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Fig. 1. MISM interface. The cells in the similarity maps are colored purple/white/green for high/medium/low values. A path is specified
to reveal the connections between the isosurfaces of variable U corresponding to four different wind directions using the atmospheric
ensemble data set. (a) shows the parameter panel. (b) shows the matrix view with a user-specified path. A summarized view of the
matrix is displayed on the left and the representative SSMs and VSMs related to the path are displayed on the right. (c) shows the
isovalue view. The blue, orange, green, and red paths correspond to the isovalues of U under the west, east, south, and north wind
directions, respectively. (d) and (e) show the isosurface view with surface silhouettes and original surfaces, respectively.

Abstract—We present a novel visual representation and interface named the matrix of isosurface similarity maps (MISM) for effective
exploration of large time-varying multivariate volumetric data sets. MISM synthesizes three types of similarity maps (i.e., self, temporal,
and variable similarity maps) to capture the essential relationships among isosurfaces of different variables and time steps. Additionally,
it serves as the main visual mapping and navigation tool for examining the vast number of isosurfaces and exploring the underlying
time-varying multivariate data set. We present temporal clustering, variable grouping, and interactive filtering to reduce the huge
exploration space of MISM. In conjunction with the isovalue and isosurface views, MISM allows users to identify important isosurfaces
or isosurface pairs and compare them over space, time, and value range. More importantly, we introduce path recommendation that
suggests, animates, and compares traversal paths for effectively exploring MISM under varied criteria and at different levels-of-detail.
A silhouette-based method is applied to render multiple surfaces of interest in a visually succinct manner. We demonstrate the
effectiveness of our approach with case studies of several time-varying multivariate data sets and an ensemble data set, and evaluate

our work with two domain experts.

Index Terms—Time-varying multivariate data visualization, isosurface, similarity map, visual interface, path recommendation.
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1 INTRODUCTION

Many scientific simulations produce time-varying multivariate volume
data that can span hundreds or thousands of time steps and consist of
tens of variables. Additionally, ensemble data sets are common nowa-
days, where a simulation is conducted in multiple runs with different
configurations. This leads to the multiplied amount of data to be studied.
Understanding the underlying physical phenomena in this kind of data
often requires key insights to be discovered through observations. This
need places analysis and visualization of time-varying multivariate data
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at the heart of scientific visualization. There are two dominant tech-
niques to visualize volumetric data sets: direct volume rendering and
isosurface rendering. Direct volume rendering relies on the specifica-
tion of a transfer function that maps scalar values to colors and opacities
for rendering. The visualization can highlight particular values or value
ranges with high opacity while deemphasizing non-interesting ranges
with low or zero opacity. Isosurface rendering explicitly extracts one or
multiple isosurfaces from the volume data and renders these surfaces as
the visual data representation. The rendering can reveal important data
features or structure if the corresponding isovalues are salient or rep-
resentative. In this work, we focus on the less-explored surface-based
analysis in the context of time-varying multivariate data visualization.
Our goal is to investigate volumetric data evolution over space and
time and across multiple variables and ensembles by extracting a range
of isosurfaces, computing their similarities, identifying representative
surfaces, and presenting a visual interface to organize, summarize, and
explore the underlying time-varying multivariate data set.

Several key challenges are involved with this approach. First, study-
ing the similarities for all the surfaces across time steps and variables
leads to a very large number of similarity maps. For instance, for a data
set of 100 time steps and ten variables, the total number of similarity



maps amounts to 55,000. These include 1000 self-similarity maps,
49,500 temporal similarity maps, and 4,500 variable similarity maps
(refer to Section 1 in the Appendix). Without an effective way to orga-
nize and visualize them, examining such a large number of similarity
maps would become a daunting task. Second, even though similar-
ity maps can help us see the summarized information, we still need
to examine related isosurfaces in the original spatial view to identify
where and how they are (dis)similar. However, since a single similarity
map typically compares tens or even hundreds of isosurfaces, it is not
practical for users to manually select the related isosurfaces for further
examination. This task will be even more exhausting when the temporal
development of a variable is studied as thousands of isosurfaces may
be involved. Third, rendering just a few surfaces may already lead to
serious occlusion and clutter which prevents clear observation and com-
parison. This calls for new techniques that render a number of surfaces
with minimal occlusion while preserving their spatial relationships or
context. Finally, it could take hours to compute pairwise isosurface sim-
ilarities for only a single volume if no approximation, downsampling,
or acceleration solutions are considered [5]. This makes it impractical
to apply the same computation process to generate similarity maps for a
typical time-varying multivariate data set, although the process is only
done once. Therefore, it is imperative to seek a cost-effective solution
to make the similarity computation scalable.

We tackle the above challenges and present the matrix of isosurface
similarity maps (MISM), a new approach for comparative visualization
of time-varying multivariate volume data. Figure 2 sketches the diagram
of our MISM framework. During preprocessing, self-similarity maps
are first computed for each volume of the data. For each self-similarity
map, we then select a set representative isovalues and compute the cor-
responding isosurfaces. Finally, each of these isosurfaces is simplified
to save storage space and support runtime interaction. Furthermore,
the information acquired from self-similarity map computation will be
used to derive temporal and variable similarity maps. At runtime, all
similarity maps (self, temporal, and variable) will be used to construct
MISM. We provide a list of functions for users to explore the collec-
tion of similarity maps and compare the underlying isosurfaces. The
contributions of our work are the following:

* We extend the isosurface similarity map (ISM) to study the simi-
larity across the temporal and variable domains. We select repre-
sentative isovalues from the self-similarity maps and use them to
efficiently compute the temporal- and variable-similarity map.

* We design MISM, a matrix-based visual interface to organize
these similarity maps and present various ways (i.e., temporal
clustering, variable grouping, filtering, recommendation, and com-
parison) for effective relationship overview, level-of-detail explo-
ration, and comparative study.

* We leverage and modify a silhouette-based method to visualize a
number of related isosurfaces in a visually succinct manner. This
allows users to examine the similarities and differences of a large
number of surfaces in the isosurface view, presenting essential
information while reducing occlusion and clutter.

¢ We demonstrate the usefulness of our approach with case studies
of several time-varying multivariate data sets and one ensemble
data set. We evaluate our system with two experts. The results
show that MISM enables users to gain a deep understanding of
the data across the spatial, temporal, and variable domains.

2 RELATED WORK

Data analysis and visualization. Analysis and visualization of time-
varying multivariate volumetric data is an important yet challenging
topic in scientific visualization [22,27]. For time-varying data, re-
searchers have studied efficient volume rendering based on spatiotem-
poral coherence [33], transfer function specification [19], and direct
rendering of multiple time steps into a single image [40]. They also
experimented with illustration-inspired [20] and importance-driven [38]
techniques for visualizing time-varying data. For multivariate data, re-
searchers have investigated query-driven visualization using compound
range queries [34] and fuzzy queries using textual pattern matching [10].
They also explored variable correlation including point-wise correlation
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Fig. 2. The diagram of our framework. Self-similarity maps (SSMs)
are computed for each volume of the data, from which we compute
representative isovalues and isosurfaces and further derive temporal
similarity maps (TSMs) and variable similarity maps (VSMs). At runtime,
SSMs, TSMs, and VSMs are used to construct MISM for users to explore
the underlying data set.

coefficients and gradient similarity measure [30], causal relationships
between variables using transfer entropy [37], variable grouping using
mutual information (surprise and predictability) [4], and information
flow between variables based on association rules (informativeness
and uniqueness) [24]. We investigate the relationships among different
volumes of time-varying multivariate data by extracting representative
isosurfaces from each volume based on its similarity map and comput-
ing the similarity maps among representative isosurfaces from volumes
of different time steps and variables.

