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The Challenges in Computational Sciences
In a few years, exaFLOPs supercomputers will become
a reality (exa = 1,000,000,000,000,000,000)
e Number of cores per processor will increase
e Memory per core will decrease
The speed and capacity of memory and I/O devices
cannot keep pace with the increase of compute power
e Cost of moving data will increase
It will be very difficult for scientists to store and

analyze even a small portion of their simulation
output
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Model Global Flows from Local
Computation

Global structures of flow fields are more expensive to
compute because of high data movement cost

e Computation and bundling of long streamlines

* How different local regions are connected by the flow

e Where uniformly distributed particles will go
There is still a need to reconstruct the global information,
ideally from local computation
Global flow directions can be used to:

¢ Workload estimation

e Data access pattern analysis

e Guide user interaction



Flow Graphs

Estimate global flow patterns
using only local computation
Flow graphs:

e Each block is a node

e Neighboring blocks have
edges between them

e Weight of edge is probability
that a seed goes from one
block to the other

e A transition matrix can be
constructed from the graph
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igh Performance Flow Line Computation via Flow
Graphs

Flow graphs can be used to facilitate efficient flow
lines computation

e Parallel streamline computation

e Out-of-core streamline computation
Parallel flow lines computation

e Workload estimation for load balancing
Out-of-core flow lines computation

e Data access pattern analysis for effective pre-fetching
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Transition Matrix from Flow Graphs

Remember each edge in the graph represents the
probability (percentage) of particles from one node to
the other

A transition matrix M can be constructed from the
graph
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Estimate the Particle Distribution

Assuming initially the particles are distributed among
the blocks B...B_as PL=[L, L, L, L, k|

Then the numbers of particles in each block after K
rounds are equal to PL’ = PL x MK

One round example Bi B2 B3z By
B[ - 0.3 0.5 0,2—
PL - E LI [ | * p
B3
B4
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Scalable Data Managemen

Parallel Particle Tracing in Rounds
Round 1 Round 2

Exchange
Particles

block data initial seeds advect advect




Partition Matrix and Load Distribution

M blocks

- X1

I Py Py, L
xpl EJL Pt - P | | Lm
P processors

workload ratio P,; : percentage of work in block i done by processor k
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Load Imbalance Cost Function

e (Cost function

* Based on the variance of the process

workloads | wp y) | wp
VAR(X; ... X,) kzlxk_(ﬁ =1+

* Why variance?

()

e A quadratic form of the unknowns

VAR(R,)) + VAR(R} VAR(R,) + ... VAR(R)+ VAR(R,+VAR(R)) + ...




Parallel Particle Tracing in Rounds

Round 1 Round 2
- - v . I
block data initial advect advect
seeds

@ Solve Py,
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Divide the data into the blocks, and partition the blocks into processors




Load Balancing for Parallel Flow line Computation

Based on the workload estimation, divide the data
blocks into N processors such that:

e The workload variance among the processors in each
round of the particles keeps as small as possible

e Minimize the sum of the workload variance in all
rounds

A quadratic programming problem to get P,.
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Flow Block Workload- Block-wise
. Exchange
Graph »  Workload > Aware »  Particle = .
. .. . . Particles
Construction Estimation Partitioning Advection
Input Initial l
g | Field
Vector Particle :
Lines

Field Locations



Nek Plume Ocean

Test Machine: Surveyor
e [BM Blue Gene/P
* 4096 cores
Strong scaling tests
Seed evenly throughout domain

Compare with actual workload and round robin

Flame

# Particles
Dataset | Size
(GB)  (Strong)
Nek 12 256K
Plume | 5.81 256K
Ocean | 3.86 256K
Flame | 18.69 128K
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Scalable Dat

- Strong Scaling Results

Strong Scaling Ocean

Strong Scaling Nek 10%
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Flow Graphs Query

Provide an abstract view of the flow fields
Explore and filter nodes based on flow attributes and
complexity measures

e Velocity magnitude, entropy, fractal dimension, and/or
other scalar quantities, degree, centrality, etc

