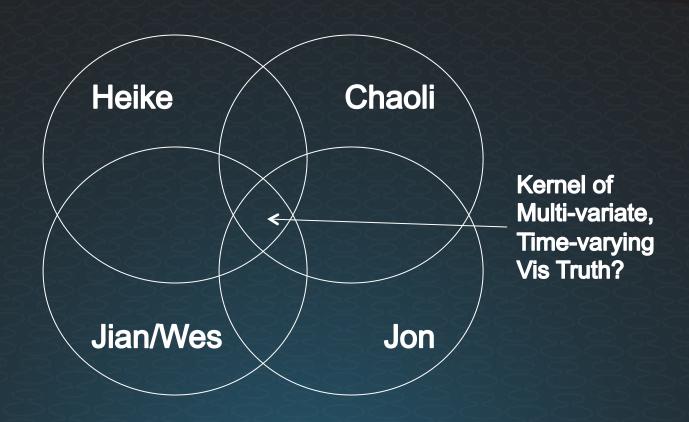


Comparative Visualization and Trend Analysis Techniques for Time-Varying Data

Jon Woodring
Los Alamos National Laboratory

VisWeek 2009

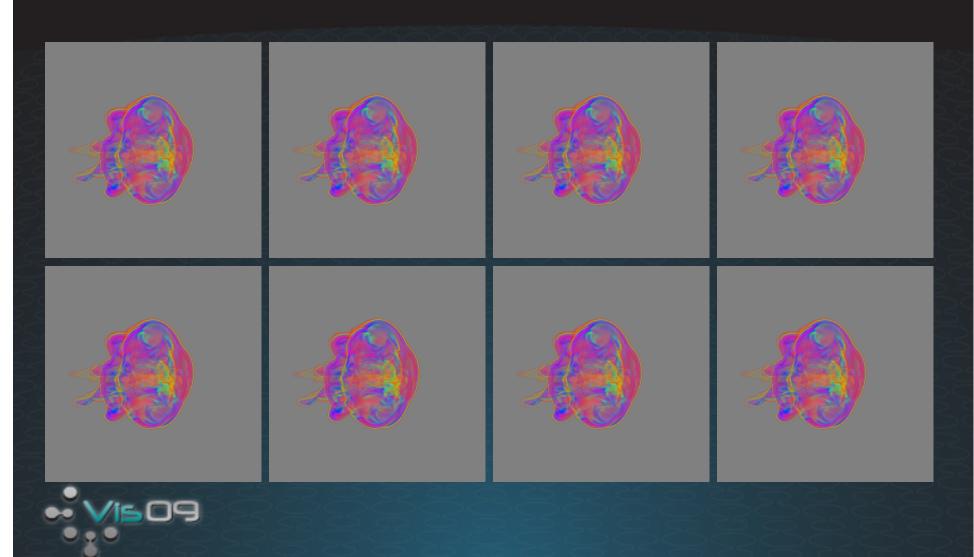
I was just noticing...



Problem Statement

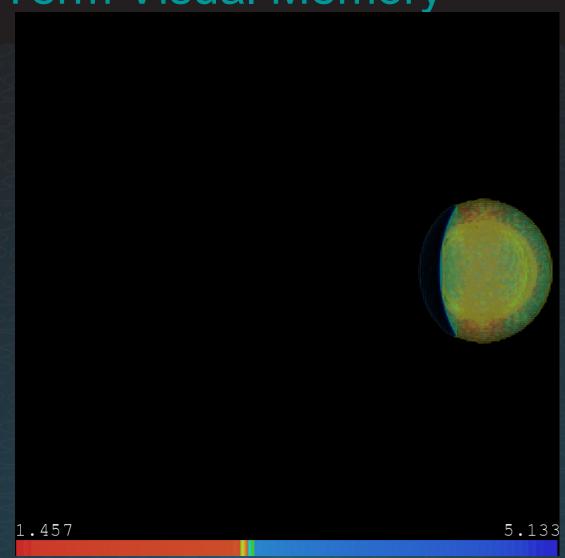
- Time varying visualization for scientific data has typically been done with animation and/or time step still renders
- Animation or frame comparison may not be the only way to understand time-varying data
 - Perceptual, visual, and cognitive issues
 - Lack of knowledge of temporal trends
 - Hard to make a transfer function for time data

Locating Differences – The Worst Case



Animation – Short Term Visual Memory

Vis 09



Count the Passes

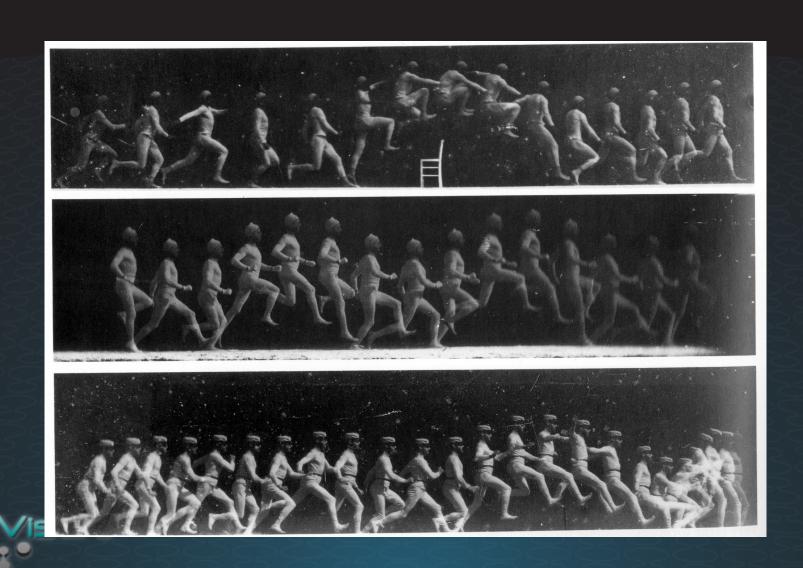
Lack of Quantitative Knowledge – Classifying Time Data