Visual abstraction and interface. Time-varying multivariate data
are high-dimensional and complex, which poses great challenge to
effective visual exploration and comparison. The conventional way of
only visualizing these data in the original space-time view does not
solve the inherent occlusion and clutter problem, nor does it offer a vi-
able solution for data feature or relationship selection, exploration, and
tracking. Therefore, researchers have studied various alternatives that
map data and their relationships to lower-dimensional, often abstract
spaces and representations to assist relationship overview, interaction,
and navigation [36]. Examples include the tri-space (i.e., spatial, tempo-
ral, and variable) interface that allows exploration of the temporal and
variable dimensions of data along with the spatial context [1], multifield-
graphs for studying correlation fields in a hierarchical manner [30],
interactive storyboard for overall time-varying data visualization and
feature exploration [26], attribute cloud that enables users to examine
high-dimensional multivariate attributes in a 2D space [18], recurrence
plot that shows temporal similarity between two time-dependent signals
as a matrix for recurrence detection [3,9,29], AniViz for animation
creation from time-varying multivariate volume data [2], TransGraph
for investigating the transition relationships in time-varying data [12],
multivariate transfer function interface design that tightly couples par-
allel coordinates plots and dimension projection plots [14], and iTree
for compacting, indexing, and exploring time-varying data [13]. We
design a visual interface that organizes the matrix of ISMs for overview,
filtering, and summarization, as well as detailed examination of volume
relationships over spatial, temporal, and variable domains.

Comparative visualization. To study data similarities and differ-
ences, one can employ comparative visualization to compare different
time steps, spatial locations, data variables, or modalities [22]. Gle-
icher et al. [11] proposed a general taxonomy of visual designs for
comparison in information visualization based on the three building
blocks of juxtaposition, superposition, and explicit encodings. Verma
and Pang [35] pointed out that scientific data can be compared at the
image, data, or feature level, depending on the level of data abstraction.
They studied comparative visualization tools for analyzing flow fields
which allow the comparison of individual streamlines and stream rib-
bons as well as a dense field of streamlines. Woodring and Shen [39]
developed a volume shader for time-varying multivariate data visual-
ization. The shader allows users to select multiple data volumes to
create comparative visualization along with the presence of contextual
information. Schneider et al. [32] presented a solution for interactive
comparison of scalar fields using isosurfaces. They defined features in
two scalar fields by largest contour segmentation and matched these
features using a similarity measure based on their spatial overlap. A



thumbnail gallery of feature pairs and a graph representation are used
to show all relationships between individual contours. Lampe et al. [23]
designed a curve-centric volume reformation technique to create com-
pelling comparative visualizations. The technique deforms the volume
surrounding a curve and preserves the spatial neighborhood to the
curve, thus permitting arc-length parameterized data visualizations in
parallel for comparison. Malik et al. [28] presented a comparative visu-
alization technique that uses a multi-image view and an edge explorer
for dimensional measurement using 3D X-ray computed tomography.
Their generic solution can be applied to other application areas such
as parameter study of imaging modalities and detection of artifacts
in data sets. Schmidt et al. [31] designed a comparative visualization
tool named VAICo for visualizing similarities and differences in large
image sets. This tool not only preserves contextual information but
also enables detailed analysis of subtle variations. Our purpose is to
investigate the evolution of time-varying data in the context of multiple
variables using surface-based visual representation. We achieve this
goal by clustering and filtering a large number of ISMs organized as a
matrix along with comparative surface summarization and rendering
techniques that reveal the spatial relationships of the corresponding
isosurfaces.

3 DESIGN REQUIREMENTS

To investigate the physical phenomenon of the multifaceted time-
varying multivariate data sets, experts need to understand the rela-
tionships among time steps, variables, and value ranges, which are
often complicated and dynamic. The relationships of value ranges of
multiple variables may exhibit various patterns even at a single time
step, and these relationships may evolve over time and develop into
different patterns. Understanding these relationships can hardly be
achieved without an effective visual analytics system. We formulate
the design requirements of such a system as follows:

R1. Overview. The system should provide two levels of overview.
First, it should allow users to observe the overall relationships between
variables and time steps at the volume level, helping them answer
questions such as which variables are more similar, which time steps are
more similar, and which variables exhibit more frequent changes than
the others? Second, it should allow users to understand the relationships
at the isovalue level. Similar questions should be answered at this level
with more detail: which ranges of isovalues lead to the relationships
discovered at the volume level?

R2. Identification of representatives. The system should quantify
the similarities among time steps, variables, and isovalues and derive
the representative ones. This provides users more quantitative evidence
to verify the relationships they observe from the overview and to reduce
the search space for detailed exploration.

R3. Relationship-centric exploration. The system should provide
multiple modes to investigate various types of relationships, including
the relationships among value ranges for a given variable at a specific
time step, the relationships among variables at a specific time step, the
relationships of the same variable at different time step, the temporal
evolution of the relationships of two variables, and the relationships
of a specific feature and others (which may not reside in the same
variable), etc. The system should be able to quantify each type of
relationship and the interface should be optimized to allow exploring
each type of relationships efficiently.

R4. Multi-step comparison path. The dynamic relationships
among variables may require comparisons of hundreds of surfaces
to be demonstrated. The system should decompose these complicated
relationships into a path of multiple comparison steps. Each step should
reveal a facet of the relationships with a reasonable number of surfaces
that can be effectively rendered for clear visual comparison. In addition,
the system should also maintain the consistency between surfaces in
consecutive steps to preserve the user’s mental map.

RS. Path customization. Users should be able to interact with the
system to customize paths focusing on certain variables of interest or
a specific type of relationship described in R3. The customized path
should answer questions such as how does a feature evolve over time,
what are the surfaces related to the selected one over time, and what
are the most different surfaces from the selected one over time?

R6. Path animation. The system should produce an animation that
concisely describes the comparison path with isosurface rendering. The
animation should answer the questions in R1 with more detail: it not
only indicates which isosurfaces are (dis)similar, but also describes
how they are (dis)similar by providing the isosurfaces in the spatial
view. For effective visual comparison, the isosurfaces at each animation
frame may need to be rendered in different styles, allowing the more
important ones to be observed clearly.

