TransGraph: Hierarchical Exploration of Transition Relationships
in Time-Varying Volumetric Data
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Fig. 1. Left: the TransGraph of the earthquake data set with dynamic tracking. We select a volume region corresponding to the
earthquake’s epicenter at time step 34, which is highlighted in its original color saturation in (a). Right: (a) to (f) are the dynamic
tracking results in the volume at selected time steps 34, 49, 69, 94, 124, and 179, respectively. These images show the propagation
of data transition over time. The corresponding nodes (states) and edges (transitions) at those time steps are highlighted in red and
black, respectively, in the TransGraph.

Abstract—A fundamental challenge for time-varying volume data analysis and visualization is the lack of capability to observe and
track data change or evolution in an occlusion-free, controllable, and adaptive fashion. In this paper, we propose to organize a time-
varying data set into a hierarchy of states. By deriving transition probabilities among states, we construct a global map that captures
the essential transition relationships in the time-varying data. We introduce the TransGraph, a graph-based representation to visualize
hierarchical state transition relationships. The TransGraph not only provides a visual mapping that abstracts data evolution over time
in different levels of detail, but also serves as a navigation tool that guides data exploration and tracking. The user interacts with the
TransGraph and makes connection to the volumetric data through brushing and linking. A set of intuitive queries is provided to enable
knowledge extraction from time-varying data. We test our approach with time-varying data sets of different characteristics and the

results show that the TransGraph can effectively augment our ability in understanding time-varying data.

Index Terms—Time-varying data visualization, hierarchical representation, states, transition relationship, user interface.

1 INTRODUCTION

Time-varying volume data analysis and visualization is an important
topic in scientific visualization. There exist several issues when ana-
lyzing and visualizing these four-dimensional space-time data. First,
the spatial occlusion of data is inevitable due to the projection from 3D
to 2D in the viewing. This prevents a simultaneous observation of the
“entire” data especially when the time dimension is also considered.
Second, when the data are visualized in an animated fashion, tracking
data items or features over time could be very difficult as there might
be different kinds of relationships present in the time series. Third,
typical level-of-detail or hierarchical exploration of time-varying data
only allows the user to navigate through the spatial and/or temporal do-
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main in a coarse-to-fine fashion. The benefit of finding a good tradeoft
between processing speed and visualization quality, however, may not
actually help the user in terms of gaining more control in the analy-
sis or leading to more insight from the data. To make it worse, all
these issues are exacerbated by the ever-growing size and complexity
of time-varying data we need to deal with.

The above issues call for solutions that extract data relationships
over space and time, display these relationships in a low-dimensional
space, and allow the user to perform queries and make connection to
the spatiotemporal data. Explicit extracting data relationships makes
it possible for the user to perform clear and quantified observation of
data over time. Providing a user interface for navigation through the
data and relationships essentially transforms the user from a passive
observer to an active participant in the visual analysis process. Al-
though there have been intensive research efforts spent on developing
better algorithms and techniques for processing, managing, and ren-
dering time-varying data, little attention has been paid to the design
of effective user interfaces for supporting relationship exploration and
detail examination. Transitions among data items or features over time
capture the evolution of time-varying data and therefore are the most
important relationships we seek to extract and visualize. In this paper,
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Fig. 2. The overview of our approach. We derive hierarchical state tran-
sition relationships from a given time-varying data set. Such relation-
ships are visualized using a graph-based representation and integrated
with volume view for visual data exploration.

we propose a novel graph-based user interface to enable systematic
explorations of these transition relationships.

To allow cost-effective handling of large-scale time-varying data
sets, we take a block-wise approach to analyzing the transition rela-
tionships. As shown in Figure 2, by constructing states from data
blocks, clustering states into a hierarchy, and computing directional
transition probabilities among states, we derive a hierarchical state
transition graph, which we call the TransGraph, to capture the transi-
tion properties among data items over space and time. The TransGraph
provides the user with an abstract, global mapping of the underlying
time-varying data set as well as a user interface to assist interactive
exploration of transition relationships. We employ a force-directed
layout algorithm to draw the TransGraph, which enables the user to
quickly identify important local regions by examining nodes and edges
in the graph. It allows the user to pinpoint states of interest using a
set of built-in queries and to track their evolution conveniently. Spe-
cial care is taken to maintain the coherent update of the graph during
level-of-detail exploration so that the user can observe relationships
and track changes with ease. The user either brushes nodes in the
TransGraph or regions in the original volume. These two views are
linked together for cross referencing. Both views work hand-in-hand
to enable knowledge extraction from the data, which is not possible
with only a single view. We demonstrate the values of the TransGraph
in assisting data exploration with experimental results gathered from
several time-varying data sets of different characteristics.

2 RELATED WORK

Utilizing the spatial and temporal coherence in time-varying data for
efficient compression and rendering was the central focus of many
early research efforts [23, 27, 11, 18, 25]. Recently, Fang et al. [9]
proposed a simple yet effective idea of investigating time-varying data
using time-activity curves (TACs), which record the values of voxels
changing over time. This idea has been adopted by Wang et al. [26] to
study the temporal importance of data blocks using information the-
ory, by Woodring and Shen [29] to study the multiscale data clustering
via wavelet transform, and by Lee and Shen [16] to study the temporal
trend relationships with dynamic time warping. Time-varying data can
be presented either statically or dynamically. Static representations in-
clude high-dimensional slicing and projection presented by Woodring
et al. [30], video summarization presented by Daniel and Chen [7],
and abstract storyboards presented by Lu and Shen [17]. Dynamic
representations include storytelling [28, 17] and animation [2].