- What values does the time series have over time?
 - What are the value ranges over a time period?
 - What data points or features share similar value trends or are different?
- Transfer functions (classifying data/features) are hard
 - Tons of literature for just for making transfer functions for single time steps
 - Lack of knowledge of changing values and trends...
 - What values and data points should we classify?
 - How to classify them over time?

Approaches

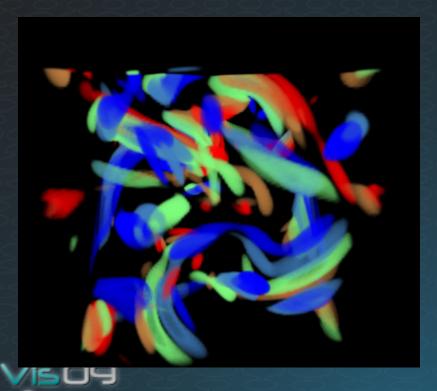
- Comparative Visualization
 - Single frame "fused" comparisons of multiple time steps
 - Visually compare changes over time in space and value to find temporal features
- Trend Analysis
 - Visualize temporal value trends in a data set for quantitative assessment
 - Computationally analyze temporal trends to extract features for classification

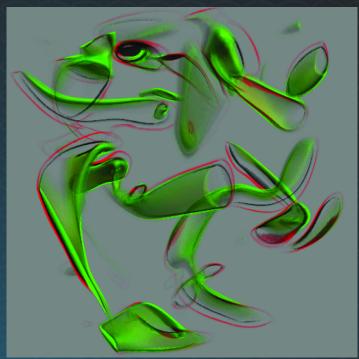
Comparative Visualization



Comparative Visualization

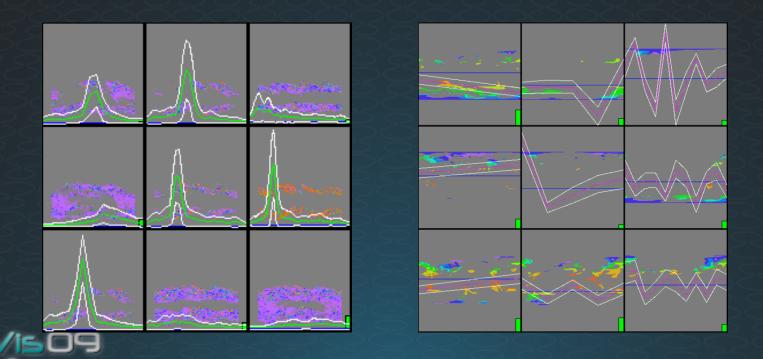
Combine multiple time steps into a single static data set





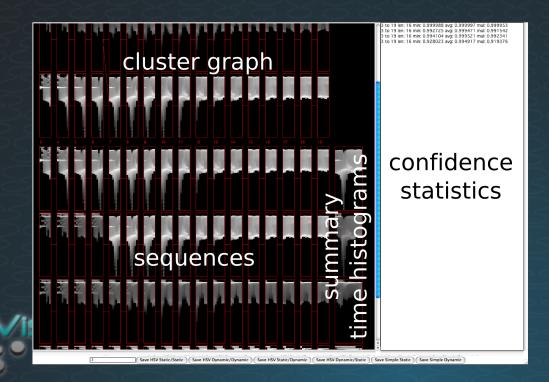
Trend Analysis

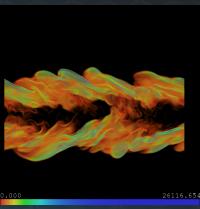
Value activity representation allows for quantitative trend knowledge