4 MATRIX OF ISOSURFACE SIMILARITY MAPS
4.1 Overview

Based on our analysis of requirements in Section 3, we design MISM as
the main visual representation and interface for exploring the underlying
time-varying multivariate data set. As shown in Figure 1, our interface
consists of four components: parameter panel, matrix view, isovalue
view, and isosurface view. The matrix view is the core component
of our system. It displays MISM in multiple modes to allows the
observation of both an overview of the data set (R1) and different types
of relationships among variables (R3). The matrix of maps allows the
relationships to be understood both at map-level (volumes) and cell-
level (isosurfaces). With visual hints provided by the MISM display,
users can easily identify the variable/isovalues of interest and interact
with the matrix view to navigate the related variables/isovalues. The key
function we introduce for navigating MISM is path recommendation
(R4 and RS): users can select two or more similarity maps in MISM
and we recommend a traversal path that maximizes certain criteria
(e.g., the smoothest, or most surprising path). In conjunction with
the isovalue and isosurface views, animating the path in MISM and
displaying the corresponding isosurfaces enable users to conveniently
tour through the underlying data set (R6).

As described in the Appendix, we define three types of similarity
maps in this paper: the self-similarity map (SSM) of the isosurfaces
from individual volumes, the temporal similarity map (TSM) of the
isosurfaces from the same variable at different time steps, and the vari-
able similarity map (VSM) of the isosurfaces from different variables
at the same time step. The definition of similarity follows that of the
ISM approach [5]. The matrix view provides four display modes to
explore different types of relationships: (1) the single-variable mode
that displays a single SSM to explore a single volume; (2) the single-
pair mode that displays a VSM or TSM and the two corresponding
SSMs for comparison of two volumes (e.g., Figure 12 (a)); (3) the
all-pairs mode that displays all SSMs and VSMs for selected variables
at a given time step (e.g., Figure 6 (a)); and (4) the evolution mode
that displays all SSMs and VSMs for selected variables and time steps
through clustering and filtering (e.g., Figure 1 (b)). Only the evolu-
tion mode displays multiple time steps, where the horizontal direction
represents the selected variables and all related variable pairs, and the
vertical direction represents representative time steps. SSMs of the
selected variables and all related VSMs are displayed but not TSMs.

Interaction and typical workflow. We propose a set of interactive
functions for navigating the huge matrix of similarity maps (see Fig-
ure 2). We cluster temporal sequences and group variables to reduce
the exploration space (R2). We also highlight representative cells in a
similarity map to attract user attention and guide the exploration (e.g.,
Figure 5). A typical workflow to explore a data set using MISM is as
follows. Users will start by examining the matrix view in the evolution
mode, which shows the SSMs and VSMs of all the representative time
steps and variables. This provides users an overall understanding of
the data set and guides them to discover the time steps and variables
of interest. Then, users can simply click and drag to form a path that
reveals the temporal development of the selected variables and time
steps. Users can further create waypoints to edit the traversal path
so that the connections to additional features can be discovered. In
the evolution mode, users can easily click an SSM to enter the single-
variable mode or click a VSM to enter the single-pair mode for detailed
exploration. They can specify a time step to explore the relationship
among all variables in the all-pairs mode as well. Finally, they can
create paths to investigate the isovalues in these detailed modes.

Next, we introduce temporal clustering and variable grouping (Sec-



tion 4.2), path recommendation and graph construction (Section 4.3),
and silhouette-based rendering and animation (Section 4.4).

4.2 Clustering and Grouping

We reduce the size of MISM along the temporal and variable dimen-
sions through clustering temporal sequences and grouping variables,
respectively. This not only allows users to quickly identify the represen-
tative time steps or variables for exploration, but also produces more
compact paths and animations for efficient knowledge discovery. We
define a similarity measure between volumes using TSMs or VSMs and
use it to derive the similarity between two time steps or two variables.
We apply affinity propagation [8] to cluster the temporal sequences
based on the similarity measure. Affinity propagation automatically
determines the number of clusters, which naturally reflects how fre-
quently the variables change along time in a data set. For variables, we
use k-means clustering to group the variables into the desired number
of groups. In the following, we only describe our similarity measure
for temporal clustering, as the detail for variable grouping is the same.

Similarity measure. We evaluate the similarity of two volumes
based on the similarities among their isosurfaces. Two volumes are
considered to be similar if for each isosurface in one volume, a similar
isosurface can be identified in the other volume. Our similarity measure
is analogous to the mean of closest point distances defined on two
curves by considering each volume as a curve and each isosurface of
the volume as a point on the curve. Formally, the similarity of an
isosurface S’ and a volume V is defined as

S (S, V)= rsneisy(S’,S), (1)

where the similarity between two isosurfaces, .%(S',S), can be looked
up from TSMs or VSMs. The similarity of two volumes V; and V is
defined as the weighted average of the similarity of each isosurface in
one volume to the other volume, i.e.,

. Ys,ev, WS,,y(Spvvj)
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where the weight wg, for an isosurface S, is derived based on its
representativeness ranking, which is used for selecting the most repre-
sentative isovalues (Section 1 in the Appendix). Note that the similarity
between any pair of volumes is in [0, 1], which has the same range as
the similarity between any pair of isosurfaces.

Temporal clustering. Temporal clustering evaluates the combined
similarity between two time steps as the summation of similarities cal-
culated for each of the variables using Equation 2. Affinity propagation
is applied to cluster the time steps based on their combined similari-
ties. For each cluster, the clustering algorithm identifies one exemplar,
which is considered as the representative time step for that cluster.

4.3 Path Recommendation

MISM has a two-tiered structure: maps at the coarse matrix level
and cells at the fine map level. The map-level captures the overall
relationships among volumes, while the cell-level allows the detailed
relationships among isosurfaces to be discovered. Given two user-
specified maps (cells) as the start and end points, path recommendation
identifies a series of intermediate maps (cells) to construct a path for
traversal. We create an animation for the generated path, showing the
isosurfaces corresponding to a map (cell) at one animation frame. Users
can adjust the weights of different terms to define the desired path. They
may visit the maps or cells to discover affinity relationships or compare
distinct features. The differences between frames can be minimized or
maximized for generating a smooth animation or increasing information
gain. They can specity the start and end points of a path in the matrix
view, and drag any point along the path to add waypoints. We identify
a path that minimizes the total cost between the user-specified points.

We introduce the following types of paths: (1) map-level paths for
the evolution mode, (2) cell-level paths for all the four modes, and (3)
variable traversal paths for only the all-pairs mode. All three types of
paths are built with similar constructions. In the following, we discuss
map-level paths in detail. For the other two, we only explain their
differences with respect to map-level paths.
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Fig. 3. Top: map-level graph construction. (a) transitions in map-level
graphs. (b) edge weights corresponding to two transitions between maps
M,p and Mpc. Bottom: transitions between cells. (c) transitions in
cell-level graphs. (d) transitions in variable traversal graphs.

We denote a similarity map between two variables A and B at time
step T as Myp ¢ and their corresponding volume as V4 ; and Vp ;.
Note that Myp ; can refer to an SSM when A = B or a VSM when
A = B. However, it does not refer to a TSM (which is not displayed
in the matrix view) as the indices do not specify two different time
steps. We use Myp ¢[i, j] to denote a cell in Myp  at the i-th row and
the j-th column, and Sa,ziand S ¢ ; to denote the two isosurfaces
corresponding to the i-th row and j-th column, respectively. We may
ignore 7 in the notation for simplicity when time is not discussed. We
define the difference Z(,) between two elements as 1 —.7(,).