When the data are time-varying and multivariate or when many pa-
rameters are present for tweaking, mapping the data, variables, pa-
rameters, or features into a low-dimensional space can greatly facil-
itate the exploration and understanding of data relationships. Exam-
ples of this kind include the image graph presented by Ma [19] and
the spreadsheet-like interface presented by Jankun-Kelly and Ma [14].
More recently, Mehta et al. [20] categorized three kinds of spatiotem-
poral relationships, i.e., directional, topological, and navigational rela-

tionships, among objects in time-varying scientific data and presented
separate spatial and temporal graphs which are linked together through
user interaction. Muigg et al. [21] proposed a four-level focus+context
method to effectively reduce occlusion and cluttering among the huge
number of function graphs and designed a highly-interactive function-
similarity brush to allow temporal exploration of the data. Bruckner
and Moller [5] presented a simulation system that allows the user to ex-
plore the simulation parameter space by generating samples, segment-
ing sequences, and clustering segments to assist visual effects design.
For time-varying multivariate data, examples of effective visual rep-
resentations and interfaces include the multifield-graphs presented by
Sauber et al. [22] for multivariate correlation exploration, a tri-space
interface presented by Akiba and Ma [1] for transfer function spec-
ification, and the attribute cloud presented by Jéanicke et al. [12] for
visual data analysis.

Closely related to our work is the work by Jéanicke and Scheuer-
mann [13] for flow feature analysis. Unlike their voxel-wise approach,
we take a block-wise approach which is more amenable for efficient
handling of large-scale time-varying data. Furthermore, in [13], causal
states were defined based on the light-cones consisting the voxels at
the current, past, and future time steps. The transitions between two
states were defined based on the same spatial light-cone at time steps ¢
and ¢ + 1. While we define transitions in a similar way, our definition
of states is strictly restricted to data at the current time step. There-
fore, in the resulting TransGraph we generate and visualize, there is
a clear direction of time evolution. This is not presented in their &-
machine representation. As a result, we are able to track states and
transitions dynamically both in the TransGraph and over the volume,
while only static states and transitions can be tracked over the volume
in [13]. Finally, we advocate an adaptive approach by building states
from data blocks and clustering states into a hierarchy. By extracting a
global view of data transitions, we are able to present states and tran-
sitions in an occlusion-free, controllable, and adaptive manner using
graph-based visualization techniques.

3 HIERARCHICAL STATE TRANSITION

Figure 2 illustrates the input and output for each step of our approach
to derive hierarchical state transition relationships. We first partition
the volume data at each time step into blocks and identify representa-
tive blocks in a hierarchical manner. Representative blocks are used
to construct a distance matrix to expedite the subsequent clustering.
Next, we define states from data blocks and cluster states into a hierar-
chy. Finally, we derive directional transition probabilities among states
to construct a hierarchical state transition graph. In the following, we
describe each step in detail.

3.1 Data Blocks and Distance Measure

Given a time-varying volumetric data set, we perform uniform subdi-
vision of each time step separately into a list of data blocks with an
equal size. We will use the histograms of blocks to compute their dis-
tances, define states based on blocks, and cluster states hierarchically
to extract their transition relationships. The size of block is chosen
in a way so that each block is large enough for meaningful histogram
computation. For instance, assuming a 256-level histogram, the block
should contain at least a few thousands of voxels for stable compu-
tation. On the other hand, we should generate a sufficient number of
blocks for effective hierarchical state clustering. At least a few hun-
dreds of blocks for each time step is appropriate. In practice, we set
the block sizes around 163 to 323 for the time-varying data sets we
experiment with (see Table 1). For a data set with larger spatial and
temporal dimensions, the block size should increase proportionally.
Given two data blocks b; and bj, we can compute their distance
in many different ways. Instead of defining features and extracting
them explicitly for comparison, we simply use the Jensen-Shannon
divergence (JSD) to compute the distance between their probability
distributions P; and P;. In probability theory and statistics, the JSD
is a popular method of measuring the similarity between two proba-
bility distributions. As a symmetrized and smoothed version of the
Kullback-Leibler divergence (KLD), the JSD has its minimum of 0.0



Algorithm 1 REPBLOCKSIDENTIFICATION(|w|: int; €: float)

Algorithm 2 HIERARCHICALSTATECLUSTERING(|w|: int; €: float)

for each pass p do
for each sliding time window w do
if |w| = total # of time steps then
by, < # blocks remaining in w
bmax < by
else
by, < # blocks remaining in w
bmax < # blocks in the first time step of w
for b; < by to byax — 1 do
if b; has not been clustered then
for b; < b; to b, — 1 do
if b; has not been clustered then
if dys(bi,bj) < € then
Cluster b; and b; into the same group
for each cluster ¢ identified at pass p do
Identify the rep. block as the one that has the smallest average distance
to the rest of blocks in ¢
Increase the size of sliding time window |w|
Increase the distance threshold €
Gather the rep. blocks identified at pass p as the input for the next pass
Compute the distance matrix M for all rep. blocks identified in the last pass

when the two distributions are identical, and its maximum of 1.0 when
they are least similar. All these properties nicely fit our requirement
for distance measuring. Specifically, we define

dis (P, Pj) = (dki(Pi||P) +dkL(Pj||P)) /2, (1)

where P is the average of the two distributions, P = (P; + P;)/2, and
dgr. is the KLD, i.e.,

pi(k)
pj(k)’