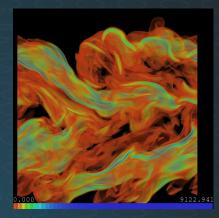


Trend Analysis

Computationally analyze value trends for classification and feature definition



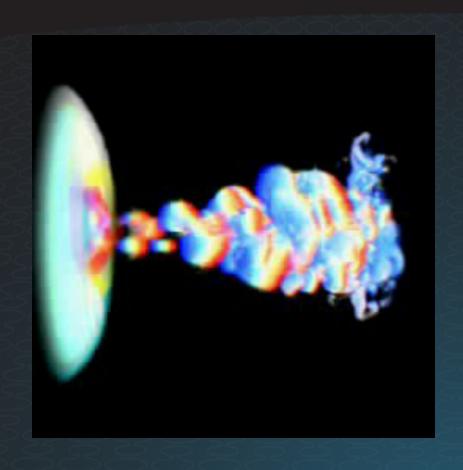


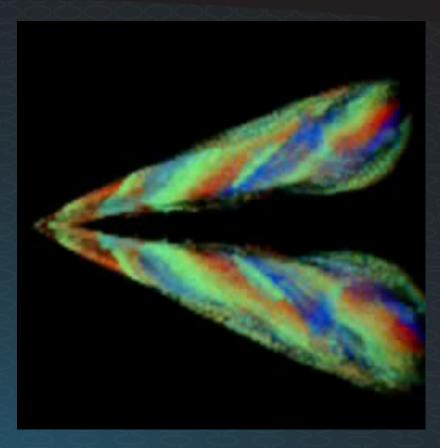


Outline

- Comparative Visualization
 - Chronovolumes
- Trend Analysis
 - Multi-scale temporal trend spreadsheet
 - Time histograms
 - Semi-automatic temporal transfer functions

Comparative Visualization - Chronovolumes

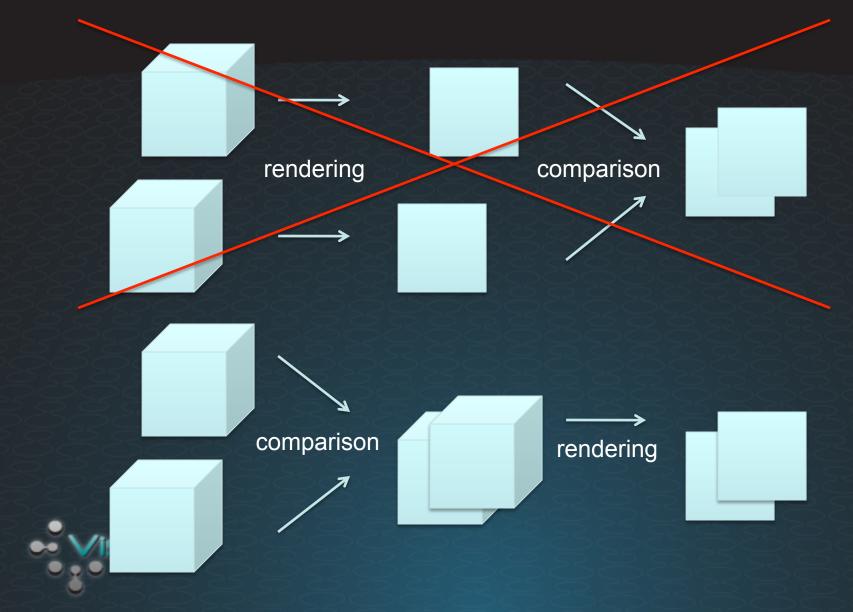




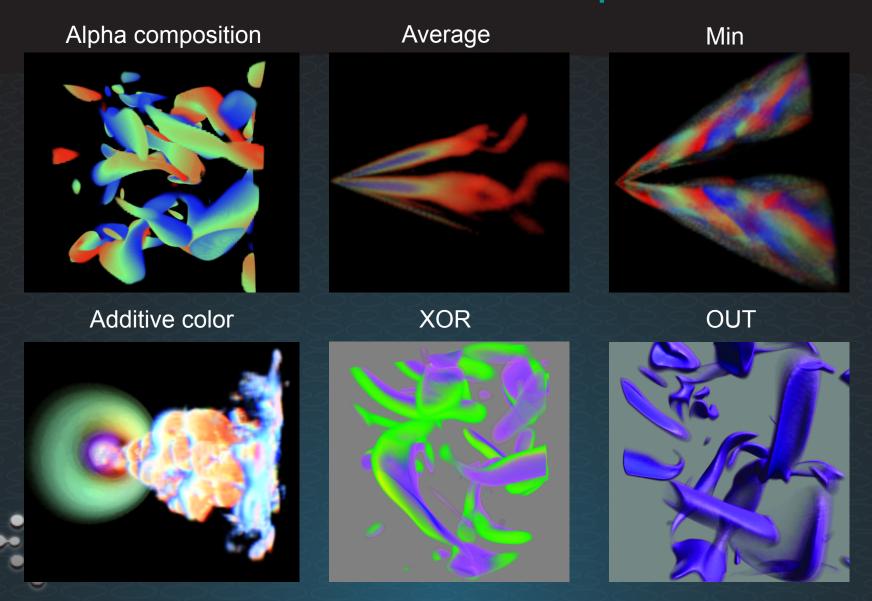
Chronovolumes

- Visually compare time series data by visually fusing several time steps into one volume
 - Provides temporal context into the frame
 - Full 3D comparison, not image composition
 - Image pixel comparison is not the same as data point comparison
 - Spatial position preservation in the comparison
 - Compare per data point over time basis, not per projected point

