
Tom Peterka!

tpeterka@mcs.anl.gov!

Mathematics and Computer Science Division!

Foundations of Data-Parallel Particle Advection!

Tom Peterka, Rob Ross Argonne National Laboratory!
Boonth Nouanesengsey, Teng-Yok Lee, Abon

Chaudhuri, Jimmy Chen, Kewei Lu, Han-Wei Shen
The Ohio State University!

Wes Kendall, Jian Huang University of Tennessee,
Knoxville!

Zhanping Liu, Kentucky State University!

IEEE Vis 2013 Tutorial!
10/13/13 Atlanta GA!

Early stages of
Rayleigh-Taylor
Instability flow!

Scientific Data Analysis and Specifically Particle Tracing	

General	

•  Big science => HPC analysis	

•  Data analysis => data movement	

•  Parallel => distributed memory
data parallel	

•  Most analysis algorithms are not
up to the challenge	

•  Either serial or shared
memory parallel	

•  Communication and I/O are
scalability killers	

2	

Particle Tracing	

•  Data sizes are large, and large numbers

of particles are needed (hundreds of
thousands) for accurate further
analysis of field line features.	

•  High communication volume and data-
dependent load balance make particle
tracing challenging to parallelize and
scale efficiently.	

Moving from Postprocessing
to Run-Time Scientific Data

Analysis in HPC"

3 3

Analyze!

Postprocessing particle
tracing and visualization!

Run-time particle tracing and
postprocessing visualization !

The Need for Parallel Particle Tracing!

4!

When data sizes are too large to move or process
serially, parallel particle tracing needs to be executed
on HPC machines. Results are available sooner, access
to all data at full resolution is possible. !

Dataset Grid size Data size
(GB)

MAX 2048^3 98

RTI 2304 x 4096 x
4096 432

Flame
1408 x 1080 x
1100 x 32 time

steps
608

Test Data Sizes!
Image courtesy Mark Petersen, Daniel
Livescu, LANL. Code: CFDNS!

Image courtesy Ray Grout,
NREL, Hongfeng Yu, Jackie
Chen, SNL Code: S3D!

Image courtesy Paul
Fischer, Aleks
Obabko, ANL. Code:
Nek5000!

MAX Experiment!

Rayleigh-Taylor Instability!

Flame Stabilization!

5

Simple Data Parallelization	

2. 	
Each voxel
contains a
velocity vector	

3. 	
Advect particles
along velocity
vectors.	

5. 	
Repeat 3, 4

1.  Group data into
blocks and
assign blocks to
processors.	

4. 	
Exchange
particles among
processes when
they reach the
block boundary.	

6	

DIY usage and library organization	

DIY Features	

Parallel I/O to/from storage	

Domain decomposition	

Network communication	

Utilities	

!"#$%&'"() *"+$&%",&'"()-.((%

/)&%0+"+-1"23&30

4%&+56-789:;;;6-</== >&3&*"8?6-*"+@'

@.16-A+$B%(?6-C5$%%6-*.D

E@F

G>@

78"H52(3

I%(2&%

J%(K9")H

/++"H)#8)'

E@F

E8K(#L(+"'"() =(##$)"K&'"()
M8&N
E&'&

@OA

P3"'8-
M8+$%'+

=(#L38++"()Q'"%"'"8+ >&3&%%8%
!(3'

E&'&'0L8
=38&'"()

>&3&%%8%

OSUFlow and DIY	

OSUFlow is a library of serial / parallel particle tracing functions that is parallelized
using a library called DIY that helps the user write data-parallel analysis algorithms
by decomposing a problem into blocks and communicating items between blocks.���

OSUFlow Features	

Static / time-varying flows	

Regular / rectilinear / curvilinear / unstructured grids	

Fixed / adaptive step sizes	

Various integration methods	

Nine Things That DIY Does	

7

1. Separate analysis ops from data ops	

2. Group data items into blocks	

3. Assign blocks to processes	

4. Group blocks into neighborhoods	

5. Support multiple multiple instances of 2, 3, and 4	

6. Handle time	

7. Communicate between blocks in various ways	

8. Read data and write results	

9. Integrate with other libraries and tools	

!"#$%&'(('()"#$%&'(('(*"#$%&'((

!"#$

!%
!&

!'
()*+,

-$.!"+$/

/01!"1)
2$"34(*.4**5

/01+$

$0*+4

!$#0*.1)
2$"34(*.4**5

!"#$6/!$0/

!7
!'

!8

!9
!8

!:

!"#$%&'()*%+$#,$-$#./$#,$'$/#/'*$#,$01$2%3456#75##8+

Howdy Neighbor!

