
Mining Graphs for Understanding Time-Varying Volumetric Data

Yi Gu, Chaoli Wang, Senior Member, IEEE, Tom Peterka, Member, IEEE, Robert Jacob, and Seung Hyun Kim

Abstract—A notable recent trend in time-varying volumetric data analysis and visualization is to extract data relationships and rep-
resent them in a low-dimensional abstract graph view for visual understanding and making connections to the underlying data.
Nevertheless, the ever-growing size and complexity of data demands novel techniques that go beyond standard brushing and linking
to allow significant reduction of cognition overhead and interaction cost. In this paper, we present a mining approach that automat-
ically extracts meaningful features from a graph-based representation for exploring time-varying volumetric data. This is achieved
through the utilization of a series of graph analysis techniques including graph simplification, community detection, and visual rec-
ommendation. We investigate the most important transition relationships for time-varying data and evaluate our solution with several
time-varying data sets of different sizes and characteristics. For gaining insights from the data, we show that our solution is more
efficient and effective than simply asking users to extract relationships via standard interaction techniques, especially when the data
set is large and the relationships are complex. We also collect expert feedback to confirm the usefulness of our approach.

Index Terms—Time-varying data visualization, graph simplification, community detection, visual recommendation.

1 INTRODUCTION

In scientific visualization, a notable recent trend in visualizing scalar
and vector field data is to design effective user interfaces that inte-
grate techniques from computational transformation and data analysis
[25]. Visual representations such as parallel coordinates, treemaps,
and graphs have been utilized to assist scientific visualization tasks
such as transfer function specification, level-of-detail selection, and
flow relationship exploration [2, 26, 15]. Instead of being confined to
the original spatiotemporal domain, these solutions extract data and
their relationships over space and time, display these relationships in a
low-dimensional space, and enable users to perform queries and make
connection to the original data.

The idea of transforming the data and their relationships into an
abstract view for exploring complex relationships and improving data
understanding has been accepted as a viable means to analyze and
visualize scientific data. Nevertheless, most of these representations
lack enough guidance for user exploration and navigation. In many
cases, users can only rely on low-level visual hints (such as the size
and density of nodes and edges) to figure out the relationships with
the underlying data through brushing and linking. This approach may
work for small data with simple relationships, but becomes increas-
ingly inefficient for larger data with greater complexity. Therefore,
solutions that help users sift through the data and their relationships
for cost-effective understanding are highly desirable.

In this paper, we specifically focus on time-varying volume data vi-
sualization and investigate transition relationships among data items
over time. We present a mining approach that automatically extracts
features from a graph-based representation for understanding time-
varying data. Beyond straightforward graph properties, users are given
further guidance available through a series of graph analysis tech-
niques including graph simplification, community detection, and vi-
sual recommendation. Graph simplification condenses a large graph to

• Y. Gu and C. Wang are with the Department Computer Science and

Engineering, University of Notre Dame, Notre Dame, IN 46556.

E-mail: {ygu5, chaoli.wang}@nd.edu.

• T. Peterka and R. Jocob are with the Division of Mathematics and

Computer Science, Argonne National Laboratory, Argonne, IL 60439.

E-mail: {tpeterka, jacob}@mcs.anl.gov.

• S. H. Kim is with the Department of Mechanical and Aerospace

Engineering, The Ohio State University, Columbus, OH 43210.

E-mail: kim.5061@osu.edu.

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of

publication xx Aug. 2015; date of current version 25 Oct. 2015.

For information on obtaining reprints of this article, please send

e-mail to: tvcg@computer.org.

a smaller one by abstracting known structures, such as fan, connector,
and clique, presenting a less cluttered view for quick comprehension
of the overall graph structure. Community detection organizes nodes
with close relationships into groups, allowing visual comparison be-
tween groups of nodes instead of individual nodes. Visual recommen-
dation automatically highlights individual nodes or node groups based
on user selected items, enabling users to spend more time on the actual
analysis instead of painstaking interaction. Furthermore, visual rec-
ommendation based on node groups actually recommends the groups
according to their structural relations and suggests similar groups re-
gardless of their volume values, spatial regions, and temporal ranges.
When the data set is large and the relationships are complex, navigat-
ing and exploring the resulting graph is a daunting task. We show that
the suite of high-level functions introduced provides the convenience
and capabilities for graph exploration which are difficult or impossi-
ble to achieve through standard interaction techniques. Our solution
thus represents a step forward in applying graph-based techniques for
scientific data analysis and visualization.

2 RELATED WORK

Popular visual representations such as scatterplots, parallel coordi-
nates, and treemaps have been extensively applied to scientific visual-
ization. Unlike straightforward applications of these visual represen-
tations, leveraging the more generic and powerful visual graph repre-
sentations requires a fully integrated pipeline of data transformation,
representation, and visual mapping. The pioneering work of image
graphs by Ma [16] encodes the visualization process, including pa-
rameters and results, into a graph representation.

For time-varying multivariate data visualization, Sauber et al. [22]
introduced the Multifield-Graphs, a user interface that shows the
overview of all possible correlation fields derived from several scalar
fields for multivariate correlation exploration. Jänicke et al. [14]
presented the attribute cloud, a two-dimensional projection of high-
dimensional data that uses a minimum spanning tree to reduce edge
crossing and layout the data graph. Their interface enables intuitive
data brushing in 2D and connection with the underlying 3D data. Gu
and Wang designed two representations, TransGraph [11] and iTree
[12], for time-varying data visualization. TransGraph [11] encodes hi-
erarchical transition relationships for a time-varying data set to guide
relationship exploration and tracking. iTree [12] integrates efficient
data compacting, indexing, and classification into a single framework.
A hyperbolic layout algorithm is employed to draw the iTree with a
large number of nodes and focus+context visualization is provided for
interaction. Researchers also designed other graphs for exploring, an-
alyzing and tracking temporal evolution of features in large-scale sim-
ulation data sets. Examples include dynamic tracking graphs [27],
attributed relational graphs [17], and Petri Nets [19].

(a) (b) (c)

vi

vj

vk

vi vj

Fig. 1. Graph features for simplification. (a) to (c) show examples for fan, connector, and clique, respectively. We use the included angle of fan, the
size of star, and the size of triangle to indicate the number of nodes simplified for the three graph features, respectively. Regular (i.e., unsimplified)
nodes are drawn as squares. In (c), all other nodes connecting to the clique are connected to the center of the triangle.

Our work differs from all previous work in that we present a mining
approach for viewing, exploring and navigating a graph representa-
tion extracted from a scientific data set. To handle a large number
of nodes produced from a large data set, TransGraph builds a hierar-
chy and allows users to explore the details on demand. Users interact
with TransGraph through standard interaction techniques, which is not
always convenient and efficient. The techniques we employ include
graph simplification, community detection, and visual recommenda-
tion. Graph simplification not only reduces the number of nodes dis-
played on the screen but also highlights important graph structures.
To further reduce user workload, community detection groups similar
nodes into communities. Node and community recommendation func-
tions allow users to fetch similar volumetric regions from the original
data via graph, and suggest similar nodes or graph structures to help
the exploration. Users are given the flexibility to apply these tech-
niques in sequence or selectively to the data.

3 TRANSITION GRAPH

Our work is based on the transition relationships in time-varying vol-
umetric data sets as defined in TransGraph [11]. The ideas and tech-
niques presented are applicable to other graph-based representations.
They work most effectively when the graph is large. In the following,
we describe the construction of a transition graph.

We first partition the volume data at each time step into blocks.
Each block is, for example, N ×N ×N voxels. Given two blocks,
we compute the Jensen-Shannon divergence (JSD) of their histograms
as the dissimilarity or distance between them. Then we group these
blocks based on their spatial and temporal adjacency within a small
time window w. Specifically, given a target block bt , we first check its
spatial or temporal neighbor bn to see whether it is similar to bt . If so,
then bn is clustered to bt . We continue to compare the neighbors of bn

with bt . This process repeats until no similar blocks could be found
in w. Note that if bn is already clustered to another block, we will not
check its neighbors when bn is reached.

