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Scientific Data Analysis and Specifically Particle Tracing	



General	


•  Big science => HPC analysis	



•  Data analysis => data movement	



•  Parallel  =>  distributed memory 
data parallel	



•  Most analysis algorithms are not 
up to the challenge	



•  Either serial or shared 
memory parallel	



•  Communication and I/O are 
scalability killers	
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Particle Tracing	


•  Data sizes are large, and large numbers 

of particles are needed (hundreds of 
thousands) for accurate further 
analysis of field line features.	



•  High communication volume and data-
dependent load balance make particle 
tracing challenging to parallelize and 
scale efficiently.	





Moving from Postprocessing 
to Run-Time Scientific Data 

Analysis in HPC"
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Analyze!

Postprocessing particle 
tracing and visualization!

Run-time particle tracing and 
postprocessing  visualization !



The Need for Parallel Particle Tracing!
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When data sizes are too large to move or process 
serially, parallel particle tracing needs to be executed 
on HPC machines. Results are available sooner, access 
to all data at full resolution is possible. !

Dataset Grid size Data size 
(GB) 

MAX 2048^3 98 

RTI 2304 x 4096 x 
4096 432 

Flame 
1408 x 1080 x 
1100 x 32 time 

steps 
608 

Test Data Sizes!
Image courtesy Mark Petersen, Daniel 
Livescu, LANL. Code: CFDNS!

Image courtesy Ray Grout, 
NREL, Hongfeng Yu, Jackie 
Chen, SNL Code: S3D!

Image courtesy Paul 
Fischer, Aleks 
Obabko, ANL. Code: 
Nek5000!

MAX Experiment!

Rayleigh-Taylor Instability!

Flame Stabilization!
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Simple Data Parallelization	



2. 	

Each voxel 
contains a 
velocity vector	



3. 	

Advect particles 
along velocity 
vectors.	



5. 	

Repeat 3, 4 

1.  Group data into 
blocks and 
assign blocks to 
processors.	



4. 	

Exchange 
particles among 
processes when 
they reach the 
block boundary.	
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DIY usage and library organization	



DIY Features	



Parallel I/O to/from storage	


Domain decomposition	


Network communication	


Utilities	
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OSUFlow and DIY	



OSUFlow is a library of serial / parallel particle tracing functions that is parallelized 
using a library called DIY that helps the user write data-parallel analysis algorithms 
by decomposing a problem into blocks and communicating items between blocks.���

OSUFlow Features	



Static / time-varying flows	


Regular / rectilinear / curvilinear / unstructured grids	


Fixed / adaptive step sizes	


Various integration methods	





Nine Things That DIY Does	
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1. Separate analysis ops from data ops	



2. Group data items into blocks	



3. Assign blocks to processes	



4. Group blocks into neighborhoods	



5. Support multiple multiple instances of 2, 3, and 4	



6. Handle time	



7. Communicate between blocks in various ways	



8. Read data and write results	



9. Integrate with other libraries and tools	
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Howdy Neighbor!

8!

•!Neighborhoods provide limited-range 
communication among arbitrary groupings 
of blocks with distributed, scalable data 
structures!
•!DIY provides different options within a 
neighborhood including sending an item to 
all neighbors near enough to receive it and 
periodic boundary condtions. Items are 
enqueued are subsequently exchanged (2 
steps). Items are user-defined.!

!"#$%&'()*%+$#,$-$#./$#,$'$/#/'*$#,$01$2%3456#75##8+



It’s About Time	
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-Time often goes forward only	


-Usually do not need all time steps at once	



Hybrid 3D/4D time-space decomposition. Time-space is represented by 4D blocks that 
can also be decomposed such that time blocking is handled separately. 	
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decompose domain into blocks	



  and assign blocks to processes	


for (epochs) {	


  read my process’ data blocks	


  for (rounds) {	


    for (my blocks) { 	


      advect particles	


    }	


    exchange particles	


  } 	


}	



Configurable 3D / 4D Hybrid Algorithm	



Data structure	



Internally, all blocks are 4D, but we allow separate 
grouping in space (blocks) and time (epochs) to control 
how much data are kept in-core in each epoch. This 
enables time-varying data to be traced natively in 4D, 
without requiring the entire 4D dataset to be resident 
in memory.	



Algorithm	
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Adjustable Synchronization Communication Algorithm	



  for (blocks in my neighborhood) {	



  	

pack and send messages of block IDs and   
	

particle counts	



 	

pack and send messages of particles	



  }	


  wait for enough IDs and counts to arrive	



  for (IDs and counts that arrived) {	



  	

receive particles	



  }	



Wait factor: the fraction 
of items for which to wait 
is adjustable. Typically we 
use 0.1 (wait for 10% of 
pending items to arrive in 
each round).	
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Nonblocking point-to-point and waiting for all messages to arrive (wait factor = 1.0) offers 
little improvement over all-to-all communication, but dialing down the wait factor helps 
significantly.	



