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Outline

• Background – why topology?

• What is vector field topology (for steady field)?

• What are the existing variations (i.e., different 
representations and computations) of topology 
for steady vector fields?

• Where are we heading?
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What Are We Looking For From Flow Data?

• For steady flow

3



What Are We Looking For From Flow Data?

• For steady flow

Sink
Source
Saddle

Fixed points V(x0) =0
ϕ(t, x0) = x for all t∈R

Attracting

Repelling
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Periodic orbits
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They are flow recurrent dynamics that 

trap flow particles forever

They are flow recurrent dynamics that 

trap flow particles forever



Example Application in Automatic Design
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• CFD simulation on cooling jacket

• Velocity extrapolated to the boundary



Example Application in Automatic Design

Where are the critical dynamics of interests?

6

• CFD simulation on cooling jacket

• Velocity extrapolated to the boundary



Topology can help!
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These critical dynamics are parts of vector field topology! 

• CFD simulation on cooling jacket

• Velocity extrapolated to the boundary



The connections of these (hyperbolic) flow recurrent 

features give rise to vector field topology!

• It condenses the whole flow information into its skeletal 
representation or structure, which is sparse. 

• It provides a domain partitioning strategy which 
decomposes the flow domain into sub-regions. Within 
each sub-region, the flow behavior is homogeneous.

• It is one of those few rigorous descriptors of flow 
dynamics that are parameter free. 

• It defines rigorous neighboring relations between 
features such that a hierarchy of the flow structure can 
be derived based on certain importance metric.

• This is what we need for large-scale data analysis in 
order to achieve multiscale/level-of-detail exploration! 
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Vector Field Topology

• Differential topology
– Topological skeleton [Helman and Hesselink 1989; CGA91]

[Scheuermann et al. Vis97, TVCG98][Tricoche et al. Vis01, VisSym01]

[Theisel et al. CGF03][Polthier and Preuss 2003][Weinkauf et al VisSym04]

[Weinkauf et al. Vis05] [Chen et al. TVCG07]

• Discrete topology
– Morse decomposition [Conley 78] [Chen et al. TVCG08, TVCG12]

– PC Morse decomposition [Szymczak EuroVis11] [Szymaczak and Zhang TVCG12]
[Szymczak and Sipeki, Vis13]

• Combinatorial topology
– Combinatorial vector field [Forman 98]

– Combinatorial 2D vector field topology [Reininghaus et al. TopoInVis09, 
TVCG11]
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Vector Field Topology

• Differential topology
– Topological skeleton [Helman and Hesselink 1989; CGA91]

[Scheuermann et al. Vis97, TVCG98][Tricoche et al. Vis01, VisSym01]

[Theisel et al. CGF03][Polthier and Preuss 2003][Weinkauf et al VisSym04]

[Weinkauf et al. Vis05] [Chen et al. TVCG07]

• Discrete topology
– Morse decomposition [Conley 78] [Chen et al. TVCG08, TVCG11a]

– PC Morse decomposition [Szymczak EuroVis11] [Szymaczak and Zhang TVCG11]
[Szymczak and Sipeki, Vis13]

• Combinatorial topology
– Combinatorial vector field [Forman 98]

– Combinatorial 2D vector field topology [Reininghaus et al. TopoInVis09, 
TVCG11]
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Vector Fields (Recall)

• A vector field 

– is a continuous vector-valued function V(x) on a 

manifold X
– can be expressed as a system of ODE  ẋ = V(x)

– introduces a flow ϕ : R× X → X
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Trajectories

• A trajectory of x∈X is ∪t∈Rϕ(t, x)

• Given an initial condition, there is 
a unique solution
x(t) = x0 + ∫0≤u≤t v(x(u)) du
ϕ(t0)= x0

• Uniqueness

• Under time-independent setting 
a trajectory is also called 
streamline.
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Fixed Points and Periodic Orbits

• A point x∈X is a fixed point if ϕ(t, x) = x for all t∈R

• x is a periodic point if there exists a T >0 such that ϕ(T, x) = x.
The trajectory of a periodic point is called a periodic orbit.
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Limit Sets

• Limit sets reveal the long-term behaviors of vector 

fields, correspond to flow recurrence.

• The limit sets are:  

α(x)=∩t<0 cl(ϕ((−∞, t), x))

ω(x)=∩t>0 cl(ϕ((t, ∞), x))

point (or curve) reached after backward 
integration by streamline seeded at x

point  (or curve) reached after forward 
integration by streamline seeded at x
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Invariant Sets

• An invariant set  S ⊂ X satisfies ϕ(R,S)=S
– A trajectory is an invariant set

– Fixed points and periodic orbits are compact and 

disjoint invariant sets
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Classifications of Features

Poincaré index I

Sinks, sources, centers:   I=1
Saddles:   I=-1

Regular, periodic orbits   I=0
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Classifications of Features

Poincaré index I

Sinks, sources, centers:   I=1
Saddles:   I=-1

Regular, periodic orbits   I=0

Conley index C*= (β0, β1, β2) 

Regular flow:                                            (0,0,0)
An attracting fixed point (e.g. sink):     (1,0,0)
A repelling fixed point (e.g. source):    (0,0,1)
A saddle:                                                   (0,1,0)
An attracting periodic orbit:                  (1,1,0)
A repelling periodic orbit:                      (0,1,1)

Saddle
Mod out exit set

(0,1,0)
M/L

Contract

[Conley 78]
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Vector Field Topology – ECG

• An entity connection graph (or ECG) 
is an extended topological skeleton 
which consists of [Chen et al. 2007] 

– Flow recurrent features
(fixed points and periodic orbits)

– Connectivity
(separatrices and others)
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It forms a topological Graph .It forms a topological Graph .