Explore the relations between the graph nodes
e Edge weight
e Subgraphs connected to a node
e Clusters of graph nodes
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Streamline View

The Flow Graph



Flow Graph Hierarchy

* Hierarchical viewing by merging higher resolution
nodes

"¢ Coarser level

¢ Finer level

Edge weights are summed together



Flow Graph Hlerarchy

* Interactive manipulation - open and <

graph nodes at different resolutions
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Streamlines Query

%) Graph Based 3D Vector Field Exploration Tool
File Edit

Help

D=Ed 8

>
Stalistis Query Rilation Query Graph Theory Query Graph Manipulator
[ Velocity Magnitude [ Degree of Node [J Depth First Search [JOpenal  []Open Selected
Close Al
F Enfior [ stengthof Lk [ Topolagical Search [ Close [ Close Selected
[ Pressure [] Stieamine Length [ Clique Detection :
out Methoc
Clcu — Layout Metho
] Connected Neighbors aleulus ST
[ Passing Stieamines [ Gradient O Cicular
] Query Complexity [ Laplacian O Hierarchy.
>
Ready i NLIM_SCRL
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Streamlines Query

%) Graph Based 3D Vector Field Exploration Tool
Fle Edt View Help
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Ready
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Relation Query
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[[] Strength of Link
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Graph Theory Query
[]Depth First Search
[ Topological Search
[] Clique Detection
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[ Gradient

[ Laplacian
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[ Close Selected
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Streamlines Query

% Graph Based 3D Vector Field Explor:
Fie Edt

W Help

D d S 2

Staistcs Query Relation Query

[IVelocity Magnitude ~ [] Degree of Node -

niopy ] Stiength of Link
[CIEnt

[Pressue [ Stieamine Lengh -
Cicu [ Connected Neighbors

[[] Passing Streamines

(] Query Complesity

<
Ready

Graph Theory Quer)
[]Depth First Search
[] Topological Search
[] Clique Detection

Calcuus

[ Gradient

[ Laplacian

Layout Method
O Force Based
O Circular

O Hierarchy

Graph Manipulator
[JOpenal  []Open Selected
[JClose &l [ Close Selected

v
>

AT MM SCRL




Streamlines Query

i Graph Based 3D Vector Field Exploration Tool
Fie Edt View Help
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/O Optimization via Flow Graphs

Disk I/O can become a major bottleneck for large scale out
of core flow line computation

To reduce the I/O overhead

e Minimize the latency

e Increase data reference locality

o Hide the data transfer time
Approach

e Divide the data into small blocks

e Follow the access pattern and organize the blocks into the
file

e Perform pre-pretching



%DﬁPre-fetching for Flow Line

Computation
Prefetch

e Load multiple blocks at a time from the file
e Overlap data I/O with flow line computation

Research goal

e Find a file layout that best facilitates data prefetching
« Layout: a linear order of blocks stored in the file

« Minimize the miss rate: the ratio of needed data blocks not in the
prefetched pool

L] 2 B,A" Data in file:

56/{8»...13141011734
9 | 10 /1 | 12 T
—T

Request

13|14 |15 |16 Prefetch (size=3)




Layout Algorithm Overview

Ml N Divide the flow field into small
561718
STl blocks
1314|1516

L Analyze the access dependencies
s 1s | of blocks using a graph
’_1'9 T_S'S "_9'1 1 representation of the flow field
W.ll9 T.S' /.9‘ T

Formulate the cost function using

\ 4
f the graph
¥

Optimize the file layout
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Access Dependency Graph
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Model the runtime dependencies as a directed graph
* Node: data block

* Directed edge: seeds moving from one block to a
neighboring block

* Edge weight: conditional probability: w(u=>v) = Pr (v|u)



Evaluating File Layout

Input
* access dependency graph G(V,E)
* Block layout L(u): position of block U in a file

Prefetch miss rate if block u and v are needed in
sequence
e Miss_rate (u,v) = Pr(v|u) * CMRF(L(v)-L(u))

e CMRF: cache miss rate function chEs

R
>

Offset

Cost of a layout:  cost(L.G) = % Y Miss_rate(u,v)