Finally, we derive directional transition probabilities among blocks
to construct the transition graph. In the transition graph, a node de-
notes a state which represents a group of spatiotemporally neighboring
blocks, and a directed edge between two states indicates their transi-
tion probability. In extreme cases, a state may represent a single block.
A transition i→ j occurs between two blocks i and j, from one block
i at time step t to another block j at time step t +1, if and only if their
spatial locations are the same. Given two groups gi and g j, the direc-
tional transition probability pgi→g j

is the ratio between the number of
transitions from gi to g j and the total number of transitions from gi

to all the groups (including itself). As such, a transition indicates a
chance for one group to transfer to another group, and its probability
measures how high the chance is.

To draw the transition graph, we apply a two-step process. First,
we use the Fruchterman-Reingold force-directed layout algorithm [9]
to create the initial layout. Since we draw nodes with certain sizes,
visual occlusion becomes unavoidable for a large graph. We there-
fore utilize four forces: bidirectional repulsive force, unidirectional
repulsive force, spring force, and attractive force, to reduce the over-
lap while preserving the overall graph structure [11].

4 GRAPH SIMPLIFICATION

Visual clutter is common in a transition graph due to the presence of a
large number of nodes and edges. We can reduce the clutter through

edge reduction or node reduction. For edge reduction, edge simpli-
fication and compression techniques [18, 5, 21, 24, 8] identify the
relations among nodes, group the nodes with similar edge configu-
rations together, and draw a single edge to the group instead of edges
to group members. For node reduction, TopoLayout [3] detects topo-
logical features such as trees, connected components and biconnected
components, and motif simplification [7] detects fans, connectors and
cliques. Both techniques use a single node to replace a graph feature.

In our work, we focus on node reduction and replace certain graph
features with symbols in order to highlight important graph structures.
Similar to motif simplification [7], we select three graph features for
simplification because they represent meaningful transition relations
and do not impose restrictions to the order of simplification. Figure 1
illustrates these three graph features and their corresponding symbols
for simplification. For graph simplification, we do not consider edge
directions in the transition graph. However, the three graph features
themselves already imply directional edge information as explained in
the following.

• A fan is a configuration of a central node with multiple leaf nodes
of degree one. The fan is simplified with the fan symbol as shown
in Figure 1 (a). The undirected edge between nodes vi and v j has
three kinds of relation: vi→ v j , v j→ vi, and vi↔ v j. Each node
encompasses data blocks grouped within a fixed time interval. If
a node has only outgoing (incoming) edges, it must be in the first
(last) time interval. Therefore, the fan with one directional edge
v j→ vi at the first time interval (vi→ v j at the last time interval)
indicates the convergence (divergence) of states. In other time
intervals, the bidirectional edge vi↔ v j indicates that vi derives
v j and v j will return to vi within certain time steps. Therefore,
v j can be considered as an interruption of vi.

• A connector is a configuration of two ending nodes with multiple
intermediate nodes of degree two. The connector is simplified
with the star symbol as shown in Figure 1 (b). Assume that two
ending nodes are vi and v j and an intermediate node is vk, and
without loss of generality, there is a directed edge vi→ vk, then
we have two possible cases. First, vk derives v j and we have
directed edges vi→ vk and vk→ v j. Second, vk returns to vi (i.e.,
now we have vi ↔ vk) and we have the directed edge v j → vk.
In both cases, vk can be considered as an intermediate state of
vi and v j . Similar to fans, connectors may also occur in the first
and last time intervals. In these cases, we have edges vi→ vk and
v j→ vk (for the first time interval), and vk→ vi and vk→ v j (for
the last time interval). They correspond to the convergence and
divergence of states, respectively.

• A clique is a configuration of more than two nodes that are fully
connected. As shown in Figure 1 (c), cliques represent a set of
nodes changing their states among each other. We do not require
all edges in a clique to be bidirectional.

Implication. According to the definition of fan, a node will transit
to another node at later time steps and transit back to itself eventually.
As a result, a fan could represent a volume region that has turbulence
and eventually returns to the original state. In a connector, the nodes
in between can be considered as a set of intermediate states between
the two ending nodes. Therefore, a connector represents a transition
from a state to another. A clique is a simplification of several nodes

BLK # NODE # BLK # NODE # BLK # NODE #

(a) (b) (c) (d)

Fig. 2. (a) to (d) are the original transition graph, the graph after detecting fans, connectors, and cliques, respectively. In (d), we show the graph
after layout adjustment which pushes nodes apart for clear observation. There are three branches of nodes in the graph and the evolution of time
in each branch is marked with a dashed line. The histograms at the bottom-left and bottom-right corners depict the numbers of volumetric blocks
and nodes belonging to the four types of nodes, respectively. Gray for regular nodes, pink for fans, green for connectors, and blue for cliques.

that have strong connections between them. These nodes therefore
represent a locally stable region during that time period.

Order of Simplification. We note that the order of simplification
does not affect the final result. This is because they only apply to
regular (i.e., unsimplified) nodes and these three graph features are
unique and independent of each other. However, to achieve the best
time performance in detecting these graph features, we first simplify
fans, followed by connectors and cliques. Fan simplification can re-
duce the number of nodes dramatically, thus we take this simplification
first. Clique simplification is placed last because the time complexity
to identify cliques is the highest. Figure 2 shows an example of the
results of graph simplification. To further reduce visual clutter, we
display nodes with small numbers of data blocks only if they belong
to query results for highlighting. Based on our experience, those nodes
that are not rendered are mainly regular nodes. Some connectors are
also omitted while fans and cliques are less likely to be. In Table 1,
we report the number of nodes originally created, after simplification,
and finally displayed. In the following, we describe our algorithms to
detect these graph features.

Fan Detection. Our fan detection creates a data container called
map that stores a set of tuples. Each tuple represents a pair of nodes:
a central node and a leaf node. A tuple uses the central node as the
key and the leaf node as the value. Thus, a set of tuples sharing the
same key represents a fan feature. The detection algorithm first goes
through all the nodes in the graph, finds the nodes with degree of one,
and inserts them to the map. Then, we find those keys with more
than one tuple in the map as the central nodes and their corresponding
values as leaf nodes.

Connector Detection. Similar to fan detection, our connector de-
tection also creates a map. To detect a connector, we use the two end-
ing nodes as the key and an intermediate node as the value. We first
go through all the nodes in the graph, find all the nodes with degree of
two, and insert them to the map. If any key has more than two tuples in
the map, the keys are the ending nodes and their corresponding values
are intermediate nodes.

Clique Detection. To detect cliques, we apply the algorithm in-
troduced by Tomita et al. [23]. This algorithm has a time complexity

of 3|V |/3, where |V | is the number of nodes in the graph. Since this
algorithm finds all the cliques, the cliques may share nodes. To avoid
this situation, we utilize a greedy algorithm to select cliques in an it-
erative manner. In each iteration, we always select the largest clique
and rule out all other cliques that share node(s) with any previously
selected clique. Algorithm 2 in the Appendix detects all the cliques
in the graph. Given a node q in graph G, this algorithm generates a
subgraph G′ that consists of all the nodes in G that are adjacent to
q. Then this algorithm treats G′ as a new input graph and repeats the
above process. If q does not have any adjacent nodes or has only one
adjacent node left, the nodes already expand in full. Thus, q and its
adjacent nodes along the path form a clique.

5 COMMUNITY DETECTION

Generally speaking, techniques for graph partitioning and clustering
aim to identify node subsets called communities with many internal
and few external edges. Unlike a clique which is a subset of nodes in-
ducing a complete subgraph, a community is less restrictive and more
practical in many applications because it identifies a highly cohesive
structure as a cluster by the mere absence of a few edges. Detect-
ing communities will help us investigate community structures and
their evolution. We leverage SLPA [28], an extended version of the
label propagation algorithm (LPA), for community detection. SLPA
can handle weighted directed graphs which fits our transition graph. It
has an efficient time complexity of d|V |, where d is the average degree
of nodes and |V | is the number of nodes. This algorithm also attempts
to avoid producing a number of small communities.

