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Background — why topology?

What is vector field topology (for steady field)?

What are the existing variations (i.e., different
representations and computations) of topology
for steady vector fields?

Where are we heading?
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What Are We Looking For From Flow Data?

* For steady flow
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What Are We Looking For From Flow Data?

* For steady flow

Fixed points V(xo0) =0

@(t, xo) = x for all tOR
e Sink

e Source

e Saddle

Periodic orbits
AT, > 0 such that ¢(Ty, x) = x

@K Attracting
@; Repelling

They are flow recurrent dynamics that
trap flow particles forever
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gasket cylinder head

cylinder block
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Example Application in Automatic Design

e CFD simulation on cooling jacket
e Velocity extrapolated to the boundary




Example Application in Automatic Design

e CFD simulation on cooling jacket
e Velocity extrapolated to the boundary

Where are the critical dynamics of interests?




e CFD simulation on cooling jacket
* Velocity extrapolated to the boundary

These critical dynamics are parts of vector field topology!




The connections of these (hyperbolic) flow recurrent

features give rise to vector field topology!

It condenses the whole flow information into its skeletal |
representation or structure, which is sparse.

It provides a domain partitioning strategy which
decomposes the flow domain into sub-regions. Within
each sub-region, the flow behavior is homogeneous.

It is one of those few rigorous descriptors of flow
dynamics that are parameter free.

It defines rigorous neighboring relations between

features such that a hierarchy of the flow structure can o omk |
be derived based on certain importance metric. o Saddle

@Attracting
This is what we need for large-scale data analysis in

order to achieve multiscale/level-of-detail exploration!

Benefits
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Vector Field Topology

e Differential topology

— Topological skeleton [Helman and Hesselink 1989; CGA91]
[Scheuermann et al. Vis97, TVCG98][Tricoche et al. Vis01, VisSymO01]
[Theisel et al. CGFO3][Polthier and Preuss 2003][Weinkauf et al VisSym04]
[Weinkauf et al. Vis05] [Chen et al. TVCGO07]

 Discrete topology

— Morse decomposition [Conley 78] [Chen et al. TVCGOS, TVCG12]

— PC Morse decomposition [Szymczak EuroVis11] [Szymaczak and Zhang TVCG12]
[Szymczak and Sipeki, Vis13]

e Combinatorial topology

— Combinatorial vector field [Forman 93]

— Combinatorial 2D vector field topology [Reininghaus et al. TopoInVis09,
TVCG11]



==)* Differential topology

— Topological skeleton [Helman and Hesselink 1989; CGA91]
[Scheuermann et al. Vis97, TVCG98][Tricoche et al. Vis01, VisSymO01]
[Theisel et al. CGFO3][Polthier and Preuss 2003][Weinkauf et al VisSym04]
[Weinkauf et al. Vis05] [Chen et al. TVCGO07]

 Discrete topology

— Morse decomposition [Conley 78] [Chen et al. TVCG08, TVCG11al

— PC Morse decom position [Szymczak EuroVis11] [Szymaczak and Zhang TVCG11]
[Szymczak and Sipeki, Vis13]

e Combinatorial topology

— Combinatorial vector field [Forman 98]

— Combinatorial 2D vector field topology [Reininghaus et al. TopolnVis09,
TVCG11]

Sink
Source
Saddle

10
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Vector Fields (Recall)

e A vector field

— is a continuous vector-valued function V(X) on a
manifold X
— can be expressed as a system of ODE x - V(X)

— introduces a flow @ : RxX - X



Trajectories

e A trajectory of XLIXis Dtm¢(t, X)

e Given an initial condition, there is N
a unique solution \\
X(8) = Xo + Jocusr VX(U)) du —

——
e Under time-independent setting Sg

#(to)= X, 1
Uniqueness \

a trajectory is also called /
streamline. //
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Fixed Points and Periodic Orbits

e A point XUXs a fixed point if ¢(t, X) = x for all tLIR

e Xis a periodic point if there exists a T >0 such that ¢(T, X) = X.
The trajectory of a periodic point is called a periodic orbit.

e T

a) Source b) Sink ¢) Saddle

(on

(d) Periodic orbits
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Limit Sets

e Limit sets reveal the long-term behaviors of vector

fields, correspond to flow recurrence.