In the discrete sense, we use a histogram to approximate the underly-
ing probability distribution. Therefore, in Equation 2, m denotes the
total number of bins in the histogram and p;(k) and p (k) are the prob-
abilities (normalized frequencies) for b; and b; corresponding to the
kth bin. Given a data block, the histogram could be constructed sim-
ply as a one-dimensional histogram which records the distribution of
the original scalar values, or as a multi-dimensional histogram which
records the distribution of a combination of features. Since typical
scientific data imply a continuous model, continuous histograms pro-
posed by Bachthaler and Weiskopf [3, 4] can be used to build a bet-
ter basis for the following computation and analysis. Unlike discrete
histograms, continuous histograms are structurally independent of the
resolution of a data set and could avoid misleading structures which
are not part of the data but due to the low sampling resolution.

dL(Pi|IPj) =Y pi(k)log 2
=1

3.2 Representative Blocks and Distance Matrix

From partitioned blocks, we identify representative blocks and com-
pute a distance matrix recording the distance between any two of them.
Later on, for any two blocks in the volume, we will simply look up
the distance between their representative blocks as the approxima-
tion instead of the actual distance computation. Since the number of
representative blocks derived will be substantially less than the num-
ber of initial blocks acquired from volume partitioning, using such a
small-size matrix for distance lookup will effectively reduce the cost
of distance computation in the following hierarchical state classifica-
tion. For a large input data set, computing the representatives from all
blocks across all time steps would be very time consuming due to the
large number of blocks considered simultaneously. We instead take a
multi-pass process to efficiently identify representative blocks.

Our solution adopts a moving time window technique that consid-
ers a subset of data blocks at a time. Algorithm 1 summarizes our
solution in pseudocode. In the first pass, the size of the time window
is relatively small. We start b; from the first block b in the first time
step of the initial window wy and cluster b; with other blocks b; in wq

for each level / do
for each sliding time window w do
if [w| = total # of time steps then
sy < # states remaining in w
Smax < Sw
else
sy <— # states remaining in w
Smax < # states corresponding to the first time step of w
for s5; < 50 tO Spax — 1 do
if s5; has not been clustered then
for s; < s; to s, — 1 do
if s; has not been clustered then
if 5; and s; are spatially overlap or neighboring and are in
the same or neighboring time steps then
if p is the first pass then
d — the average of the distances between their cor-
responding blocks in s; and s; looked up from M
else
d «+ the distance between their primitive states in
Si and s j
if d < € then
Cluster s; and s; into the same group
for each cluster c identified at level / do
Identify the rep. state as the one that has the smallest average distance
to the rest of states in ¢
Increase the size of sliding time window |w|
Increase the distance threshold €
Compute trans. probabilities py,—.; and py;—.;; among all states at level /
Gather the rep. states identified at level / as the input for the next level

if their pairwise distance dys(b;,b;) (Equation 1) is less than a given
distance threshold €. Then, for the remaining blocks that have not
been clustered, we locate the first block in the first time step of wy as
b; and perform the same clustering process again for these remaining
blocks. This process for wg stops until we have attempted to cluster all
its blocks where b; loops through all the blocks in the first time step of
wo. Note that at this moment, it is likely that some blocks in wy might
not be clustered. Next, we slide the window wq one time step further
to create the window w; and perform the same clustering process for
all blocks in w; that have not been previously clustered. This entire
pass stops after the moving time window has swiped through the last
time step. For each of the cluster we identify in the pass, we define its
representative block as the one that has the smallest average distance
to the rest of blocks in the cluster.

In the following passes, we repeat the same process as described
above. The main differences are: (1) the size of time window will in-
crease in each new pass, so does the value for the distance threshold &€;
and (2) the input to the current pass is all representative blocks iden-
tified from the previous pass. In the last pass, the time window spans
the entire time sequence. Only the representative blocks identified in
this final pass will be used to build the distance matrix M. We point
out that it could be very time-consuming to cluster blocks and iden-
tify representatives even though a multi-pass (essentially hierarchical)
process is taken. In our work, we speed up the bottleneck computation
(i.e., JSD calculation) using GPU with a CUDA implementation. The
performance and speedup we achieve are reported in Section 5.1.

3.3 States and Transition Probabilities

In this paper, we define states and their transitions as follows:

e A state is a configuration of neighboring spatiotemporal blocks
characterized by their value distributions. A primitive state is
a configuration of neighboring spatial blocks centered at each
block at a single time step. In hierarchical state clustering, we
select a representative state from a group of states. The group is
formed by merging similar states that are spatially overlapping
or neighboring and are in the same or neighboring time steps.
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Fig. 3. The four different forces we consider for the TransGraph layout adjustment during the level-of-detail exploration. (a) the bidirectional repulsive
force pulls apart two nodes that overlap each other. (b) the unidirectional repulsive force pushes a node away from an expanded node if it is inside
the expanded node. (c) the spring force is introduced to keep the balance with respect to the two repulsive forces. (d) the attractive force handles
the topology change of the underlying triangle mesh, i.e., when a triangle is flipped.
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Fig. 4. (a) the initial layout at the coarsest level is produced using the Fruchterman-Reingold algorithm. The size of each node in the graph is
proportional to the number of children within. (b) the triangle mesh produced from the initial node positions. (c) the layout after four nodes are
selected and expanded for detail examination. Four different forces (Figure 3) are used in the adjustment. (d) the underlying triangle mesh is used

to maintain the topology of the graph during layout adjustment.

e A transition occurs between two states, from one state at time
step ¢ to another state at time step ¢ + 1, if and only if their cor-
responding central blocks are the same in the spatial domain.
Given two states s; and s; at the same clustering level, the di-
rectional transition probability ps,_.; is the ratio between the
total number of transitions from s; to s; and the total number of
transitions from s; to all states (including itself). This definition
indicates how frequently a state is transferred to another state.