Map-level path. We identify the map-level path between two sim-
ilarity maps as the shortest path in a map-level graph. A map-level
graph is a directed graph whose nodes are all SSMs and VSMs and
whose edges are all the possible transitions from one map to another, as
illustrated in Figure 3 (a). Specifically, we consider two kinds of transi-
tions: (1) variable transition between similarity maps at the same time
step sharing at least one common variable, as shown by the blue arrows;
and (2) temporal transition between similarity maps at neighboring
time steps, as shown by the red arrows.

Weighing the edges appropriately is critical to obtaining a path
that shows the desired features. In our approach, the weight of an
edge corresponding to a transition is a linear combination of the target
cost €1y and the transition cost €4 raised to a user-specified power
exponent o (Wig Grg +wis €rs)*, where wyg and wy, are the weights
of €1, and €14, respectively. We include o to further distinguish the
edge costs, so that the shortest path is less likely to end up with a path
with a larger average cost but a smaller number of edges. Consider
the transition Myp — Mpc (from the yellow node to the green node)
in Figure 3 (b). The target cost ¥ (Mpc) is the difference Z(Vp, V()
between the two corresponding volumes Vg and V. When the target
cost is weighed positively, the shortest path is more likely to visit the
maps corresponding to variables with similar structures by minimizing
the cost. When the target cost is weighed negatively (we use 1 —
€ (Mpc)), the resulting path tends to visit the variables with different
behaviors for the most surprise. The transition cost is the penalty when
we replace the isosurfaces to display for My p to those for Mpc. It can
be weighed positively in the linear combination, so that the shortest
path minimizes the transition cost and maintains a smooth animation
between neighboring frames; otherwise, it can be weighed negatively
using 1 — € (Mup — Mpc) to visit the maps with diverse information.

A variable transition from a VSM Myp ; to another Mpc ; indicates
that the focus of analysis shifts from one pair of variables (A and
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Fig. 4. The path with the same start point and parameters as Figure 1
(b). The example shown here uses the original cell-level graph instead of
the reduced weight graph.

B) to another pair (B and C). After the transition, we replace the
isosurfaces of A with the ones of C in the isosurface view. Therefore,
we weigh the corresponding edge by the difference of their volumes,
i.e., 2(Var, Vo). The edge weight for transitions between a VSM
and an SSM can be defined similarly by letting A = B. For coherence,
variable transitions should take place only if necessary. To avoid the
paths from jumping back and forth among the variable pairs, we include
a sufficiently large jumping cost in the variable transition.

A temporal transition between two VSMs Myp ; and Myp 141
describes the evolution of the two variables A and B over time.
The corresponding edge weight is defined as (2(Va,r,Va,z+1) +
2(VBe,VB111))/2.

Cell-level path. Similar to the map-level path, the cell-level path
is the shortest path between two cells in a directed cell-level graph.
Each node in the cell-level graph represents one cell and each edge
represents one transition. For the cell-level graph, we consider three
kinds of transitions, as shown in Figure 3 (c): (1) variable transition
(the blue arrows) between cells in two similarity maps at the same
time step sharing at least one common variable; (2) temporal transition
(the red arrow) between cells in two similarity maps corresponding
to the same pair of variables at different time steps; and (3) isovalue
transition (the green arrows) between cells in the same similarity map.
Similarly, the edge weight is a linear combination of transition cost
and target cost. The target cost is given by the difference of the two
isosurfaces corresponding to the target cell. The transition cost is
defined by the difference between the isosurfaces that are not shared
by the two cells. For example, for a variable transition Mg ¢[i, j] —
Mpc [/, k], the transition cost is the difference between S4 ;; and
SC‘T,k’ i'e'7 @(SA,‘L'J»SC,’L'J()'

We further provide two options for users to improve the cell-level
path. First, we allow users to specify the exact endpoint as cells, or
simply select a map that contains the endpoint. When a map is specified,
the cell with minimum cost is automatically identified on the map. In
this case, we create an edge from each cell in the map to a dummy node
with zero weight and compute the shortest path. Second, we design a
scheme to further reduce the average cost between cells. The shortest
path often tends to minimize the total cost along the path by reducing
the number of cells. It is possible to identify a path with a minimum
number of undesired transitions. Therefore, finding a path with the
smallest average weight between nodes is more desired in our scenario.
Since this problem is NP-hard, we provide an approximate solution
here. We start with the shortest path identified by Dijkstra’s algorithm
and compute the average weight w along the path. Then, we create a
cell-level reduced weight graph. This graph contains the same edges as
the original cell-level graph, but the weight of each edge is reduced by
w. The edges with negative weights are eliminated by assigning a small
weight (0.001 in our implementation) to them. Note that the edges with
weights smaller than w have a minimum cost now. This allows a longer
path with more desirable transitions to be identified as the shortest path
in the reduced weight graph.

Figure 1 (b) and Figure 4 show two cell-level paths produced by the
reduced weight and original graphs, respectively. In Figure 4, we can
see that without reducing the weights, the path only visits one cell in
each map at similar locations, even under the setting of w;g = 0.1 and
wys = — 1, which suppose to show more distinguished isosurfaces. In
contrast, with the reduced weight graph, the path usually visits multiple
cells in each graph to increase the information gained, as shown in
Figure 1 (b). For a quantitative comparison, we evaluate the average

weight of the two paths in the original graph. The path produced by the
reduced weight graph can effectively bring down the average weight
from 0.227 to 0.172.

Variable traversal path in all-pairs mode. A variables traversal
path visits a chain of variable pairs that covers every variable for a
complete understanding of relationships among variables at a given
time step. For example, this chain can be < A,B >—< B,C >—<
C,D >—< D,A > for a data set with four variables. Given a user-
specified cell (and therefore a pair of variables to start), we determine
the order of variables to visit using a greedy strategy: at each step, we
select the unvisited variable that is most similar to the current variable.

The variable traversal path is identified in a variable traversal graph
which is constructed similarly as the cell-level graph with variable
transitions and isovalue transitions. The definitions of transition cost
and target cost are the same as the ones described for the cell-level
graph. The only difference is that variable transitions are constrained to
take place between only boundary cells following the order of the maps
being visited. For example, consider the two pairs of variables <A, B >
and < B,C > to be neighbors along the path, as shown in Figure 3
(d). We only allow transitions from the boundary cells Mag ¢[1, j]
and Myp ¢[m, j] in map Myp ; to the boundary cells Mpc [/, 1] and
Mgc <[, m| in map Mpc ¢ that correspond to the same isosurface Sp ¢, -
This forces the path to enter and leave a similarity map at the boundaries
to build a more complete path visiting a large portion of value range
for each variable.

4.4 Surface Rendering and Animation

We render the isosurfaces using an approach based on per-pixel link
lists [41] for real-time order independent transparency. The render-
ing is performed in two passes. The first pass generates a link list
for each pixel to store the fragments that are rendered to that pixel.
The second pass sorts fragments at the same pixel according to their
depth and blends the fragments in the sorted order. Inspired by the
silhouette-based rendering [7], we only render the silhouettes for the
less important isosurfaces to reduce visual clutter. We combine these
two approaches by checking whether a fragment belongs to the sil-
houettes before storing the fragment in the link lists. The fragments
of the less important isosurfaces that are not related to the silhouettes
are discarded to reduce the storing and sorting effort. Using our ap-
proach, rendering some surfaces as silhouettes not only allows clearer
observation but also has a lower cost than rendering all surfaces in full.

