blue) are
selected and rendered. In the LOD map, the selected data blocks are
highlighted with white crosses.

data set (type) RMI (byte) VisWoman (short)
volume dimension 2048 × 2048 × 1920 512 × 512 × 1728
block dimension 128 × 128 × 64 32 × 32 × 64

volume (block) size 7.5GB (1MB) 864MB (128KB)
# non-empty blocks 10499 9446
compression ratio 5.60 : 1 2.37 : 1

Table 1. The RMI and VisWoman data sets.

Fig. 4. LOD quality comparison on the RMI data set with the same fixed
view as in Fig. 1 (a). The plot shows how the entropy changes with
different block budgets for three LOD selection methods. There are a
total of 10499 non-empty blocks in the data hierarchy.

6 RESULTS

As listed in Table 1, we experimented with our LOD map on two data
sets: the RMI data set (also mentioned in Section 4.3) from scientific
simulation, and the visible woman (VisWoman) data set from medical
application. For both data sets, the Haar wavelet transform with a
lifting scheme was used to construct the wavelet tree data hierarchy. A
lossless compression scheme was used with the threshold set to zero

Fig. 5. LOD quality comparison on the VisWoman data set with the fixed
front view shown above. The plot shows how the entropy changes with
different block budgets for three LOD selection methods. There are a
total of 9446 non-empty blocks in the data hierarchy.

to compress the wavelet coefficients. To ensure seamless rendering,
we extended one voxel overlapping boundaries between neighboring
blocks in each dimension when breaking the original volume data into
blocks. As a result, both hierarchies have a tree depth of six. All tests
were performed on a 3.0GHz Intel Xeon processor with 3GB main
memory, and an nVidia GeForce 7800 GT graphics card with 256MB
video memory.

6.1 LOD Comparison
For LOD comparison, we took three commonly-used LOD selection
methods, i.e., level-based, MSE-based, and SNR-based, for our test.
The level-based method selects a particular resolution level in the mul-
tiresolution data hierarchy. For the MSE-based (SNR-based) method,
we specify the MSE (SNR) error tolerance to determine the LOD (we
followed Eqn. 4 where dij is the MSE (SNR) of blocks bi and bj).
Fig. 3 gives an example where we compared the LOD quality of the
MSE-based and level-based methods under the same block budget.
Clearly, we can see that Fig. 3 (b) contains two “hot spots” (large rect-
angles with bright red colors) and some small blue rectangles clus-
tered together. These are indications of bad distribution of data reso-
lution. On the contrary, Fig. 3 (d) exhibits a much better distribution.
It follows that the level-based method achieves a better LOD quality
than the MSE-based one. Their entropy values and rendered images in
Fig. 3 (a) and (c) also confirm this.

Fig. 4 and 5 show the change of entropy values on the two data sets
under a series of block budgets. For the level-based method, the block
budget increases eight folds when the level increases by one. There-
fore, isolated data points rather than polylines are illustrated in both
figures. For both data sets, we can see that the MSE-based and SNR-
based LOD methods could not outperform the straightforward level-
based method in terms of the tradeoff between LOD quality and block
budget, although the level-based method does not allow flexible block
budgets. For the RMI data set, the MSE-based method performs con-
sistently better than the SNR-based one. However, this is not the case
for the VisWoman data set, as the two polylines intertwine with each
other in Fig. 5. Another finding is that the entropy does not always in-
crease (actually decreases sometimes) with the increase of block bud-
get. This does not indicate the deterioration in rendered image quality,
but rather, a less balanced distribution of probability among all the data
blocks. In fact, we can imagine this potentially leaves room for us to
improve the LOD quality (see Section 4.3) using the LOD map.

6.2 View Comparison
The quality of a given LOD can be improved by adjusting the view.
Similar to the ideas of view selection presented in [2, 20], the entropy
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(a) MSE-based, 67 blocks (b) entropy = 0.163 (c) level-based, 67 blocks (d) entropy = 0.381

Fig. 3. LOD comparison (fixed view, different LODs). A zoom to part of the spine of the VisWoman data set. (a) and (c) show the rendering of two
different LODs with the same block budget. (b) and (d) are the LOD maps for (a) and (c) respectively.

(a) entropy = 0.330 (b) entropy = 0.343 (c) entropy = 0.384 (d) entropy = 0.390

Fig. 6. View comparison (fixed LOD, different views). Four snapshots from a rendering sequence of the RMI data set. The LOD remains the same
with 246 blocks while the entropy increases from (a) to (d). The pivot-by-middle layout is used to maintain relative stable update of the LOD map
throughout the rendering sequence. The dramatic change in the LOD map layout from (a) to (b) is due to the abrupt change of the viewing order.

and the LOD map can help us find good views for a certain LOD. Fig. 6
gives an example where we compare different views for a fixed LOD
of the RMI data set. The entropy increases as more information con-
tent is received from Fig. 6 (a) to (d). Looking at the sequence of LOD
maps, we can observe that the visibility of the LOD gets improved
since the entire LOD map is getting brighter. Another finding from the
LOD map sequence is that smaller blocks at the bottom of the volume
corresponds to blue rectangles (small distortion) at the upper-right part
of Fig. 6 (a), and larger blocks at the top of the volume corresponds
to red rectangles (large distortion) in the LOD maps. The relative sta-
ble update of the LOD map allows us to detect such correspondences
between the rendered blocks and the rectangles. This information is
useful when it comes to LOD adjustment.

6.3 LOD Adjustment

The goal of LOD adjustment is to improve the quality of LOD.
By splitting data blocks with large distortion and high contribution,
and joining data blocks with small distortion and low contribution,
we achieve a more balanced probability distribution among all data
blocks, and therefore, increase the entropy of the LOD. Fig. 7 show
two examples of LOD adjustment on the RMI and VisWoman data
sets within fixed block budgets. For the RMI data set, we clearly see

some “hot spots” (large rectangles with bright red colors) and a cluster
of dark rectangles (occluded data blocks) in the LOD map of Fig. 7
(a). In this example, we used the heuristic algorithm (Section 3.3) to
optimize the LOD automatically. The LOD map after adjustment in
Fig. 7 (b) shows a more balanced result. For the VisWoman data set,
hot spots are popping out in the LOD map of Fig. 7 (c). Although
there are no dark rectangles, many small blue rectangles cluster at the
lower-left corner of the LOD map. The LOD quality is improved by
splitting those hot spots and joining small blue rectangles. With the
assist of a set of brushing techniques (Section 5), selecting such target
rectangles in the LOD map and performing LOD adjustment becomes
a simple and efficient task.

6.4 Budget Control

As demonstrated in Fig. 4 and 5, the commonly-used MSE-based and
SNR-based LOD selection methods do not perform well (in terms of
improving the quality of LOD) with the increase of block budget. This
gives us opportunities to control the block budget. That is, if such a
LOD selection algorithm could not optimize the quality of LOD under
a certain block budget, could we instead give a LOD of similar quality
but with a reduced block budget? Generating images of similar quality
with smaller budgets is appealing for large data visualization because
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before, 90 blocks after, 90 blocks before, 108 blocks after, 108 blocks

(a) entropy = 0.192 (b) entropy = 0.386 (c) entropy = 0.251 (d) entropy = 0.414

Fig. 7. LOD adjustment. A zoom of the RMI data set: (a) shows a given LOD based on the MSE, and (b) shows the result after the LOD adjustment.
A zoom to the left pelvis of the VisWoman data set: (c) shows a given LOD based on the SNR, and (d) shows the result after the LOD adjustment.
The pivot-by-size layout is used to maintain relative stable update of the LOD map during the adjustment process.

(a) entropy = 0.448, 365 blocks (b) entropy = 0.476, 274 blocks

Fig. 8. Budget control on the RMI data set. A LOD based on the MSE
is given, where the view is the same as in Fig. 1 (a). (a) and (b) are
the LOD maps before and after the budget control. The percentage of
blocks with visibility less than 0.20 decreases from 48% in (a) to 29% in
(b).

it could save us limited resources. Fig. 8 shows an example of budget
control on the RMI data set. By joining data blocks with low visibility
(dark rectangles) and improving the overall distribution of resolution,
we reduce the block budget by 25% while increasing the entropy of
the LOD. This budget control does not affect the quality of rendered
image, as the renderings before and after the budget control are almost
identical.

7 DISCUSSION

As a reflection of what we state at the beginning of the paper, we
discuss the effectiveness and efficiency of our LOD map approach to
multiresolution volume visualization.

7.1 Effectiveness
Using entropy, our LOD quality measure becomes a global quality in-
dex, i.e., it not only indicates the quality of rendered images, but also
the probability distribution of all multiresolution data blocks in the

LOD. The probability takes into account the distortion and contribu-
tion of data blocks. Therefore, a high entropy (good distribution) im-
plies a balanced distribution of resources (e.g. data resolution), which
is not captured by traditional LOD selection methods. Through the
mapping of key LOD ingredients to a treemap representation, we cre-
ate the LOD map as a visual interface for LOD comparison and val-
idation. The LOD map is an intuitive representation of LOD quality,
since key ingredients of a LOD are mapped to pre-attentive attributes
(color and size of rectangles) in the LOD map. Integrating a heuris-
tic algorithm and a set of interactive techniques, it also serves as a
convenient user interface for visual data exploration. Note that the
LOD map can be manipulated independently, and the actual render-
ing of data could be deferred until a desired LOD of good quality is
achieved. The results in Section 6 demonstrate that this visual inter-
face is light-weighted and quite effective for multiresolution volume
visualization.

For the LOD map, we utilize both pivot-by-size and pivot-by-
middle layouts for relative stable update when the view or LOD
changes. The choice of which layout should be used depends on which
layout is more likely to keep the pivot unchanged. For example, if the
view changes, the middle item in the LOD list is more likely to remain
the same, as opposed to the item with the largest area. Therefore, the
pivot-by-middle layout should be used. On the other hand, if a LOD
undergoes any join or split operations, then the pivot-by-size layout
should be used, since the item with the largest area in the LOD list
is more likely to keep unchanged rather than the middle item. This
simple rule proves very effective in maintaining smooth update of the
LOD map.

7.2 Efficiency
In order to generate the LOD map in real time, we need quick up-
date of the distortion D and contribution C for multiresolution data
blocks. In this paper, we calculate D in the roughly perceptually-
uniform CIELUV color space (note that in this case, D depends on the
input color and opacity transfer function). Similar to error calculation
in [11], we pre-compute and store summary tables to ensure real-time
update of the distortion D. The summary tables are the histogram ta-
ble (frequency of quantized scalar values) and correspondence table
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(frequency of pairs of quantized scalar values in the parent and its
child blocks) for each data block in the multiresolution data hierarchy.
A zigzag run-length encoding scheme is used to reduce the storage
overhead and facilitate the table lookup at run time. During the ren-
dering, we can recompute the distortion within seconds for large data
sets (such as the 7.5GB RMI data set) whenever the transfer function
changes.

On the other hand, the quick update of the contribution C requires
real-time estimate of the visibility ν (Eqn. 5). Here, the essential ques-
tion is how to calculate the visibility of many data blocks quickly,
given an input occlusion map. Our solution is based on summed area
tables (SATs), which take the occlusion map as the input. We utilize
the GPU to estimate the average visibility. The GPU implementa-
tion builds the SATs in passes with the support of framebuffer objects
(GL_EXT_framebuffer_object). Getting the average visibility
for a block is performed by a fragment program that looks up four cor-
ners of its projection in the SATs. In this way, the visibility for all the
data blocks can be evaluated interactively at run time. For instance, it
only takes around 0.2 second to update the visibility of thousands of
data blocks for the RMI data set. We refer readers to [23] for the algo-
rithm, implementation, and performance of our summary table scheme
and GPU-based visibility estimation.

The efficiency of our LOD map is thus ensured with a real-time
update of the distortion D and contribution C. Our experiments show
that at run time when we change the view or perform LOD adjustment,
the entropy and the LOD map can be updated interactively for a LOD
consisting of up to thousands of data blocks (a typical magnitude for
our multiresolution data hierarchies).

8 CONCLUSION AND FUTURE WORK

We have presented a new LOD quality measure using entropy and its
visual representation using the LOD map for multiresolution volume
visualization. Leveraging this quality measure and visual interface,
it becomes not only feasible, but also effective and efficient for us
to examine, compare, and validate the quality of LOD selection and
rendering. We believe that this technique could be generalized, and
applied to explore other solution spaces that exhibit similar properties
as the LOD optimization problem.

The LOD map could carry more customized information for a LOD.
For example, if the user wants to inspect how the transfer function
contents of data blocks vary from their scalar field contents, we can
add shading to the rectangles in the LOD map to indicate this. Tex-
ture could also be applied to the LOD map to represent some other
information of interest. User study along this direction, such as inves-
tigating how many channels the user can perceive easily in the LOD
map without information overload, is necessary. In the future, we also
would like to extend our approach to multiresolution visualization of
large-scale time-varying data.
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Outline

• Introduction and motivation
– Large data sets
– Multiresolution visualization
– Traditional solution vs. perception-driven solution

• Background
– Wavelet transform
– Hierarchical data representation

• Image-based quality metric
• Volume data quality assessment
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Large Data Sets

• Scientific, medical, engineering, …
• Spatial, temporal, variable, …
• Gigabyte, terabyte, petabyte, exabyte, …

Multiresolution Visualization

• Large data sets make interactive 
visualization difficult
– High (main + video) memory requirement
– Slow I/O, slow rendering

•Multiresolution volume visualization
– Adaptive data exploration
– “Overview first, zoom and filter, and then 

details-on-demand” [SHNEIDERMAN 92]
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Cognitive Capacity vs. Data Growth

• Reference: Visualization and Knowledge Discovery: Recommendations 
from the DOE/ASCR Workshop on Visual Analysis and Data Exploration at 
Extreme Scale, 2007. (Image courtesy Jeffrey Heer)

• “Human cognitive capacity 
remains flat while our ability 
to collect and generate data 
continues to grow at an 
exponential rate.”