Chronovolumes



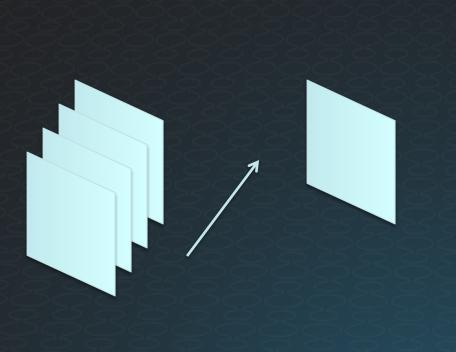
More Chronovolume Examples



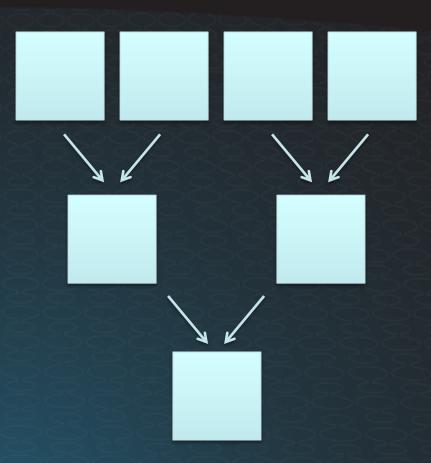
Comparison Implementations

- High Dimensional Projection (reduction)
 - Treat the time-varying data as 4D (space + time) data and project down to 3D, apply operations per data point over time
- Composition (arbitrary comparison)
 - Compose several 3D volumes together into one volume, with operation trees (kernels) per data point
- Both of these are massively data parallel operations can be easily implemented in a volume renderer/shader (GLSL, OpenCL, Cuda, MPI, C/C++ threads, etc.)

2D Analogy – Arrow is operations applied in parallel per point



project/reduce over time



Example Comparison Operations

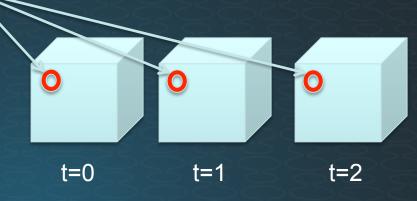
- Post-classification (color then compare)
 - Alpha Composition (evolution)
 - Color Addition (spatial overlap)
- Pre-classification (compare then color)
 - Numerical operations (integrated data analysis)
 - Min, max, mean, median, etc.
 - Sum, product, difference, etc.
 - Inner product, outer product, etc.
 - Set operations using composition notation (in, out, xor, atop, over, pass, clear) (spatial overlap)

Implementation

- Chronovolumes:
 - for p in all points
 - for t in all time steps in some order
 - output p = reduction operation(output p, p at t)
- Composition:
 - for p in all points
 - output p = apply kernel program at point p (arbitrary selection and composition of time steps)
- Example chronovolume code is provided in chrono.cpp

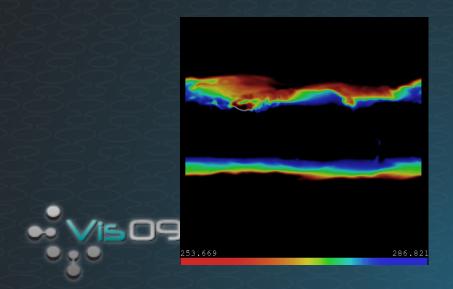
Trend Analysis and Visualization – Time Series/Activity Curve (TAC)

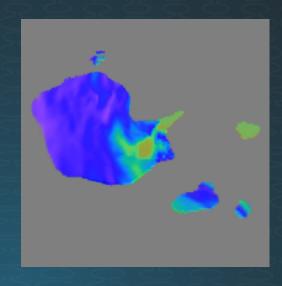
- Quantitative visualization of time-varying data by representing data points as values over time
- Represent data points as time series (activity) curves
 - Coined as TAC vectors by Fang et al.
 - A TAC vector is a data point (point in space)
 representing data values over time at that point



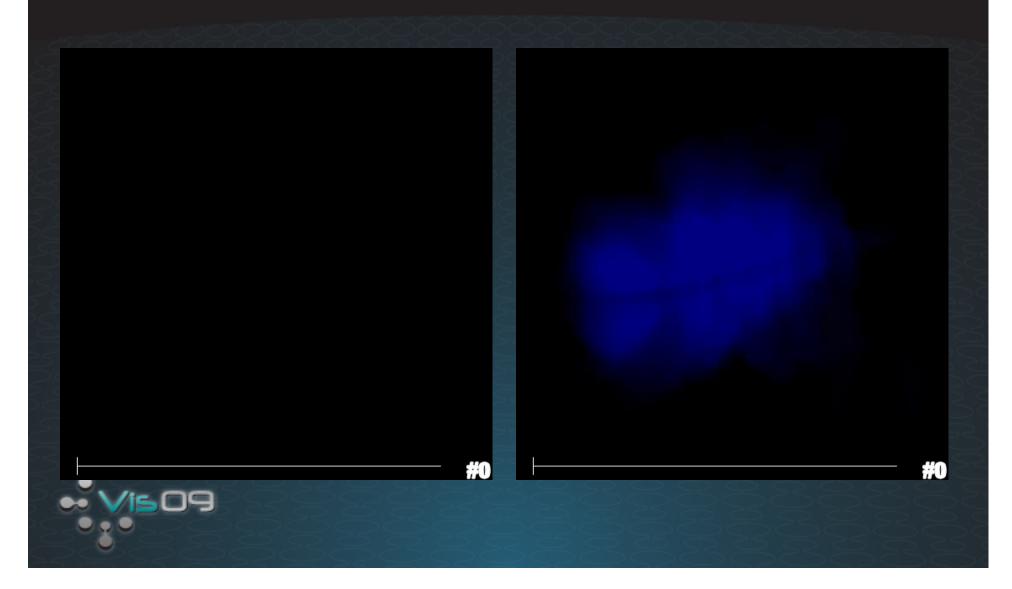
Classifying Features by Trend

- Our assumption is that features are defined by data points that have similar temporal behavior, (the value change over time is similar) meaning they have a similar TAC
- This can be found computationally through vector clustering of TACs