SLPA is outlined in Algorithm 3 in the Appendix. In SLPA, a label
stands for a community identification, and each node has a buffer to
store the labels received from neighboring nodes (i.e., having edges
pointing to the node). SLPA detects the communities in an iterative
manner. In each step, a node serves as a listener while its neighbors
serve as the speakers. At the first iteration, each node adds a unique
label to its buffer, which means that every node forms a community.
In later iterations, SLPA goes through every node and sets it to be the
listener. Its neighbors become the speakers. Each speaker randomly
selects a label from its buffer and sends it to the listener. The listener
selects the label with the highest rank calculated from its neighbors and
adds it to the buffer. The equation to calculate the rank is as follows

Li = argmax
j∈Ni

p j→iL j, (1)

where Li is the label with the highest rank received by node i, L j is
the label sent by node j, Ni is the neighborhood of node i, and p j→i is
the transition probability from j to i as defined in our transition graph.
After a certain number of iterations, each node uses the label with the
highest frequency in its buffer as its community identification. The
nodes with the same identification form a community. Figure 3 (a)
shows an example of communities detected. We implement and draw
Bubble Sets [4] to distinguish different communities. Bubble Sets use
continuous, often concave, isocontours to delineate group member-
ships, maintaining the spatial arrangement of the primary data relation
given by the layout algorithm. Using Bubble Sets, we can produce
tight capture of group members with less ambiguity compared with
using convex hulls. Although the Bubble Sets overlap each other, no-
tice that nodes in communities are disjoint, i.e., any two communities
do not share any node in common.

6 VISUAL RECOMMENDATION

While the focus of this paper is on graph interaction, the user can also
interact with the volume to highlight relevant aspects of the graph.
Details on that are in the TransGraph paper [11]. Here we focus on the
newly introduced node and community recommendation functions.

BLK # NODE # BLK # NODE #

(a) (b) (c) (d)

Fig. 3. (a) five of the top eight largest communities detected for the transition graph of the hurricane data set and highlighted using Bubble Sets. (b)
the user chooses a community with nodes highlighted in red and we automatically recommend another community with nodes highlighted in yellow.
(c) and (d) are the rendering of the corresponding blocks of the chosen and recommended communities at two different time steps, respectively.

BLK # NODE #

(a) (b) (c) (d)

Fig. 4. (a) the user chooses a fan shown in red and we automatically recommend nodes shown in yellow. (b) is the rendering of the corresponding
blocks of the chosen node. (c) and (d) are the rendering of the corresponding blocks of the recommended nodes at two later time steps.

Node Recommendation. To further guide the exploration of graph,
we recommend similar nodes when a node or multiple nodes are se-
lected. Heer et al. [13] recommended similar nodes with a query re-
laxation engine. The recommended nodes fulfill the same query re-
quirements but in different scenarios. Different from query relaxation,
we recommend similar nodes based on their similarities. We lever-
age the SimRank algorithm [10] to measure the similarities between
nodes. SimRank considers two nodes to be similar if they are related
to similar nodes. Given an unweighted directed graph G = (V,E), if
the incoming nodes of two nodes va and vb are similar, then va and vb

are similar. The similarity between va and vb is calculated as

s(va,vb) =
∑
|I(va)|
i=1 ∑

|I(vb)|
j=1 s(Ii(va), I j(vb))

|I(va)||I(vb)|
, (2)

where I(va) is the set of nodes pointing to node va, and Ii(va) is the i-th
node in I(va). If neither va nor vb has incoming nodes, s(va,vb) = 0
(least similar). SimRank stores a |V |× |V |matrix S to record the simi-
larities between nodes, where |V | is the number of nodes in the graph.
In the first iteration, all the similarity values along the diagonal of S
are set to 1 (most similar). In later iterations, we update the similar-
ities between nodes according to Equation 2. SimRank has the time
complexity of kd|V |2, where k is the number of iterations and d is the
average degree of nodes.

In our graph, each edge carries a weight indicating the transition
probability between two incident nodes, thus the original SimRank
cannot be immediately applied. As described in Algorithm 4 in the
Appendix, our modified SimRank algorithm takes transition probabil-
ities into account. We modify Equation 2 to the following

s(va,vb) =
∑
|I(va)|
i=1 ∑

|I(vb)|
j=1 s(Ii(va), I j(vb))× pi→va

× p j→vb

|I(va)||I(vb)|
, (3)

where pi→va
is the transition probability from node Ii(va) to node va.

We also extend Equation 3 to outgoing edges

s(va,vb) =
∑
|O(va)|
i=1 ∑

|O(vb)|
j=1 s(Oi(va),O j(vb))× p′i→va

× p′j→vb

|O(va)||O(vb)|
, (4)

where O(va) is the set of nodes pointed from node va and p′i→va
is the

transition probability from node va to node Oi(va). Users can select
either Equation 3, Equation 4, or a combination of both as the final
similarity measure. Figure 4 shows an example of node recommen-
dation based on incoming transition probabilities. The recommended
nodes are highlighted with a Bubble Set. As we can see, similar nodes
recommended show up in the volume highlighting results, which allow
the user to track the evolution of selected node.

Community Recommendation. Besides node recommendation,
we also recommend similar communities when a community is se-
lected. For simplicity, we first convert each community to an un-
weighted, undirected graph. Then we treat the similarity between two
graphs as the similarity between the two corresponding communities.

To calculate the distance between two unweighted, undirected
graphs, we apply the algorithm introduced by Robles-Kelly and Han-
cock [20]. This algorithm finds a serial ordering of the nodes in a graph
and converts graphs to strings. By comparing the difference between
the two strings, we compute the difference between the two graphs.

Algorithm 5 in the Appendix utilizes random walks to find the or-
dering. It first calculates a normalized symmetric random walks prob-
ability matrix P′ and computes P′’s leading eigenvector φ . Each value
in φ is related to a node in V indicating its importance. In order to sort
the nodes based on their importance and still preserve edge relations,
the algorithm first finds node n with the largest value in φ and puts n in
the string s. Then, it looks for node n′ with the largest value from n’s
neighbors and puts n′ in s. After that, the algorithm begins to search
n′’s neighbors. This process repeats until all the nodes are in s. How-

state clustering layout # nodes community / node

data set dimension block size time / w / δ create / adjust original / simplified / displayed recommendation

DCMIP cam-fv 360×180×30×31 20×10×5 99.62 / 10 / 0.6 62.07 / 1.43 1909 / 1037 / 247 7.72 / 0.99

DCMIP cam-se 512×256×30×31 32×16×5 123.32 / 10 / 0.5 62.25 / 1.5 1959 / 1063 / 223 7.03 / 0.99

DCMIP fim 360×180×30×31 20×10×5 137.83 / 10 / 0.45 61.07 / 0.88 1868 / 786 / 212 1.18 / 0.54

earthquake 256×256×96×360 16×16×16 43.71 / 10 / 0.4 86.74 / 0.94 2567 / 806 / 356 0.31 / 0.4

16×16×8 155.64 / 10 / 0.5 241.37 / 2.52 3783 / 1353 / 406 2.46 / 1.31

32×32×16 19.49 / 10 / 0.25 32.00 / 0.89 1390 / 780 / 558 0.48 / 0.37

hurricane 500×500×100×48 20×20×20 187.67 / 12 / 0.25 69.88 / 1.43 2051 / 1143 / 313 3.89 / 0.43

ionization 600×248×248×200 30×31×31 98.28 / 10 / 0.3 87.56 / 2.06 2320 / 1151 / 714 0.46 / 0.61

NOAA climate 360×66×27×120 15×11×9 9.12 / 12 / 0.25 62.67 / 2.56 1926 / 1373 / 685 0.57 / 1.26

15×6×9 17.16 / 12 / 0.3 126.57 / 1.90 2800 / 1947 / 909 2.44 / 3.1

9×11×9 11.06 / 12 / 0.35 57.24 / 2.43 1849 / 1308 / 632 0.89 / 1.43

Table 1. The data sets, parameters used, and timing results. All timing results are in seconds.

ever, if all n’s neighbors are in s, the algorithm looks for n′ which is a
neighbor of any node in s and has the largest value in φ among those
nodes not in s yet. Then it puts n′ in s and keeps searching among n′’s
neighbors. As a result, this algorithm converts a graph to a string and
orders its nodes based on their importance and edge relations.