(uv)eG



Layout Optimization

* Cost function: family of minimum linear arrangement problem
e NP-Hard

* Recursive approximation algorithm:



Layout Optimization

* Cost function: family of minimum linear arrangement problem
e NP-Hard

* Recursive approximation algorithm:
\

1. Recursively find
the balanced min-
cut of the graph



Layout Optimization

Cost function: family of minimum linear arrangement problem
e NP-Hard

Recursive approximation algorithm:
\
\ > @
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Lowest Cost

1. Recursively find 2. Exhaustively search

the balanced min-  for an optimal layout
cut of the graph when the subgraph has

<=4 nodes




Layout Optimization

Cost function: family of minimum linear arrangement problem

e NP-Hard
Recursive approximation algorithm:

\
Final Layout
||||17|’||||||1‘{|||
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Lowest Cost

2. Exhaustively search 3. Bottom up:
for an optimal layout Concatenate two partial

when the subgraph has layouts with lower cost
<=4 nodes

1. Recursively find
the balanced min-
cut of the graph
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Performance Evaluation

Experiment platform: a multithreaded pathline computation
system on a 4-core desktop computer with 2GB of memory

Comparison: Z space-filling-curve layout

« Our layouts vs. Z-curve layout
— Ours have smaller miss rate
— Ours require less I/O time
— 40% time reduction
(compared to Z-curve layout)
« By increasing the prefetch size,
— The number of disk accesses decreases
— The I/O time decreases first but then increases
v' Prefetch size 3 - 7 blocks works better
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Publications

Flow Graphs for Interaction

e Lijie Xu and Han-Wei Shen. Flow web: A graph based user
interface for 3d flow field exploration. In Proceedings of IS&T/
SPIE Visualization and Data Analysis 2010

Parallel Flow Line Computation

e Boonthanome Nouanesengsy, Teng-Yok Lee, Kewei Lu, Han-Wei
Shen, Tom Peterka, Parallel Particle Advection and FTLE
Computation for Time-Varying Flow Fields, ACM SC’12

e Nouanesengsy,Boonthanome; Lee, Teng-Yok; Shen,Han-Wei, Load-
Balanced Parallel Streamline Generation on Large Scale Vector
Fields, In: IEEE Visualization 2011
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Publications

Out-of-Core Flow Line Computation with I/O
optimization
e Chun-Ming Chen, Lijie Xu, Teng-Yok Lee, Han-Wei Shen, A Flow

Guided Layout for Out-of-Core Streamline Computation, IEEE
Pacific Visualization 2012

¢ Chun-Ming Chen, Boonthanome Nouanesengsy, Teng-Yok Lee,
Han-Wei Shen, Flow-Guided File Layout for Out-of-core Pathline
Computation, IEEE symposium on Large Data Analysis and
Visualization (LDAV) 2012

¢ Chun-Ming Chen and Han-Wei Shen, Graph-based Seed
Scheduling for Out-of-core FTLE and Pathline Computation, IEEE
Symposium on Large Data Analysis and Visualization 2013
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Viswlization & Analysis Platform

As a result of an NSF grant, OSU
began to construct a tlow
visualization library since 2004

In 2005, the core of OSUFlow
Vis library was adopted by
NCAR’s visualization software
VAPOR and released to the
turbulence research community
via SourceForge (more than
1000 downloads so far)

In 2008, OSU and Argonne
began to extend the library to
run on DOE’s leadership
computing facility

Currently more than 25,000
lines of code
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Current Capability

3D static and time-varying flow lines (streamlines,
pathlines, streaklines, etc) generation

Regular, Irregular, AMR grid
e Irregular and AMR development are on-going

Domain decomposition that allows particles to be traced
independently in each sub-domain

Parallel particle tracing in time-varying fields on DOE’s
leadership computing facility

Collective I/O optimization

Allow researchers to experiment different optimization
ideas related to large scale parallel processing



Software
* OSUFlow Software Repo:

https://svn.mcs.anl.gov/repos/osuflow

o Questions?
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