N

The limit sets are: g\\/h\%j‘ \\\]/{/{
N\

=000 (4, ), ) &i&@

\*——___
point (or curve) reached after forward _——
integration by streamline seeded at X % -
) —
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Invariant Sets

* An invariant set S X satisfies P(R,S=S

— A trajectory is an invariant set

— Fixed points and periodic orbits are compact and
disjoint invariant sets
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Classifications of Features

Poincaré index |

Sinks, sources, centers: =1
Saddles: 1=-1
Regular, periodic orbits =0




Poincaré index |

Sinks, sources, centers: =1
Saddles: 1=-1
Regular, periodic orbits =0

Conley index C*= ([30, 31, 32)

[Conley 78]
Regular flow: (0,0,0)
An attracting fixed point (e.g. sink):  (1,0,0)
A repelling fixed point (e.g. source): (0,0,1)
A saddle: (0,1,0)
An attracting periodic orbit: (1,1,0)
A repelling periodic orbit: (0,1,1)

> 0 <

Saddle

-O@ O

Mod out exit set
(0,1,0)
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e An entity connection graph (or ECG)
is an extended topological skeleton
which consists of [chen et al. 2007]

— Flow recurrent features

— Connectivity

It forms a topological Graph .

 Three layers based on the Conley index

g0 i
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Vector Field Topology — ECG

(fixed points and periodic orbits)

(separatrices and others)

Bottom (A)ttractors: (o =1) sinks, attracting
periodic orbits

Top (R)epellers: (B2=1) sources, repelling periodic
orbits

Middle (S)addles: (B1#0)

18




Applications — Simplification

Reduce flow complexity so that people can focus on the
more important structure

[Chen et al. 2007]

19




Before

[Theisel et al. Eurographics 2003]




4t Runge Kutta 2" Runge Kutta
(RK4) (RK2)

R1
Sl1e Sl1e
Al Al

ECG
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Vector Field Topology

==)e Discrete topology

— Morse decomposition [Conley 78] [Chen et al. TVCGOS, TVCG11a]



Discrete Topology

R1 R1 Rz
Sle Ste
Al Al
ECG

Sle

MCG

Sle
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e A Morse decomposition of surface X
for the flow is a finite collection of
disjoint compact invariant sets, called
Morse sets.

e Morse sets capture all flow recurrence
(including fixed points and periodic orbits)!

Sink-like Morse set
Source-like Morse set
Saddle-like Morse set
Saddle-sink connection
Saddle-source connection
Saddle-saddle connection

* Flow outside Morse sets is gradient-like

[Chen et al. TVCGOS8]
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Morse Decomposition

 Morse connection graph (MCG)

e isan acyclic directed graph, whose nodes
P are Morse sets, the set of directed
edges is a strict partial order >

R1
S Sink-like Morse set
Source-like Morse set
Saddle-like Morse set
Al A Saddle-sink connection

Saddle-source connection
Saddle-saddle connection

[Chen et al. TVCGO8]
The accurate classification of Morse sets is based on Conley index

25
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A Pipeline of Morse Decomposition

Vector field on a triangulation

!

Flow
combinatorialization

Strongly connected
component extracting
Constructing a
guotient graph

)
R1A1<_
\-ﬁa

[Chen et al. TVCGOS8]
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A streamline
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Morse Decomposition is Not Unique

They are all correct!

R1 R2 R3 R4 R1
S1
Al

R1 R3 Rz R1 R2 R3 R
’ M
Al Al A2 A

Small t Larget

ECG

MCGs with increasing t
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Applications — Hierarchical Structure

v

Refinement

a

Automatic vector field simplification
[Chen et al. TVCG12]
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Vector Field Topology

N RIRERRY

NN R

==)°* Combinatorial topology / N \\
— Combinatorial vector field (Formanog] . |, iy N ANANANA

— Combinatorial 2D vector field topology [Reininghaus et al. - TopoInV|sO9 TVCG11]
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VECTOR FIELD TOPOLOGY IN 3D
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3D Flow Topology

Similar to 2D case, 3D vector field topology aims to classify
the behavior of different streamlines in the domain.