Animation Rescaling by TAC



Classes across Time Scales

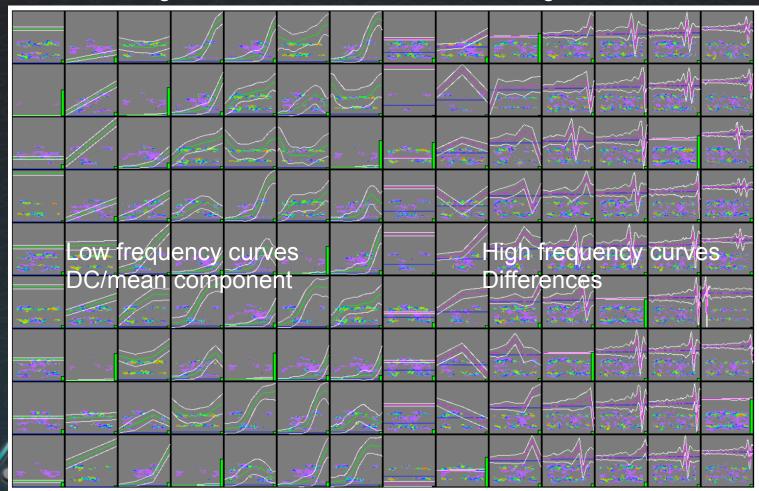
- Temporal activity can happen at different time scales
 - Short term scale: daily or monthly weather
 - Long term scale: yearly or decadal weather
- Activity classes are clustered by time scale
 - Use filter banks to pass-band filter the TACs into different time scales and then cluster by scale
 - Data points are separately classified in each time scale, thus different trends are identified

Trend Visualization – Visualization Spreadsheet

<- longer time scale

different clusters

<- longer time scale



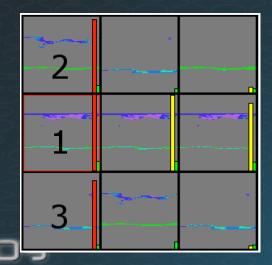
A Cell in the Spreadsheet



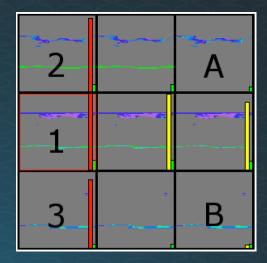
- 1 thumbnail
- 2 centroid TAC
- 3 one stddev value variance from the centroid
- 4 cluster size (number of points)
- 5 similarity to a selected cell

Selection and Resorting the Spreadsheet by Relevance

- When a cell is selected, rows and columns are resorted to show relevance to a picked cell (trend cluster)
 - Similar trend clusters are moved closer to the row of a picked cell (doesn't move out of column) based on various distance metrics (centroid, spatial overlap, etc.)