Perception-Driven Techniques

• Quantitative metrics for parameter choices
– LOD selection and rendering
– Image-based data quality estimation
– Present visually importance information

• Extract statistical information from the data
– Volume data quality evaluation
– Feature representation in multiscale manner
– Incorporate perceptual reasoning
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overview MSE, 8.6% SNR, 8.5% image, 8.3%

full resolution, 929

Image-Based Quality Metric

Multiscale Quality Assessment

best worst
best worst

Ours:
MSE/PSNR:

(a) mean shift (b) voxel misplacement (c) averaging filter (d) salt-and-pepper noise
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Wavelet Transform and 
Hierarchical Data Representation

Wavelet Transform on 2D Image
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LL1

LH1

HL1

HH1

1st level
L: low-pass filtered
H: high-pass filtered

LL1
LH1
HL1
HH1

Wavelet Transform on 2D Image

LH1

HL1

HH1

HL2

HH2

LL2

LH2

2nd level
L: low-pass filtered
H: high-pass filtered

LL1
→
LL2
LH2
HL2
HH2

Wavelet Transform on 2D Image
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LH1

HL1

HH1

HL2

HH2LH2

HL3

HH3

LL3

LH3

3rd level
L: low-pass filtered
H: high-pass filtered

LL2
→
LL3
LH3
HL3
HH3

Wavelet Transform on 2D Image

Wavelet Transform on 3D Volume

L: low-pass filtered
H: high-pass filtered

LLL
LLH
LHL
HLL
LHH
HLH
HHL
HHH

[MURAKI 92]
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Wavelet Transform

• Spatial domain → spatial-frequency 
domain

• Separable wavelet transform
• Wavelet compression

– Low-pass filtered data: summary information
– Wavelet coefficients: detail information
– Coefficients are “sparse”, thus can be utilized 

in compression
– Lossy and lossless compression

• Wavelet reconstruction

Hierarchical Data Representation

• Image and video
– Laplacian pyramid [BURT et al. 83]
– Multiresolution video [FINKELSTEIN et al. 96]

• 3D volume data
– Laplacian pyramid [GHAVAMNIA et al. 95]
– Octree hierarchy [LAMAR et al. 99]
– Wavelet tree [GUTHE et al. 02]

• Time-varying volume data
– Time-space partitioning (TSP) tree [SHEN et al. 99]
– 4D hierarchy [LINSEN et al. 02]
– Wavelet-based TSP tree [WANG et al. 04]
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Wavelet Tree

low-pass filtered subblock wavelet coefficients

• Octree-based space partition
• Block-wise wavelet transform and compression
• Error metric calculation

Image-Based Quality Metric
for LOD Selection
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Outline

• Importance values of data blocks
– Emission (of a data block)
– Occlusion (among data blocks)
– Distortion (of low and high resolution data blocks)
– Perceptually-uniform CIELUV color space

• Real-time update of quality metric
– Summary table scheme
– GPU-based visibility estimation

DVRdata
input

image
output

• Volume rendering integral [MAX 95]

• Discretized volume rendering integral

∫∫ ′′−=
λ

λλλτλ
00

))))(((exp()))(((~ ddxsxscI
D

r

Volume Rendering Integral

∑ ∏
=

−

=

−=
n

i

i

j
jiir ssscI

0

1

0

))(1()()( αα

(a) emission
(b) attenuation

(a) (b)

(a) (b)



11

: mean scale data value
: color and opacity transfer function
: average thickness
: screen projection area
: estimated visibility
: distortion of block b and its child blocks

Importance Value Design

εμαμ ⋅⋅⋅⋅= vatcIb ))()((

)()( μαμc
μ

t
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ν
ε

(a) (b) (c)

(a) emission
(b) attenuation
(c) distortion

thickness

: covariance between bi and bj
: mean value;            : standard deviation

and       : small constants;  N : # of voxels in the block

(a) covariance
(b) luminance distortion
(c) contrast distortion
structural similarity index

[WANG et al. 04]

Multiresolution Error Evaluation
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and     : CIELUV color values

: CIELUV color difference

: multiresolution error

Multiresolution Error Evaluation
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Summary Table Scheme

• Update metric when transfer function changes
– Size of data range << # of voxels in the volume 

[LAMAR et al. 03]
– Count frequencies of unique error terms: xi, xj, and (xi, xj)

– Store histogram and correspondence tables
– Runtime table lookup

update timespace (overhead)data set

13s44.1MB (0.57%)RMI

5s9.22MB (1.07%)VisWoman
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• Evaluate approximate visibility of data blocks
– Render low resolution data
– Draw front-to-back view-aligned slices
– , where     is the average opacity on the occlusion map

Visibility Estimation

αν −=1 α

occlusion mapfront

back

undrawn
drawn

block

CPU vs. GPU Solutions

• CPU solution
– Read framebuffer when drawing slices
– Iterate through alpha channel
– Framebuffer reads become bottleneck

• GPU solution
– Utilize summed area tables (SATs)
– GL_EXT_framebuffer_object (FBO)
– 3~4 times faster than CPU solution
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• User specifies the block budget
• Update importance values
– per view
•Only update a certain percentage of blocks
•Postpone update if the view changes slightly

– per transfer function
• Priority queue for LOD refinement
• A list of blocks identified from greedy selection

LOD Selection

ν

ε

Results – Timing

128 * 128 * 6432 * 32 * 64block dimension

3.0GHz CPU, 3GB memory, nVidia GeForce 7800 GT graphics card

13s5stransfer function (256 levels)

0.563s0.343sprioritization (all blocks)

0.185s0.151svisibility (GPU, 5122 image)

5.60:12.37:1compression ratio (lossless)

104999446# non-empty blocks

1MB128KBblock size

7.5GB864MBvolume size

2048 * 2048 * 1920512 * 512 * 1728volume dimension

RMI (byte)VisWoman (short)data set (type)
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Results – VisWoman Data Set

overview MSE, 80, 8.61% SNR, 79, 8.50% image, 77, 8.29%

full resolution, 929 color map

MSE, 36 blocks SNR, 37 blocks image, 34 blocks

Results – VisWoman Data Set
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Results – RMI Data Set

MSE, 55 blocks SNR, 55 blocks image, 55 blocks

overview visibility

Results – RMI Data Set

full resolution, 1237 pixel difference percentage
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Multiscale Volume Data
Quality Assessment

Motivation

• We may use any type of non-original data
– Quantized (e.g., floating → byte/short)
– Compressed (e.g., lossy compression)
– Filtered (e.g., Gaussian smooth/blur)
– Reduced (e.g., down sampling)
– Distorted (e.g., noise)
– Corrupted (e.g., lost in transmission)

• How to measure data quality loss 
introduced in different versions of data?
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Solution

• Extract features from the original data in the 
wavelet domain
– Multiscale wavelet decomposition
– Wavelet subband analysis – global information
– Collect important coefficients – local information
– Define distance metrics

• Use features for quality assessment
– Features as “carry-on” information
– Reduced-reference approach

Generalized Gaussian Density
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Lena image, HL1 subband

Gamma functionΓ
α
β

scale parameter

shape parameter
= 2, Gaussian distribution
= 1, Laplacian distribution

natural image statistics

[MALLAT 99]

= 0.5β α = 1.5

scale shape
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Generalized Gaussian Density

vortex data set, HHL2 subband brain data set, HLL1 subband

Kullback-Leibler Distance

∑
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• Quantify the difference of wavelet coefficient distribution 
between the distorted and the original data

P: wavelet subband coefficient histogram approximated with GGD 
parameter(    ,    )α β

Q: wavelet subband coefficient histogram of the distorted data

D: the KLD between the distorted and original data
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Wavelet Coefficient Selection

• Coefficients of large magnitude
– Correspond to abrupt features like edges or 

boundaries
– Along the tails of the marginal coefficient distribution

• Neighboring near-zero coefficients
– Correspond to homogeneous regions
– Close to the zero peak of the marginal coefficient 

distribution
• Modulated by visual importance

– Consider opacity and visibility
– Approximate used low-resolution data

Coefficient Scan Order
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Feature Representation

Quality Assessment – Quantization
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Quality Assessment – Gaussian Filter

Quality Assessment – Cross Comparison

best worst
best worst

Ours:
MSE/PSNR:

(a) mean shift (b) voxel misplacement (c) averaging filter (d) salt-and-pepper noise

240.03471.2152e+410.96859.7468e-37.8530e-11.7343+0noise

128.02791.9289e+520.70731.4596e-35.4139e-11.6449e+0averaging

449.00661.5397e+330.12234.6497e-31.1612e-11.5366e-2misplacement

348.16481.8691e+340.02392.3914e-26.9770e-78.8428e-5mean shift

rankPSNRMSErankDD3D2D1type
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Summary
• Applied perception in visualization

– Image-based quality metric
• Backward approach (from image to data)
• Evaluate data contribution in rendering
• Precompute summary tables
• Runtime update visibility for LOD decision

– Volume data quality assessment
• Multiscale approach (in the wavelet domain)
• Use GGD to capture wavelet coefficient distribution
• Select visually important coefficients
• Quantify data quality loss in different versions
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Interactive Level-of-Detail Selection Using
Image-Based Quality Metric for

Large Volume Visualization
Chaoli Wang, Student Member, IEEE, Antonio Garcia, and Han-Wei Shen

Abstract— For large volume visualization, an image-based
quality metric is difficult to incorporate for level-of-detail selec-
tion and rendering without sacrificing the interactivity. This is
because it is usually time-consuming to update view-dependent
information as well as adjust to transfer function changes. In
this paper, we introduce an image-based level-of-detail selection
algorithm for interactive visualization of large volumetric data.
The design of our quality metric is based on an efficient way to
evaluate the contribution of multiresolution data blocks to the
final image. To ensure real-time update of the quality metric
and interactive level-of-detail decisions, we propose a summary
table scheme in response to run-time transfer function changes,
and a GPU-based solution for visibility estimation. Experimental
results on large scientific and medical data sets demonstrate the
effectiveness and efficiency of our algorithm.

Index Terms— Data compaction and compression, perceptual
reasoning, viewing algorithms, interaction techniques, hierarchi-
cal image representation, volume visualization.

I. INTRODUCTION

D IRECT volume rendering with hardware texture map-
ping has become a standard technique for visualizing

three-dimensional scalar fields from scientific and medical
applications. An increasing number of these applications are
now producing large-scale data sets, ranging from gigabytes
to terabytes. One example is the Visible Woman (VisWoman)
data set with resolution of 512×512×1728 from The National
Library of Medicine, generated as part of the Visible Human
Project. Another example is the Richtmyer-Meshkov Insta-
bility (RMI) simulation performed at Lawrence Livermore
National Laboratory. The simulation was executed on a 2048×
2048×1920 rectilinear grid, and it produced 7.5 gigabytes of
data at each time step.

While it is common for the domain scientists to gener-
ate enormous amount of data, the size of video memory
in the state-of-the-art high-end graphics hardware is limited
to only several hundred megabytes. This disparity severely
challenges brute-force conventional hardware-texturing based
volume rendering approaches. New visualization systems that
can scale adequately and ensure a high level of interactivity are
needed. Among several alternatives, multiresolution volume
rendering [13], [17], [31] is a solution that can reduce the

C. Wang and H.-W. Shen are with the Department of Computer Science
and Engineering, The Ohio State University, 395 Dreese Laboratories, 2015
Neil Avenue, Columbus, OH 43210. E-mail:{wangcha, hwshen}@cse.ohio-
state.edu.
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rendering cost dramatically. To perform interactive rendering, a
multiresolution data hierarchy composed of multiple spatially
partitioned blocks is first created. At run time, as the user
navigates through the hierarchy, various amounts of data at
different levels of detail can be extracted and used for the
rendering.

Often, such a level-of-detail (LOD) is determined by various
user-specified parameters, such as the tolerance of errors based
on certain data-dependent metrics [1], [19], [29], different
view-dependent parameters [17], [21], or both [12], [13], [22],
[32]. In general, these metrics can be classified as data-based
and image-based metrics. Data-based metrics measure the
distortion between low and high (or full) resolution data blocks
in the volume. The most widely used data-based metrics are
mean square error (MSE), L2-norm, and signal-to-noise ratio
(SNR). These metrics have clear physical meanings and are
simple to compute. However, they are usually not effective in
predicting the quality of the rendered images due to the lack of
correlation between data and image, as indicated in [7], [15],
[22], [27], [30]. Image-based metrics focus on the ultimate
images the user perceives, and strive to capture the quality
loss in the rendered images introduced by rendering low
resolution data. These metrics are intrinsically view-dependent
and more difficult to develop in conjunction with interactive
LOD selections for large volume visualization. The major
challenge lies in designing an image-based metric for quality-
driven LOD selection, and updating the metric fast enough as
not to harm the interactivity.

In this paper, we present an interactive LOD selection and
rendering algorithm using an image-based quality metric for
visualizing large volumetric data. The main contributions of
our paper are:
• We introduce an image-space model for the quality metric

design, based on an efficient way to evaluate the impor-
tance values of coarse-grained multiresolution data blocks
on the final image. Fig. 1 shows a comparison of the LOD
rendering of the VisWoman data set using our image-
based quality metric and the MSE-based and SNRMSE-
based (MSE of SNR) metrics. Unlike traditional LOD
selection algorithms using data-based metrics, our LOD
selection algorithm captures the structural distortion of
the data and generates images of better visual quality
under similar block budgets.

• Our method is adaptive to changes of the input transfer
function. We utilize a zigzag run-length encoding scheme
to store summary tables of data blocks in the mul-
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(a) (b) (c) (d)

Fig. 1. (a) shows a zoom to the upper skeleton of the VisWoman data set, rendered with full resolution. (b) (MSE-based, 36 blocks), (c)
(SNRMSE-based, 37 blocks), and (d) (image-based, 34 blocks) show a closer zoom to the spine while rendered in low resolution.

tiresolution hierarchy with very small storage overhead
(around 1% of the original volume data). During the run-
time rendering, we can update the quality metric within
seconds for large data sets whenever the transfer function
changes at run time.

• Based on summed area tables (SATs), we propose a
GPU reduction scheme that can efficiently perform the
visibility estimation for multiresolution data blocks, en-
suring real-time update of view-dependent information
and interactive LOD selection.

The remainder of the paper is structured as follows. First,
we present background and review related work in Section II.
In Section III, we briefly introduce our multiresolution data
representation for large three-dimensional data sets. In Sec-
tion IV, we describe our multiresolution LOD selection and
rendering algorithm in detail. Experimental evidence showing
the visual quality gain using our image-based LOD selection
over data-based ones is provided in Section V. The paper is
concluded in Section VI with future work for our research.

II. BACKGROUND AND RELATED WORK

A. Background

Multiresolution Data Representation: Building a multires-
olution data hierarchy allows the user to visualize data at
different scales, and balance image quality and computation
speed. A number of techniques have been developed to provide
hierarchical data representation for volumetric data, such as
the Laplacian pyramid [9], multi-dimensional trees [32], and
octree-based hierarchies [1], [17]. Muraki [25] first introduced
the use of wavelet transforms for volumetric data. Westermann
[31] presented a framework for approximating the volume
rendering integral using multiresolution spaces and wavelet
projections. More recently, Guthe et al. [13] presented a
wavelet-encoded hierarchical representation for large volume
data sets that supports interactive walkthroughs on a single
commodity PC.

Image-Based Quality Measurement: The lack of correlation
between the type of error in an image and the response of
the human visual system (HVS) to different types of errors
prompted researchers to develop image-based metrics. Jacobs
et al. [15] introduced an image-query metric for searching
in an image database using a query image similar to the
intended target. The metric makes use of multiresolution

wavelet decompositions of the query and database images, and
operates on the coefficients of these decompositions. Gaddipati
et al. [7] presented a wavelet-based metric which captures
the change in images wrought by operators and the image
synthesis algorithms. Sahasrabudhe et al. [27] proposed a
quantitative technique which accentuates differences in images
and data sets through a collection of partial metrics. A study
of different image comparison metrics, categorized into spa-
tial domain, spatial-frequency domain, and perceptually-based
metrics, was presented in [33]. Alternatively, Wang et al. [30]
proposed the use of structural similarity for the design of
image quality measures. Experimental results show that their
Structural Similarity Index simulates the response of the HVS
with low computation cost.