Wait Factor Communication Performance	



MAX experiment data. Point to point 
with wait factor = 1.0 is virtually the 
same as all to all.	



Flame stabilization data. Less synchronization 
(wait factor = 0.1) improves performance.	





Communication Performance at Scale!
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Particle tracing of # million particles in a 20483 thermal hydraulics dataset results in strong scaling to 
32K processes and an overall improvement of 2X over earlier algorithms. Most of this improvement 
comes from the wait factor. The left plot includes end-to-end time, including I/O, computation, and 
communication. The right image shows 8 thousand particles, much fewer than were actually tested.!

Platform: IBM Blue Gene/P!
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Computational load is data dependent: data blocks containing vortices (sinks) attract 
particles and have high angular frequency requiring thousands more advection steps to 
compute than blocks with homogeneous flow. In the following slides, we evaluate three 
solutions: particle termination, multiblock assignment, and dynamic block re-assignment.	



The Problem of Load Balancing	



One process containing 4 blocks, with one block containing a 
vortex, can affect the load balance of the entire program execution.	
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Problem: A busy process causes others to wait, which propagates throughout the system.!

Solution: Particles that don’t exit the current block after one round are terminated. There 
is no loss of information because these particles have near-zero velocity.!

Particle Termination!

Jumpshots of 128 processes: process 105 is computation-bound and causes all others to wait.Terminating 
particles that do not leave the current block reduces maximum computation time and overall time.!

BEFORE! AFTER!

Time! Time!

Without Particle Termination With Particle Termination 
Max. Computation Time 243 s 55 s 

Total Execution Time 256 s 67 s 
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Decomposing the domain into a larger number of smaller blocks helps, to a limit. 
Computational hot-spots are more likely to be amortized over a greater number of 
processes. Limiting factor: smaller blocks incur less computation and more 
communication because surface area / volume increases.!

Multiblock Assignment!

Example of 512 voxels 
decomposed into 64 blocks 
and assigned to 3 
processes. Each process 
contains 21 or 22 blocks.!
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Decompositions of 1, 2, 4, 8, and 16 blocks per 
process in the MAX dataset, 512^3, 8K particles. 
Higher block numbers reduce the overall 
execution time. Early particle termination not 
applied in these tests.!



MAX Experiment Results!
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Strong scaling, 5123, 10243, 20483 data, 128K particles, 1 time-step!

Data courtesy Aleks Obabko and Paul Fischer, ANL!

Platform: IBM Blue Gene/P!



Rayleigh-Taylor Results!
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Weak scaling, 2304 x 4096 x 4096 data, 16K to 128K particles, 1 time-step!

Data courtesy Mark Petersen and Daniel Livescu, LANL!

Platform: IBM Blue Gene/P!



Flame Stabilization Results!
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Weak scaling, 1408 x 1080 x 1100 data, 512 to 16K particles,1 to 32 time-steps!

Data courtesy Ray Grout, NREL and Jackie Chen, SNL!

Platform: IBM Blue Gene/P!



VTK Integration	
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Courtesy Zhanping Liu and Jimmy Chen	



Top: Streamlines of thermal hydraulics. 
Bottom:  Pathlines of tornado	



Top: Mesh for office airflow. Bottom: 
streamlines for office airflow	



Top: Mesh for blunt fin. Bottom: 
streamlines for blunt fin	





Summary	
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Keys to Successes	



Configurable time-space data structure with variable size epochs and blocks	


	

Load as many time steps into memory as possible	



Communication algorithm with adjustable synchronization	


	

Less synchronization is better, eg., wait for 10% of pending messages	



Simple load balancing strategies	


	

Multiple blocks per process, particle termination	



Ongoing / future work	


Continuing to study dynamic load balancing and prediction using graph methods	


AMR and unstructured grid parallelization	


VTK integration	


Hybrid messaging / threading parallel approaches	





Recommended Reading	
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Subversion repositories	


https://svn.mcs.anl.gov/repos/osuflow/trunk	


https://svn.mcs.anl.gov/repos/diy/trunk	



Thank You	



Facilities	


Argonne Leadership Computing Facility (ALCF)	


Oak Ridge National Center for Computational 

Sciences (NCCS)	



Funding	


US DOE SciDAC SDAV Institute	



“The purpose of computing is insight, not numbers.”	


	

–Richard Hamming, 1962 

Foundations of Data-Parallel Particle Advection	