To create primitive states, we use an arrangement of 3 x 3 x 3 blocks
for spatial configuration. The number of primitive states is the same
as the number of data blocks. As shown in Algorithm 2, for all prim-
itive states in the data set, we perform hierarchical clustering and se-
lect a representative state from each cluster. We use a method similar
to region growing in our clustering mainly due to the efficiency con-
cern. The spatial and temporal constraints are to ensure that clustered
states are space-time continuous which makes the subsequent tracking
process meaningful. For distance computation between two primitive
states s; and s;, if any of them is along the volume boundary, spe-
cial care is taken so that their partial block correspondence is used to
derive the distance. Unlike state clustering, we only consider the cen-
tral blocks in primitive states for transition probability computation. If
both states s; and s are clusters of states rather than primitive states,
then the transition probability is computed based on the total number
of transitions from any primitive state in s; to any primitive state in
sj. As needed, we may consider the transition probability for all states
either in each individual time step (local normalization) or across all
time steps (global normalization). In the first case, it would lead to a
time-varying graph highlighting the dynamics transitional relationship
changes over time. In the second case, it would lead to a static graph
summarizing all transitions across all time steps.

4 TRANSGRAPH

We create a hierarchical state transition graph, i.e., TransGraph, to
record the transition relationships among states at various levels of de-
tail. In this way, we convert a 4D space-time volume data set to a graph

which can be visualized in 2D. In the TransGraph, a node represents
a state (leaf) or a cluster of states (non-leaf) and the edge between
two nodes represents their transition probabilities. For simplicity, we
draw a single undirected edge instead of double directed edges in the
TransGraph. The edge weight is the summation of the two directional
transition probabilities associated with the two incident nodes. Note
that the summed edge weight is used only for the purpose of graph
drawing while the underlying graph representation is still a directed
graph. This allows the user to perform separate transition queries on
incoming or outgoing transition probabilities. In the following, we de-
scribe how we draw the TransGraph to account for the level-of-detail
adjustment, and how we brush, query, and track in the graph view in
conjunction with the volume view to enable visual data analysis and
understanding.

4.1 TransGraph Drawing

The TransGraph has two places that introduce dynamics into graph
drawing. First, the nodes and edges in the TransGraph change for ev-
ery time step. Second, the level-of-detail exploration leads to graph
changes during the interaction, which requires adjusting node posi-
tions to reduce overlap or occlusion. A good layout for TransGraph
drawing should maintain a good balance between preserving the men-
tal map (i.e., the abstract structural information a user forms by look-
ing at the graph layout) and revealing the dynamics.

In this paper, we adopt the idea of the supergraph [8] by computing
a global layout which induces a layout for each time step. This allows
us to observe all states and their transitions in a single visualization.
In the meanwhile, each graph in the time sequence becomes a subset
of the supergraph and is visualized sequentially. To support effective
graph viewing, we propose a constrained layout adjustment algorithm
to maintain coherent update and minimize node overlap during inter-
active level-of-detail exploration.

We employ the Fruchterman-Reingold algorithm [10], a popular
force-directed layout algorithm to all levels of TransGraph drawing.
This algorithm ensures that topologically near nodes are placed near to
each other and topologically far nodes are placed far from each other.



Table 1. The timing results and parameters used in histogram and JSD computation. The timing (in seconds) for data read, histogram and JSD

computation is the total time for all time steps.

data | hist # JSD JSD two-pass | two-pass
data set variable volume dimension block size read | comp | bins (CPU) (GPU) | time win | threshold &
climate salinity 360 x 66 x 27 x 120 15x11x9 0.23 | 0.60 64 58 19.2 3,120 0.05, 0.1
15x6x9 0.26 | 0.73 64 155 7.2 6, 120 0.1,0.15
30x 11x9 0.24 | 0.99 128 41 4.8 5,120 0.1,0.15
combustion | YOH 480 x 720 x 120 x 122 | 30 x 30 x 30 167 | 78 256 12384 31 4,122 0.05, 0.1
earthquake | amplitude | 256 x 256 x 96 x 599 16 x 16 x 16 125 | 53 256 64883 95 3,599 0.25,0.3
16 x 16 x 8 119 | 23 128 154212 | 233 4,599 0.075, 0.085
32x32x 16 119 | 41 512 3982 17.9 4,599 0.075, 0.09
hurricane vapor 500 x 500 x 100 x 48 20x20x20 || 34 18.2 256 23058 16.3 4,48 0.05, 0.15
ionization gas temp. 600 x 248 x 248 x 200 | 30 x 31 x 31 164 114 256 73156 156 4,200 0.0135, 0.02
Table 2. Continuation of Table 1 with the first column re-listed here.
The timing results and parameters used for hierarchical clustering. The
timing (in seconds) for clustering is the total time for all time steps. wa
a \; I:
clustering | three-level three-level I
data set (CPU) time win threshold € i - (b') : i
climate 52 7,120, 120 | 0.15,023,0.45 2
118 6,120, 120 | 0.275,0.425,0.575 f:’“:
7.6 3,120, 120 | 0.275,0.375,0.45 =T
combustion || 628 5,122,122 | 0.2,0.35,0.4 ‘ . ’
earthquake 1060 5,599,599 | 0.2,04,0.6 | ‘
17059 2,599,599 | 0.2,0.3,04
222 3,599,599 | 0.2,0.25,0.4
hurricane 5069 7,48, 48 0.175, 0.3, 045 o
ionization 1027 5,200,200 | 0.2,0.45,0.7 ;

Furthermore, unlike other algorithms such as the Kamada-Kawai al-
gorithm [15], nodes will not get too close to each other in the drawing.
Therefore, the drawing area is effectively utilized as overlap or occlu-
sion among nodes is reduced.