After ordering the nodes, Algorithm 7 in the Appendix computes
the difference between two strings s1 and s2 as the distance between
the two corresponding graphs G1 = (V1,E1) and G2 = (V2,E2). This
algorithm creates a lattice L using s1 as rows and s2 as columns.
The elements in L are only linked to their neighbors along the in-
creasing horizontal, vertical and diagonal directions. A diagonal
movement from L(i, j) to L(i + 1, j + 1) represents a matching of
E1(s1(i),s1(i+ 1)) and E2(s2(j),s2(j+ 1)). A horizontal movement
from L(i, j) to L(i + 1, j) represents a null matching of node s1(i).
Similarly, a vertical movement from L(i, j) to L(i, j+ 1) represents a
null matching of node s2(j). Therefore, the difference between s1 and
s2 is measured by the distance between the two elements L(0,0) and
L(|V1|−1, |V2|−1). In addition, the distance can be treated as finding
the shortest path from L(0,0) to L(|V1|−1, |V2|−1). Finally, we uti-
lize Dijkstra’s algorithm [6] to calculate the minimal distance between
L(0,0) and L(|V1|−1, |V2|−1) and uses it as the difference between s1

and s2 (i.e., the distance between G1 and G2). In Dijkstra’s algorithm,
the distance between two neighboring nodes is calculated as

d = β(a,b)×β(c,d)×R1(a,c)×R2(b,d), (5)

where a, b, c and d are the indices of L(a,b) and L(c,d). β(a,b) can be

calculated as

β(a,b) =
max{D′1(a),D

′
2(b)}−min{D′1(a),D

′
2(b)}

max{D′1(a),D
′
2(b)}

, (6)

where D′ is the degree matrix calculated in Algorithm 6 in the Ap-
pendix. β(c,d) can be calculated similarly. R1 in Equation 5 can be

calculated as

R1(a,c) =

{

P′1(a,c), if A1(a,c) = 1
2×|V1|×|V2|
|V1|+|V2|

, otherwise
, (7)

where P′ is the normalized symmetric random walks probability ma-
trix and A is the adjacency matrix. R2 can be calculated similarly.

Figure 3 (b) shows an example of community recommendation. The
user chooses a community with nodes highlighted in red. The most
similar community recommended is shown with nodes highlight in
yellow. The correspondence of volume highlighting results in Figure
3 (c) and (d) shows the effectiveness of community recommendation.

7 CASE STUDY RESULTS

Data Sets, Parameters, and Timing. We evaluated our approach with
several time-varying data sets listed in Table 1. The timing results
were collected using a workstation with an Intel Core i7-960 3.5GHz
CPU and 24GB memory. We used MPI to accelerate the performance
of state clustering using the quad-core CPU. State clustering and lay-
out computation are the two major tasks, which need to be computed
only once per data set. Graph simplification, community detection,
and node recommendation were calculated only once and each step

took less than one second. Community recommendation was normally
completed within a few seconds. The iterations of layout creation, lay-
out adjustment, and node recommendation were set to 500, 150, and
30, respectively, at which point the iterative solutions converge.

DCMIP Climate. The DCMIP climate data sets were produced
from the simulations of the Earth’s climate in the dynamical core
model intercomparison project (DCMIP) [1]. We acquired three sim-
ulation data sets generated by different models (cam-fv, cam-se, and
fim). In these three models, the volumes are fairly static in the early
time steps and later on two turbulent branches appear. We performed
cross-comparison of these three data sets.

As expected, the graphs derived from these three data sets are sim-
ilar, although not entirely the same, as shown in Figure 5 (a), (b) and
(c). We can see that fans and cliques occupy the central locations in
the graphs and they are surrounded by many connectors and regular
nodes. Furthermore, at the early time steps, there are two large fans
surrounded by many small nodes to form two groups. In the mid-
dle or later time steps, the nodes begin to form three groups. The
proximity between the three groups in the graph indicates the close
interaction among their corresponding volume regions. Since a fan
represents the states with interruption and a clique represents a set of
nodes that transit among themselves, the presence of a large number of
fans and cliques implies that the data sets have a mix of dynamic and
static regions. In addition, a large number of connectors indicates that
their corresponding regions shift between different states frequently.
Figure 5 (d) and (e) show the corresponding data blocks of all the
fans and cliques of DCMIP cam-fv and DCMIP cam-se data sets, re-
spectively. Fans correspond to the two fast-moving turbulent branches
while cliques correspond to the bottom layer with slow movement.

For DCMIP cam-fv and DCMIP cam-se, nodes in the early time
steps are fairly cluttered. Although two fans are the centers of the two
groups, there are many nodes and edges connecting to them, showing
no clear separation. They start to form groups in the middle time steps
and node groups get separated more in the later time steps. In addition,
a node group that lasts the longest corresponds to the bottom layer and
the other two groups corresponding to the two branches appear at dif-
ferent time steps. For DCMIP fim, nodes can be clearly partitioned
into two groups in the early time steps and three groups in the middle
time steps. Nodes become cluttered in the later time steps. Note that
these three node groups appear at the same time step. We first analyze
the transition graphs of DCMIP cam-fv and DCMIP cam-se. In Figure
5 (a) and (b), cluttered nodes in the early time steps imply that these
nodes form separate groups but their differences are not significant. In
addition, the nodes in Figure 5 (a) begin to form groups in the later
time steps. In fact, the lower branch highlighted in (d) begins to ap-
pear at time step 22. The upper branch does not appear so late, with
frequent interaction with the bottom layer. Therefore, the separation
between the upper branch and the bottom layer is not clear. In Fig-
ure 5 (b), the nodes in the early time steps are also cluttered. In the
middle time steps, the nodes form two groups. Similar to the graph
of DCMIP cam-fv (Figure 5 (a)), the lower branch has not appeared
yet and the two groups correspond to the upper branch and the rest of
regions. In the later time steps, the nodes in the upper branch begin to

BLK # NODE #

bottom layer

lower branch

upper branch

BLK # NODE #

bottom layer

lower branch

upper branch

BLK # NODE #

bottom layer

lower branch

upper branch

u
p

p
e
r

b
ra

n
c
h

lo
w

e
r

b
ra

n
c
h

b
o

tt
o

m
 l
a
y
e
r

(a) DCMIP cam-fv (b) DCMIP cam-se (c) DCMIP fim (d) all fans (e) all cliques

Fig. 5. (a) to (c) are the transition graphs of the three DCMIP climate simulation data sets. The evolution of time is marked with the black dashed
line. (d) and (e) are the rendering of the corresponding blocks of all fans and cliques from DCMIP cam-fv and DCMIP cam-se data sets.

BLK # NODE # BLK # NODE # BLK # NODE #

(a) (b) (c) (d) (e) (f)

Fig. 6. Three communities, shown in (a), (c), and (e), detected from the DCMIP fim data set and the rendering of their corresponding blocks in (b),
(d), and (f), respectively. (b), (d), and (f) correspond to the lower branch, the surrounding, and the upper branch, respectively.

diverge which leads to the nodes corresponding to the lower branch.
Therefore, the connections between the upper and lower branches can
be noticed. Unlike DCMIP cam-fv, its lower layer becomes distin-
guishable from the two branches. Therefore, the nodes in the later
time steps can form clear groups.