• Three layers based on the Conley index
• Bottom (A)ttractors: (β0 =1) sinks, attracting 

periodic orbits

• Top (R)epellers: (β2 =1) sources, repelling periodic 

orbits

• Middle (S)addles: (β1
0)



Applications – Simplification  

Reduce flow complexity so that people can focus on the 

more important structure
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[Chen et al. 2007] 

before

after



Applications – Data Compression

[Theisel et al. Eurographics 2003]
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Before

After



Differential Topology is Unstable !
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ECG

4th Runge Kutta 

(RK4) 

2nd  Runge Kutta 

(RK2)



Vector Field Topology

• Differential topology

– Topological skeleton [Helman and Hesselink 1989; CGA91]

– Entity connection graph [Chen et al. TVCG07]

• Discrete topology

– Morse decomposition [Conley 78] [Chen et al. TVCG08, TVCG11a]

– PC Morse decomposition [Szymczak EuroVis11] [Szymaczak and Zhang 

TVCG12][Szymaczak TVCG12] [Szymczak and Sipeki, Vis13]

• Combinatorial topology

– Combinatorial vector field [Forman 98]

– Combinatorial 2D vector field topology [Reininghaus et al. TopoInVis09, TVCG11]
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Discrete Topology

ECG MCG
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Morse Decomposition

• A Morse decomposition of surface X

for the flow is a finite collection of 

disjoint compact invariant sets, called 

Morse sets. 

• Morse sets capture all flow recurrence 

(including fixed points and periodic orbits)!

• Flow outside Morse sets is gradient-like

Sink-like Morse set

Source-like Morse set

Saddle-like Morse set

Saddle-sink connection

Saddle-source connection

Saddle-saddle connection

[Chen et al. TVCG08]
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Morse Decomposition

• Morse connection graph (MCG)

• is an acyclic directed graph, whose nodes 

P are Morse sets, the set of directed 

edges is a strict partial order  >

Sink-like Morse set

Source-like Morse set

Saddle-like Morse set

Saddle-sink connection

Saddle-source connection

Saddle-saddle connection

The accurate classification of Morse sets is based on Conley index
[Chen et al. TVCG08]
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A Pipeline of Morse Decomposition

Vector field on a triangulation

Flow 

combinatorialization

Strongly connected 

component extracting

Constructing a 

quotient graph

Computing 

MCG
[Chen et al. TVCG08]



Morse Decomposition is Stable
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A streamline

Euler RK2 RK4
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Morse Decomposition is Not Unique

with increasing τ

ECG

MCGs

They are all correct!

Small τ Large τ



Applications – Hierarchical Structure

Refinement

Automatic vector field simplification
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[Chen et al. TVCG12]



Vector Field Topology

• Differential topology

– Topological skeleton [Helman and Hesselink 1989; CGA91]

– Entity connection graph [Chen et al. TVCG07]

• Discrete topology

– Morse decomposition [Conley 78] [Chen et al. TVCG08, TVCG11a]

– PC Morse decomposition [Szymczak EuroVis11] [Szymaczak and Zhang TVCG11] [Szymczak

and Sipeki, Vis13]

• Combinatorial topology

– Combinatorial vector field [Forman 98]

– Combinatorial 2D vector field topology [Reininghaus et al. TopoInVis09, TVCG11]
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VECTOR FIELD TOPOLOGY IN 3D
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• Similar to 2D case, 3D vector field topology aims to classify 

the behavior of different streamlines in the domain.

• There are also various flow recurrent dynamics which 

correspond to those special streamlines, but far more 

complex than their 2D counterparts.

• 3D flow topology again consists of

– Fixed points

– Periodic orbits

– Their connections including separation structures which can now 

be both streamline and stream surfaces

3D Flow Topology
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• Fixed points

• Periodic orbits

3D Flow Topology

[Weinkauf et al. EG04]

[Weinkauf et al. Vis05]
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[Wischgoll and Scheuermann 2002]

[Peikert and Sadlo http://cgg-journal.com/2010-2/02/index.html]



Saddle Connectors

Topological representations of the Benzene data set. 

(left) The topological skeleton looks visually cluttered due to the shown separation surfaces. 

(right) Visualization of the topological skeleton using saddle connectors.

[Weinkauf et al. VisSym 2004]
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3D Morse Decomposition

• Similarly, the discrete topology based on Morse 
decomposition can be directly extended to 3D setting.

[Reich et al. TopoInVis11]
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WHERE ARE WE?
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To Time-Dependent Vector Fields

• Track the Evolution of Instantaneous Topology

• Pathline-based

[Theisel et al. Vis04, TVCG05]

[Xavier et al. VisSym01, C&G02, Vis04]

[Shi et al. EuroVis06]

[Theisel et al. VisSym2003, Vis04, TVCG05]
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To Time-Dependent Vector Fields
• FTLE

• Streaklines/Streak-surface based

[Uffinger et al. TVCG13]

http://www.zib.de/hotz/projects/finiteTimeFlow.html

[Haller 2001, Shadden et al. 2005, Garth et al. CGF08, Garth et al. Vis07, Lekien et al. 2007, Sadlo and Peikert TVCG07, Fuchs et al.PG10 etc., Kuhn et al. 

PacificVis12, etc…]
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[Sadlo and Weiskopf EG11]



To Uncertainty Vector Fields

[Otto et al. EG10, PacificVis11] [Bhatia et al. PacificVis11, TVCG2012]
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To Turbulence Flow ?

[Treib et al. Vis2012]
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Thank you and Question?
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