During the graph exploration, the user selects one or multiple nodes
for examining their higher levels of detail. As such, selected nodes
would be expanded which demands layout adjustment. We generate
the initial layout for the coarsest level of the TransGraph. To preserve
the relative positions of nodes in the initial layout for coherent up-
date, we apply the triangulation scheme proposed by Shewchuk [24]
to the initial graph and use the result of the triangulation to perform
constrained layout adjustment when nodes are expanded for further
examination. When such a node is expanded, its initial size is propor-
tional to the number of children in its next level of detail. All nodes
expanded are assigned the same scaling factor. Similar to the work of
dynamic word cloud visualization by Cui et al. [6], we consider the
following forces to reposition the nodes to reduce their overlap while
maintaining the topology of the coarsest level of the TransGraph.

e Bidirectional repulsive force: This force pushes away two
nodes v, and v, from each other and is effective if and only if
v, and vy, overlap each other. The bidirectional repulsive force is
defined as fi(vq,vp) = k1 x min(x,y), where k; is a given weight
and x and y are the width and height of the overlapping region
as shown in Figure 3 (a). This force is applied to every pair of
nodes in the TransGraph.

e Unidirectional repulsive force: This force pushes away a node
v, without detail shown from a node v, with detail shown and
is effective if and only if v, is inside v,. The unidirectional re-
pulsive force is defined as f>(vq,vp) = ko /d, where k is a given
weight and d is the distance between the centers of v, and vy,
as shown in Figure 3 (b). If d is close to zero, then an upper-
bound force f>max is used instead which guarantees that v;, will
be moved outside of v,,.

Fig. 5. Top: a spatial region at the first time step of the climate data
set is selected and highlighted in its original color saturation. Bottom:
the corresponding nodes are highlighted in red in the TransGraph with
the subsequent transitions (edges) of this region highlighted in black.
The rest of nodes are displayed with decreasing shading as the time
step increases to indicate the direction of time evolution in the graph.
Three well-isolated spatial regions marked with (a), (b), and (c) form
three clear-cut clusters in the TransGraph.

e Spring force: This force is used to balance the graph by offset-
ting the two repulsive forces introduced. Given two nodes v, and
vp, the spring force is defined as f3(vq,vp) = wg X wp, X [, where
wq and wy, are the weights of v, and v;, respectively, and [ is the
length of the edge connecting the centers of v, and v, that lies
outside of their boundaries as shown in Figure 3 (c). We com-
pute w, and w;, based on the number of children in v, and vy,
respectively. The larger the number, the higher the weight. This
force is applied to every pair of nodes in the TransGraph.

e Attractive force: This force is used to maintain the underlying
triangle mesh we construct for the coarsest level of the Trans-
Graph. During the layout adjustment, if a mesh triangle is
flipped, as shown in Figure 3 (d), then the topology of the tri-
angle mesh changes. Our goal is to maintain a stable update of
the graph by introducing an attractive force to flip the triangle
back. The attractive force is define as f4(v,) = kg x t, where k4
is a given weight and 7 is the distance from node v to edge e. We
also consider virtual triangle edges connecting extreme nodes in
the graph to the four corners of the drawing area. This is to en-
sure that all graph nodes do not go out of bound.

Figure 4 shows an example of layout adjustment during the level-of-
detail exploration. As we can see, the expanded nodes expel other
nodes outside of their regions while the global structure of the Trans-
Graph is still preserved. In this example, we give a fairly large size for
drawing each of the higher levels-of-detail to show an extreme case. In



practice, the size for drawing a higher level-of-detail could be smaller
as long as the nodes within can be clearly seen without much clut-
ter, as shown in Figure 6. Our layout adjustment strategy is applied
recursively to different hierarchical levels in the same manner.

4.2 TransGraph Query

The TransGraph stores rich information about the nodes (states) and
edges (transitions) over time. To make the best use of the TransGraph,
we propose a set of intuitive queries to enable knowledge extraction
from the underlying time-varying data.

e State query: We derive how active a state is by computing the
number of time steps the state remains active. By summarizing
its connecting states and their probabilities, we can tell how ac-
tive a node is in terms of transferring to other states or how inac-
tive it is in terms of staying in the same state. From the hierarchy
of the TransGraph, we also derive the active volume extent a state
corresponds to by summarizing the information of its descen-
dants. These queries would allow the user to automatically locate
important or dominant states with respect to the spatial extent,
transition relationship, or time span. Such queries shares some
similarity with recognizing node centrality in a graph, while our
query provides quantified search that is unavailable by simply
observing the TransGraph.

o Transition query: From the edges of the TransGraph, we derive
which transitions are the most dominant ones over time and what
are the corresponding states. We can tell which transitions are
the most or least balanced ones by comparing the two directional
transition probabilities associated with each edge. From the hi-
erarchy of the TransGraph, we also perform transition queries
recursively for finer-grained examination as needed.

e Time step query: We identify important time steps in the time
sequence by summarizing and ranking time steps based on the
number of states active, the number of transitions active, or the
number of states involved in self- or non-self transition only.
Such temporal queries can be used to automatically highlight im-
portant or interesting time steps where state transitions are much
more frequent or widespread than other time steps.