In the context of large volume visualization, an image-
based metric is difficult to incorporate because of the following
reasons: First, image-based metrics need to consider run-time
information, such as the viewing, projection, and occlusion.
Unlike most data-based metrics which can be easily computed
in a preprocessing stage, to get view-dependent occlusion
information for a large data set, one has to resort to either so-
phisticated precomputation with considerable overhead [8], or
run-time calculation with rough approximation [12]. Next, the
user may adjust the transfer function during the rendering in
order to reveal different features. Image-based metrics should
be adaptive to run-time transfer function changes. Previous
work on large data visualization usually assumes the input
transfer function is fixed, or is limited to a family of transfer
functions consisting of a series of basis functions [8]. Last, the
human observer plays a central role in perceiving the image
quality. Therefore, image-based metrics should also take into
account human perception [28] in the visualization process.
The factors need to be considered include the perception
of distance, coverage, shape, color, occlusion, texture, and
lighting. In this paper, we integrate an image-based quality
metric into the multiresolution LOD selection and rendering
framework.

Visibility Computation: To accelerate the process of image
generation, visibility culling has long been employed [2]
in rendering large polygonal models as well as volumetric
data sets. Klosowski and Silva [16] introduced the time-
critical Prioritized-Layered Projection (PLP) algorithm for fast
rendering of high depth complexity scenes, using a solidity-
based metric for visibility estimation. A similar approach that
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TABLE I

THE COMPARISON OF THE THREE APPROACHES.

approach Guthe et al. [12] Ljung et al. [22] our approach
data hierarchy octree-based flat block-based octree-based

error evaluation RGB, use max error CIELUV, MSE-based CIELUV, image quality measure
block projection projection size not considered luminance, projection size, thickness

visibility estimation assume uniform opacity use simplified histogram use low resolution data
occlusion only occlusion only emission + occlusion

raycasting, CPU raycasting, CPU SAT, GPU
transfer function not adaptive adaptive, 12-level simplified histogram adaptive, 256-level histogram

integrates occlusion culling with view-dependent rendering
was given in [4]. Gao et al. [8] proposed a Plenoptic Opacity
Function (POF) scheme, which encodes the view-dependent
opacity of a volume block for visibility culling of large
volume data. Utilizing visibility information for multiresolu-
tion volume rendering has not been widely studied, nor has
the potential of using programmable graphics hardware for
visibility estimation been fully explored.

B. Related Work

Two recent methods have been proposed for error mea-
surement and visibility calculation within the multiresolution
volume rendering framework. Guthe et al. [12] presented
several improvements on compression based multiresolution
rendering of large data sets to speed up the volume rendering
process. The screen-space error was measured as the maximum
error produced by each block multiplied by its projection
size. The maximum error was calculated by simply adding
the differences of RGB color and opacity components, rather
than more correct opacity-modulated color differences. The
visibility estimation was performed for empty space skipping
and occlusion culling to speed up the rendering. They took a
conservative way of visibility testing, and assumed a uniform
opacity for each data block for very rough approximation.
Ljung et al. [22] focused on incorporating transfer function
into adaptive decompression of volume data for multiresolu-
tion volume rendering. Similar to [21], they took a flat block-
based volume decomposition approach. At the compression
stage, they calculated the meta-data for each block: the average
scalar value, the root-mean-square (RMS) wavelet coefficients,
and a simplified histogram. The error metric was based on a
simplified version of MSE in the CIELUV space. To account
for occlusion, a low resolution ray-casting renderer was used
to estimate the average opacity of each block, followed by
empirical tests for approximating the simplified discrete ren-
dering equation with no emission factor.

In our work, the goal is to incorporate an image-based
quality metric for multiresolution volume rendering of large
data sets. Thus, our main focus is on quality-driven interactive
LOD selection, rather than compression based rendering [12],
or transfer function based decompression [22]. To achieve
this goal, we propose much more refined solutions at each
step of our algorithm. Our image-based quality metric takes
into account the emission as well as the occlusion of the
multiresolution data blocks, and is more accurate than the
simplified ones in [12] and [22]. We present a summary table

scheme to account for the run-time transfer function change
with much higher precision (256-level histogram) than the
one (12-level simplified histogram) in [22]. Using simplified
histogram has the risk of missing important details in the
data. Therefore, our refined solution is more suitable for large
data sets with high dynamic range. Our scheme allows one
to update the errors for a large volume of size around 10243

within seconds. Also, we introduce a GPU-based reduction
scheme for getting estimated visibility for the data blocks in
real time, while both of those methods in [12] and [22] used
only the software raycasting approach. We use low resolution
data for visibility estimation, which is more exact than just
assuming a uniform opacity [12] or taking the simplified
histogram [22] for each block. In Table I, we list the major
differences between our approach and the two related ones.

III. MULTIRESOLUTION DATA HIERARCHY

To build a multiresolution data hierarchy from a large three-
dimensional data set, we use wavelet transforms to convert the
data into a hierarchical multiresolution representation, called
the wavelet tree [13]. The wavelet tree construction algorithm
starts with subdividing the original 3D volume into a sequence
of blocks with the same size (assuming each has N voxels).
These raw volume blocks form the leaf nodes of the wavelet
tree. After performing a 3D wavelet transform on each block, a
low-pass filtered subblock of size N/8 and wavelet coefficients
of size 7N/8 are produced. The low-pass filtered subblocks
from eight adjacent leaf nodes in the wavelet tree are grouped
into a single block of N voxels, which becomes the low
resolution data stored in the parent node. We recursively apply
this 3D wavelet transform and subblock grouping process in a
bottom-up manner till the root of the tree is reached, where a
single block of size N is used to represent the entire volume.
To reduce the size of the coefficients stored in the wavelet
tree, the wavelet coefficients in each tree node are set to zero if
they are smaller than a user-specified threshold. These wavelet
coefficients are then compressed using run-length encoding
combined with a fixed Huffman encoder. Note that in the
wavelet tree, the multiresolution data blocks associated with all
the tree nodes have data of the same size, which is N. However,
the spatial resolutions they represent may vary, depending on
which level of the tree the corresponding nodes lie on.

Coupled with the construction of the wavelet tree, multires-
olution error ε is evaluated for each of the tree nodes. We
calculate the error as the summation of the errors between the
parent block and its eight immediate child blocks. We also
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take into account the maximum error of the child blocks, as
an approximation of the error between the parent block and
the original full-resolution data block it represents. Written in
equation:

εbi =
7

∑
j=0

εi j +max{εb j |
7
j=0} (1)

where εi j is the voxel-wise error between parent block bi and
its jth child block b j (Note that b j contributes one eighth of
the low-pass filtered data to bi. For each voxel value in b j,
we linearly interpolate its corresponding value from its low-
pass filtered data in bi.); εbi and εb j are the multiresolution
errors of blocks bi and b j respectively. As a special case, if
block bi is associated with a leaf node in the hierarchy, we
define its error as a small constant C. Depending on the need,
εi j can be calculated in different ways. For example, we can
directly calculate it in the scalar data space using MSE or
SNRMSE (MSE of SNR), or in the RGB or the CIELUV
color space. The multiresolution errors in the data hierarchy
are then normalized for our use.

IV. LOD SELECTION AND RENDERING ALGORITHM

Our multiresolution LOD selection and rendering algorithm
optimizes the quality of rendered images through the use of an
image-based quality metric. Our quality metric evaluates the
importance values of multiresolution data blocks by examining
the contribution of data blocks to the final image, based on the
discretized volume rendering integral (DVRI). The evaluation
approximates the emission of each block, as well as takes
into account the occlusion caused by the blocks in front of
it. To capture the multiresolution error in the data hierar-
chy, we modulate the importance value with the distortion
between low and high resolution data blocks, calculated in
the roughly perceptually-uniform CIE L∗u∗v∗ (CIELUV) color
space. To ensure a real-time update of the quality metric, we
propose a summary table scheme to respond to changes of the
transfer function, and a GPU reduction scheme for visibility
estimation. At run time, for a given viewing direction, the
LOD selection is made based on a priority queue scheme
utilizing the importance values of multiresolution blocks as
their priority values. The wavelet tree traversal maintains the
LOD as a cut through the hierarchy, and the importance values
dictate the sequence of LOD refinements. A certain number
of blocks up to a user-specified budget are extracted and sent
to the texture hardware for rendering.

A. Volume Rendering Integral

According to the emission-absorption optical model [23],
the volume rendering integral (VRI) that calculates the amount
of light I along a viewing ray r through the volume is given
by:

Ir =
∫ D

0
c̃(s(~x(λ ))) exp(−

∫ λ

0
τ(s(~x(λ ′))) dλ ′) dλ (2)

where s(~x(λ )) is the scalar value at position ~x(λ ) in the
volume, parameterized by the distance λ to the viewpoint;

c̃(s) is the volume source term or intensity; τ(s) defines the
attenuation function.

In general, the VRI cannot be evaluated analytically. There-
fore, practical volume rendering algorithms discretize the VRI
by numerical approximation. Using Riemann sum for n equal
ray segments of length D/n, and further approximating the
exponential function with the first two terms of the Taylor
series expansion, we get the discretized volume rendering
integral (DVRI) [24], also known as the compositing equation
[20]:

Ir =
n

∑
i=0

c(si)α(si)
i−1

∏
j=0

(1−α(s j)) (3)

where c(s) and α(s) define the color and opacity transfer
function. This equation denotes that at each discrete sample
position i along the viewing ray r in the volume, light is
emitted according to the term c(si)α(si), which is absorbed
by the volume at all positions along r in front of i according
to the term α(s j). Eqn. 3 serves as the foundation for our
design of importance values for multiresolution data blocks.

B. Importance Value Design

The DVRI in Eqn. 3 evaluates the amount of light visible
to the eye on a per-ray basis. It is also possible to look at
the equation on a per-slice basis, which leads to the popular
slice-based compositing technique for volume rendering. In
this paper, the underlying entity for our LOD selection and
rendering algorithm is a data block. Therefore, we evaluate the
importance values of multiresolution data blocks by approxi-
mating Eqn. 3 on a per-block basis. The importance value of
a data block b along the viewing direction r is calculated as
follows:

Ib = (c(µ)α(µ) · t · a) · ν (4)

where µ is the mean scalar data value of block b; c(µ)
and α(µ) define the color and opacity transfer function (we
actually calculate the magnitude of its corresponding CIELUV
color); t is the average thickness (the length of the viewing
ray segment inside the block) of block b; a is the screen
projection area of the block, and ν is its estimated visibility.
Similar to Eqn. 3, here ((c(µ)α(µ) · t · a) approximates the
emission of block b along direction r, and ν accounts for
the attenuation. Given a viewing direction r, Ib essentially
evaluates the contribution of block b to the final image.

If we record the mean scalar value µ of each block during
the construction of the multiresolution data hierarchy, we can
quickly compute c(µ) and α(µ) on the fly. Also, given a
viewing direction r, the average thickness t and projection area
a of a block can be easily calculated at run time. However,
to obtain the estimated visibility ν of a block interactively
is non-trivial, and we will describe our real-time GPU-based
solution in Section IV-E.

Even if two multiresolution data blocks have the same
approximate emission and absorption terms, the distortions
between the blocks and their children can be different. Taking
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into account the relative distortion, we modulate the impor-
tance value with the multiresolution error between low and
high resolution data blocks. Eqn. 4 becomes:

Ib = (c(µ)α(µ) · ε · t · a) · ν (5)

where ε is the distortion between block b and its higher
resolution child blocks, normalized to [0,1]. The motivation
behind this modulation is that if a block contains larger
distortion, then it should receive a higher priority value for
LOD refinements.

C. Multiresolution Error Evaluation

Previously, researchers have proposed various ways to cal-
culate the multiresolution error ε in the scalar data space [1],
[19], [29], and in the RGB [5], [12] or the CIELUV [22] color
space. In this paper, we take an image-space approach and
opt to evaluate the multiresolution error in the perceptually-
adapted CIELUV color space, as suggested by Glassner [10].

Let us consider two data blocks bi and b j, where b j is an
immediate child block of bi. We define the multiresolution
error between bi and b j as follows:

εi j = σ̃i j ·
µ̃2

i + µ̃2
j +C1

2µ̃iµ̃ j +C1
·

σ̃ 2
i + σ̃ 2

j +C2

2σ̃iσ̃ j +C2
(6)

where σ̃i j is the covariance between bi and b j; µ̃i and µ̃ j are
the mean values of bi and b j respectively; σ̃i and σ̃ j are the
standard deviations of bi and b j respectively (small constants
C1 and C2 are included to avoid instability when µ̃iµ̃ j and
σ̃iσ̃ j are very close to zero):

σ̃i j =
1

N−1

N

∑
k=1

(x̃ik− µ̃i)(x̃ jk− µ̃ j) ; (7)

σ̃i =
1

N−1

N

∑
k=1

(x̃ik− µ̃i)
2 ; σ̃ j =

1
N−1

N

∑
k=1

(x̃ jk− µ̃ j)
2 . (8)

Here, N is the number of voxels in the block, and x̃ is the
volume source term. Using Eqn. 1 and 6, we can calculate
the multiresolution error for each tree node as we build up
the multiresolution data hierarchy. Eqn. 6 consists of three
parts, namely, covariance, luminance distortion, and contrast
distortion. The first part is the covariance between bi and
b j, which measures the degree of linear correlation between
the two blocks (σ̃i j is always non-negative since we actually
calculate it based on the CIELUV color differences of the
pairs (x̃ik, µ̃i) and (x̃ jk, µ̃ j), as explained in Eqn. 9 and 10).
Even though bi and b j are linearly related, there still might be
relative distortions between them. Therefore, we add two more
parts to the equation. The second one, measures how close the
mean luminance is between bi and b j. The minimum value of
1.0 is achieved if and only if µ̃i = µ̃ j. On the other hand,
σ̃i and σ̃ j can be viewed as estimate of the contrast of bi

and b j, so the third part measures how similar the contrasts
of the two blocks are. Also, the minimum value of 1.0 is
achieved if and only if σ̃i = σ̃ j. Collectively, these three parts
capture the distortion between the two blocks. The luminance
distortion and contrast distortion are originally from the image

quality assessment literature [30], and have been shown to be
consistent with the luminance masking and contrast masking
features in the HVS respectively.