8!

•!Neighborhoods provide limited-range
communication among arbitrary groupings
of blocks with distributed, scalable data
structures!
•!DIY provides different options within a
neighborhood including sending an item to
all neighbors near enough to receive it and
periodic boundary condtions. Items are
enqueued are subsequently exchanged (2
steps). Items are user-defined.!

!"#$%&'()*%+$#,$-$#./$#,$'$/#/'*$#,$01$2%3456#75##8+

It’s About Time	

9	

-Time often goes forward only	

-Usually do not need all time steps at once	

Hybrid 3D/4D time-space decomposition. Time-space is represented by 4D blocks that
can also be decomposed such that time blocking is handled separately. 	

!"#$%&'(&)#*+',-'

./0(-1#20(-1#30(-1#40(-5

./0&+1#20&+1#30&+1#40&+5

./0(-1#20(-1#30(-5

./0&+1#20&+1#30&+5
!"#$%&

!"#'(&

'(0,

'6
'7

'8

9%&'(&)#:);<=
>,?'(<,9

',0%;?&)
:);<=

'(0,#9',%9

'!
'8

'@

'A
'@

'B

@"#C);<=

@"#D,(EF:;?F;;G
.-;'#G?&H-5

!"#$%&'(&)#D,(EF:;?F;;G 6"#4,0%;?&)#D,(EF:;?F;;G

@" !" 6"

6"#4,0%;?&)#*+',-'

10	

decompose domain into blocks	

 and assign blocks to processes	

for (epochs) {	

 read my process’ data blocks	

 for (rounds) {	

 for (my blocks) { 	

 advect particles	

 }	

 exchange particles	

 } 	

}	

Configurable 3D / 4D Hybrid Algorithm	

Data structure	

Internally, all blocks are 4D, but we allow separate
grouping in space (blocks) and time (epochs) to control
how much data are kept in-core in each epoch. This
enables time-varying data to be traced natively in 4D,
without requiring the entire 4D dataset to be resident
in memory.	

Algorithm	

!"#$

!%
!&

!'
()*+,

-$.!"+$/

/01!"1)
2$"34(*.4**5

/01+$

$0*+4

!$#0*.1)
2$"34(*.4**5

!"#$6/!$0/

!7
!'

!8

!9
!8

!:

11	

Adjustable Synchronization Communication Algorithm	

 for (blocks in my neighborhood) {	

 	
pack and send messages of block IDs and
	
particle counts	

 	
pack and send messages of particles	

 }	

 wait for enough IDs and counts to arrive	

 for (IDs and counts that arrived) {	

 	
receive particles	

 }	

Wait factor: the fraction
of items for which to wait
is adjustable. Typically we
use 0.1 (wait for 10% of
pending items to arrive in
each round).	

12	

Nonblocking point-to-point and waiting for all messages to arrive (wait factor = 1.0) offers
little improvement over all-to-all communication, but dialing down the wait factor helps
significantly.	

Wait Factor Communication Performance	

MAX experiment data. Point to point
with wait factor = 1.0 is virtually the
same as all to all.	

Flame stabilization data. Less synchronization
(wait factor = 0.1) improves performance.	

Communication Performance at Scale!

13!

Particle tracing of # million particles in a 20483 thermal hydraulics dataset results in strong scaling to
32K processes and an overall improvement of 2X over earlier algorithms. Most of this improvement
comes from the wait factor. The left plot includes end-to-end time, including I/O, computation, and
communication. The right image shows 8 thousand particles, much fewer than were actually tested.!

Platform: IBM Blue Gene/P!

14	

Computational load is data dependent: data blocks containing vortices (sinks) attract
particles and have high angular frequency requiring thousands more advection steps to
compute than blocks with homogeneous flow. In the following slides, we evaluate three
solutions: particle termination, multiblock assignment, and dynamic block re-assignment.	

The Problem of Load Balancing	

One process containing 4 blocks, with one block containing a
vortex, can affect the load balance of the entire program execution.	

15!

Problem: A busy process causes others to wait, which propagates throughout the system.!

Solution: Particles that don’t exit the current block after one round are terminated. There
is no loss of information because these particles have near-zero velocity.!

Particle Termination!

Jumpshots of 128 processes: process 105 is computation-bound and causes all others to wait.Terminating
particles that do not leave the current block reduces maximum computation time and overall time.!

BEFORE! AFTER!

Time! Time!

Without Particle Termination With Particle Termination
Max. Computation Time 243 s 55 s

Total Execution Time 256 s 67 s

16!