4.3 Brushing and Tracking

We dynamically link together the two views of the time-varying data,
namely, the volume view and the graph view. The user interacts with
the data in one view and the result is automatically reflected in the
other view. This dual-domain interaction is quite standard for the
visualization of data from different perspectives. The brushing and
linking between the two views compliments each other. The volume
view is intuitive for understanding while data occlusion is inevitable
and data selection could be tricky. On the contrary, the graph view is
an abstract representation while occlusion-free data selection is fairly
straightforward. Combining both views together allows easy interac-
tion and comprehensive understanding of the time-varying data.

The user selects data blocks either directly from the volume (by
bounding the ranges in the x, y, and z directions) or from the Trans-
Graph (by direct clicking or range selecting the states of interest). For
block selection from the volume, the user can clip the volume or adjust
the transfer function to better identify interesting 3D data blocks that
are occluded. We allow tracking of these data blocks over the space
and time by highlighting the influenced region in the volume and the
corresponding states in the TransGraph.

We present two different ways of tracking: static tracking and dy-
namic tracking. Static tracking is to fix the spatial blocks while track-
ing their state changes over time. Tracking over the TransGraph only
is straightforward as all transition information is recorded beforehand.
Unlike static tracking, dynamic tracking also conveys the impression
of data transition in the volume while tracking the corresponding state
changes over time. To enable volumetric tracking, we modulate the
color saturation of data blocks based on their transition probabilities.

For simplicity, we assume a constant propagation speed of the data.
The user has the flexibility to adjust the speed at runtime. Adding the
propagation speed enables us to fine tune data transition at the voxel-
wise level, going beyond the block-wise granularity for state transition
computation. In addition, we consider the distances of a voxel to the
centers of initial blocks selected for tracking to further adjust the color
saturation of the voxel (refer to Section 5.4 for more detail). This
allows us to differentiate voxels within a block with different color
saturations even though the transition probability stays in the block-
wise level. In practice, we perform all these color modulations in the
fragment program to ensure the interactivity and realtime tracking.

5 RESULTS AND DISCUSSION

In this section, we first report the data sets we experimented with and
their timing performance. Then, we use different data sets to demon-
strate how brushing and linking, query and tracking are performed be-
tween the volume view and the graph view. We also describe what
are the knowledge and benefit gained from such a dual-domain inter-
action. In addition, we show the TransGraph layouts with different
parameter settings to study their influence on the graph layout.

5.1 Data Sets and Timing Performance

We experimented our approach with five time-varying volumetric data
sets. All these data sets are produced from scientific simulations. From
top to bottom in Table 1, the data sets are from a simulation of the
equatorial upper-ocean, a simulation of turbulent combustion, a sim-
ulation of Northridge earthquake in 1994, a simulation of Hurricane
Isabel in 2003, and a simulation of ionization front instabilities. We
picked one variable from each data set in our study.

The timing was collected on a PC with an Intel 2.4GHz CPU and
an nVidia GeForce GTX 465 GPU. There are three major tasks in our
computation: histogram computation, JSD computation, and hierar-
chical clustering. Tables 1 and 2 show the timing results. Histogram
computation is to calculate the histograms for all blocks in the data.
JSD computation is to compute the distance among blocks to iden-
tify representative blocks, and to compute the distance matrix for dis-
tance lookup in the subsequent clustering. Hierarchical clustering is
to cluster states into a hierarchy for building the TransGraph. For JSD
computation, we opted for two passes for simplicity. For hierarchical
clustering, we opted for three levels (not including the leaf level con-
sisting of all primitive states). After the initial clustering, we did not
impose the time window anymore so that more neighboring states can
be merged together into clusters. Among the three tasks, the bottle-
neck is JSD computation because of the large numbers of log oper-
ations (Equation 2) involved. As such, we also implemented a GPU
version to speed it up by calculating all pairs of JSDs for a group of
blocks in parallel. All other tasks were computed in the CPU.

For the TransGraph drawing, the initial graph layout and triangu-
lation only needs to be computed once for each data set, which can
be completed within a few seconds. At runtime, we allow the user
to interactively explore the TransGraph at various levels of detail and
perform layout adjustment in real time with up to thousands of nodes.
Beyond that, the performance may not be interactive and the drawing
area may not be sufficient. Therefore, in our current implementation,
we do not allow the user to explore too deep down the TransGraph,
such as the leaf level.