Next, we study the transition graph of DCMIP fim in order to figure
out why it is different from the graphs of the other two data sets. In
Figure 5 (c), there are two fans in the early time steps which naturally
form the centers of the two groups. This indicates that the correspond-
ing blocks in early time steps are separated into two groups. One group
corresponds to the middle region, and the other group corresponds to
the two boundary regions. In the middle time steps, we can see three
clear groups as shown in Figure 6. They correspond to the two turbu-
lent branches and their surrounding. Different from DCMIP cam-fv
and DCMIP cam-se, both branches appear at time step 7. That is why
the clear separation appears so early in the graph. However, in the
later time steps, the nodes become cluttered since the two branches
are smeared into the rest of regions.

For the DCMIP fim data set, we can differentiate the nodes by ex-
amining the communities as shown in Figure 6. In addition, commu-
nities help us explain unusual events. In Figure 6 (a), (c), and (e),
the communities in the graph correspond to the lower branch, the sur-
rounding, and the upper branch of the volume data, respectively, as
shown in Figure 6 (b), (d), and (f). This indicates that the two branches
only interact with the surrounding region. This is different in DCMIP
cam-fv and DCMIP cam-se data sets, where the two branches have di-
rect interaction with each other. By tracking the communities, we can
observe that the two branches in the DCMIP cam-se data set connect
to each other. This is highlighted in Figure 7. The same conclusion
can be drawn for the DCMIP cam-fv data set.

NOAA Climate. The NOAA climate data set was produced from
the NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL) CM2.1
global coupled general circulation model. We studied the salinity vari-
able for this data set. A rendering of the volume is shown in Figure
8 (a) where the empty regions correspond to the continents. In Fig-
ure 8 (b), we can see clear separation among three node groups which
are highlighted with the dashed boundaries. These three node groups

Fig. 7. The rendering of blocks corresponding to the two branches of
the DCMIP cam-se data set, revealing their direct interaction.

correspond to the three highlighted separate ocean regions in (a). Fur-
thermore, the presence of a large number of cliques implies that data
blocks only interact with other blocks in their local neighborhood.

In Figure 8 (b), we select a community (shown in red) and the com-
munity shown in yellow is recommended. Their corresponding blocks
are highlighted in the top and bottom images in Figure 8 (c), respec-
tively. We can see that the recommended community corresponds to
the spatial neighbors that are similar to the selected one at the same
time step. In Figure 8 (d), the selected and recommended communities
are in different time steps. Their corresponding blocks are highlighted
in Figure 8 (e) and (f), respectively. Since the graph structures of two
communities are similar, the corresponding data blocks may behave
similarly at their respective time step. This provides an interesting cue
for scientists to further examine their corresponding regions.

Earthquake. The earthquake data set was produced from a sim-
ulation of the 3D seismic wave propagation of the 1994 Northridge
earthquake. For this data set, we explored node recommendation. The
nodes in Figure 9 (a) form a fairly long pattern due to the large number
of time steps in the data set. Even after graph simplification, the nodes
in the early time steps are denser than the nodes in the later time steps.
This indicates more data variation in early time steps, thus more states
are created. Furthermore, many cliques occupy the central locations
in the graph. The four cliques highlighted in Figure 9 (a) correspond

BLK # NODE # BLK # NODE #

(a) (b) (c) (d) (e) (f)

Fig. 8. (a) a rendering of the entire NOAA climate data set. (b) and (c): recommending the community (yellow) that is the spatial neighbor of the
selected community (red) at the same time step. (d) to (f): recommending the community (yellow) that is not the spatial neighbor of the selected
community (red) at a different time step.

BLK # NODE #

(a) (b) (c) (d) (e)

Fig. 9. (a) four cliques are selected in the transition graph of the earthquake data set. The evolution of time is marked with the dashed line. (b) to
(e) are the rendering of the corresponding data blocks: red clique for (b), yellow clique for (c), green clique for (d), and blue clique for (e).

to different volumetric regions in Figure 9 (b) to (e). Specifically, (b)
and (d) correspond to the inner layers of the earthquake’s center, and
(c) and (e) correspond to the outer layers of the earthquake’s center.

Since the later growing period is important, we first selected a time
range of [65, 70] using the time bar. As shown in Figure 10 (a), the
nodes in that time span are highlighted in yellow to help users narrow
down to the nodes of interest. Then, among these nodes, we select a
clique which is highlighted in red, as shown in Figure 10 (b). This
clique corresponds to the earthquake’s center and its immediate sur-
rounding. We considered outgoing transition probabilities for node
recommendation. The recommended nodes nearby the selected clique
correspond to data blocks at the same time step. These blocks are
nearby the data blocks corresponding to the selected clique. The rec-
ommended nodes in a later time step still correspond well to the central
region of the earthquake.

Ionization. The ionization data set was produced from a 3D ra-
diation hydrodynamical simulation of ionization front instabilities for
studying a variety of phenomena in interstellar medium such as the
formation of stars. A small front appears at the beginning time steps.
The front moves and grows along the x direction, followed by a cuboid
with similar values. Figure 11 (j) shows the transition graph. Starting
from the clique highlighted at the center of the graph, nodes expand
along several directions, each corresponding to a layer of the volume
along the x direction. Since there is no interaction between neigh-
boring layers, the nodes in one layer do not have edges connecting to
other nodes in another layer. That is why the nodes corresponding to
each layer form a single branch in the graph. Different layers appear
at different time steps, thus a branch may split into several smaller
branches. In addition, it is clear that connectors dominate the graph
except one branch. This is quite different from other data sets we ex-
plored. For the ionization data set, each layer may have several groups
of nodes and there are slight changes in each layer. Although a node in
a layer may diverge into several nodes, they will converge eventually.
Therefore, each group of diverged nodes forms a connector.

Among all the branches shown in Figure 11 (j), one of them has
more nodes than any other. Highlighted with the ellipse, this branch

corresponds to the front of the ionization. Since the front leads the
evolution of ionization, it changes most dramatically. Thus the branch
of the front has a larger number of nodes than others. Meanwhile, the
nodes corresponding to the front are cluttered even after layout adjust-
ment, as shown in Figure 11 (a) to (d). This makes it difficult for us to
find groups of similar nodes that correspond to different regions of the
front. Community detection helps us identify similar nodes through
node highlighting. For example, in Figure 11 (a) to (d), four communi-
ties are selected. Their corresponding volume regions are highlighted
in Figure 11 (f) to (i). (f) to (h) correspond to three different layers of
the front while (i) corresponds to the base.

8 DISCUSSION

Parameter Selection. Figure 12 shows the graph layouts of two data
sets under different parameter settings. Comparing Figure 12 (a), (b),
and (c), we can see that there are many connectors in all three graphs.
In addition, there are more cliques and less fans in the early time steps
than in the later time steps. Note that the number of fans in Figure 12
(c) is less than that in (a) or (b). The large block size set for (c) reduces
the differences among blocks, and therefore, the turbulent events be-
come less significant, leading to less fans identified. In Figure 12 (d),
(e), and (f), we can see clear separation of the nodes which corre-
spond to the three regions in Figure 8 (a). Therefore, although dif-
ferent sets of parameter produce different graph layouts, the structure
of the graphs after simplification remains almost the same. In other
words, the graph structure is insensitive to the change of parameter
values and the randomness of initial node placement. We conclude
that the graph is largely determined by the nature of the time-varying
data, while parameter changes only introduce slight layout variation.

Limitations. Our community detection and recommendation algo-
rithms have the following limitations which we would like to improve.
First, the community detection algorithm automatically suggests the
number of communities. In some cases, this leads to a large number
of communities with each having a small number of nodes. We will
seek a different solution which allows users to specify the number of
communities. Second, unlike community detection, we would like to

BLK # NODE # BLK # NODE #

(a) (b) (c) (d) (e)

Fig. 10. (a) Selecting nodes (highlighted in yellow) overlapping the time range of [65, 70]. (b) a selected clique with the time range of [58, 74]
is shown in red and the recommended nodes are shown in yellow. The clique corresponds to the rendering in (c). (d) shows the corresponding
rendering of the recommended nodes at the same time step as (c). (e) shows the corresponding rendering of the recommended nodes at a later
time step, essentially a tracking result for (d).