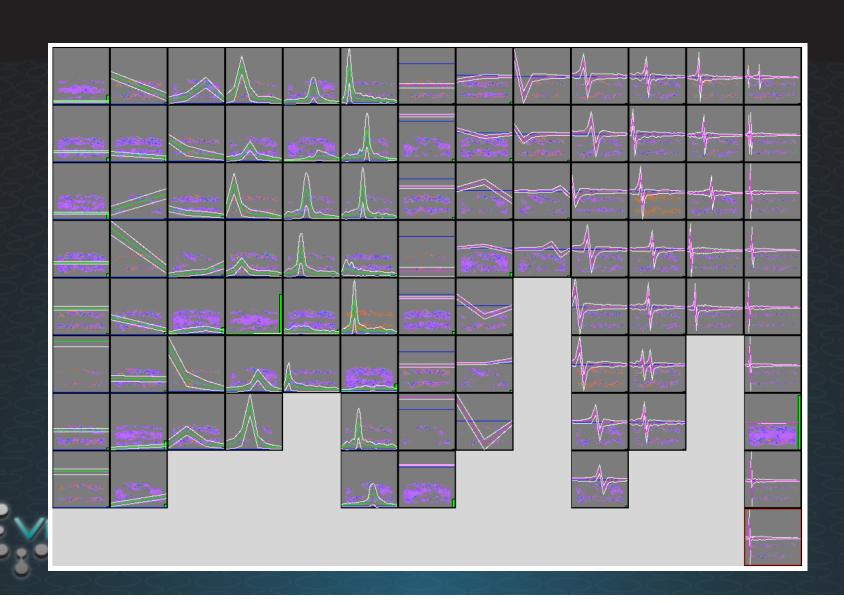


Before selecting cell 1



After selecting cell 1

Spreadsheet Cell Merging and Culling



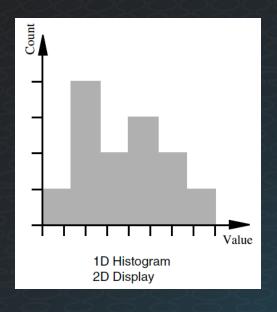
Implementation

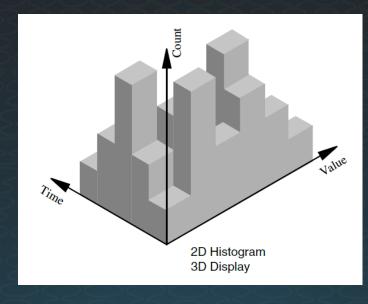
- Represent data as a vector field: rather than scalars of (x, y, z, t) = v, as TAC vectors of (x, y, z) = <v₀, v₁, v₂, ...>
- Pass-band filter the vectors into different time scales (the paper implementation used wavelets)
- Cluster the vectors using vector clustering by frequency band to separate time scales (k-means, hierarchical, etc.)
- Visualize the clusters in a spreadsheet
- There isn't an available reference implementation of the spreadsheet and pass-band filtering, but the clustering code can be found in tstf-1.0.tar.gz

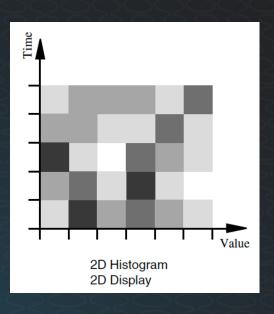
Time Histograms

- Trends can also be shown via time histograms
 - They have a better representation of the value distribution over time of a cluster – centroid TAC is just the average trend
- Kosara et al., "TimeHistograms for Large, Time-Dependent Data"
- Akiba et al., "Simultaneous Classification of Time-Varying Volume Data Based on the Time Histogram"

Time Histograms







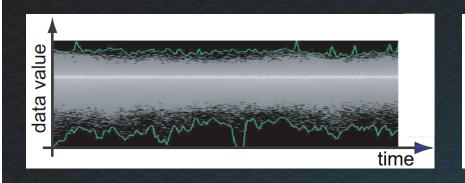
Typical histogram

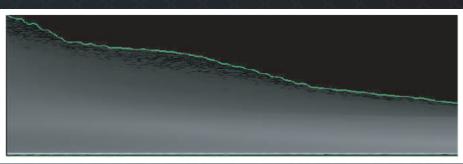
Adding time as a dimension

Flattening it Height = Intensity

Images from Kosara et al.

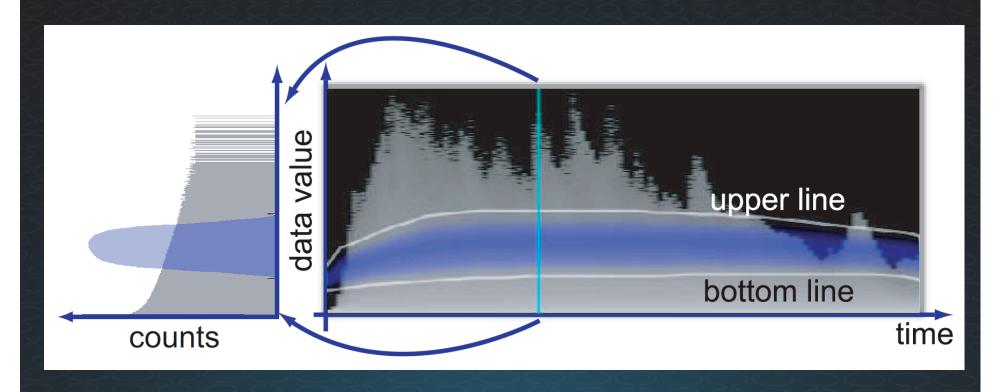
Time Histogram Examples







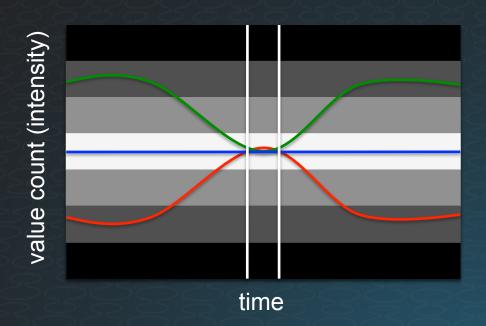
Using Time Histograms for Transfer Functions/Classification

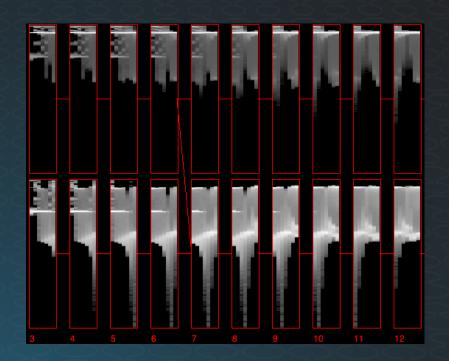


Implementation

- for t in all time steps
 - create a histogram for time step t
- for x in time steps
 - for y in number of histogram bins
 - Render pixel (x, y) as the intensity of bin y in histogram x
- The code in tstf-1.0.tar.gz has examples of creating time histogram images

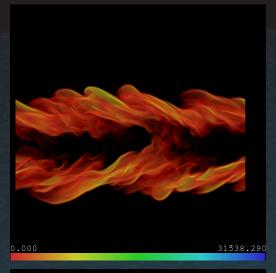
TAC Clustering Classification compared to Time Histograms