An animation will be produced when a path is specified in the matrix
view. As shown in Figure 1, with the evolution mode of the matrix view,
we also display the isovalue view to show the evolution of isovalues cor-
responding to the rendered isosurfaces. We synchronize the animation
across the matrix, isovalue, and isosurface views. The path is displayed
in both the matrix and isovalue views with the current animation step
highlighted. We display a timeline in the isovalue view. Users can drag
it to play a specific animation step. They can also drag the highlighted
isovalues in the isovalue view to create additional waypoints and mod-
ify the path. When multiple variables are involved in an animation, the
isosurfaces are colored according to their corresponding variables, as
indicated by the legends in the isosurface view (e.g., Figure 1 (d)). We
create an animated transition for each variable transition on the path to
gradually transit from one variable to another. When a single variable
is used in an animation, we color the isosurfaces according to their
representativeness. The representativeness ranking is indicated by the
legends shown in the isosurface view, with the most representative one
displayed on the left (e.g., Figure 13 (a)). By default, we render the
complete isosurface for the most representative one and the silhouettes
for the others. Users may switch the focus to render any representative
isosurface as a complete one.

5 RESULTS AND DIscUsSION
5.1 Data Sets and Timing Performance

We used several time-varying multivariate data sets with different sizes
and characteristics for our experiment. The data sets and timing per-
formance are reported in Table 1. The timing was collected using a
CPU/GPU cluster (8 Quantum TXR231-1000R servers each with a dual
Intel E5-2650 12-core CPU @ 2.2 GHz, 128 GB RAM, and 4 NVIDIA



data set dimension x X y X z X v X t distance field x X y X z SSM extraction  simplification  reduction TSM VSM total

atmospheric 360 X360 x 112 x32x 13  45x45x 14 26.85s  8.3ls 94.20s 7.56x 0.0953s  0.0941s | 24.1h
climate 360 x 66 x 27 x 2 x 1200 120 x 33 x9 4.85s 0.18s 1.82s 9.39x 0.0810s  0.0778s 10.9h
combustion 480 x 720 x 120 x5 x 122 60 x 90 x 15 50.66s  8.11s 56.44s 10.72x 0.2290s  0.2275s | 23.5h
ionization 600 x 248 x 248 x 8 x 199 75x 31 x 31 2599s  4.34s 14.40s 12.42x 0.1936s  0.1919s | 20.1h

Table 1. The average timing results for computing an SSM, an isosurface and its simplified version, a TSM, and a VSM using a CPU/GPU, and the

total computation time for the entire data set using the CPU/GPU cluster.

DS-MC ORI-APP DS-APP
data set MSE SU MSE SU MSE SU
atmospheric | 0.0006  23.11x 0.2191 1.06x 0.1637 110.67x
climate 0.0046 13.13x 0.0060 1.02x 0.0052  30.50x
combustion 0.0001  48.86x 0.0584 1.23% 0.0474 182.48x
ionization 0.0134  43.69x 0.0831 1.27x 0.0489  299.26x

Table 2. Mean squared error (MSE) and speed-up (SU) for computing
SSMs using different configurations.

VORT
VORT

YOH

HR  MF VORT YOH VORT  YOH
HR  MF HR  HR MF  MF  VORT

o

time

Fig. 5. Overview of the evolution mode of the matrix view with four
variables (HR, MF, VORT, and YOH) of the combustion data set.

TITAN X GPUs). The computation of the distance fields and similarity
maps (SSMs, TSMs, and VSMs) was performed in the GPU, while
isosurface extraction and surface simplification were performed in the
CPU. The timing for SSM (256 x 256) includes the time to compute
distance fields, joint histogram, and mutual information. The time
costs for surface extraction and simplification mainly depend on the
complexity of the surface and the number of triangles involved. The
timing for TSM or VSM (16 x 16) includes the time to compute joint
histogram and mutual information. The time cost to compute a TSM or
VSM mainly depends on the size of distance fields. In our experiment,
since the computation of similarity maps or isosurfaces consists of
largely independent tasks, we use 8 CPU cores and 8 GPUs of the
CPU/GPU cluster to speed up the computation in parallel, reducing the
total computation time for each data set to a day or less.

We further examine the accuracy and speed-up of our similarity map
computation. Our solution introduces two major variants to speed up the
computation: using approximation (APP) to replace GPU-accelerated
marching cubes (MC) for surface generation and using downsampled
(DS) distance fields instead of the ones with original (ORI) resolution.
We evaluate the performance of different combinations of these two

Fig. 6. Variable traversal paths using time step 111 of the combustion
data set. (a) shows a path with a positive target weight (w; = 1, w;; = 0.1,
and o = 4). (b) to (e) show four animation frames corresponding to the
pathin (a).

variants (i.e., DS-MC, ORI-APP, and DS-APP) by comparing them to
the ground truth (ORI-MC). The accuracy is evaluated by the mean of

squared error (MSE). Giving two sets of values X = {x;, -+ ,x,} and
X' = {x}, - ,x},}, MSE is computed as
1 n

MSE(X,X') = - Y xi— X A3)

i=1

For the climate data set, we collect the results using ten sample time
steps, and for the others, we use five sample time steps. Note that this
already contains 1.3 million to 2 million similarity values per data set
so that we can draw a reliable conclusion. In Table 2, we can see that
using downsampled distance fields produces mostly the same similarity
values, with the largest MSE being 0.0134 for the ionization data set.
Surprisingly, we find that DS-APP outperforms ORI-APP in terms
of MSE for all the data sets, probably because distance fields of the
original resolution may be more sensitive to the errors introduced by
the approximation. DS-APP produces reasonable results with MSE
smaller than 0.05 except for the atmospheric data set (0.1637). In terms
of efficiency, DS itself speeds up the computation by more than 10x.
APP does not lead to large speed boost with ORI, but it can further
increase the performance of DS, resulting in 30x to 300x speed-up.

5.2 Case Studies with Expert Evaluation

Combustion data set. This data set comes from direct numerical
simulation of temporally evolving turbulent non-premixed flames. The
simulation generates five variables: heat release (HR), mixture fraction
(MF), vorticity (VORT), mass fraction of hydroxyl radical (YOH), and
scalar dissipation rate (CHI). Initially, the thin planar scalar layers
are placed in the middle of the computational domain. The layers
evolve into complex isosurfaces as they interact with the surrounding
turbulence. Combustion reactions occur within the scalar layers.



Fig. 7. Cell-level paths in YOH-MF VSMs using the combustion data
set. (a) shows a path with a positive target weight (w;, = 1, w;; =0, and
a = 4) and three corresponding animation frames. (b) shows a path
with a negative target weight (w;; = —1, w;; = 0, and a = 4) and three
corresponding animation frames.