BLK # NODE # BLK # NODE # BLK # NODE # BLK # NODE # BLK # NODE #

(a) (b) (c) (d) (e)

BLK # NODE #

(f) (g) (h) (i) (j)

Fig. 11. (a) to (d) are four communities selected from the transition graph of the ionization data set. In order to better study the front area, the
portion of the transition graph marked with a red rectangle in (e) is selected to zoom in for (a) and (d). (f) to (i) are their corresponding volume
highlighting results. (j) the transition graph before layout adjustment reveals a large number of connectors lying on different branches.

allow users to select a subgraph of interest and apply graph alignment
techniques to suggest similar subgraphs. This would give more flexi-
bility to users in their selection and matching. Third, the community
recommendation algorithm treats each community as an unweighted,
undirected graph. As shown in Figure 13, given three communities
with a similar number of nodes, our distance computation claims that
(b) is more similar to (a) than (c). The algorithm [20] provides us a
measure of the similarity between communities. However, the mea-
sure does not consider other information, such as node type, node im-
portance, edge weight, and edge direction. We would like to seek a
better solution that incorporates these graph attributes into similarity
measure design. Finally, we will allow domain scientists to define gen-
eral patterns and analysis procedures of interest based on their domain
knowledge, enabling more customized analytics.

9 FEEDBACK FROM DOMAIN EXPERTS

We also conducted expert evaluation with two domain experts, Drs.
Robert Jacob and Seung Hyun Kim. Dr. Jacob’s research focuses on
ocean and coupled climate models and the computational, mathemati-
cal and theoretical issues involved in their construction. Dr. Kim’s re-
search focuses on modeling of multiscale and multiphysics problems
in relation to energy science and technology. Dr. Jacob evaluated our
work with DCMIP and NOAA climate data sets and mainly focused

on model comparison and graph simplification. Dr. Kim evaluated
our work with three other data sets and focused on graph simplifica-
tion, community detection, and visual recommendation. We utilized
the think-aloud protocol during the evaluation. The experts described
their seeing, doing, feelings and comments, and we summarized their
comments after the evaluation.

Dr. Jacob commented that our approach is novel and useful. In
model comparison, transition graphs abstract the original volumetric
data sets and the differences between them allow him to infer the dif-
ferences between models. For example, he could notice the natural
node groups to identify the time steps corresponding to the branching.
This is a significant difference between the models being compared.
Through brushing and linking, he could find out that the two branches
are similar in one model while they are very different in the other two
models. He further pointed out that our work is interesting and useful
as it is able to detect the regions where the two branches interact with
each other. He also mentioned that graph simplification is beneficial
and the level of simplification is appropriate for users to understand
the underlying graph structure. Finally, Dr. Jacob commented that it
would be helpful if we could provide brushing in the volume view and
link the results back to the graph view. Since one of his main inter-
ests is studying the influence among oceans, this would allow him to
investigate the behavior of a particular ocean of interest.

BLK # NODE # BLK # NODE # BLK # NODE # BLK # NODE # BLK # NODE # BLK # NODE #

(a) (b) (c) (d) (e) (f)

Fig. 12. The graph layouts with different parameter settings. (a), (b), and (c) are for the earthquake data set with block sizes 16×16×16, 16×16×8,
and 32× 32× 16, respectively. The evolution of time is marked with the dashed line. (d), (e), and (f) are for the NOAA climate data set with block
sizes 15×11×9, 9×11×9, and 15×6×9, respectively.

(a) (b) (c)

Fig. 13. Community comparison for the NOAA climate data set. (a) is
the community selected and (b) and (c) are two communities recom-
mended. The distance between (a) and (b) is 0.0058, and the distance
between (a) and (c) is 0.0322.

Dr. Kim stated that our tool is useful and easy to use. For graph sim-
plification, he mentioned that when the original graphs are complex, it
is difficult to identify their structures. The simplification function not
only simplifies the view of the graphs, but also helps identify the un-
derlying structures. However, in some cases, even after simplification,
the transition graphs are still complex and users could not recognize
their structures. He suggested us to leverage focus+context techniques
to highlight nodes at the current time step in a less cluttered view. This
will make the nodes and their relations more visible, and thus easier
to be selected. Dr. Kim also suggested two ways to further classify
the simplified graph. First, we may want to relax cliques to dense
subgraphs (quasi-cliques) so that more simplification can be achieved.
Second, we may also consider edge weights in the simplification for
generating stronger classification results. Dr. Kim studied the cliques
in the earthquake data set and the connectors in the ionization data set.
He mentioned that a clique represents a cluster of related nodes and
it has a circular relation. Therefore, a clique corresponds to a stable
state because we would see this structure for a period of time. Unlike
cliques, connectors represent a propagation of wave-like structures.
To better investigate the transition graph after simplification, he sug-
gested us to provide a function to expand fans, connectors and cliques
so that users could see more detailed structures.

For community detection, Dr. Kim agreed that it is meaningful
because it collects nodes of similar characteristics, which simplifies
graphs and helps users explore volume data. He suggested us to con-
sider a maximal time period for each community for better community
detection. Since different communities cover different time intervals,
we should provide feedback on the time spans of communities. For
example, if users are interested in a certain time step, we could high-
light all the communities that overlap with this time step. Furthermore,
when users select a certain community, we should provide its time du-
ration information so that users can quickly narrow down to time steps
of interest. We address this problem by adding a time bar which can
be used to filter not only communities, but also nodes. In addition,
we could provide a community importance measure based on their
numbers of blocks or time periods to emphasize or deemphasize the
communities that are more or less important. Since communities with
many blocks usually span large time periods, we address this problem
by assigning the importance of each community based on its block

number. Dr. Kim mentioned that node and community recommenda-
tions help identify similar structures in the data. He suggested us to
encode and display the similarity information in nodes or communities
when a node or community is selected.

Finally, Dr. Kim commented that our work may be helpful for in-
vestigating turbulent combustion data sets. In turbulent combustion,
large-scale coherent structures play an important role in determining
overall flame characteristics. Such structures are large scale, orga-
nized, and propagated downstream, with small-scale turbulent motions
being superimposed. Layers of high reaction rates are often associated
with these large-scale structures. Cliques, connectors and fans can
be used to quickly identify coherent structures. In addition, graphs
for turbulent combustion data sets may be very complex due to the
chaotic nature of turbulence. Graph simplification is expected to help
the exploration of such data sets. Community detection and recom-
mendation will also help explore the evolution of coherent structures
or identify similar structures.

Both domain experts suggested that we could support multivariate
data sets. Dr. Jacob pointed out that in ocean data sets, salinity and
temperature values influence each other. Therefore, it would be help-
ful if we could investigate these two variables simultaneously. Dr. Kim
mentioned that we could support both model comparison and variable
comparison. We could generate the transition graphs for different vari-
ables and enable users to investigate the differences between graphs.

10 CONCLUSIONS AND FUTURE WORK

In scientific visualization, the goal for showing a graph view in con-
junction with the original spatiotemporal data view is to provide both
sufficient data reduction and enough visual guidance to reduce the time
for users to analyze the data. Effective analytics of data at scale will
require a change from simply generating graphs as another view of
data to seeking immediate meanings from such an abstraction through
graph mining. Our work includes functions for graph simplification,
community detection, and node and community recommendation. The
results and evaluation with different data sets demonstrate that such a
graph mining approach points out a promising direction to shield users
from undue distraction by the complexity of graphs and thus enables
them to concentrate on effective reasoning about the data.

We plan to extend our work to handle multivariate data sets. We can
either fuse multiple variables into one type of node, or construct one
type of node for each individual variable. In the latter case, we can
visualize the relations between variables using compound graphs. We
will also investigate time-evolving graphs derived from scientific data
sets for identifying temporal hotspots, detecting anomaly, and aligning
multiple graphs for finding common features and distinct patterns.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. National Science
Foundation through grants IIS-1456763 and IIS-1455886, the U.S.
Department of Energy with Agreement No. DE-FC02-06ER25777,
and the Advanced Scientific Computing Research, Office of Sci-
ence, U.S. Department of Energy, under Contract No. DE-AC02-
06CH11357. Special thanks to Dr. Amanda Sgroi for her narration
of the accompanying video and the anonymous reviewers for their in-
sightful comments.