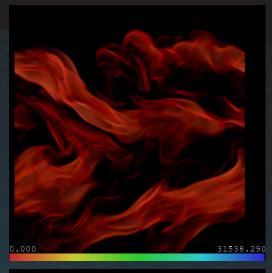




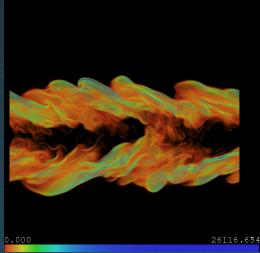
Trend Clustering for Semi-Automatic Time-Series Transfer Functions

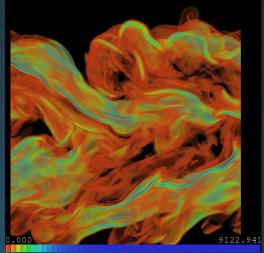
Static transfer function





Automatic method

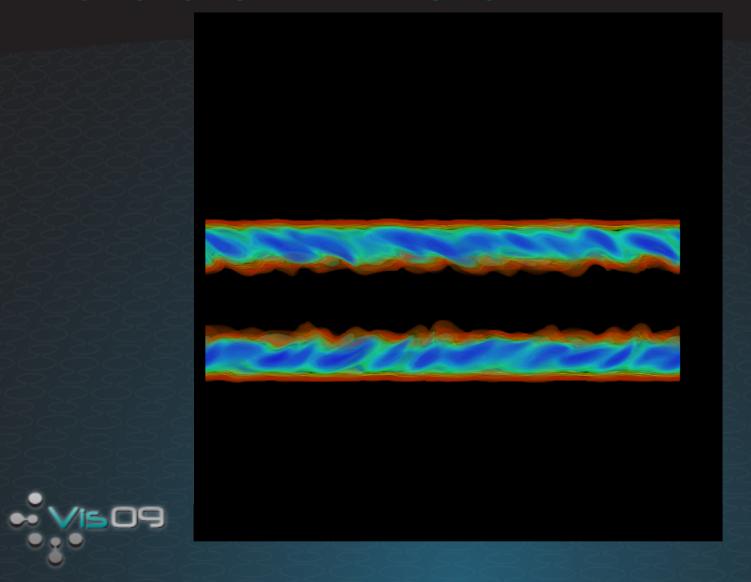




Early time step

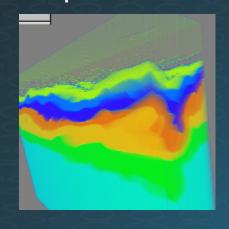
Late time step

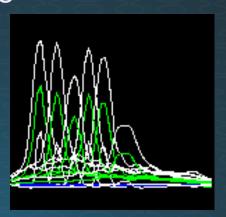
Semi-Automatic Time Series Transfer Functions in Animation



Trend Classification for Moving Features

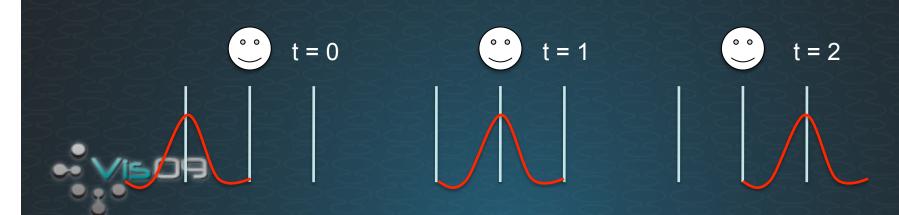
- Whole time series TAC clustering works for well classifying stationary features that have temporal behavior (climate regions, an earthquake basin)
- For a moving feature/wave, using "normal" TAC clustering, where the clustered time series curves have lengths of the whole time series, it captures the space that a moving wave passes through over time





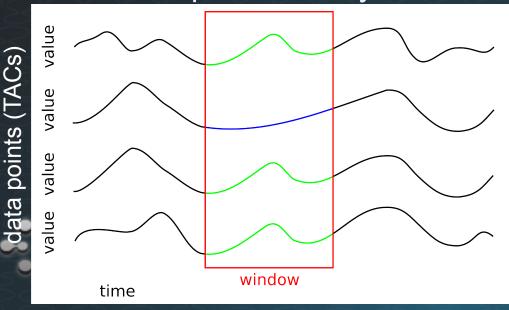
Using this Knowledge to Classify a Moving Wave/Feature

- The data points (spatial area) that comprise a "wave front" have similar behavior for a short period as the wave moves through a region of space
- As a wave moves in space, data points that contain the wave at a point in time, will be similar to a set of data points with the same trend, in near future and near past



Windowed TAC Clustering – Finding Features at a Time Step

- Find similar behavior in the short term: ignore far future and far past similarity
 - Window the TACs (box filter, Gaussian filter, etc.)
 - Similarity is found per time step, by clustering each time step individually

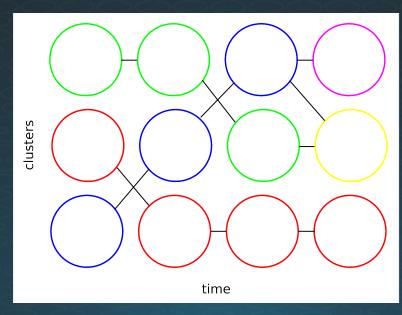


Each time step has a set of clusters which represents similar local activity at that time step – individually, clusters do not represent activity over the entire time range, but just the features/ activities that are occurring in a short time period