We invited a domain expert with 20 years of experience in turbulent
combustion modeling and simulation to explore this data set using
MISM. The exploration started with the evolution mode of the matrix
view with four variables (HR, MF, VORT, and YOH), as shown in
Figure 5. The expert commented that the similarity maps at different
representative time steps are able to summarize the overall data char-
acteristics. For each individual variable, at earlier time steps, since the
scalar layers are planar, all scalars are well correlated, and most regions
of the SSMs in the bottom rows are purple. As time goes on, these
scalar layers are distorted by turbulence. Meanwhile, the scalar layers
are thickened since small-scale turbulence enhances scalar mixing. As
the scalar layers are thickened and interact with turbulence, the iso-
surfaces corresponding to lower and higher values become dissimilar.
Therefore, the positive correlations (purple cells) only appear along
the diagonals of the SSMs in the top rows. The expert further pointed
out that the matrix view demonstrates the relationship development
of YOH and MF over time. YOH and MF are perfectly correlated,
when combustion reaction time scales are much shorter than turbulence
time scales. This condition is closely satisfied at later time steps, as
the YOH-MF VSMs in the top rows show a strong correlation near
the diagonal regions. On the contrary, at earlier time steps, the fast
chemistry condition is not satisfied. This leads to no evident correlation
of these two variables at earlier time steps. The SSMs in the bottom
rows confirm this by exhibiting more uniform correlations. In addi-
tion, the expert found that the relationship between VORT and MF is
interesting, since the VORT-MF VSMs gradually develop into a pattern
with a purple upper-left triangle and a green lower-right triangle. The
expert stated that the physical origin of this trend could not be fully
understood at this moment, but it was likely related to the effects of
HR on turbulence. This demonstrates the potential of our work for
revealing physics behind the data set.

Then, the expert analyzed the relationships among four variables
(VORT, CHI, MF, and YOH) at time step 111 using the all-pairs mode
of the matrix view. Time step 111 is the first time step of the last
temporal cluster. The all-pairs mode facilitates better comparison of the
VSMs. In Figure 6 (a), the expert found that the pattern of the YOH-MF
VSM is different from others. As already observed in the evolution
mode, the diagonal of YOH-MF VSM is mostly purple, indicating

@
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Fig. 8. Comparison of four wind directions with friction and wind speed
5 m/s using the atmospheric ensemble data set. (a) shows the all-pairs
mode of the matrix view at time step 13. (b) shows the isovalue view at
time steps 2 (bottom) and 13 (top). (c) to (e) show two isosurfaces of
variable U corresponding to (c) small absolute wind speeds of the west
and north, (d) small absolute wind speeds of the west and east, and (e)
large absolute wind speeds of the west and east.

ESU ESW E1U E1w ESW ELU E1W E1U E1W E1W
E5U ESwW E1U E1w ES5U ESU ESU ESW ESW  E1U

Fig. 9. Overview of the evolution mode of the matrix view with two
variables (U and W) produced under two wind speeds (5 m/s and 1 m/s)
using the atmospheric ensemble data set.

strong correspondence between the value ranges in YOH and MF. The
only exception is the top-right corner corresponding to larger isovalues
of YOH and MF, which is mostly green. This means that the larger
isovalues of these two variables are less relevant to each other. The
expert explained that the value of YOH is the highest in the reaction
zone and decreases toward the fuel and oxidizer sides, which correspond
to the lower and higher values of MF, respectively. Therefore, there is
no evident correlation of YOH and MF at higher values of each variable.
The expert selected a purple cell in this VSM, as highlighted in the blue
circle, to generate a variable traversal path. A positive target weight
(wg = 1) was used to identify a path demonstrating similar isosurfaces
for each of the variable pairs: YOH and MF, MF and CHI, CHI and
VORT, and VORT and YOH. A small transition weight (w;; = 0.1) was
used to maintain the minimum smoothness between the consecutive
animation frames. Figure 6 (b) to (e) show four animation frames
presenting the similar isosurfaces. The similarity of isosurfaces seen
in Figure 6 (c) indicates that the variations of CHI on isosurfaces of
MF occur mainly at large scales, which happens mostly for thin scalar
layers with high values of CHI. The regions where the CHI and MF
isosurfaces collapse correspond to the thin layers with steep scalar
gradients (high values of CHI). In Figure 6 (d), while the isosurfaces



() (b) (©

Fig. 10. Isosurface rendering of (a) E1U at time steps 2 and 13, (b) ESW
and E1W at time step 2, and (c) ESW and E1W at time step 13.
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Fig. 11. Overview of the entire climate data set of 1200 time steps.

of CHI and VORT are complex, the expert pointed out that low CHI
regions correspond to high VORT regions, because strong vortical
motions tend to mix scalars and reduce their gradients.

Finally, the expert switched to the evolution mode of the matrix
view to further investigate the relationship between YOH and MF. Two
purple cells were specified as the starting and ending points in the
YOH-MF VSMs. Two paths were generated for comparison: one with
a positive target weight (w;g = 1) and the other with a negative target
weight (w;g = —1). The transition weight wys was set to 0 to eliminate
the influence of transition cost, and o was set to 4 to allow more edges
with smaller cost. Figure 7 (a) shows the path with the positive target
weight and the isosurfaces in three animation steps along the path.
The path passes only the purple regions near the centers of the VSMs,
corresponding to the middle range isovalues of YOH and MF. In the
isosurface view, it can be seen that the blue isosurfaces occupy similar
regions as the corresponding orange ones at all the three time steps,
due to the correlation of YOH and MF. In contrast, the path with the
negative target weight goes through the green regions at the bottom-
right corners of the VSMs, even if it starts and ends at purple cells,
as shown in Figure 7 (b). This path mostly relates to the high MF
isosurfaces and the low YOH ones. In the isosurface view, it can be
seen that the blue and orange isosurfaces are disjoint in the space. As
the wrinkling history of isosurfaces due to turbulence is different for
isosurfaces present in different regions, the dissimilarity is expected.

Atmospheric data set. A set of 3D numerical experiments is per-
formed to explore the mechanical impacts of Graciosa Island on the dry
boundary layer evolution under varying wind speed and surface friction
setups. The simulations are conducted using the Cloud Model 1 (CM1
release 19 [6]). The full data set has 32 ensemble simulations which
are comprised of four basic wind speeds (1, 5, 10, and 20 m/s), four
wind directions (west, east, north, and south), and two bottom boundary
conditions (friction/no friction). Two variables, the U and W compo-
nents of the wind flow, are studied. To distinguish the variables under
different simulation setups, we add the initials of the wind directions
and speeds to the names of variables. For example, “ESU” stands for
variable U with the east wind direction and speed 5 m/s.