One should notice that the input source terms, x̃ and µ̃ , are
CIELUV color values, rather than original scalar data values.
Accordingly, we define x̃ik − µ̃i as follows (x̃ jk − µ̃ j can be
defined similarly):

x̃ik− µ̃i = ∆E( f (crgb(xik)α(xik)), f (crgb(µi)α(µi))) (9)

where xik is the scalar data value at the kth voxel position in
block bi; µi is the mean scalar value of bi; crgb and α define
the color and opacity transfer function; f is the function that
converts an RGB color to its CIELUV color [6]; ∆E is the
Euclidean distance between a pair of colors specified in the
CIELUV color space:

∆E =
√

∆L∗2 + ∆u∗2 + ∆v∗2 (10)

where ∆L∗, ∆u∗, and ∆v∗ are the differences of L∗, u∗, and v∗

components for the pair of CIELUV colors.

D. Summary Table Scheme

As we can see, the calculation of multiresolution error εi j

in Eqn. 6 requires the input of the color and opacity transfer
function (Eqn. 9). At run time, whenever the user adjusts the
transfer function, the multiresolution errors in the entire data
hierarchy have to be recomputed all over again. This entails a
considerable amount of computation overhead and makes the
whole LOD selection and rendering process non-interactive.
In the following, we describe a summary table scheme that
ensures real-time update of the errors in response to transfer
function changes.

Our summary table scheme is based on the observation
that, for large data sets, the size of the data range is often
many orders of magnitude smaller than the number of voxels
in the volume. For instance, the RMI data set is byte (8-bit)
data with a data range size of 256. However, the number of
voxels in the volume is 2048×2048×1920. Therefore, instead
of calculating Eqn. 7 and 8 by going through the individual
voxels, it suffices to count the frequencies of unique error
terms, which is much faster (similar observations have been
made and utilized in [5], [18]). In the case of byte data, there
are 2562 = 65536 combinations for σ̃i j, and only 256 cases for
σ̃i or σ̃ j. To compute the error, rather than adding individual
error terms voxel by voxel, we add the products of each unique
error term and the frequency of that term.

To realize this, first of all, for each of the data blocks at
the multiresolution hierarchy, we precompute the mean scalar
value µ , and keep a local histogram table H (256 entries):

m = H (xi)

where xi is the scalar value, m is the frequency of xi in the
block.

Next, for each data block associated with a non-leaf node in
the hierarchy, we keep a local correspondence table C (65536
entries):
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m = C (xi, x j)

where xi is the scalar data value in the current (parent)
block; x j is the data value in one if its eight immediate child
blocks; m is the frequency of the data pair. We refer to these
histogram and correspondence tables as summary tables. They
are created during the construction of the data hierarchy and
are precomputed only once. Besides this, we keep a global
distance table D (1+2+ . . .+255 = 32640 entries):

∆E = D (xi, x j)

where xi and x j are scalar data values, and xi < x j; ∆E is the
distance between xi and x j in the CIELUV color space.

Finally, we keep a global function table F (the number of
entries in the transfer function, usually 256):

L∗u∗v∗ = F (rgbα)

where rgbα is the RGB color and opacity in the current
transfer function, L∗u∗v∗ is the corresponding CIELUV color.
The global distance table and function table are initialized at
run time and are updated when the transfer function changes.

At run time, we can quickly calculate the multiresolution
error ε for each block using Eqn. 1 and 6-10, by looking up
the mean scalar value µ and summary tables (H and C) stored
in each of the blocks, as well as the global distance table D

and function table F. The lookup relationships are as follows:

µ̃i, µ̃ j ← µ,F ;

σ̃i, σ̃ j ← H,F ;

σ̃i j ← C,D .

Whenever the user changes the transfer function, only the
global distance table and function table need update.

For data sets other than byte data, quantization is necessary
in order to reduce the size of summary tables (otherwise,
the size of these tables could be even larger than the size
of actual data blocks, and the time for error calculation would
increase dramatically). For example, we can quantize the scalar
data range into 256 levels either uniformly or based on the
histogram of the whole data set. In this way, the total size of
the summary tables will remain small regardless of the data
type of the input volume.

One can observe that, usually there is a strong degree
of correlation between parent and child blocks in the data
hierarchy. This means that in the correspondence table C,
when xi is close to x j (i.e., the entry is close to the major
diagonal of the table), the frequency m is large. m is smaller,
actually often zero, if the entry is further away from the major
diagonal. Leveraging this observation, we can perform run-
length encoding on the correspondence table C in a zigzag
manner, as illustrated in Fig. 2. The zigzag run-length encod-
ing not only reduces the storage of correspondence tables, but
also improves the run-time performance. For instance, using
the run-length encoded correspondence tables C for the RMI

Fig. 2. Run-length encoding on the correspondence table C in a
zigzag manner. An example of an 8× 8 table is shown here. The
encoding starts from the red circle, and follows the red arrows.

data set, the total size of summary tables reduces from 208MB
to 44.1MB, and accordingly, the time to update multiresolution
errors decreases from 43 seconds to 13 seconds.

E. GPU-Based Visibility Estimation

Obtaining the exact visibility of the multiresolution data
blocks requires rendering the blocks. This is similar to ren-
dering the entire hierarchy, which could be rather slow and
defeats the purpose of the visibility test. For coarse-grained
multiresolution rendering, getting an approximate visibility of
a block suffices. In this scenario, the visibility computation
should be done prior to the actual rendering of blocks.

Fig. 3. Visibility estimation via rendering a low resolution of the
data. The visibility of a block is acquired when its nearest vertex is
in-between the current slice and the latest drawn one.

In our algorithm, we render a low resolution of the data
(for example, we can use the root of the data hierarchy)
by drawing front-to-back view-aligned slices, and evaluate
the approximate visibility of all the blocks during the slice
drawing, as illustrated in Fig. 3. The visibility of a block
is computed as (1− α), where α is the average opacity
within the block’s screen projection on the occlusion map,
accumulated right before the first slice intersecting the block
(α is considered as the accumulated opacity in front of that
block). Here we assume the visibility of a data block is
independent of the resolutions of all the occluding blocks
in front of it, because opacity correction is performed to
compensate the varying slice distances within data blocks of
different resolutions. Note that a conservative way of taking
the minimum opacity, commonly used in occlusion culling, is
unnecessary. For occlusion culling, the decision is to either
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render or discard a block, and getting the minimum opacity is
crucial to avoid producing incorrect images by leaving holes.
For multiresolution rendering, the whole volume is rendered
anyway, because the question is to select proper LODs for
different regions within the volume, rather than to render or
discard a region. Therefore, it is reasonable to get the average
instead of the minimum opacity.

To compute the estimated visibility for a data block, a naive
way is to read the alpha channel of the framebuffer to an off-
screen buffer after a certain number of slices are rendered, and
iterate through the pixels that the data block projects to and
obtain an average of the opacities. This software approach
is slow due to the framebuffer reads from the GPU to the
CPU (refer to the timing in Table IV). The testing time is
proportional to the size of output images and the number of
pixels each block projects to. To minimize the transferring of
pixels from the GPU to the CPU, we move all operations
to the GPU. Our GPU reduction scheme is based on the
summed area tables (SATs) [3]. The construction of a SAT
is linear to the number of pixels on the area being considered,
in our case the whole rendering screen. However, it only
takes constant time to retrieve the sum over any rectangular
area, which is done in one addition and two subtractions.
This fits perfectly in getting the corresponding averages from
the projections of the blocks. We build the SATs in multiple
passes with the support of framebuffer objects having double
auxiliary buffers (see the Appendix for the implementation
detail). Getting the estimated visibility for a block is performed
by another fragment program that looks up the four corners of
its projection in the output auxiliary buffer holding the SAT.

Testing shows that the time to perform GPU-based visibility
estimation is not negligible. For instance, with output image
resolution of 5122, each SAT takes around 10ms to compute
on an nVidia GeForce 7800 GT graphics card. In total, it took
about 0.3 second (recall that we need to recompute the SAT
whenever a certain number of slices of the low resolution data
are drawn) to update the visibility of 10499 non-empty blocks
for the RMI data set. If we perform such a test for every
frame, then the frame rate would be limited to around 3.3fps.
To overcome this constraint, we incorporate the following two
strategies to improve the rendering frame rates.

First, the number of block budget the user specifies is
usually much smaller than the total number of blocks in the
data hierarchy. For such a typical block budget and a given
transfer function, normally a large portion of the updated
visibility of blocks farther away from the viewpoint (more
likely to be occluded from the blocks in front of them) never
gets a chance to contribute to the current LOD decision.
Actually, for the RMI data set, tests show that about 30-
50% of the total number of blocks fall into this category.
In view of this, we can only draw the front slices up to a
certain percentage of the total number of slices, and update
the corresponding visibility of blocks that are closer to the
viewpoint. Any block whose visibility is not updated in this
run uses whatever it has from the latest previous run. In this
way, we can reduce the visibility estimation time to around
0.18 second for the RMI data set, if we only update 60% of
the front slices and blocks.

Second, the visibility of the blocks only changes a little bit
if the view does not change greatly. Therefore, if the angle
between the current viewing direction and the latest one with
the visibility updated is less than a threshold angle θ , we do
not update the visibility and use whatever we have from the
latest run. Otherwise, we need to update again. Here, θ is a
predefined small angle (initialized to 5 degrees in our test), and
is adaptive to the zooming of the data during the rendering.

By reducing the load to perform each run of visibility
estimation and the frequency of performing such estimations,
we can reuse visibility computation and utilize frame to frame
coherence, achieving smoother rendering and better frame
rates.

F. LOD Selection and Rendering

At run time, the user specifies the number of blocks as
a budget for rendering. Given a viewing direction, the LOD
selection is made based on a priority queue scheme. The
priority values of blocks are their importance values calculated
according to Eqn. 5 (where ν is updated per view and ε per
transfer function). Thus, a block with a higher importance
value is more likely to be selected for refinement during the
wavelet tree traversal. Constrained by the given budget, the
traversal maintains the LOD as a cut through the multireso-
lution data hierarchy, and refines the blocks on the cut in a
greedy manner.

The LOD selection and rendering works as follows: First,
we initialize the priority queue with the data block of the
lowest resolution, i.e., the root of the multiresolution data
hierarchy. Then, we successively refine the block with the
highest priority value in the queue until the budget is met.
The refinement is performed by deleting the block b with
the highest priority value, updating the importance values of
b’s eight child blocks, and inserting the child blocks into the
queue. Finally, all the data blocks in the queue are sorted in
front-to-back viewing order. These blocks are reconstructed,
if necessary, and sent to texture hardware for rendering.

As we may anticipate reusing most of the reconstructed data
blocks for subsequent frames due to the spatial locality and
coherence exploited by the multiresolution data hierarchy, it
is desirable to cache the data blocks that have already been
reconstructed for better performance. The user can predefine
a fixed amount of disk space and memory dedicated for
the caching purpose. Upon requesting a data block for the
rendering, we retrieve its data from memory, provided the
block is cached in main memory. Otherwise, we need to load
the data from disk if the reconstructed data block is cached
on disk. If it is neither cached in memory nor on disk, then
we need to reconstruct the data block and load it into main
memory. When the system runs short of the available storage
for caching the reconstructed blocks, our replacement scheme
will swap out a data block that has been visited least often.

V. RESULTS AND DISCUSSION

A. Results

We experimented with our LOD selection and rendering
algorithm on the VisWoman and RMI data sets, as listed in
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k)

Fig. 4. First row: (a) shows an overview and (b)-(e) show a zoom to the pelvis. One can observe that (d) (image-based, 77 blocks, 8.29%
of full data) shows more details than (b) (MSE-based, 80 blocks, 8.61%) and (c) (SNRMSE-based, 79 blocks, 8.50%). The reference image
(e) is rendered with full resolution (929 blocks). Second row: objective image comparison in the CIELUV color space. (f), (g), and (h) show
the difference between (b) and (e), (c) and (e), and (d) and (e) respectively. The color map (i) maps ∆E to color. Third row: (j) and (k) show
the numbers of blocks selected in each of the multiresolution error levels for (b) and (c) respectively.

Table II. The decision for the block size was based on the cost
of performing the wavelet transform for a single data block,
and the rendering overhead for final image generation. We ex-
tended one voxel overlapping boundaries between neighboring
blocks in each dimension when breaking the original volume
data into blocks in order to produce seamless rendering. As a
result, both hierarchies have a tree depth of six. For both data
sets, the Haar wavelet transform with a lifting scheme was
used to construct the data hierarchies. A lossless compression
scheme was used with the threshold set to zero to compress
the wavelet coefficients. For LOD rendering, we compared the
images generated using our image-based quality metric and
two data-based metrics: MSE and SNRMSE (MSE of SNR).
For the MSE-based (SNRMSE-based) metric, we directly used
the multiresolution error as the importance value, while εi j is
the MSE (SNRMSE) of the scalar data values of blocks bi and
b j in Eqn. 1. Similar block budgets were set for all three cases
for fair comparison. All tests were performed on a 3.0GHz
Intel Xeon processor with 3GB main memory, and an nVidia
GeForce 7800 GT graphics card with 256MB video memory.

The first row of Fig. 4 shows the LOD rendering of the
VisWoman data set using the three metrics. The full-resolution
reference image is provided for comparison. We used a transfer
function that highlights the skeleton. It can be observed that

TABLE II

THE VISWOMAN AND RMI DATA SETS.

data set (type) VisWoman (short) RMI (byte)
volume dimension 512×512×1728 2048×2048×1920
block dimension 32×32×64 128×128×64

volume (block) size 864MB (128KB) 7.5GB (1MB)
# non-empty blocks 9446 10499
compression ratio 2.37:1 5.60:1

when we rendered the data in low resolution, the LOD selec-
tion using the image-based quality metric shows more details
than the MSE-based and SNRMSE-based metrics. In Fig. 4 (j)
and (k), we compare the numbers of blocks selected in each
of the multiresolution error levels for (b) and (c) respectively
(the multiresolution errors have been normalized). Assuming
that our multiresolution errors are able to capture the structural
distortion of the data, we can infer that both MSE-based and
SNRMSE-based metrics perform much worse due to their
selections of not-so-highly prioritized multiresolution data
blocks. An objective image comparison was also conducted
to testify the visual quality gain obtained using our image-
based quality metric. We calculated the pixel-wise differences
between the low resolution image and the reference image in
the CIELUV color space. The difference threshold ∆E ≥ 6.0
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(a) (b) (c)

(d) (e)

Fig. 5. (a) (MSE-based, 55 blocks), (b) (SNRMSE-based, 55 blocks), and (c) (image-based, 55 blocks) show a zoom to the center of the
RMI data set, while an overview is shown in (d). (e) shows the numbers of blocks rendered in each of the ten visibility levels for (a)-(c)
respectively.

(a) (b) (c) (d) (e)

Fig. 6. (a) shows the reference image with full resolution (1237 blocks). (b) shows the percentage of pixels with ∆E ≥ 6.0 in the difference
images for the three metrics, under five different block budgets. (c)-(e) show three difference images near 5%, as indicated in (b): (c)
(MSE-based, 150 blocks), 5.51%, (d) (SNRMSE-based, 128 blocks), 5.48%, and (e) (image-based, 50 blocks), 4.75%.

gives the noticeable pixel distortion [22]. At the second row of
Fig. 4, we show these difference images side by side. Clearly,
the ones with the MSE-based and SNRMSE-based metrics
contain larger visual distortion. Another rendering example of
the VisWoman data set is shown in Fig. 1. We can see that
the image-based LOD selection shows clearer structures along
the spine.