5.2 Brushing and Linking

The brushing and linking between the volume view and the graph view
provides the user with an intuitive way to understand both data and
make connections. For example, Figure 5 shows an example where we
brush a spatial region corresponding to the equatorial Indian Ocean of
the climate data set. In the TransGraph, the edges (transitions) associ-
ated across all time steps are highlighted in black and the nodes (states)
corresponding to the first time step are highlighted in red. The rest of
nodes are displayed with decreasing shading as the time step increases.
In this way, the direction of time evolution is easily discernible from
the graph. As we can see, the well-isolated spatial region we brush
forms a clear-cut cluster in the TransGraph. As a matter of fact, three
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Fig. 6. Left: the TransGraph of the hurricane data set. Right: (a) to (d) are the corresponding volume highlighting indicating the red nodes selected
in the TransGraph at time steps 13, 44, 7, and 31, respectively. The spatiotemporal regions corresponding to the hurricane’s surrounding, i.e., (a)
and (b), and center, i.e., (c) and (d), lie on the two clear-cut parts of the TransGraph, respectively.

distinct node clusters are fairly well separated in the TransGraph which
correspond to the three ocean regions separated by the continents (i.e.,
void regions in the volume view). Thanks to the hierarchical state
clustering which imposes that the clustered states must be spatiotem-
poral neighbors in any level of clustering, we can preserve spatiotem-
poral data neighborhood relationships in the TransGraph. The well-
organized nodes in the TransGraph make it convenient for the user to
judge the direction of time evolution and the correspondence between
volume regions and graph nodes.

From Figure 6, we can observe that the TransGraph of the hurricane
data set can be separated into two parts as indicted by the dashed line.
These two parts of nodes actually correspond to the spatiotemporal re-
gions of the hurricane’s center and surrounding, respectively. This is
verified by the rendering of four time steps corresponding to the nodes
(states) selected in the TransGraph. We highlight the volume regions
in their original color saturation to indicate their locations. As we can
see, these two visually distinct spatiotemporal regions in the hurricane
data are well separated in the TransGraph. Since our TransGraph or-
ganizes states in a hierarchical manner, the user can easily explore a
finer level-of-detail and make finer state selection to narrow down the
spatial regions of interest. Figure 6 (a), (c), and (d) are examples that
demonstrate this capability of hierarchical exploration.

In Figure 7, we can observe that multiple branches in the Trans-
Graph of the ionization data set spread out along different directions
after a certain time step. To find out where these branches correspond
to in the volume, we select nodes (states) at time step 118 and high-
light the volume regions in their original color saturation. We also
extract the corresponding state transition for each branch and overlay
with the volume rendering for better observation. As we can see, these
four branches correspond to different spatial regions and express their
respective state evolutions.

5.3 TransGraph Query

Leveraging the TransGraph, we can perform state, transition, and time
step queries to further understand the underlying data. In Figure 8,
we show two examples of state and time step queries with the com-
bustion data set. In (a), we query the first-level nodes (states) with
the outgoing transition frequency larger than 0.108 and the query re-
sult is shown with colored nodes in the graph (nodes in the current
time step are shown in red and blue, others are in green). We can see
three branches of colored nodes along the direction of time evolution.
They correspond to the upper, middle, and lower regions in the vol-

ume, as shown in (b). In (c), we perform a similar state query on the
second-level nodes (states) and the brushed result is highlighted in (d).
Comparing (a) and (c) as well as the rendering results in (b) and (d),
we can infer that the middle part of the TransGraph (and the volume)
has more nodes with larger incoming transition frequency than the up-
per and lower parts of the TransGraph (and the volume). In Figure
9, we show two examples of transition query. The first query in (a)
shows transitions with frequency larger than 0.12. This is to bring out
transitions that are frequently happening through the time series. The
volume highlighting in (b) indicates that at time step 16, these transi-
tions correspond to the middle region in the volume—the place where
the two layers interact with each other. The second query in (c) shows
nodes that are only involved in self-transition at time step 121. The
volume highlighting in (d) indicates that those regions are stable in the
sense that they only transfer to the same states in the next time step.

The TransGraphs in Figures 8 and 9 also tell us that in early time
steps, we have a less number of states available. The number of states
increases as the time step increases. Meanwhile, an increasing number
of edges (transitions) exist among the upper, middle, and lower regions
in the volume. This indicates the increasing turbulent nature of the
combustion data set as the time evolves. Furthermore, the time step
query in Figure 8 (c) which shows the number of active nodes in the
second level also indicates the increasing number of nodes as the time
step increases. It is important to point out that all these findings (except
the correspondence between volume regions and graph nodes) can be
solely inferred from the TransGraph beforehand without the present of
the volume view. The volume view can help us put the graph in the
context, make connection to the spatiotemporal data, and confirm our
findings derived from the TransGraph.

5.4 TransGraph Tracking

In Figure 1, we show an example of dynamic tracking with the earth-
quake data set. A spiral pattern is formed for the TransGraph due to
the large number of time steps (599) involved. The TransGraph reveals
that the earthquake data set consists of many more states and transi-
tions in the early time steps than later time steps. This complies with
the fact that the earthquake breakout is within the first 200 time steps.
After that, the earthquake diminishes gradually for the rest of 400 time
steps. To perform dynamic tracking, we first select a volume region at
time step 34, which corresponds to the earthquake’s epicenter and the
region is highlighted in its original color saturation in (a). The tracking
results on the volume and graph are shown in the figure. Even though



E:0t1e

ke S

Fig. 7. Left: the TransGraph of the ionization data set. Right: (a) to (d) are the corresponding volume highlighting indicating the respective red
nodes selected in the TransGraph at time step 118. Each spatial region corresponding to the states in red is tracked over time and the state
evolution is extracted from the full graph. These separate spatial regions highlighted correspond to different branches in the TransGraph.