We invited a domain expert with ten years of experience in atmo-
spheric sciences to evaluate MISM using this data set. Since friction
effects are more pronounced in lower wind speeds, the expert focused
on the 5 m/s case to visualize and analyze flow variability. The expert
first investigated the evolution of variable U under different wind direc-
tions with friction and Sm/s wind setup. Figure 8 (a) shows the matrix
view in the all-pairs mode at time step 13. The SSMs at the diagonal
show that the west and east have similar patterns, and so do the SSMs
of the north and south. In Figure 8 (b), the isovalue view shows a
similar relationship. The representative isovalues distribute similarly
for the four wind directions at time step 2 (bottom). In contrast, at time

step 13 (top), the distributions form two different patterns. The expert
explained that this means from time step 2 to 13, the west and east
show much larger flow variability compared to the north and south,
which is attributed to the west-east orientation of the island located
at the center of the simulation domain. The representative isovalues
spread out in different directions for the west and east, but the represen-
tatives of the south and north are still similar to those in the first time
step. Figure 8 (c) shows that the isosurface of the north (orange) has
quite a different shape from that of the west (blue). Unlike the blue
isosurface, the orange one covers both the upper and lower portions of
the domain, although the isovalue is small. In contrast, the isosurfaces
corresponding to small absolute wind speeds of the west (blue) and east
(orange) have similar shapes, as shown in Figure 8 (d). Both isosurfaces
reside in the lower portion of the domain, although their orientations
are opposite. By selecting the isovalues representing larger wind speeds
(as highlighted by the red circle in Figure 8 (a)), the expert found that
the corresponding isosurfaces are also similar, as shown in Figure 8
(e). These two isosurfaces occupy mostly the entire domain as the wind
gets stronger. The expert commented that the east wind direction seems
to be more interesting. It demonstrates more variation on the surfaces
and in the isovalue view, due to a stronger island effect on incoming
flow in this configuration.

Then, the expert compared four variables within the east wind direc-
tion: ESU, ESW, E1U, and E1W (i.e., variables U and W with wind
speeds 5 m/s and 1 m/s). Only one temporal cluster is produced by
affinity propagation, indicating a consistent pattern over time. There-
fore, the expert used all individual time steps to explore their temporal
relationships. Figure 9 shows the overview of the evolution mode of the
matrix view. In general, the expert found that the patterns of matrices
in different rows are similar, which confirms the temporal clustering
results. Note that, for ESU and E1U, the purple regions in the middle
value range are growing over time. The expert commented that this
is indicative of the non-steady simulation behavior. By displaying
the isosurfaces, the expert found that the purple region corresponds
to surfaces covering the entire domain. This trend indicates that, at
the later time steps, the surfaces of different value ranges of U tend to
cover more space and become more similar to each other. Figure 10 (a)
shows two isosurfaces of a larger isovalue of E1U at time step 2 (blue)
and time step 13 (orange), respectively. It can be seen that the orange
surface covers almost the entire domain, but the blue one is mainly
located at the center of the domain.

The temporal development of variable W with wind speeds 5 m/s
and 1 m/s seems to be slightly different. While the pattern in column
E1W is more stable, the purple region in ESW is shrinking over time.
This indicates that, unlike variable U, the isosurfaces of ESW appear to
be similar at the beginning, but tend to be more distinguishable over
time. Although the development trend is different, the expert found that
E5W and EIW become more similar in the larger value range, since
the upper-right corners of the EIW-E5W TSMs gradually transit from
green to light green. At time step 2, the isosurfaces corresponding to
a larger isovalue of ESW (blue) and E1W (orange) occupy different
spatial regions, as shown in Figure 10 (b); but at time step 13, the
two isosurfaces reside in the same region, as shown in Figure 10 (c).
However, the similarity is still not high, since the distance between
different layers of the blue surfaces is much larger.

5.3 Additional Case Studies

Climate data set. This data set was generated from a simulation of
salinity (SAL) and temperature (TEM) in the equatorial region from
20°S to 20°N for a period of 100 years. This data set contains 1200
time steps (one month per time step), from which temporal clustering
identifies 13 representatives, as shown in Figure 11. From the repre-
sentatives, we can see that SAL exhibits a more stable pattern than
TEM. Interestingly, although our temporal clustering does not consider
the order of time steps, nine months in the first year are selected as
representatives. Overall, the clusters are consistent with the monthly
weather change in each year. But we can also notice that for two long
periods of time, most of the time steps are placed in the same cluster,
as highlighted in the blue rectangles.
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Fig. 12. The single-pair mode of the matrix view using the climate data set. (a) shows the TSM comparing time steps 265 and 289. Time step 289
is associated with the El Nifo condition. (b) and (c) show a high TEM isosurface (blue) and a low TEM one (orange) at time steps 265 and 289,
respectively. (d) shows two high TEM isosurfaces at time steps 265 (blue) and 289 (orange). (e) shows two high TEM isosurfaces at time steps 241
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Fig. 13. Isosurfaces corresponding to map-level paths using the ioniza-
tion data set. (a) to (c) show the representative isosurfaces for H2 at time
steps 31, 98, and 181, respectively. (d) shows the same isosurfaces as
(b) but focusing on the orange isosurface. (e) to (g) show the same as
(a) to (c) but for H+.
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Then, we examine the temperature change with the El Nifio condi-
tion. We select time step 289 (with El Nifio), as highlighted by the red
bar in Figure 11, and compare it with time step 265 (without). Time
step 265 corresponds to the same month as time step 289, but two
years before. The single-pair mode of the matrix view displays the two
SSMs on the left and the corresponding TSM on the right, as shown in
Figure 12 (a). The arrows indicate TEM from low to high. We find that
both SSMs share the same pattern: the low TEM isosurfaces are very
similar to each other, indicated by a dark purple block; the medium
TEM isosurfaces are moderately similar to each other and the low TEM
ones but not that similar to the high TEM ones; and the high TEM
isosurfaces are similar to each other but not that similar to the low and
medium TEM ones. Similar patterns can be observed in the TSM as
well, except that the high TEM isosurfaces do not share high similarity.

By selecting the cell highlighted in the blue circle, the isosurface
view renders a high TEM isosurface (blue) and a low TEM one (orange)
at time step 265 for comparison, as shown in Figure 12 (b). The high
TEM isosurface is associated with a small region close to the ocean
surface and the low TEM one covers the entire oceans at the bottom. By
selecting the cell highlighted in the red circle, two isosurfaces at time
step 289 are displayed, as shown in Figure 12 (c). We can see that the
low TEM isosurface is mostly the same as the corresponding one at time
step 265; but the high TEM isosurface is quite different, with the central
and eastern equatorial Pacific Ocean covered, confirming the existence
of El Nifio. By selecting the cell highlighted in the green circle, we
compare the two high TEM isosurfaces, as shown in Figure 12 (d).

The cells related to these two isosurfaces are highlighted by rectangles
in the corresponding colors, as shown in Figure 12 (a). Figure 12 (e)
shows two high TEM isosurfaces at time steps 265 and 241 (which is
exactly two years before 265). Clearly, without the El Nifio condition,
the high TEM regions are similar in the same month across years.
Tonization data set. For this data set, we find that all SSMs show a
similar pattern: the purple cells mostly concentrate along the diagonals
leaving other regions in green. This indicates the strongly localized
pattern for isosurfaces at different value ranges. We use map-level
paths to trace the movement of the ionization front for each individual
variable and show the corresponding isosurfaces in Figure 13. Figure 13
(a) to (c) correspond to H2 at three representative time steps at the
beginning, middle, and ending stages, respectively. Obviously, the
most representative isosurface shown in blue moves from left to right
and demonstrates different shape characteristics. In Figure 13 (a), we
can also observe three other representative isosurfaces with a similar
shape as the most representative one, displayed as the orange, red, and
purple silhouettes. However, in Figure 13 (b), the other representative
isosurfaces are occluded by the most representative one shown in blue.
Therefore, we shift the focus to the orange one, as shown in Figure 13
(d). The blue, green, and purple silhouettes indicate that the isosurfaces
form multiple layers of the same structure. Figure 13 (c) shows the
isosurfaces of H2 at the ending stage. Figure 13 (e) to (h) show a
similar process for H+ but with a different shape of the ionization front.