REFERENCES

[1] The 2012 dynamical core model intercomparison project (DCMIP).

https://earthsystemcog.org/projects/dcmip-2012/.

[2] H. Akiba and K.-L. Ma. A tri-space visualization interface for analyz-

ing time-varying multivariate volume data. In Proceedings of Joint Eu-

rographics - IEEE VGTC Symposium on Visualization, pages 115–122,

2007.

[3] D. Archambault, T. Munzner, and D. Auber. TopoLayout: Multilevel

graph layout by topological features. IEEE Transactions on Visualization

and Computer Graphics, 13(2):305–317, 2007.

[4] C. Collins, G. Penn, and S. Carpendale. Bubble Sets: Revealing set re-

lations with isocontours over existing visualizations. IEEE Transactions

on Visualization and Computer Graphics, 15(6):1009–1016, 2009.

[5] M. Dickerson, D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent

drawings: Visualizing non-planar diagrams in a planar way. Journal of

Graph Algorithms and Applications, 9(1):31–52, 2005.

[6] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-

merische Mathematik, 1(1):269–271, 1959.

[7] C. Dunne and B. Shneiderman. Motif simplification: Improving network

visualization readability with fan, connector, and clique glyphs. In Pro-

ceedings of ACM SIGCHI Conference, pages 3247–3256, 2013.

[8] T. Dwyer, N. H. Riche, K. Marriott, and C. Mears. Edge compression

techniques for visualization of dense directed graphs. IEEE Transactions

on Visualization and Computer Graphics, 19(12):2596–2605, 2013.

[9] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-

directed placement. Software - Practice and Experience, 21(11):1129–

1164, 1991.

[10] J. Glen and J. Widom. SimRank: A measure of structural context sim-

ilarity. In Proceedings of ACM SIGKDD Conference, pages 528–543,

2002.

[11] Y. Gu and C. Wang. TransGraph: Hierarchical exploration of transition

relationships in time-varying volumetric data. IEEE Transactions on Vi-

sualization and Computer Graphics, 17(12):2015–2024, 2011.

[12] Y. Gu and C. Wang. iTree: Exploring time-varying data using indexable

tree. In Proceedings of IEEE Pacific Visualization Symposium, pages

137–144, 2013.

[13] J. Heer, M. Agrawala, and W. Willett. Generalized selection via interac-

tive query relaxation. In Proceedings of ACM SIGCHI Conference, pages

959–968, 2008.

[14] H. Jänicke, M. Böttinger, and G. Scheuermann. Brushing of attribute

clouds for the visualization of multivariate data. IEEE Transactions on

Visualization and Computer Graphics, 14(6):1459–1466, 2008.

[15] J. Ma, C. Wang, and C.-K. Shene. FlowGraph: A compound hierarchical

graph for flow field exploration. In Proceedings of IEEE Pacific Visual-

ization Symposium, pages 233–240, 2013.

[16] K.-L. Ma. Image graphs - a novel approach to visual data exploration. In

Proceedings of IEEE Visualization Conference, pages 81–88, 1999.

[17] W. McLendon, G. Bansal, P.-T. Bremer, J. Chen, H. Kolla, and J. Ben-

nett. On the use of graph search techniques for the analysis of extreme-

scale combustion simulation data. In Proceedings of IEEE Symposium on

Large Data Analysis and Visualization, pages 57–63, 2012.

[18] F. J. Newbery. Edge concentration: A method for clustering directed

graphs. ACM SIGSOFT Software Engineering Notes, 14(7):76–85, 1989.

[19] S. Ozer, D. Silver, K. Bemis, and P. Martin. Activity detection in sci-

entific visualization. IEEE Transactions on Visualization and Computer

Graphics, 20(3):377–390, 2014.

[20] A. Robles-Kelly and E. R. Hancock. String edit distance, random walks

and graph matching. International Journal of Pattern Recognition and

Artificial Intelligence, 18(3):315–327, 2004.

[21] L. Royer, M. Reimann, B. Andreopoulos, and M. Schroeder. Unravel-

ing protein networks with power graph analysis. PLoS Computational

Biology, 4(7):e1000108, 2008.

[22] N. Sauber, H. Theisel, and H.-P. Seidel. Multifield-Graphs: An approach

to visualizing correlations in multifield scalar data. IEEE Transactions on

Visualization and Computer Graphics, 12(5):917–924, 2006.

[23] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity

for generating all maximal cliques and computational experiments. The-

oretical Computer Science, 363(1):28–42, 2006.

[24] F. van Ham, M. Wattenberg, and F. B. Viégas. Mapping text with

phrase nets. IEEE Transactions on Visualization and Computer Graphics,

15(6):1169–1176, 2009.

[25] C. Wang. A survey of graph-based representations and techniques for

scientific visualization. In Eurographics Conference on Visualization -

State of The Art Reports, pages 41–60, 2015.

[26] C. Wang and H.-W. Shen. LOD map - a visual interface for navigating

multiresolution volume visualization. IEEE Transactions on Visualiza-

tion and Computer Graphics, 12(5):1029–1036, 2006.

[27] W. Widanagamaachchi, C. Christensen, P.-T. Bremer, and V. Pascucci.

Interactive exploration of large-scale time-varying data using dynamic

tracking graphs. In Proceedings of IEEE Symposium on Large Data Anal-

ysis and Visualization, pages 9–17, 2012.

[28] J. Xie and B. K. Szymanski. Towards linear time overlapping community

detection in social networks. In Proceedings of Pacific Asia Knowledge

Discovery and Data Mining Conference, pages 25–36, 2012.

https://earthsystemcog.org/projects/dcmip-2012/

APPENDIX

1 CLIQUE DETECTION

Algorithm 2 detects all the cliques in the graph. Given a graph (sub-
graph), we always record the candidate nodes to expand as described
in Algorithm 1. We first create a FIFO queue Q, and insert the node
q with the highest degree to the queue. Then the nodes that are not
adjacent to q are also inserted to Q in order. The selection of the non-
adjacent nodes is used to avoid duplication. For each node q in Q, we
find its adjacent nodes, treat them as the nodes in a subgraph, and re-
peat the above process. If q does not have any adjacent nodes or has
only one adjacent node left, the nodes already expand in full. Thus, q
and its adjacent nodes along the path form a clique.

Algorithm 1 CANDIDATENODEDETECTION(G = (V,E))

Create a FIFO queue Q

Find the node q that has the largest degree in G

Insert q to Q

for each node u in V do

if u is not adjacent to q then

Insert u to Q

return Q

Algorithm 2 EXPAND(G = (V,E))

Q← CANDIDATENODEDETECTION(G = (V,E))
for each node q in Q do

Build a subgraph G′ that consists of all the nodes connecting to q

if G′ does not contain more than one node then

The nodes expanded along the path, q and its adjacent nodes form a

clique

else

EXPAND(G′ = (V ′,E ′))

2 COMMUNITY DETECTION

The SLPA community detection algorithm is outlined in Algorithm 3.
In SLPA, a label stands for a community identification, and each node
has a buffer to store the labels received from neighboring nodes (i.e.,
having edges pointing to the node). SLPA detects the communities in
an iterative manner. In each step, a node serves as a listener while
its neighbors serve as the speakers. At the first iteration, each node
adds a unique label to its buffer, which means that every node forms a
community. In later iterations, SLPA goes through every node and sets
it to be the listener. Its neighbors become the speakers. Each speaker
randomly selects a label from its buffer and sends it to the listener.
The listener selects the label with the highest rank calculated from its
neighbors and adds it to the buffer. The equation to calculate the rank
is as follows

Li = argmax
j∈Ni

p j→iL j, (1)

where Li is the label with the highest rank received by node i, L j is
the label sent by node j, Ni is the neighborhood of node i, and p j→i is
the transition probability from j to i as defined in our transition graph.
After a certain number of iterations, each node uses the label with the
highest frequency in its buffer as its community identification. The
nodes with the same identification form a community.