Cluster Sequencing – Connecting the Features over Time

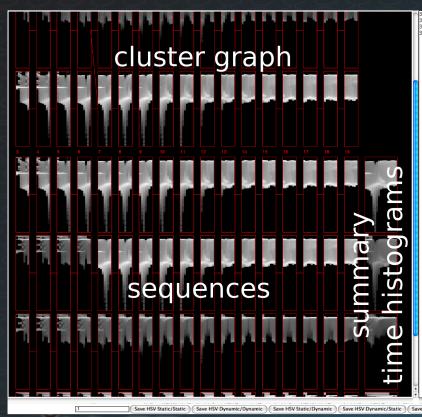
- To connect TAC clusters into an evolving or moving feature, link the clusters over time that are similar/same
 - Measure the similarity between clusters and link them into a sequence by probable evolution

Clusters of data points (the circles) are put into a graph – graph edges are a probability estimate of similarity between clusters over time: low probability edges are culled



Paths in the graph are classes, which represents a sequence of clusters or the evolution of a value population over time – following local trends over the entire time series

Visualizing the Clusters and Sequences



3 to 19 len: 16 min: 0.999276 say: 0.999947 mui: 0.99993 3 to 19 len: 16 min: 0.992725 say: 0.999477 mui: 0.991542 3 to 19 len: 16 min: 0.994104 say: 0.999521 mui: 0.992341 3 to 19 len: 16 min: 0.928023 say: 0.994917 mui: 0.919376

confidence statistics



An animation using a selected sequence turned into a transfer function

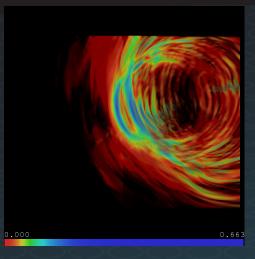
Using the Cluster Sequences for Transfer Functions and Classification

- Sequences are classes of evolving value space features
 - Each cluster in a sequence records value distribution (histogram) of the data points
 - Map the histogram of a time step to a color/alpha map
 - For a dynamic transfer function: use histogram equalization to update the color/alpha map as the value distribution changes over time i.e., remap the color distribution based on the value distribution shift to maintain visual coherence
- The sequence classification can also be used for isosurfacing, spatial boundaries, etc.

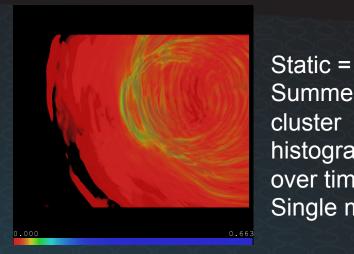
Different Types of Possible Transfer Functions

Dynamic Color

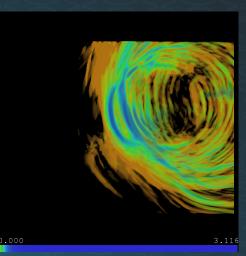
Static color



Dynamic Opacity



Summed cluster histograms over time = Single map



Dynamic = Cluster Histogram per time step = Changing Color/alpha map

Static Opacity

Implementation

- Represent data as a vector field: rather than scalars of (x, y, z, t) = v, as TAC vectors of (x, y, z) = <v₀, v₁, v₂, ...>
- for t in all time steps
 - cluster TACs in a small time window around t
- Connect the clusters into a graph, with edges connecting a cluster to all other clusters one time step in the future and past
- A graph edge represents the probability that a cluster is the same value space temporal feature in an adjacent time step – calculate the similarity of adjacent clusters, and remove edges that have low probability (similarity)

Implementation

- Find all paths in the culled graph paths are sequences or an evolving value space feature
- Visualize the sequences
- Use the sequences in other visualizations
 - To generate a dynamic time-varying transfer function
 - Apply a histogram to color/alpha mapping for one time step
 - Use histogram equalization of the value distribution to update the color/alpha map
- A reference implementation of this work is found in tstf-1.0.tar.gz

For Further Information

- woodring@lanl.gov Jon Woodring
- http://www.cs.utk.edu/~huangj/vis09
- Included are these slides, chrono.cpp, and tstf-1.0.tar.gz
- Woodring and Shen, "Semi-Automatic Time-Series Transfer Functions via Temporal Clustering and Sequencing"
- Woodring and Shen, "Multiscale Time Activity Data Exploration via Temporal Clustering Visualization Spreadsheet"
- Woodring and Shen, "Multi-variate, Time Varying, and Comparative Visualization with Contextual Cues"
- Woodring, Wang, and Shen, "High Dimensional Direct Rendering of Time-Varying Volumetric Data"
- Kosara et al., "TimeHistograms for Large, Time-Dependent Data"
- Akiba et al., "Simultaneous Classification of Time-Varying Volume Data Based on the Time Histogram"

Final Slide

- Jian Huang huangj@cs.utk.edu
- Wes Kendall wesleykendall@gmail.com
- Heike Janicke H.Jaenicke@swansea.ac.uk
- Chaoli Wang chaoliw@mtu.edu
- Jon Woodring woodring@lanl.gov
- www.cs.utk.edu/~huangj/vis09
 - Slides will be uploaded soon