6 CONCLUDING REMARKS

To provide a convenient mechanism for users to browse through a
large time-varying multivariate or ensemble data set in the form of
isosurfaces, we present MISM, a visual interface that organizes a huge
number of ISMs for navigation and exploration. We design effective
solutions to achieve both computational scalability (by computing a
massive number of self, temporal, and variable similarity maps using
GPU-accelerated approximation) and visualization scalability (by pre-
senting MISM at different levels of detail via clustering, grouping, and
filtering schemes). To the best of our knowledge, both scalabilities
have not been demonstrated previously in this context. With advanced
features such as path recommendation and surface comparison, MISM
is the first of its kind that supports flexible relationship exploration
and examination among isosurfaces extracted from the multifaceted
data, providing the capability that goes beyond a traditional animation
playback could offer.

In the future, we would like to investigate an alternative semantic
abstraction of MISM. This would sprout the opportunity to further sim-
plify the relationships to a much condensed form for understanding. We
would also like to create a static visualization variant that summarizes
the isosurfaces in path animation, so that the relationships among the
isosurfaces can be understood using a single image.
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APPENDIX
1 ISOSURFACE SIMILARITY MAPS

To fulfill the design requirement R3, we create three types of similarity
maps to capture different types of relationships among the isosurfaces.

Self-similarity map. Bruckner and Moller [5] introduced the isosur-
face similarity map (ISM) to evaluate the similarities among isosurfaces
generated from a volumetric data set. For a given n sampled isovalues,
the ISM is a symmetric n X n matrix M where each cell M[i, j] records
the similarity value between isosurfaces S; and S;. For every surface
S;, we compute a distance field D; which records the distance from
each voxel in the volume to the closest point on S;. The similarity
between S; and S; is then computed as the mutual information between
distance fields D; and D, using the joint histogram of their distance
distributions. We refer to such an ISM as the self-similarity map (SSM)
as it is only concerned with isosurfaces generated from a single volume.

For a time-varying multivariate data set of ¢ time steps and v vari-
ables, we need to compute ¢ x v SSMs. Since each SSM may take
hours to compute given a reasonable number of sampled isosurfaces
(e.g., we use n = 256), we apply the GPU-accelerated approximation
solution [17] to speed up the computation while maintaining the fidelity
of the resulting SSM. The major steps are listed in Figure 2 of the paper.
Specifically, we consider the following:

* First, instead of generating the actual isosurface, we record voxels
that contain the isosurface and use that information as an approx-
imation for distance field computation. The error of using this
approximation to compute the distance from a voxel to a surface
is bounded by v/3/2 (i.e., half the diagonal length of the grid cell).
This error is acceptable as downsampled distance fields are often
suggested to compute the similarity map.

* Second, for distance field computation, we need to search for
each voxel in the volume, the closest point on the isosurface (in
our case, the closest voxel containing the isosurface). To reduce
the search space, we use the downsampled distance field. We
leverage the bounding volume hierarchy (BVH)-trees to speed
up the search process. Specifically, we use bounding boxes for a
lower construction time and apply Karras’s algorithm [21] to build
BVH-trees in parallel. This is essential for performance gain since
a BVH-tree needs to be built for every isosurface approximation.
Since the BVH-trees store approximation points from the original
volume, this guarantees that small features can still be preserved
for accurate distance field computation.

¢ Third, the most time-consuming component in the SSM compu-
tation is the construction of the joint histogram of two distance
fields since it has to be performed for each pair of isovalues. We
therefore compute the downsampled distance field and use it for
subsequent computation. It has been shown that the resolution
can be considerably reduced (e.g., 8 x in each dimension) without
substantial changes in the resulting similarity map [5].

For each SSM, we identify m representative isovalues using a greedy
strategy that recursively partitions the set of isovalues and selects rep-
resentative ones based on a priority queue scheme [5]. Typically, m
is much smaller than n, e.g., we use m = 16. We leverage a GPU to
compute isosurface approximations, downsampled distance fields, and
joint histograms. With that, we are able to reduce the average time to
compute a single SSM from hours to a few minutes using a single GPU.

Isosurface computation. After the representative isovalues are
identified for each volume, we implement a GPU version of the march-
ing cubes algorithm [25] to compute the actual isosurfaces and simplify
the resulting surfaces [16]. Both steps are performed on the CPU during
a one-time preprocessing stage. The simplification can significantly
reduce the space for storing isosurfaces without sacrificing much of
the surface quality. This is important as we need to generate a total
of m X t X v representative isosurfaces for the entire time-varying mul-
tivariate data set. Using simplified isosurfaces alleviates I/O burden,
making it possible for us to achieve interactive visualization and com-
parison of a number of isosurfaces while still maintaining good visual
quality.

As an example, we can see in Figure 1 that our approximation
(b) yields a very similar SSM as the exact marching cubes algorithm
does in (a). In (d), we show the isosurfaces corresponding to the four
most representative isovalues selected in (b). Comparing (a) and (b),
although there are slight shiftings of the selected isovalues, those are
barely visible in the surface rendering, as shown in the difference image
(c). Such minor differences are neglectable as the main goal of selecting
the most salient isovalues and depicting their surfaces is still achieved.
With our CUDA-accelerated solution, the time cost to compute the SSM
is improved by a factor of 43x (72.30s vs. 3,161.70s). The difference
image shown in (e) indicates that surface simplification yields a close
rendering result with a much less number of triangles (3,519,952 vs.
235,030, or nearly 15x reduction).

() @

Fig. 1. Comparing SSMs generated using (a) the actual isosurfaces
against (b) our approximation with the combustion data set (a time step
of the MF variable). The marching cubes algorithm is used to extract the
surfaces shown in (d) for the four most representative isovalues selected
in (b). (c) shows the difference between the surfaces selected in (a) and
(b), and (e) shows the difference between the surfaces selected in (b)
and their simplified version.

Temporal and variable similarity maps. Our goal is to investigate
not only the SSMs corresponding to individual volumes, but also the
similarity maps between the volumes of different time steps and the
volumes of different variables. Therefore, we also compute two other
kinds of isosurface similarity: temporal similarity and variable simi-
larity, extending the work of multimodal surface similarity [15] from
only a single pair to all pairs of variables, and from steady to time-
varying data. These similarities are computed between representative
isosurfaces from the same variable at different time steps (temporal
similarity), and from different variables at the same time step (variable
similarity). We call the resulting similarity maps temporal similarity
maps (TSMs) and variable similarity maps (VSMs), respectively. A
TSM or VSM is not symmetric anymore as the representative isovalues
come from different volumes. Each TSM or VSM is much smaller
in size compared with an SSM (m x m vs. n X n), but the numbers of
TSMs (i.e., v x t(t —1)/2) and VSMs (i.e., t x v(v — 1)/2) are much
larger than that of SSMs (i.e., # X v) as we need to compute TSMs and
VSMs for different pairs of time steps and variables.
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