Fig. 5 shows the LOD selection and rendering of the RMI
data set using the three metrics. We zoomed into the center
of the data and compared fine details after an overview. The
image-based quality metric takes into account the multireso-
lution error and visibility of each data block, thus puts more
refinement effort on the blocks that have larger visual contribu-
tion. Fig. 5 (e) shows the numbers of blocks rendered in each
of the ten visibility levels for Fig. 5 (a)-(c) respectively. As we
can see, compared with the ones with MSE and SNRMSE, the
image-based one selected more blocks with higher visibility.
Similar conclusions can be drawn from Fig. 6, where the
image-based quality metric achieves near 5% noticeable pixel
distortion with a block budget of only 50, as opposed to
150 and 125 for the MSE-based and SNRMSE-based ones
respectively. To verify that including estimated visibility ν in

Eqn. 5 does help in LOD selections, we tested our image-
based LOD selection algorithm without and with visibility
information. The results in Fig. 7 show that adding visibility
information in the LOD selection leads to more refinement on
blocks closer to the viewpoint and with higher visibility. All
the results in Fig. 1 and 4-7 confirm the effectiveness of our
image-based LOD selection algorithm.

We also experimented with our summary table scheme for
updating the multiresolution errors. With 256-level histograms
and transfer functions, the statistics is shown in Table III. For
both data sets, the zigzag run-length encoding scheme takes at
least 70% less time to update the multiresolution errors with
much smaller storage overhead than the one with no coding.
The summary table scheme proved very efficient in response to
the transfer function changes with negligible storage overhead.
A rendering example of the VisWoman data set is shown in
Fig. 8, where a different transfer function was used to highlight
both the skin and the skeleton. We zoomed into the left foot
and rendered in close to full resolution. The three methods
generated similar results as we approached full resolution.
Still, it can be seen that the MSE-based method contains much
noise coming from the 3D test bed surrounding the cadaver
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(a) (b) (c) (d) (e)

Fig. 7. (a) shows a zoom to the knee joints of the VisWoman data set, rendered with full resolution (1033 blocks). (b) (w/o visibility, 156
blocks) and (c) (with visibility, 154 blocks) show the different images. (d) (w/o visibility, 37 blocks) and (e) (with visibility, 32blocks) show
a zoom of the RMI data set with block boundaries drawn to illustrate different LODs.

TABLE III

THE STATISTICS OF SUMMARY TABLE SCHEMES.

no encoding zigzag run-length encoding
data set space (overhead) update time space (overhead) update time

VisWoman 175MB (20.25%) 34s 9.22MB (1.07%) 5s
RMI 208MB (2.71%) 43s 44.1MB (0.57%) 13s

(a) (b) (c) (d)

Fig. 8. (a) (MSE-based, 107 blocks), (b) (SNRMSE-based, 108 blocks), and (c) (image-based, 106 blocks) show a zoom to the left foot,
rendered close to full resolution. The reference image (d) is rendered with full resolution (151 blocks). White frames are drawn in (a) and
(b) to indicate some of the differences.

(the blocks corresponding to the test bed have larger MSEs
yet less visual importance than the blocks corresponding to
the foot.). Although the SNRMSE-based one generates the
result with the least noise, it leaves some portion rendered in
lower resolution, which is discernable when compared with
the reference image.

After applying the two strategies on visibility estimation
for improving the performance (Section IV-E), we compared
the timing of visibility estimation for CPU and GPU solutions.
We evaluated the visibility of the multiresolution blocks in the
data hierarchy for a wide variety of block budgets (from 10
to 11000), together with different combinations of translation,
scale, and rotation. Table IV gives the upper bounds of the
timing for the two data sets with four output image resolutions.
The timing results show that the solution with the GPU is
about three to four times faster than the CPU one.

B. Discussion

Compared with the traditional MSE-based and SNRMSE-
based metric, our experience shows that for most of the
cases, the image-based quality metric gives LODs better visual

quality. This is especially true when the block budget is small
(usually below 20%) compared with the number of blocks for
full resolution. As one gradually increases the block budget,
the three metrics generate closer results as expected. However,
as shown in Fig. 8, we still get some improvement over the
data-based metrics. Our image-based quality metric performs
quite well even when the data contains noise. For example, the
VisWoman data set contains noise from the 3D test bed. Fig. 4
shows that the image-based quality metric is insensitive to the
noise and captures the structural distortion of the data, since
more refinement effort was put on the blocks corresponding
to the pelvis. This result is consistent with the image quality
measure using structural similarity [30]. Finally, we compared
our image-based quality metric with Guthe’s screen-space
metric (refer to Section II-B). We used the same estimated
visibility with an implementation of the screen-space error and
tested both data sets. The results in Fig. 9 show the advantage
of our image-based quality metric over the screen-space error
metric.

Our summary table scheme works well when the space
overhead for storing the tables is small, compared with the
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TABLE IV

THE TIMING OF VISIBILITY ESTIMATION WITH DIFFERENT OUTPUT IMAGE RESOLUTIONS.

VisWoman
image resolution CPU draw FB read get avg GPU draw SAT

256×256 0.219s 8.72% 63.37% 27.91% 0.072s 9.72% 90.28%
512×512 0.578s 3.84% 58.59% 37.57% 0.151s 17.21% 82.79%
768×768 1.078s 2.56% 52.96% 44.48% 0.312s 17.63% 82.37%

1024×1024 1.531s 1.79% 42.83% 55.38% 0.487s 21.56% 78.44%
RMI

256×256 0.359s 6.41% 56.02% 37.57% 0.103s 9.71% 90.29%
512×512 0.828s 3.53% 52.16% 44.31% 0.185s 17.84% 82.16%
768×768 1.594s 2.09% 44.30% 53.61% 0.372s 16.13% 83.87%

1024×1024 2.338s 1.35% 34.47% 64.18% 0.538s 20.45% 79.55%
FB read = framebuffer read, get avg = get average occlusion

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 9. First row: (a) (full resolution, 486 blocks), (b) (Guthe’s screen-space metric, 56 blocks), and (c) (our image-based metric, 53 blocks)
show a zoom to the left pelvis. (d) and (e) show the difference between (b) and (a), and (c) and (a) respectively. Second row: (f) shows a
zoom rendered in high resolution (427 blocks). (g) (Guthe’s screen-space metric, 43 blocks), and (h) (our image-based metric, 41 blocks)
show a zoom of (f). (i) and (j) show the difference images for (g) and (h) respectively.

size of the input data set. In our experiments, good results
were obtained with block sizes of 323 or 643 for a data set of
size around 10243. This allows one to have histogram tables
with sufficient entries (such as 256 in our experiments), while
still keeping the scheme efficient. For a smaller block size,
such as 163, we can reduce the number of entries in the
histogram table, or use a simplified histogram to maintain an
effective tradeoff between storage and processing requirements
versus having enough precision for summary tables generation.
On the other hand, our current solution is suitable for value-
based transfer functions. There is a need of further research on
generalizing the summary table scheme for multidimensional
transfer functions.

To our knowledge, we are the first to utilize the GPU
implementation of SATs for visibility estimation. We tested
our GPU-based algorithm on the nVidia GeForce 7800 GT
graphics card, which is based on the new generation PCI
Express bus architecture. With PCI Express, the bandwidth

between the CPU and the GPU increases to over 4GB per
second in both upstream and downstream data transfers. In
this case, framebuffer reads become less a constraint for the
CPU-based solution. Still, it can be seen from Table IV that
framebuffer reads take at least one third of the total time for
the CPU solution. Our experiment reports that utilizing the
GPU for visibility estimation, one can achieve a speedup up
to four times.

For a typical output image resolution of 5122, the summary
of block classification is listed in Table V. For data-based
metrics, the classification time is almost negligible since we
only use the MSE or SNRMSE for block prioritization. For our
image-based metric, taking into account the time for visibility
estimation, we are able to prioritize all the multiresolution
data blocks for LOD selection at a speed of 19.1kblocks/s for
the VisWoman data set, and 14.0kblocks/s for the RMI data
set. This result is comparable to the significance classification
performance presented in [22], considering that we take a more
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TABLE V

THE SUMMARY OF BLOCK CLASSIFICATION WITH 5122 OUTPUT

IMAGE RESOLUTION.

data set VisWoman RMI
block dimension 32×32×64 128×128×64

# blocks 9446 10499

data-based 0.028s 0.032s

visibility 0.151s 0.185s
prioritization 0.343s 0.563s

transfer function 5s 13s

refined and exact solution for block classification and visibility
estimation. Note that the timing for visibility and prioritization
gives the upper bound for all blocks. In actual rendering,
the block budget is usually around tens to hundreds, and the
classification time is much smaller than the upper bound (for
instance, the prioritization time for the RMI data set is 0.016
second when the block budget is 1000). The classification of
the blocks in the entire data hierarchy can be finished within
seconds even if the user changes the transfer function at run
time. This timing performance could be further improved with
the support of transfer function preview at reduced resolutions.
For example, the transfer function update time reduce to 1.7
seconds and 4.8 seconds from Table III for the VisWoman
and RMI data sets respectively, if both use 64-level rather
than 256-level transfer functions.

VI. CONCLUSION AND FUTURE WORK

The focus of this work is to develop an image-based LOD
selection algorithm for large volumetric data, and produce
images of better visual quality compared with traditional data-
based LOD selection algorithms, under similar block budgets.
In this paper, we have presented an interactive LOD selection
and rendering algorithm through the use of an image-based
quality metric. Experimental results on large scientific and
medical data sets demonstrate the effectiveness and efficiency
of our image-based LOD selection algorithm.

Our approach is promising due to its generality and flex-
ibility. The summary table scheme greatly alleviates the de-
pendence of the error calculation on the transfer function, and
thus allows one to update the errors within seconds whenever
the transfer function changes. The GPU reduction scheme for
visibility estimation is not limited to multiresolution volume
rendering, and is readily applicable to other large volume visu-
alization scenarios that capitalize on the visibility information.
Moreover, the hierarchical data representation and the user-
specified budget for rendering make our LOD selection scheme
suitable for time-critical multiresolution volume rendering
and remote visualization applications. Finally, one can have
different definitions and thus different ways of measurement
for the multiresolution error in Eqn. 5, which we plan to
explore more. In the future, we also would like to extend our
method for large-scale time-varying data visualization.

APPENDIX

THE GPU IMPLEMENTATION OF SATS

Nowadays, GPUs and fragment programs support render-
to-texture (RTT) with 32-bit floating-point channels for pixel

buffers (pbuffers) as well as framebuffer objects (FBOs).
This is important for the construction of SATs since the
sums require more precision. Our implementation uses the
GL_EXT_framebuffer_object extension to avoid the
context switching of pbuffers. Given an input FBO, a SAT
can be built by successively adding the columns from left
to right and then the rows from bottom to top. However, this
requires that the FBO is treated as both an input and an output
texture, which highly depends on the kinds of hardware and
graphics library available. To date, most implementations do
not have this capability. Therefore, we take an alternative and
build the SATs in passes with the support of FBOs having
double auxiliary buffers: one is the input, and the other is
the output. Both auxiliary buffers have the same size as the
rendering framebuffer. At the beginning, the alpha values from
the rendering buffer is mapped to the input buffer.

The construction of a SAT in the GPU is as follows: First
of all, we operate on the columns. At the ith pass, each texel
Ti(x,y) in the output buffer is updated using two texels from
the input buffer according to the following equation:

Ti(x,y) = Ti−1(x,y)+Ti−1(x−2i−1,y) (11)

where sampling off texture returns zero and does not affect
the sum. At the end of each pass, the auxiliary buffers are
swapped. For a rendering screen with resolution of n2, the
number of passes needed is log2(n). Then, the process is
repeated over the rows in a similar way to complete the SAT
construction.

The GPU implementation of SATs was first given by Green
[11] from nVidia, where a simple scanline-based algorithm
was presented and used for antialiasing in the traditional
way. For an input table of size n2, the number of passes is
2n. Our implementation requires 2 log2(n) passes with two
sample reads per pass. Actually, this could be further improved
by performing up to 16 sample reads per pass. Hensley
et al. [14] performed study on the tradeoff between the number
of rendering passes and the number of samples per pass. The
optimal tradeoff between the number of passes and the cost per
pass largely depends on the overhead of render target switches
and the design of the texture cache on the target platform.
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A Statistical Approach to Volume Data
Quality Assessment

Chaoli Wang, Member, IEEE,and Kwan-Liu Ma, Senior Member, IEEE

Abstract— Quality assessment plays a crucial role in data
analysis. In this paper, we present a reduced-reference approach
to volume data quality assessment. Our algorithm extracts
important statistical information from the original data in the
wavelet domain. Using the extracted information as feature and
predefined distance functions, we are able to identify and quantify
the quality loss in the reduced or distorted version of data,
eliminating the need to access the original data. Our feature
representation is naturally organized in the form of multiple
scales, which facilitates quality evaluation of data with different
resolutions. The feature can be effectively compressed in size. We
have experimented with our algorithm on scientific and medical
data sets of various sizes and characteristics. Our results show
that the size of the feature does not increase in proportion to the
size of original data. This ensures the scalability of our algorithm
and makes it very applicable for quality assessment of large-scale
data sets. Additionally, the feature could be used to repair the
reduced or distorted data for quality improvement. Finally, our
approach can be treated as a new way to evaluate the uncertainty
introduced by different versions of data.

Index Terms— Quality assessment, reduced reference, wavelet
transform, statistical modeling, generalized Gaussian density,
volume visualization.

I. I NTRODUCTION

L EVERAGING the power of supercomputers, scientists
can now simulate many things from galaxy interaction to

molecular dynamics in unprecedented details, leading to new
scientific discoveries. The vast amounts of data generated by
these simulations, easily reaching tens of terabytes, however,
present a new range of challenges to traditional data analysis
and visualization. A time-varying volume data set produced by
a typical turbulent flow simulation, for example, may contain
thousands of time steps with each time step having billions
of voxels and each voxel recording dozens of variables.
As supercomputers continue to increase in size and power,
petascale data is just around the corner.

A variety of data reduction methods have been introduced
to make the data movable and enable interactive visualization,
offering scientists options for studying their data. For instance,
subsets of the data may be stored at a reduced precision
or resolution. Data reduction can also be achieved with
transform-based compression methods. A popular approach is
to generate a multiresolution representation of the data such
that a particular level of details is selected according to the
visualization requirements and available computing resources.
In addition, data may be altered in other fashions. Furthermore,

C. Wang and K.-L. Ma are with the Visualization and Interface Design
Innovation (VIDI) research group, Department of Computer Science, Univer-
sity of California, Davis, 2063 Kemper Hall, One Shields Avenue, Davis, CA
95616. E-mail:{wangcha, ma}@cs.ucdavis.edu.

it could be desirable to smooth the data or enhance a particular
aspect of the data before rendering. Finally, the data may be
distorted or corrupted during the transmission over a network.