Decomposing the domain into a larger number of smaller blocks helps, to a limit.
Computational hot-spots are more likely to be amortized over a greater number of
processes. Limiting factor: smaller blocks incur less computation and more
communication because surface area / volume increases.!

Multiblock Assignment!

Example of 512 voxels
decomposed into 64 blocks
and assigned to 3
processes. Each process
contains 21 or 22 blocks.!

!"#$%

&#'("

)*
)+
),

Decompositions of 1, 2, 4, 8, and 16 blocks per
process in the MAX dataset, 512^3, 8K particles.
Higher block numbers reduce the overall
execution time. Early particle termination not
applied in these tests.!

MAX Experiment Results!

17!

Strong scaling, 5123, 10243, 20483 data, 128K particles, 1 time-step!

Data courtesy Aleks Obabko and Paul Fischer, ANL!

Platform: IBM Blue Gene/P!

Rayleigh-Taylor Results!

18!

Weak scaling, 2304 x 4096 x 4096 data, 16K to 128K particles, 1 time-step!

Data courtesy Mark Petersen and Daniel Livescu, LANL!

Platform: IBM Blue Gene/P!

Flame Stabilization Results!

19!

Weak scaling, 1408 x 1080 x 1100 data, 512 to 16K particles,1 to 32 time-steps!

Data courtesy Ray Grout, NREL and Jackie Chen, SNL!

Platform: IBM Blue Gene/P!

VTK Integration	

20	

Courtesy Zhanping Liu and Jimmy Chen	

Top: Streamlines of thermal hydraulics.
Bottom: Pathlines of tornado	

Top: Mesh for office airflow. Bottom:
streamlines for office airflow	

Top: Mesh for blunt fin. Bottom:
streamlines for blunt fin	

Summary	

21	

Keys to Successes	

Configurable time-space data structure with variable size epochs and blocks	

	
Load as many time steps into memory as possible	

Communication algorithm with adjustable synchronization	

	
Less synchronization is better, eg., wait for 10% of pending messages	

Simple load balancing strategies	

	
Multiple blocks per process, particle termination	

Ongoing / future work	

Continuing to study dynamic load balancing and prediction using graph methods	

AMR and unstructured grid parallelization	

VTK integration	

Hybrid messaging / threading parallel approaches	

Recommended Reading	

22	

DIY	

•  Peterka, T., Ross, R., Kendall, W., Gyulassy, A., Pascucci, V., Shen, H.-W., Lee, T.-Y., Chaudhuri, A.:
Scalable Parallel Building Blocks for Custom Data Analysis. Proceedings of Large Data Analysis and
Visualization Symposium (LDAV'11), IEEE Visualization Conference, Providence RI, 2011.	

•  Peterka, T., Ross, R.: Versatile Communication Algorithms for Data Analysis. 2012 EuroMPI Special
Session on Improving MPI User and Developer Interaction IMUDI'12, Vienna, AT.	

Particle Tracing Applications	

•  Peterka, T., Ross, R., Nouanesengsey, B., Lee, T.-Y., Shen, H.-W., Kendall, W., Huang, J.: A Study of
Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields. Proceedings IPDPS'11,
Anchorage AK, May 2011. 	

•  Kendall, W., Wang, J., Allen, M., Peterka, T., Huang, J., Erickson, D.: Simplified Parallel Domain
Traversal. Proceedings of SC11, Seattle WA, 2011.	

•  Nouanesengsy, B., Lee, T.-Y., Lu, K., Shen, H.-W., Peterka, T.: Parallel Particle Advection and FTLE
Computation for Time-Varying Flow Fields. Proceedings of SC12, Salt Lake, UT, 2012. 	

•  Kendall, W., Huang, J., Peterka, T.: Geometric Quantification of Features in Large Unsteady Flow.
Computer Graphics and Applications Special Issue on Extreme Scale Visual Analytics, Vol. 32, No. 4,
2012.	

•  Pugmire, D., Garth, C., Childs, H., Peterka, T. Parallel Integral Curves. Book chapter in High
Performance Visualization. Bethel, E. W., Childs, H., Hansen, C., editors, 2012. 	

Tom Peterka	

tpeterka@mcs.anl.gov	

Mathematics and Computer Science Division	

Subversion repositories	

https://svn.mcs.anl.gov/repos/osuflow/trunk	

https://svn.mcs.anl.gov/repos/diy/trunk	

Thank You	

Facilities	

Argonne Leadership Computing Facility (ALCF)	

Oak Ridge National Center for Computational

Sciences (NCCS)	

Funding	

US DOE SciDAC SDAV Institute	

“The purpose of computing is insight, not numbers.”	

	
–Richard Hamming, 1962

Foundations of Data-Parallel Particle Advection	