Fig. 8. The TransGraph of the combustion data set with state and time step queries. (a) the query of the first-level states having their outgoing
transition frequency larger than 0.108. These nodes are in red, blue, and green. (b) the volume highlighting corresponding to the red nodes brushed
at time step 107. The node that is not selected is in blue and the rest in other time steps are in green. (c) the query of the second-level states
having their incoming transition frequency larger than 0.057. (d) the volume highlighting corresponding to the red nodes brushed at time step 75.
The time step query, displayed in the lower part in (c), shows the trend of the increasing number of active nodes in the second level over time.

the underlying transitions are computed on a block-wise manner, we
allow the user to adjust the propagation speed to give the impression of
voxel-wise data transition. Specifically, for each of the initial blocks
selected for tracking, we propagate its transitions along 27 neighbor-
ing blocks (including itself, i.e., self-transition) with a constant speed.
The transition probability for each pair of blocks is precomputed and
we use the average transition probabilities over a moving time window
to ensure smooth transition of color saturation over time. Moreover,
we consider the distances of a voxel to the centers of initial blocks se-
lected to further adjust the color saturation of the voxel. The result in
Figure 1 (d) shows the effect of anisotropic transition as the color satu-
rations of purple voxels are not the same even though they are equally
close to the initial blocks’ centers.

5.5 Parameter Choices

Figure 10 shows the TransGraph layouts of two data sets under dif-
ferent parameter settings. Tables 1 and 2 list the detail of parameter
values used. In Figure 10, the nodes of the TransGraph are colored
according to the number of children in the next level of the hierarchy,

modulated by the order of the time steps (early time steps darker, later
time steps brighter). Comparing Figure 5 with Figure 10 (a) and (b),
and Figure 1 with Figure 10 (c) and (d), we can see that although dif-
ferent sets of parameters give different graph layouts, the topology of
the TransGraph remains almost the same and is insensitive to param-
eter changes and the randomness of the Fruchterman-Reingold algo-
rithm. Therefore, the TransGraph is largely determined by the nature
of the underlying time-varying data, while parameter changes only in-
troduce slight variations in the layout.

6 LIMITATIONS AND FUTURE WORK

Our work has the following limitations. First, our definition of state
is based on the data blocks and their value distributions in the first
place. The subsequent hierarchical state clustering also operates on
data blocks. Therefore, we are only able to cluster states at the block
level. Reducing the block size could help refine the clustering results,
but at the expense of increasing the size of the TransGraph and af-
fecting the efficiency of our approach. Second, our current solution
considers a constant propagation speed in all directions, which works



(@ (b)

© (d)

Fig. 9. Left: the TransGraph of the combustion data set with transition query. (a) the query of the first-level transitions (either outgoing or incoming)
having their frequency larger than 0.12. These edges are in black and corresponding nodes are in red and green. (b) the volume highlighting
corresponding to the red nodes brushed at time step 16. The rest of nodes in other time steps are in green. (c) the query of the first-level states
that are only involved in self-transition at time step 121. These nodes are in red and the rest of states at the same time step are in green. (d) the

volume highlighting corresponding to the red nodes shown in (c).
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Fig. 10. The TransGraph layouts with different parameter settings (refer to Tables 1 and 2). (a) and (b) are for the climate data set with block sizes
of 15x6x9 and 30 x 11 x 9, respectively. (c) and (d) are for the earthquake data set with block sizes of 16 x 16 x 8 and 32 x 32 x 16, respectively.

out well for the blob-shape earthquake’s epicenter as shown in Figure
1. There is a need of further investigation for a general tracking task.
For example, one possible solution is to develop an anisotropic model
that takes into account the global and local dynamic natures of each
data set. Finally, although there is a general “flow” of time evolution
in the TransGraph, the time could be structured more strongly in con-
junction with better state or feature definition and tracking capability
to support more easily understandable and accessible visual analysis.
For instance, it would be ideal if our approach could track some of the
important high-level features that emerge from the hurricane simula-
tion, such as changes in eye trajectory and rotational wind speed, as
the hurricane approaches landfall.

There are several directions we would like to pursue in the future.
First, the CPU version of JSD computation was the bottleneck. But af-
ter a GPU version of JSD computation was implemented, it is clear that
the CPU version of hierarchical state clustering became the bottleneck
(refer to Tables 1 and 2). Therefore, we will seek a GPU implemen-
tation of hierarchical clustering to improve the overall performance.
Second, we compute the distance between histograms of blocks or
states for hierarchical clustering. Besides the data value, other quan-
tities can also be derived to build multi-dimensional histograms for a
more complete evaluation of block or state similarity. On the other
hand, although convenient, the data do not have to be partitioned into
blocks. A more precise solution is to partition the data based on fea-
tures if known beforehand. Finally, we will extend our work to handle
multivariate time-varying data sets. We can either simply compute
joint histograms to account for a group of variables considered, or

construct the transition relationships for every pair of variables sep-
arately. In the former case, much of our current work can be imme-
diately reused. In the later case, we need to revise our TransGraph to
allow showing simultaneously, both the relationships within a single
variable and between a pair of variables.

7 CONCLUSIONS

We have presented the TransGraph, an approach to hierarchical explo-
ration of transition relationships in time-varying data. The organiza-
tion of our TransGraph allows the direction of time evolution easily
readable and the correspondence between volume regions and graph
nodes easily inferable through brushing and linking. The TransGraph
augments our ability to better understand time-varying volumetric data
by providing an occlusion-free overview map that encompasses all
time steps, controllable interaction that helps users track data transi-
tion over space and time, and adaptive exploration that allows us to go
beyond small- and medium-scale data sets. As the size and complex-
ity of data continue to increase, the TransGraph has the potential to
become a handy tool for us to explore data in a cost-effective manner.
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