Semantic Flow Graph: A Framework to Explore 3D Flow Fields
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Figure 1: Semantic flow graph (SFG) interface showing the exploration of the five critical points data set. (a) The tree-like history view. (b)
The graph view of the current SFG. Selected nodes and their connectors are highlighted by halos and circular percentage bars, respectively.

(¢) The corresponding volume view.

ABSTRACT

We introduce semantic flow graph (SFG), a novel graph represen-
tation and interaction framework that enables users to explore the
relationships among key objects (i.e., streamlines, critical points,
and spatial regions) of a 3D flow field. The objects and their re-
lationships are organized as a heterogeneous network. We assign
each object a set of attributes, based on which a semantic abstrac-
tion of the heterogeneous network is generated. We design a suite of
operations to explore the underlying flow fields based on this graph
representation and abstraction mechanism. Three linked views are
developed to display SFG, its node split criteria and history, and the
objects in the spatial volume.

1 MOTIVATION

Effectively displaying 3D streamlines faces significant challenges,
especially considering the ever-growing size and complexity of
flow data generated from scientific simulations. One fundamen-
tal challenge is occlusion and clutter, which stems from project-
ing 3D streamlines to 2D screen. Streamline seeding and selection
approaches tackle this challenge by balancing streamline densities
among different regions. However, this kind of approaches can only
alleviate but not eliminate the problem, since it is normally impos-
sible to present all flow features clearly at the same time. Some ap-
proaches focus on specific types of flow features, for example, criti-
cal points. Previous approaches were developed to capture the flow
patterns around critical points and reveal their connections. How-
ever, they usually serve specific purposes and provide limited inter-
action to meet various exploration needs. Graph-based approaches
provide an abstract representation of the flow field and allow users
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to interact with them for exploratory visualization. But the existing
techniques (e.g., FlowGraph [1]) only consider the spatial relation-
ships among regions and streamlines without explicitly capturing
flow features. Furthermore, the graph structures are fixed and still
lack of the ability for users to specify different kinds of flow fea-
tures for exploration.

2 OUR APPROACH

We present semantic flow graph (SFG), a novel solution that lever-
ages semantic graph techniques to explore relationships among
streamlines, critical points, and spatial regions. We allow flexible
grouping of objects through dynamic graph construction and shift
our focus to graph exploration. With a rich set of interactions, users
are given the unprecedented flexibility to customize the graph ac-
cording to their own needs in the data exploration and knowledge
discovery.

Graph Definition. We construct a heterogeneous graph to cap-
ture the relationships among objects in a flow field. We define three
types of nodes: L-nodes for streamlines, P-nodes for critical points,
and R-nodes for spatial regions. Each type of nodes carries a set
of attributes, e.g., average curvature and torsion for L-nodes, types
of critical points for P-nodes, and entropy of vector directions and
magnitudes for R-nodes, etc. Each node is an aggregation of objects
that share similar attribute values (e.g., an L-node may represent
streamlines with high curvature and high torsion values) or connect
to the same set of nodes (e.g., an L-node may represent streamlines
connected to a P-node containing all repelling saddles).

To reveal the relationships of these objects, we consider three
kinds of edges: L-P edges between L-nodes and P-nodes, L-R edges
between L-nodes and R-nodes, and R-P edges between R-nodes
and P-nodes. Given an edge e =< n;,n; >, where n; and n; are
two nodes connected by e, the weight w, of e is the summation of
weights of connections between objects in n; and nj. A streamline
and a critical point is connected, if the minimum distance between a
point on the streamline and the critical point is smaller than a certain
threshold; a streamline and a region is connected, if the streamline
passes the region; and a critical point and a region is connected if
the region contains the critical point.
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Figure 2: Exploration of the two swirls data set. (a) The node split history. (b) and (c) Neighborhood inspection for all P-nodes without
and with the egocentric layout, respectively. (d) 300 streamlines randomly selected from the entire pool of 3000 streamlines. (e) and (f) The
objects in the red and blue dashed boundaries of (b), respectively. (g) The connectors of the P-nodes.

Graph Exploration. The exploration of SFG starts with an on-
tology graph containing an L-node representing all streamlines, a
P-node representing all critical points, and an R-node representing
all spatial regions. Finer structures in the flow field are discovered
through splitting the nodes in SFG. We provide two types of split:
attribute-based split and structure-based split. Attribute-based split
divides a selected nodes into multiple nodes with a user-specified
attribute. Each generated node contains the objects with similar
values of the specified attribute. In Figure 2 (b), the P-nodes are
generated by performing attribute-based split with “type” attribute,
so that each P-node contains critical points of a distinctive type.
Structure-based split divides all other nodes based their connection
to a selected set of nodes. In Figure 2 (b), the L-nodes and R-nodes
are generated using structure-based split with all P-nodes selected,
so that each L-node or R-node contains objects connected to the
same types of critical points. The node split history is visualized as
a tree with labels on parents to indicate the split criteria, as shown
in Figure 2 (a).

To investigate node connections, we provide two types of inspec-
tion: neighborhood inspection and connector inspection. Neigh-
borhood inspection reorganizes the nodes according to their con-
nections to a selected set of nodes. In Figure 2 (c), all P-nodes
are selected and placed at the center of an egocentric layout. The
nodes connected to the P-nodes are placed at the middle layer, and
all other nodes are placed at the outer layer. Connector inspec-
tion identifies the nodes serving as connectors between any pair
of selected nodes. In Figure 1 (b), the connectors of all P-nodes
are inspected and highlighted by circular percentage bars. Each
percentage bar indicates the percentage of connector objects in the
highlighted node. The history view, SFG view, and volume view
are synchronized through brushing and linking.

Results. In Figure 1, (b) shows a SFG with L-nodes and R-

nodes split by “entropy” and P-nodes split by “type”. We perform
connector inspection on all P-nodes, and find that the streamlines
and regions related to the critical points are normally with high en-
tropy. In (c), the streamlines connecting different types of critical
points are displayed.

In Figure 2, (b) shows a SFG with P-nodes split by “type”, and
L-nodes and R-nodes split according to their connections to the P-
nodes by structure-based split. We can observe the overall struc-
ture with three groups of nodes: two isolated flow structures are
highlighted by the red dashed boundaries, and the corresponding
streamlines are shown in (e); the other group is highlighted by the
blue dashed boundary and the streamlines are shown in (f). The
streamlines connecting different types of critical points are shown
in (g). Finally, the neighborhood inspection result with the egocen-
tric layout is shown in (c), and we can see that the neighbors and
non-neighbors are clearly separated.

3 FUTURE DIRECTIONS

We plan to experiment our approach with more data sets and more
diversified tasks. Based on the experiments, we would like to derive
a set of specific tasks and corresponding operations to performance
the tasks. In addition, we will introduce guided exploration into
the node split procedure. The system will recommend nodes and
attributes to split so that the maximum amount of information can
be obtained. Finally, we will explore a more general definition of
features instead of critical points and investigate their relationships.
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