Research has been conducted to evaluate the quality of
rendered imagesafter the visualization process [6], [29].
However, few studies focus on analyzing the data quality
before the visualization actually takes place. It is clear that
the original volume data may undergo various changes due to
quantization, compression, sampling, filtering, and transmis-
sion. If we assume the original data has full quality, all these
changes made to the data may incur quality loss, which may
also affect the final visualization result. In order to compare
and possibly improve the quality of the reduced or distorted
data, it is important for us to identify and quantify the loss
of data quality. Unequivocally, the most widely used data
quality metrics aremean square error(MSE) andpeak signal-
to-noise ratio (PSNR). Although easy to compute, they do
not correlate well with perceived quality measurement [18].
Moreover, these metrics require access to the original data
and arefull-referencemethods. They are not applicable to our
scenario, since the original data may be too large to acquire or
compare in an efficient way. Therefore, it is highly desirable to
develop a data quality assessment method that does not require
full access of the original data.

In this paper, we introduce areduced-referenceapproach
to volume data quality assessment. We consider the scenario
where a set of important statistical information is first extracted
from the original data. For example, the extraction process
could be performed at the supercomputer centers where the
large-scale data are produced and stored, or ideally, in situ
when the simulation is still running. We then compress the
feature information to minimize its size. This makes it easy
to transfer the feature to the user as “carry-on” information
for volume data quality assessment, eliminating the need to
access the original data again. Our feature representation not
only serves as the criterion for data quality assessment, but also
could be used as quality improvement to repair the reduced
or distorted data. This is achieved by matching some of its
feature components with those extracted from the original data.
We have tested our algorithm on scientific and medical data
sets with various sizes and characteristics to demonstrate its
effectiveness.

II. BACKGROUND AND RELATED WORK

Unlike the Fourier transform with sinusoidal basis functions,
the wavelet transform is based on small waves, calledwavelets,
of varying frequency and limited duration [7]. Wavelet trans-
forms provide a convenient way to represent localized signals
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simultaneously in space and frequency. The particular kind
of dual localization makes many functions and operators
using wavelets “sparse” when transformed into the wavelet
domain. This sparseness, in turn, brings us a number of useful
applications such as data compression, feature detection, and
noise removal.

Besides sparseness, wavelets have many other favorable
properties, such as multiscale decomposition structure, linear
time and space complexity of the transformations, decorrelated
coefficients, and a wide variety of basis functions. Studies of
the human visual system(HVS) support a multiscale analysis
approach, since researchers have found that the visual cortex
can be modeled as a set of independent channels, each with a
particular orientation and spatial frequency tuning [4], [21].
Therefore, wavelet transforms have been extensively used
to model the processing in the early stage of biological
visual systems. They have also gained much popularity, and
have become the preferred form of representation for image
processing and computer vision algorithms.

In volume visualization, Muraki [15] introduced the idea
of using the wavelet transform to obtain a unique shape
description of an object, where a 2D wavelet transform is
extended to 3D and applied to eliminate wavelet coefficients
of lower importance. Over the years, many wavelet-based
techniques have been developed to compress, manage, and
render three-dimensional [8], [11] and time-varying volumetric
data [12], [23]. They are also used to support fast access
and interactive rendering of data at runtime. In this paper, we
employ the wavelet transform to generate multiscale decom-
position structures from the input data for feature analysis.

Fig. 1. Multiscale wavelet decomposition of a three-dimensional
volumetric data. L = low-pass filtered; H = high-pass filtered. The
subscript indicates the level and a larger number corresponds to
a coarser scale (lower resolution). An example of three levels of
decomposition is shown here.

The wavelet transform on a one-dimensional signal can be
regarded as filtering the signal with both the scaling function (a
low-pass filter) and the wavelet function (a high-pass filter),
and downsampling the resulting signals by a factor of two.
The extension of the wavelet transform to higher dimension is
usually achieved using separable wavelets, operating on one
dimension at a time. The three-dimensional wavelet transform
on volume data is illustrated in Fig. 1. After the first itera-
tion of wavelet transform, we generate one low-pass filtered
wavelet subband (LLL1) with one eighth of the original size,
and seven high-pass filtered subbands (HLL1, LHL1, HHL1,
LLH1, HLH1, LHH1, and HHH1). We can then successively

apply the wavelet transform to the low-pass filtered subband,
thus creating a multiscale decomposition structure (a good
introduction of wavelets for computer graphics can be found in
[24]). In our experiment, the number of decomposition levels
is usually between three and five, depending on the size of
original data.

There is a wealth of literature on quality assessment and
comparison in the field of image and video processing. De-
tails on this are beyond the scope of this paper and we
refer interested readers to [2] for a good survey. Here, we
specifically review some related work in the field of graph-
ics and visualization. Jacobs et al. [9] proposed an image
querying metric for searching in an image database using
a query image. Their metric makes use of multiresolution
wavelet decompositions of the query and database images,
and compares how many significant wavelet coefficients the
query has in common with potential targets. In [6], Gaddipati
et al. introduced a wavelet-based perceptual metric that builds
on the subband coherent structure detection algorithm. The
metric incorporates aspects of the HVS and modulates the
wavelet coefficients based on the contrast sensitivity function.
Sahasrabudhe et al. [18] proposed a quantitative technique
which accentuates differences in images and data sets through
a collection of partial metrics. Their spatial domain metric
measures the lack of correlation between the data sets or
images being compared. Recently, Wang et al. [26] introduced
an image-based quality metric for interactive level-of-detail
selection and rendering of large volume data. The quality
metric design is based on an efficient way to evaluate the
contribution of multiresolution data blocks to the final image.

In [29], Zhou et al. performed a study of different im-
age comparison metrics that are categorized into spatial do-
main, spatial-frequency domain, and perceptually-based met-
rics. They also introduced a comparison metric based on the
second-order Fourier decomposition and demonstrated favor-
able results against other metrics considered. In our work, we
use the wavelet transform to partition the data into multiscale
and oriented subbands. The study on volume data quality
assessment is thus conducted in the spatial-frequency domain
rather than the spatial domain.

III. A LGORITHM OVERVIEW

From a mathematical standpoint, we can treat volume data
as three-dimensional arrays of intensity values with locally
varying statistics that result from different combinations of
abrupt features like boundaries and contrasting homogeneous
regions. In line with this consideration, we advocate a statis-
tical approach for volume data quality assessment. Given a
volumetric data set, a first attempt may lead us to examine its
statistics in the original spatial domain. However, even first-
order statistics such as histograms would vary significantly
from one portion of data to another, and from one data set to
another. This defies simple statistical modeling over the entire
data set, as well as the subsequent quality assessment.

Instead of spatial domain analysis, we can transform the
volume data from the spatial domain to the spatial-frequency
domain using the wavelet transform, and analyze its frequency
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(a) Lena image, HL1 subband (b) vortex data set, HHL2 subband (c) brain data set, HLL1 subband

Fig. 2. (a)-(c) are three wavelet subband coefficient histograms (blue curves) fitted with a two-parameter generalized Gaussian density model
(red curves) for the Lena image, the vortex data set, and the brain data set, respectively. The estimated parameters(α ,β ) are(1.2661,0.6400),
(5.8881e−003,0.4181), and(7.1276e−003,0.2709)for (a), (b), and (c), respectively. The overall fitting is good for all three examples.

statistics. Since frequency is directly related to rate of change,
it is intuitive to associate frequencies in the wavelet trans-
form with patterns of intensity variations in the spatial data.
Furthermore, the wavelet transform allows us to analyze the
frequency statistics at different scales. This will come in handy
when we evaluate the quality of reduced or distorted data
with different resolutions. Compared with the statistics of
data in the spatial domain, the local statistics of different
frequencysubbandsare relatively constant and easily modeled.
This is realized usinggeneralized Gaussian density(GGD)
to model the marginal distribution of wavelet coefficients at
different subbands and scales (Section IV-A). We also record
information about selective wavelet coefficients (Section IV-
C) and treat the low-pass filtered subband (Section IV-D) as
part of our feature representation.

Our feature thus consists of multiple parts, and each part
corresponds to certain essential information in the spatial-
frequency domain. Note that this data analysis and feature
extraction process can be performed when we have the access
to the original data, or ideally, in situ where a simulation is
running. Once we extract the feature from data, we are able
to use it for quality assessment without the need to access the
original data. Given a reduced or distorted version of data, we
compare its feature components with those derived from the
original data using predefined distance functions. This gives
us an indication of quality loss in relation to the original data.
We can also use the feature to perform a cross-comparison of
data with different reduction or distortion types to evaluate the
uncertainty introduced in different versions of data. Moreover,
by forcing some of its statistical properties to match those of
the original data, we may repair the reduced or distorted data
for possible quality improvement.

IV. WAVELET SUBBAND ANALYSIS

In the multiscale wavelet decomposition structure, the low-
pass filter subband corresponds to average information that
represents large structures or overall context in the volume
data. After several iterations of wavelet transforms, the size
of the low-pass filter subband is small compared with the
size of original data (already less than 0.2% for a three-level
decomposition). Thus, we can directly treat it as part of the

feature. On the other hand, the high-pass filtered subbands
correspond to detail information that represents abrupt features
or fine characteristics in the data. They spread across all
different scales with an aggregate size nearly equal to the size
of original data. The key issues are how to extract important
feature information from these high-pass filtered subbands, and
how to compress the feature.

A. Wavelet Subband Statistics

Studies on natural image statistics reveal that the histogram
of wavelet coefficients exhibits a marginal distribution at a
particular high-pass filtered subband. An example of the Lena
image and the coefficient histogram of one of its wavelet
subbands is shown in Fig. 2 (a). They-axis is on a log scale
in the histogram. As we can see, the marginal distribution
of wavelet coefficients creates a sharp peak at zero and
more extensive tails than the Gaussian density. The intuitive
explanation of this is that natural images usually have large
overall structures consisting of smooth areas interspersed with
occasional abrupt transitions, such as edges and contours. The
smooth areas lead to near-zero coefficients, and the abrupt
transitions give large-magnitude coefficients. In [14], Mallat
shows that such a marginal distribution of the coefficients in
individual wavelet subbands can be well-fitted with a two-
parameter generalized Gaussian density (GGD) model:

p(x) =
β

2αΓ( 1
β )

exp(−(
|x|
α

)β ), (1)

whereΓ is the Gamma function, i.e.,Γ(z) =
∫ ∞

0 e−ttz−1dt, z>
0.

In the GGD model,α is thescaleparameter that describes
the standard deviation of the density, andβ is the shape
parameter that is inversely proportional to the decreasing rate
of the peak. As an example, the plots of the GGD distribution
under varied(α,β ) values are illustrated in Fig. 3. The model
parameter(α,β ) can be estimated using themoment matching
method [25] or themaximum likelihoodrule [16]. Numerical
experiments in [25] show that 98% of natural images satisfy
this property. Even for the remaining 2%, the approximation
of the real density by a GGD is still acceptable. Note that the
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GGD model includes the Gaussian and the Laplacian distribu-
tions as special cases withβ = 2 andβ = 1, respectively. The
GGD model provides a very efficient way for us to summarize
the coefficient histograms of an image, as only two parameters
are needed for each subband. This model has been used in
previous work for noise reduction [22], image compression
[3], texture image retrieval [5], and quality encoding [28].
In this paper, we use the moment matching method which
takes the mean and the variance of wavelet coefficients in a
subband to compute its GGD model parameters(α,β ) (see the
Appendix for the implementation detail). In Fig. 2 (a), the red
curve is the GGD function with parameters estimated using the
moment matching method. The result fits the original wavelet
coefficient distribution quite well.

(a) β = 0.5

(b) α = 1.5

Fig. 3. The GGD distribution and its model parameters(α ,β ). (a) α
varies whileβ = 0.5. (b) β varies whileα = 1.5. The figure shows
the sensitivity of the shape of GGD plots with respect to the model
parameters.

We extend this statistical model to three-dimensional vol-
ume data since many scientific and medical data share the
same intrinsic characteristics as natural images; i.e., homoge-
neous regions mixed with abrupt transitions. Moreover, the rate
or proportion of homogeneous regions and abrupt transitions
is also similar for image and volume: in 2D, we have area
of homogeneous regions versus the edge length of abrupt
transitions; and in 3D, we have volume of homogeneous
regions versus the surface area of abrupt transitions. Initial
experiments on two small data sets give very promising results.
Fig. 2 (b) and (c) show one example of wavelet subband

coefficient histograms for each data set and their respective
well-fitted GGD curves. Thus, with only two GGD parameters,
we are able to capture the marginal distribution of wavelet
coefficients in a subband that otherwise would require at
least hundreds of parameters using histogram. We shall see
in Section V that this GGD model works well for larger data
sets too. Next, we discuss the distance measure for wavelet
subband statistics.

Let p(x) and q(x) denote the probability density functions
of the wavelet coefficients in the same subband of the original
and distorted data, respectively. Here, we assume the coef-
ficients to be independently and identically distributed. Let
x = {x1,x2, . . . ,xN} be a set of randomly selected coefficients.
The log-likelihoods ofx being drawn fromp(x) andq(x) are

l(p) =
1
N

N

∑
i=1

logp(xi) and l(q) =
1
N

N

∑
i=1

logq(xi) (2)

respectively. Based on the law of large numbers, whenN is
large, the log-likelihoods ratio betweenp(x) andq(x) asymp-
totically approaches theKullback-Leibler distance(KLD) (also
known as therelative entropyof p with respect toq):

d(p||q) =
∫

p(x) log
p(x)
q(x)

dx. (3)

Although the KLD is not a true metric, i.e.,d(p||q) 6=
d(q||p), it satisfies many important mathematical properties.
For example, it is a convex function ofp. It is always
nonnegative, and equals zero only ifp(x) = q(x). In this paper,
we use the KLD to quantify the difference between wavelet
coefficient distributions of the original and distorted data. This
quantity is evaluated numerically as follows:

d(p||q) =
M

∑
i=1

P(i) log
P(i)
Q(i)

, (4)

where P(i) and Q(i) are the normalized heights of theith
histogram bin, andM is the number of bins in the histogram.
Note that the coefficient histogramQ is computed directly
from the distorted data, while the coefficient histogramP is
approximated using its GGD parameters(α,β ) extracted from
the original data.

Finally, the KLD between the distorted and original data
over all subbands is defined as:

D1 = log(1+
B

∑
i=1

d(pi ||qi)), (5)

whereB is the total number of subbands analyzed,pi and qi

are the probability density functions of theith subbands in the
original and distorted data respectively, andd(pi ||qi) is the
estimated KLD betweenpi andqi .