There are also various flow recurrent dynamics which
correspond to those special streamlines, but far more
complex than their 2D counterparts.

3D flow topology again consists of
— Fixed points
— Periodic orbits

— Their connections including separation structures which can now
be both streamline and stream surfaces



3D Flow Topology

* Fixed points

Woe kel
X

A \ g \
\
7N Ty
\\
|
(a) /
[Peikert and Sadlo http://cgg-journal.com/2010-2/02/index.html]

* Periodic orbits

e LT
¥l e)

[Wischgoll and Scheuermann 2002] = = / / [Weinkauf et al. Vis05]
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Topological representations of the Benzene data set.

(left) The topological skeleton looks visually cluttered due to the shown separation surfaces.
(right) Visualization of the topological skeleton using saddle connectors.
[Weinkauf et al. VisSym 2004]

34




3D Morse Decomposition

e Similarly, the discrete topology based on Morse

decomposition can be directly extended to 3D setting.

Conley index

flow is equivalent to \

CH

= (Z. {0}. {0}. {0})
({0} z, {0}, {0})
({0}, {0}. Z. {0})
({0}, {0}, {0}, Z)
(Z, Z, {0}, {0})
({0}. Z, Z, {0})
(

(

-

)

3333

LR ”

{0}. {0}. Z. Z)
({0}, {0}.{0}. {0})

,—.‘,__\,__\,_\A/__\,—_A

E

{0}, Zy, Zy, {0})

attracting fixed point

fixed point with one-dimensional unstable manifold
fixed point with two-dimensional unstable manifold
repelling fixed point

attracting closed streamline

saddle-like closed streamline

twisted saddle-like closed streamline

repelling closed streamline

) |lempty set

[Reich et al. TopolnVis11]
35
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WHERE ARE WE?
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To Time-Dependent Vector Fields

* Track the Evolution of Instantaneous Topology

X >. ® xO

I 1
\k )( (a) LIC images at 3 different time slices. (b) Tracking the locations of critical points as (<) Global bifurcations: saddle connections
stream lines (red/blue/yellow); local (red/blue flow ribbons), tracked closed stream
bifurcations: Hopf bifurcations (green lines (green surfaces).
l l spheres), fold bifurcations (gray spheres).
[Xavier et al. VisSym01, C&G02, Vis04] [Theisel et al. VisSym2003, Vis04, TVCGO05]

e Pathline-based

(a) The vector field p. (b) Critical path lines and basins  (c) Critical path lines and basins (d) Overlayed basins for forward
for forward mtegration. for backward mtegration. and backward integration.
(b) Stream linc oriented topology of the first 100 time steps.  (c) Path line oriented topology of the first 100 time steps.
[Theisel et al. Vis04, TVCGO05] [Shi et al. EuroVis06]

37
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To Time-Dependent Vector Fields

e FTLE
[Haller 2001, Shadden et al. 2005, Garth et al. CGF08, Garth et al. Vis07, Lekien et al. 2007, Sadlo and Peikert TVCGO7, Fuchs et al.PG10 etc., Kuhn et al.
PacificVis12, etc...]

IIIIY

» Streaklines/Streak-surface based

[Sadlo and Weiskopf EG11] [Uffinger et al. TVCG13]
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To Uncertainty Vector Fields

0.005

0.004
e() 0.003
0.002
0.001
0
(x,y)

[Otto et al. EG10, PacificVis11] [Bhatia et al. PacificVis11, TVCG2012]
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To Turbulence Flow ?

Fig. 1. Visualizations of structures in 1024° turbulence data sets on 1024 x 1024 viewports, directly from the turbulent motion field.
Left: Close-up of iso-surfaces of the Acy,,, invariant with direct volume rendering of vorticity direction inside the vortex tubes. Middle:
Direct volume rendering of color-coded vorticity direction. Right: Close-up of direct volume rendering of Rg. The visualizations are
generated by our system in less than 5 seconds on a desktop PC equipped with 12 GB of main memory and an NVIDIA GeForce
GTX 580 graphics card with 1.5 GB of video memory.

[Treib et al. Vis2012]
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