3 NODE RECOMMENDATION

We utilize the SimRank algorithm to calculate the similarities between
nodes for node recommendation. SimRank considers two nodes to be
similar if they are related to similar nodes. Given an unweighted di-
rected graph G = (V,E), if the incoming nodes of two nodes va and
vb are similar, then va and vb are similar. However, in our graph, each
edge carries a weight indicating the transition probability between two
incident nodes, thus the original SimRank algorithm cannot be imme-
diately applied. We therefore modify the similarity between va and vb

as follows

Algorithm 3 COMMUNITYDETECTION(G = (V,E))

for each node u in V do

Create a buffer

for each iteration k do

if k = 1 then

for each node u in V do

Insert label u to the buffer

else

for each node u in V do

Set u as the listener

for each neighbor node v of u do

Randomly pick a label l from the buffer

Send l to node u

Gather the labels from neighbors

Pick the label with the highest frequency and insert it to the buffer

for each node u in V do

Find the label l with the highest frequency

Use it as the community identification

Nodes with the same identification form a community

s(va,vb) =
∑
|I(va)|
i=1 ∑

|I(vb)|
j=1 s(Ii(va), I j(vb))× pi→va

× p j→vb

|I(va)||I(vb)|
, (3)

where I(va) is the set of nodes pointing to node va, and Ii(va) is the i-th
node in I(va). pi→va

and p j→vb
are the corresponding edge weights.

If neither va nor vb has incoming nodes, s(va,vb) = 0 (least similar).
SimRank stores a |V |× |V | matrix S to record the similarities between
nodes, where |V | is the number of nodes in the graph. Algorithm 4
calculates the similarity matrix. In the first iteration, all the similarity
values along the diagonal of S are set to 1 (most similar). In later it-
erations, we update the similarities between nodes according to Equa-
tion 3.

Algorithm 4 NODERECOMMENDATION(G = (V,E))

Create a |V |× |V | similarity matrix S

Create a |V |× |V | temporary matrix St

for each iteration k do

if k = 1 then

for each element st(u,v) in St do

st(u,v)← 0

for each node v in V do

st(v,v)← 1

else

for each node va in V do

for each node vb in V do

if va = vb then

st(va,vb)← 1

else

st(va,vb)← 0

for each neighbor node Ii(va) of va do

for each neighbor node I j(vb) of vb do

st(va,vb)+ = s(Ii(va), I j(vb))× pi→va × p j→vb

st(va,vb)←
1

|I(va)||I(vb)|
st(va,vb)

S← St

4 COMMUNITY RECOMMENDATION

Our community recommendation algorithm finds a serial ordering of
the nodes in a graph and converts graphs to strings. By comparing the
difference between the two strings, we compute the difference between
the two graphs.

Algorithm 5 utilizes random walks to find the ordering. It first cal-
culates a normalized symmetric random walks probability matrix P′

and computes P′’s leading eigenvector φ . Each value in φ is related to
a node in V indicating its importance. In order to sort the nodes based
on their importance and still preserve edge relations, the algorithm first

finds node n with the largest value in φ and puts n in the string s. Then,
it looks for node n′ with the largest value from n’s neighbors and puts
n′ in s. After that, the algorithm begins to search n′’s neighbors. This
process repeats until all the nodes are in s. However, if all n’s neigh-
bors are in s, the algorithm looks for n′ which is a neighbor of any
node in s and has the largest value in φ among those nodes not in s yet.
Then it puts n′ in s and keeps searching among n′’s neighbors. As a
result, this algorithm converts a graph to a string and orders its nodes
based on their importance and edge relations.

Algorithm 5 GRAPHTOSTRING(A, V)

Create a degree matrix D

for each node i in V do

for each node j in V do

if i = j then

D(i, i)← 1

∑
|V |
k=1

A(i,k)

else

D(i, j)← 0

Create a normalized symmetric random walks probability matrix P′

P′← D
1
2 AD

1
2

Find the leading eigenvector φ of P′ {A value in φ is related to a node in V}
Create an empty string s

Create a set s′ consisting of all the nodes in V

Find the node n in s′ with the largest value in φ
while s′ is not empty do

Insert n to s

Remove n from s′

if n’s neighbors are all in s then

n← the node which is the neighbor of a node in s and has the largest

value in φ among those nodes in s′

else

n← the neighbor in s′ which has the largest value in φ
return s

Algorithm 6 DIST(L, A1, A2, V1, V2, P1, P2)

Create the degree matrices D′1 and D′2
for each node i in V1 do

for each node j in V1 do

if i = j then

D′1(i, j)← ∑
|V1|
j=1 A1(i, j)

else

D′1(i, j)← 0

for each node i in V2 do

for each node j in V2 do

if i = j then

D′2(i, j)← ∑
|V2|
j=1 A2(i, j)

else

D′2(i, j)← 0

Use Dijkstra’s algorithm to calculate d(L(0,0),L(|V1|−1, |V2|−1))
return d(L(0,0),L(|V1|−1, |V2|−1))

Algorithm 7 GRAPHEDITDISTANCE(A1, A2, G1 = (V1,E1), G2 = (V2,E2))

s1← GRAPHTOSTRING(A1, V1)

s2← GRAPHTOSTRING(A2, V2)

P1← the normalized symmetric random walks probability matrix of A1

P2← the normalized symmetric random walks probability matrix of A2

Create a lattice L with size |V1|× |V2|
d(G1,G2)← DIST(L, A1, A2, V1, V2, P1, P2)

return d(G1,G2)

After ordering the nodes, Algorithm 7 computes the difference be-
tween two strings s1 and s2 as the distance between the two corre-
sponding graphs G1 = (V1,E1) and G2 = (V2,E2). This algorithm cre-
ates a lattice L using s1 as rows and s2 as columns. The elements in
L are only linked to their neighbors along the increasing horizontal,

vertical and diagonal directions. A diagonal movement from L(i, j)
to L(i + 1, j + 1) represents a matching of E1(s1(i),s1(i + 1)) and
E2(s2(j),s2(j+1)). A horizontal movement from L(i, j) to L(i+1, j)
represents a null matching of node s1(i). Similarly, a vertical move-
ment from L(i, j) to L(i, j + 1) represents a null matching of node
s2(j). Therefore, the difference between s1 and s2 is measured by the
distance between the two elements L(0,0) and L(|V1|−1, |V2|−1). In
addition, the distance can be treated as finding the shortest path from
L(0,0) to L(|V1|−1, |V2|−1). Finally, we utilize Dijkstra’s algorithm
to calculate the minimal distance between L(0,0) and L(|V1|−1, |V2|−
1) and uses it as the difference between s1 and s2 (i.e., the distance be-
tween G1 and G2). In Dijkstra’s algorithm, the distance between two
neighboring nodes is calculated as

d = β(a,b)×β(c,d)×R1(a,c)×R2(b,d), (5)

where a, b, c and d are the indices of L(a,b) and L(c,d). β(a,b) can be

calculated as

β(a,b) =
max{D′1(a),D

′
2(b)}−min{D′1(a),D

′
2(b)}

max{D′1(a),D
′
2(b)}

, (6)

where D′ is the degree matrix calculated in Algorithm 6. β(c,d) can be

calculated similarly. R1 in Equation 5 can be calculated as

R1(a,c) =

{

P′1(a,c), if A1(a,c) = 1
2×|V1|×|V2|
|V1|+|V2|

, otherwise
, (7)

where P′ is the normalized symmetric random walks probability ma-
trix and A is the adjacency matrix. R2 can be calculated similarly.

	Introduction
	Related Work
	Transition Graph
	Graph Simplification
	Community Detection
	Visual Recommendation
	Case Study Results
	Discussion
	Feedback from Domain Experts
	Conclusions and Future Work
	Clique Detection
	Community Detection
	Node Recommendation
	Community Recommendation