B. Voxel Visual Importance

At runtime, a transfer function is applied to the input volume
where the scalar data values are mapped to optical quantities
such as color and opacity, and the volume is projected into
2D images. To capture the visualization-specific contribution
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Fig. 4. A voxel’s visual importance in the low resolution volume is
the multiplication of its opacity and average visibility. The average
visibility is calculated using a list of evenly-sampled views along the
volume’s bounding sphere.

for each voxel, we define a voxel’s visual importanceω as
follows:

ω(i) = α(i) · ν̄(i) (6)

where α(i) is the opacity of voxeli, ν̄(i) is its average
visibility. As sketched in Fig. 4, given an original large
volume data, we use its low resolution form (for practical and
performance concern) to calculate visual importance values of
all voxels within the volume. In Eqn. 6,α(i) andν̄(i) account
for the emission and attenuation of voxeli, respectively.

To calculate the average visibility, we consider a list of
evenly-sampled views along the bounding sphere that encloses
the volume and take the average of the visibility from those
sample views. Given a view along the bounding sphere, the
visibility for each voxel in the low resolution data is acquired
in this way: we render the low resolution data by drawing
front-to-back view-aligned slices and evaluate the visibility of
all the voxels during the slice drawing. The visibility of a
voxel is computed as (1-α) right before the slice containing
the voxel is to be drawn, whereα is the accumulated opacity
at the voxel’s screen projection. This process repeats for each
sample view. Finally, for each voxel in the volume, we use the
average of its visibility from all sample views to calculate its
visual importance. Essentially, the visual importance indicates
the average contribution of a voxel in association with a
given input transfer function. This visualization-specific term
is then normalized and incorporated into the following wavelet
coefficient selection.

C. Wavelet Coefficient Selection

The GGD model captures the marginal distribution of
wavelet coefficients at each individual subband. Using the
distance defined in Eqn. 5, we are able to know how close
the coefficient distributions of distorted data are in relation
to the original data. Nevertheless, the histogram itself does
not tell the spatial-frequency positions of wavelet coefficients.
This limits our ability to compare the data in finer detail and

possibly repair the distorted data. Therefore, along with the
global GGD parameters per wavelet subband, we also need
to recordlocal information about wavelet coefficients for data
quality assessment and improvement.

Fig. 5. The parent-child dependencies of wavelet coefficients in
different subbands. In this 2D example, a coefficient in a coarse scale
has four child coefficients in the next finer scale of similar orientation.
The arrow points from the subband of the parents to the subband of
the children.

An important observation is that, although the coefficients of
wavelet subbands are approximately decorrelated, they are not
statistically independent. For example, Fig. 5 shows a three-
level decomposition of the Lena image. It can be seen that
coefficients of large magnitude (bright pixels) tend to occur at
neighboring spatial-frequency locations, and also at the same
relative spatial locations of subbands at adjacent scales and
orientations. Actually, in 2D, a coefficientc in a coarse scale
has four child coefficients in the next finer scale. Each of the
four child coefficients also has four child coefficients in the
next finer scale. Furthermore, ifc is insignificant with respect
to some thresholdε, then it is likely that all of its descendant
coefficients are insignificant too. This coefficient dependency
has been exploited in several image compression algorithms,
such as the embedded zerotree wavelet (EZW) encoding
[20] and a following image codec based on set partitioning
in hierarchical trees (SPIHT) [19]. These algorithms have
also been extended to three-dimensional volumetric image
compression in medical application [13]. In this paper, we
utilize the coefficient dependency to store selective wavelet
coefficients in an efficient manner.

There are two categories of wavelet coefficients that are
of importance for the purpose of quality assessment and
improvement. One category is the coefficients of large mag-
nitude which correspond to abrupt features like edges or
boundaries. As we can see in Fig. 2, they are along the tails
of the marginal coefficient distribution where the perceptually-
significant coefficients generally reside. The other category is
neighboring near-zero coefficients which correspond to homo-
geneous regions. They are close to the zero peak of the distri-
bution and are important indications of data regularity. Taking
into account the visualization-related factor, we modulate the
wavelet coefficients with the voxel visual importance values
(Section IV-B) at their nearest spatial-frequency locations. In
this case, a wavelet coefficient is large only if it has both
large magnitude and high voxel visual importance; a wavelet
coefficient is near zero if it has either near-zero magnitude or
near-zero voxel visual importance.
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Fig. 6. Scan of wavelet coefficients in the raster order and the Morton
order. The blue dashed line segments indicate discontinuities in the
scan. Compared with the raster order, the Morton order preserves the
spatial-frequency locality better.

Starting from the coarsest scale, we scan each wavelet
subband and encode coefficients of interest. As illustrated with
a 2D example in Fig. 6, we follow theMorton order (Z-
curve order) as opposed to the ordinary raster order to better
utilize the spatial-frequency locality. For neighboring near-zero
coefficients (at least eight consecutive coefficients in 3D), we
run-length encode their positions (i.e., the scan orders). For
large-magnitude coefficients, we encode their positions and
values as well. In general, most scientific and medical data
have a low-pass spectrum. When the data are transformed
into a multiscale wavelet decomposition structure, the energy
in the subbands decreases from a fine scale (high resolution)
to a coarse scale (low resolution). Therefore, the wavelet
coefficients are, on average, smaller in the finer scales than
in the coarser scales. Accordingly, we vary the thresholds
of near-zero coefficients (ε) and large-magnitude coefficients
(τ) for different scales. Finally, information of the selective
coefficients is further compressed using the open sourcezlib
compressor.

We define the distance for the selective wavelet coefficients
as follows:

D2 = log(1+
B

∑
i=1

√

√

√

√∑Li
j=1(

c j−c
′
j

cmaxi
)2 +∑Zi

k=1(
c
′
k

cmaxi
)2

Li +Zi
), (7)

whereB is the number of subbands over all the scales,Li and
Zi are the numbers of large-magnitude coefficients selected and
near-zero coefficients selected in theith subband, respectively.
c j and c

′
j are the jth large coefficients selected from the

original and distorted data respectively, andcmaxi is the largest
magnitude (modulated by visual importance) of all coefficients
at the ith subband. For near-zero coefficients, we assume the
original coefficientsck = 0 and only consider coefficients in
the distorted data with|c′k| > ε for the calculation.

D. Low-Pass Filtered Subband

The low-pass filter subband in the multiscale wavelet de-
composition structure corresponds to average information that
represents large structures or overall context in the volume
data. Compared with the size of original data, the size of this
subband is usually small after several iterations of wavelet
decomposition. Therefore, we directly incorporate it as part

of the feature. Letbi and b j be the low-pass filter subbands
of the original and distorted data, respectively. The similarity
betweenbi andb j is defined as:

S=
σi j

σiσ j
· 2 µi µ j

µ2
i + µ2

j

· 2 σiσ j

σ2
i +σ2

j

=
4 σi j µi µ j

(σ2
i +σ2

j )(µ2
i + µ2

j )
, (8)

where σi j is the covariance betweenbi and b j , µi and µ j

are the mean values ofbi and b j respectively, andσi and σ j

are their standard deviations. Eqn. 8 consists of three parts;
namely,loss of correlation,luminance distortion, andcontrast
distortion. Collectively, these three parts capture the structure
distortion of the low-pass filtered subband in the distorted
data. This similarity measure comes from the image quality
assessment literature [27], and has been shown to be consistent
with the luminance masking and contrast masking features in
the HVS, respectively. The dynamic range ofS is [−1,1]. The
best value of 1 is achieved whenbi = b j . Hence, we define
the distance betweenbi andb j as follows:

D3 =
√

1.0− (S+1.0)/2.0. (9)

Fig. 7. Our feature representation of the original data in the wavelet
domain.

E. Summary

In summary, as shown in Fig. 7, our feature representation
of the original data in the wavelet domain includes three parts:
the GGD model parameters from wavelet subband statistics,
selective wavelet coefficients, and the low-pass filtered sub-
band. Given a reduced or distorted version of data, we analyze
the quality loss by calculating its distances to the original
data for each of the feature components (Eqn. 5, 7, and 9).
Each partial distance indicates some quality degradation with
reference to the original data and the summation of all these
partial distances gives the overall degradation. Thus, an overall
distance could be computed heuristically as the weighted sum
of the three individual distances:

D = k1D1 +k2D2 +k3D3, (10)

where ki > 0, i = 1, 2, and 3. Note that there is no need
for normalizing this overall distance. For the purpose of data
quality improvement, it is advantageous to keep each distance
separate (or further at the subband level) so that we know
which parts cause significant quality degradation. We can then
repair accordingly using the feature extracted from the original
data.
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data set dimension data size DL LP dimension LP size HP size feature size ratio

turbulent vortex flow 1283 8.0MB 3 163 16.0KB 42.2KB 58.2KB 0.710%
solar plume velocity magnitude 5122×2048 2.0GB 5 162×64 64.0KB 376.0KB 440.0KB 0.021%
supernova angular momentum 8643 2.40GB 5 273 76.9KB 852.6KB 929.5KB 0.037%

UNC brain 1282×72 4.5MB 3 162×9 9.0KB 53.7KB 62.7KB 1.361%
head aneurysm 5123 512MB 4 323 128.0KB 198.0KB 326.0KB 0.062%
visible woman 5122×1728 1.69GB 5 162×54 54.0KB 753.4KB 807.4KB 0.046%

DL = decomposition levels
LP dimension (size)= low-pass filtered subband’s dimension (size);HP size= all high-pass filtered subbands’ feature size

TABLE I

THE SIX FLOATING-POINT DATA SETS AND THEIR FEATURE SIZES.

(a) visible woman data set, HLH2 subband (b) solar plume data set, LLH2 subband

Fig. 8. (a) and (b) are two wavelet subband coefficient histograms (blue curves) fitted with the GGD model (red curves) for the visible
woman and the solar plume data sets, respectively. The estimated parameters(α ,β ) are(1.6786e−002,0.2425)and(1.4922e−009,0.1405),
respectively. In general, the fitting works well for these two data sets.

V. RESULTS

We experimented with our algorithm on six floating-point
data sets, as listed in Table I. Among the six data sets, three
of them are from scientific simulation, and the remaining
three are from medical application. These six data sets vary
greatly in size, and exhibit quite different characteristics. For
multiscale wavelet decomposition, we specifically restricted
our attention to the Daubechies family of orthogonal wavelets,
as evaluation of all possible wavelet transforms is out of the
scope of our experiments. The decision for levels of wavelet
decomposition is based on the size of input data, as well as
the tradeoff between the size of feature and the robustness of
GGD model parameters.

In our test, the threshold for near-zero wavelet coefficientsεi

at theith subband was chosen ascmaxi/(2L+3), wherecmaxi
is the largest magnitude (modulated by visual importance)
of all coefficients at theith subband, andL is the total
number of decomposition levels we have. The threshold for
large-magnitude wavelet coefficientsτi at the ith subband
was chosen ascmaxi/(2s+2), wheres is the scale in which
the ith subband locates. We variedτi according to the scale
because the wavelet coefficients in a subband become more
important as the scale increases. In Table I, the size of low-
pass filtered subband is the uncompressed size of LLLn, after

n levels of decomposition. The feature size of all high-pass
filtered subbands includes their respective GGD parameters
and selective wavelet coefficients in the compressed form.

From the last column in Table I, we can see that for all
six data sets, the size of feature is small compared with the
original data. Note that the size of feature does not increase in
proportion to the size of original data. This is mainly due to
the increase of decomposition levels for larger data sets, as we
can afford to have more levels of wavelet decomposition while
still keeping the GGD parameters robust. Our experiment
confirms that the GGD model generally performs well when
the size of the input data becomes larger. For instance, Fig. 8
shows one of the wavelet subband coefficient histograms for
the visible woman and the solar plume data sets, and their
respective GGD curves. On the other hand, the feature size
is also data and transfer function dependent. For example, the
ratio for the brain data set is 1.361%, which is relatively high
compared with the vortex data set having the same number of
decomposition levels. Thus, it follows that we record a higher
percentage of high-pass filtered subband feature information
for the brain data set.

Next, we report results of volume data quality assessment
and improvement using the extracted feature. To compare the
quality of rendered images, we used a GPU raycaster for
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volume rendering. All tests were performed on a 2.33GHz
Intel Xeon processor with 4GB main memory, and an nVidia
GeForce 7900 GTX graphics card with 512MB video memory.

A. Quality Assessment

First of all, we experimented with our quality measure
on different data sets and observed how the quality of data
changes for the same reduction or distortion type. We used
the three smaller data sets (brain, vortex, and aneurysm) of
their original resolutions and the other three data sets (visible
woman, solar plume, and supernova) of their second highest
resolutions in the test. To calculate the overall distance, we
used Eqn. 10 with(k1,k2,k3) = (0.1,1.0,1.0). Please note that
in this paper, we assume the original data set has full quality.
Thus, any changes made to the data would involve possible
quality loss, even though the desire is to enhance the data from
a certain perspective.

Quantization is a commonly used approach for data re-
duction. Our first example studies the quality loss under
the uniform quantization scheme. Fig. 9 shows the quality
assessment result of all six data sets with six different quan-
tization levels. A larger distance indicates a greater degree of
quality degradation. More specifically, Table II lists all partial
and overall distances for the aneurysm data set. Although
different data sets have different responses of quality loss due
to quantization, the overall trend is fairly obvious: the data
quality gets increasingly worse as the number of quantization
levels decreases.

Fig. 9. Quality assessment on six test data sets with six different
quantization levels. The data quality gets increasingly worse as the
number of quantization levels decreases.

level D1 D2 D3 D

1024 0.1961 0.0071 0.0038 0.0305
512 0.5227 0.0144 0.0077 0.0744
256 0.9933 0.0277 0.0153 0.1423
128 1.5111 0.0551 0.0303 0.2365
64 1.9518 0.1065 0.0594 0.3611
32 2.2407 0.2089 0.1150 0.5480

TABLE II

PARTIAL AND OVERALL DISTANCES FOR THE ANEURYSM DATA SET WITH

SIX DIFFERENT QUANTIZATION LEVELS.

Our second example studies the quality loss under the
Gaussian smooth filtering. Fig. 10 shows how the data quality

changes with six different Gaussian smooth filters for all six
data sets. We applied a discrete Gaussian kernel of size 53

with different standard deviations. A larger standard deviation
indicates a greater degree of smoothing since neighboring
voxels carry more weight. Table III lists all partial and overall
distances for the solar plume data set. It is clear that the
data quality gets worse as the standard deviation increases.
Unlike quantization, however, the rate of quality loss decreases
gradually in the sequence.

Fig. 10. Quality assessment on six test data sets with 53 Gaussian
smooth filters of six different standard deviations. The data quality
gets worse as the standard deviation increases.

σ D1 D2 D3 D

0.5 0.2687 0.0656 0.0004 0.0929
0.6 0.3793 0.0921 0.0006 0.1306
0.8 0.6325 0.1422 0.0010 0.2065
1.0 0.9225 0.1822 0.0015 0.2760
1.25 1.2039 0.2165 0.0020 0.3389
1.5 1.3548 0.2377 0.0023 0.3755

TABLE III

PARTIAL AND OVERALL DISTANCES FOR THE SOLAR PLUME DATA SET

WITH SIX GAUSSIAN SMOOTH FILTERS OF DIFFERENT STANDARD

DEVIATIONS.

Besides quality assessment of data with the same type of
reduction or distortion, the feature also avails us to perform
cross-type data quality comparison. For example, Fig. 11 gives
quality assessment results on the solar plume and the visible
woman data sets under four different distortion types: mean
shift (of the data range over 256), voxel misplacement (with
two slices of voxels misplaced), averaging filter (using a
kernel of size 33), and salt-and-pepper noise (with an equal
probability of 1/1024 for the bipolar impulse). Table IV lists
all partial and overall distances, MSE, and PSNR for these
four distortion types. For both data sets, we can see that the
mean shift introduces the minimum quality loss here, followed
by the voxel misplacement. The salt-and-pepper noise incurs
the most quality degradation. This result is consistent with
perceived quality in rendered images. However, the MSE and
the PSNR incorrectly recognize the mean shift as having a
larger distortion than the voxel misplacement for both data
sets. Note that they also give the opposite results on the
averaging filter for the two data sets. This is due to the reason
that the MSE and the PSNR metrics are only voxel-based and
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(a) mean shift (b) voxel misplacement (c) averaging filter (d) salt-and-pepper noise

Fig. 11. Cross-type quality assessment on low resolution solar plume (2562×1024) and visible woman (2562×864) data sets. The data
quality degrades as the overall distance (listed in Table IV) increases from (a) to (d). The rendered images are cropped for a closer comparison.

data set type D1 D2 D3 D rank MSE PSNR rank
solar plume mean shift 2.0556e−4 4.5864e−7 5.8988e−2 0.0590 4 5.5252e−2 48.1648 2

misplacement 1.3126e−1 9.4561e−2 5.5746e−3 0.1133 3 2.4239e−2 51.7431 3
averaging 5.2393e−1 1.2551e−1 8.1216e−4 0.1787 2 5.2299e−3 58.4033 4

noise 3.1198e+0 1.8137e+0 2.8900e−2 2.1546 1 6.7305e+0 27.3078 1
visible woman mean shift 8.8428e−5 6.9770e−7 2.3914e−2 0.0239 4 1.8691e+3 48.1648 3

misplacement 1.5366e−2 1.1612e−1 4.6497e−3 0.1223 3 1.5397e+3 49.0066 4
averaging 1.6449e+0 5.4139e−1 1.4596e−3 0.7073 2 1.9289e+5 28.0279 1

noise 1.7343e+0 7.8530e−1 9.7468e−3 0.9685 1 1.2152e+4 40.0347 2

TABLE IV

PARTIAL AND OVERALL DISTANCES , MSE, AND PSNRFOR THE SOLAR PLUME AND THE VISIBLE WOMAN DATA SETS WITH FOUR DIFFERENT

DISTORTION TYPES.

do not consider the overall structure distortion of the data.

B. Quality Improvement

Since the feature captures essential information from the
original data, it can be utilized to improve the quality of
distorted or corrupted data. In this paper, we do not show
examples where the feature is used to construct a higher
resolution data from a low resolution data, as it is the most
common way of using the wavelet transform and compression.

Our first example deals with missing data. Fig. 12 (a) shows
the rendering of a low resolution supernova data set with one-
eight (i.e., an octant) of data missing. The missing of data
could result from incomplete data transmission, or even a bug
in the data reduction source code. Recall that we keep each
partial distance separate (and actually at the subband level).
This helps us identify which parts introduce the dramatic
change (in this case, the subband at the same orientation as the

missing portion), and then repair accordingly using the feature
information.

The repairing scheme works as follows: First, a multiscale
wavelet decomposition structure is built from the corrupted
data, where the size of low-pass filtered subband at the coarsest
scale equals the size of low-pass filtered subband recorded in
the feature (Section IV-D). Note that for the repairing purpose,
we keep the low-pass filtered subbands in all scales. Then,
we improve the high-pass filtered subbands across all scales
by replacing the wavelet coefficients with their corresponding
coefficients in the feature; that is, those large-magnitude and
near-zero wavelet coefficients selected (Section IV-C). Next,
starting from the coarsest scale (the lowest resolution), we
reconstruct the low-pass filtered subband at the next finer scale,
using the low-pass filtered subband recorded in the feature
and improved high-pass filtered subbands. The reconstructed
low-pass filtered subband is used to correct the missing part in
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(a) before,D = 1.3346 (b) after,D = 0.5536 (c) comparison (d) transfer function

Fig. 12. Quality improvement on a low resolution supernova data set (4323) with one-eight of data missing, as shown in (a). (b) is the result
after an automatic repairing process using the feature information. In (c), a portion of (b) is zoomed in for comparison with the reference
image displayed on the top. (d) shows the transfer function used.

(a) before,D = 2.3094 (b) after,D = 0.7188 (c) comparison (d) transfer function

Fig. 13. Quality improvement on the aneurysm data set (5123) distorted by random noise, as shown in (a). (b) is the result after an automatic
repairing process using the feature information. In (c), a portion of (b) is zoomed in for comparison with the reference image displayed on
the bottom. (d) shows the transfer function used.

the same-scale low-pass filtered subband decomposed from the
corrupted data. The corrected low-pass filtered subband is then
used to reconstruct the next finer scale in an iterative manner.
In this way, we are able to automatically repair the missing
portion in the corrupted data scale by scale. Finally, an optional
median filter is applied to the corrected portion of data at the
finest scale in order to suppress potential noise and produce a
better match with the original GGD model parameters. Fig. 12
(b) shows the result after this automatic repairing process. It
is clear that the data quality improves as the overall distance
decreases.

We can also apply a similar repairing process for noise
reduction. For example, Fig. 13 (a) shows the rendering of
the aneurysm data set distorted by random noise. This kind
of distortion can be detected through the observation of a
sequence of sudden spikes appearing in the wavelet coefficient
subband histograms. The denoising process also follows a
coarse-to-fine manner as usual, but there is no need to keep
the low-pass filtered subband at every scale in the wavelet de-

composition structure. Another difference is that for each high-
pass filtered subbandi, we first set large-magnitude wavelet
coefficients to zero (if they are larger than the thresholdτi)
before improving them with their corresponding coefficients
in the feature. Fig. 13 (b) shows the result after this repairing
process. As we can see, the noise is eliminated, while the fine
structure of the blood vessels is preserved.

VI. D ISCUSSION

A. Choice of Wavelets

To extract essential information from the original data,
we decomposed the data into multiple scales using wavelet
basis functions localized in spatial position, orientation, and
spatial frequency. We used the Daubechies family of or-
thogonal wavelets in our experiment because they provide a
good tradeoff between performance and complexity [5], [6].
Moreover, we found that the choice for the number of scaling
and wavelet function coefficients has little effect on assessment
accuracy. Therefore, we specifically used the Daubechies D4
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transform for efficiency. Other separable wavelets (such as the
Gabor wavelets) or redundant transforms (such as the steerable
pyramid transform) could also be used in our algorithm. For
example, the steerable pyramid transform decomposes the data
into several spatial-frequency bands, and further divides each
frequency band into a set of orientation bands. It can thus
help to minimize the amount of aliasing within each subband.
However, they are more expensive to compute and require
more storage space.

B. Timing Performance

The timing of wavelet analysis on the original data includes
the time for multiscale wavelet decomposition, GGD param-
eters estimation, and subband wavelet coefficients selection.
This one-time preprocess may take anywhere from seconds to
a total of several minutes on a single PC, depending on the
size of input data. For data sets that could not be loaded into
memory simultaneously, we employed a block-wise wavelet
transform process and handled boundaries of neighboring
blocks to guarantee seamless results. The timing of quality
assessment on different versions of data includes the time for
wavelet decomposition and distance calculation. At runtime, it
usually takes less than one minute on a single PC to evaluate
data with the size up to 512MB. For larger gigabytes data, the
time to perform wavelet transforms becomes dominant in the
quality assessment process. In the worst case, the assessment
time would be similar to the preprocess time if the data we
evaluate has the same size as the original data.

C. GGD Model

We note that as an approximation, the GGD model in-
troduces a prediction error at each wavelet subband with
respect to the corresponding wavelet coefficient distribution.
For example, the fit near the center of the histogram in Fig. 8
(b) is not good. This error can be calculated as the KLD
between the model histogram and the histogram of wavelet
subband coefficients from the original data. Letd(pi

m||pi)
denote the prediction error at theith subband. Accordingly, we
used(pi ||qi) = |d(pi

m||qi)−d(pi
m||pi)| to calculate the overall

KLD (Eqn. 5). That is, we actually subtract the prediction
error from the KLD between the model histogram and the
histogram of wavelet subbband coefficients from the reduced
or distorted data (denoted asd(pi

m||qi)), and use the absolute
value in the calculation.

On the other hand, our experiment shows that the GGD
model generally works well on scientific and medical data
sets with different sizes. However, there are cases where this
model fails to give good results. Such an example is shown in
Fig. 14. For these failed cases, we can store the actual wavelet
subband coefficient histograms (per scale) at the expense of
increasing the storage, or fit each coefficient histogram with
splines to smooth out the irregularities. Although there is a
need of further research on why these cases fail, the apparent
reason is that those data sets do not fall into the category of
natural statistics. For this same reason, we can not partition the
original data into blocks in an octree fashion, and analyze the
individual blocks using the GGD model (each block does not

necessarily exhibit the marginal coefficient distribution even
though the whole data set does). Therefore, our solution is a
multiscale, not a true multiresolution approach.

Fig. 14. The “milk crown” physical simulation data set (512×256×
512) and its LHL3 subband coefficient histogram, which does not
exhibit the marginal distribution.

D. Transfer Function

In this work, different versions of a data set were rendered
using the same transfer function for the purpose of subjective
data quality comparison. Since our focus was on data quality
assessment, we chose to fix rendering parameters so that the
possible difference or uncertainty introduced by the visual-
ization process could be minimized. Our current algorithm
explicitly takes the input transfer function into consideration
by modulating wavelet coefficients with voxel visual impor-
tance values at their nearest spatial-frequency positions. The
voxel visual importance values were precomputed offline with
a given transfer function. If the transfer function changes at
runtime, the calculation can be performed online (in this case,
we need to keep the low resolution data).

Our solution is a coarse approximation of voxel contribution
to the visualization. The accuracy of voxel visual importance
values depends on the resolution of data used and the number
of sample views taken for average visibility calculation. There
is a tradeoff between the update speed and the accuracy of
visual importance values. In practice, we can update visual
importance values within seconds for a low resolution volume
of size around 643 with 16 sample views. In our solution,
voxel visual importance values are only used to modulate and
select wavelet coefficients (Section IV-C). An improvement of
our implementation is to store selective wavelet coefficients
offline by only considering their magnitudes. At runtime when
the transfer function changes, the visual importance values
are calculated and used to further pick visually important
coefficients from stored coefficients.

Besides our current algorithm, another way to possibly
improve wavelet subband analysis is to apply the idea pre-
sented in [1] that classifies the voxels into core, gradient, and
unimportant voxels and assigns weight functions for wavelet
coefficients accordingly. Alternatively, the users can also pro-
vide their own voxel visual importance volume, derived from
volume classification or segmentation, for example, to modu-
late wavelet coefficients. Nevertheless, we understand that this
voxel-based approach is not an optimal solution for large data
analysis in terms of both efficiency and effectiveness. A better
solution could be using some shape functions to approximate
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the volume data and capture the visual importance aspect.
Another direction is to perform a more rigorous study on data
quality comparison in association with direct volume rendering
algorithm specifications [10].

VII. C ONCLUSION AND FUTURE WORK

We introduce a reduced-reference approach to volume data
quality assessment. A multiscale wavelet representation is
first built from the original data which is well-suited for
the subsequent statistical modeling and feature extraction. As
shown in Section V, we extract minimum feature information
in the wavelet domain. Using the feature and predefined
distance measures, we are able to identify and quantify the
quality loss in the reduced or distorted version of data. Quality
improvement on distorted or corrupted data is achieved by
forcing some of their feature components to match those from
the original data. Finally, our approach can be treated as a
new way to evaluate the uncertainty introduced by reduced or
distorted data.

Our algorithm is flexible with data sets of different sizes,
ranging from megabytes to gigabytes in the experiment. We
believe that the general approach presented in this paper can
be applied to quality assessment and improvement on larger
scale data. As we move into the era of petascale computing,
our work can help scientists perform in-situ processing so
that low resolution data together with a set of features are
saved to disk, which greatly reduces storage requirement and
facilitates subsequent data analysis, quality assessment, and
visualization.

Our current scheme is based on the GGD model which
generally works well on data sets that exhibit natural statistics.
We will investigate where and how well the GGD model works
for different volume data. Furthermore, we can improve this
model by augmenting it with a set of hidden random variables
that govern the GGD parameters [17]. Such hidden Markov
models may encompass a wider variety of data sets and yield
better quality assessment results. On the other hand, we need
to conduct a user study to suggest that the visual quality
perceived by the users conforms to the quality assessment
results obtained from our algorithm. In the future, we also
would like to extend this reduced-reference approach to quality
assessment of time-varying, multivariate data.

APPENDIX

THE CALCULATION OF GGD PARAMETERS

The key MATLABfunctions for calculating the GGD pa-
rameters(α,β ) and for returning the GGD function values
are provided as follows:

function f = fbeta(x)
% FBETA: an auxiliary function that computes beta

f = exp(2 * gammaln(2 ./ x) - gammaln(3 ./ x)
- gammaln(1 ./ x));

% GAMMALN: logarithm of Gamma function

function [alpha, beta, K] = sbpdf(mean, variance)
% SBPDF: estimate generalized Gaussian probability
% density function of an wavelet subband using the
% moment matching method

F = sprintf(’fbeta(x) - %g’, meanˆ2 / variance);

try
beta = fzero(F, [0.01, 5]);
% FZERO: find zero of a function of one variable

catch
warning(’(meanˆ2 / variance) is out of the range’);
if (meanˆ2 / variance) > fbeta(5)

beta = 5;
else

beta = 0.01;
end

end

alpha = mean * exp(gammaln(1/beta) - gammaln(2/beta));

if (nargout > 2)
K = beta / (2 * alpha * gamma(1/beta));
% GAMMA: Gamma function

end

function y = ggpdf(x, alpha, beta, K)
% GGPDF: return generalized Gaussian probability
% density function with parameters alpha and beta
% at the values in x

if (alpha <= 0 | beta <= 0)
tmp = NaN;
y = tmp(ones(size(x)));
% ONES: create an array of all ones

else
y = K * exp(-abs(x).ˆbeta ./ (alphaˆbeta));
y = y ./ sum(y);

end
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