
TSR-TVD: Temporal Super-Resolution for Time-Varying Data
Analysis and Visualization

Jun Han and Chaoli Wang, Senior Member, IEEE

… …

G

real / fake

spatial flow

temporal flow

blending flow

temporal

component

feature learning

component

upscaling

component

same-variable

inference

different-variable

inference

blending

module

time step Vi time step Vi+k

G

D

G

Vi+k-1Vi+k-2Vi+k-3Vi+1Vi+1 Vi+2 Vi+3 Vi+k-1

forward

prediction

backward

prediction

ground-truth

volume

synthesized

volume

time step

Vj

time step

Vj+k

time step

Vi

time step

Vi+k

synthesized

volume

synthesized

volume

Vi+1
~

Vi+1

F F F F BBBB

Fig. 1. TSR-TVD learns the generation of intermediate volumes from a given pair of volumes. The network includes a generator G
which consists of the predicting and blending modules and a discriminator D which distinguishes the synthesized volumes from the
ground truth (GT) volumes. Once learned, the network can perform both same-variable and different-variable inferences using G.

Abstract— We present TSR-TVD, a novel deep learning framework that generates temporal super-resolution (TSR) of time-varying
data (TVD) using adversarial learning. TSR-TVD is the first work that applies the recurrent generative network (RGN), a combina-
tion of the recurrent neural network (RNN) and generative adversarial network (GAN), to generate temporal high-resolution volume
sequences from low-resolution ones. The design of TSR-TVD includes a generator and a discriminator. The generator takes a pair
of volumes as input and outputs the synthesized intermediate volume sequence through forward and backward predictions. The
discriminator takes the synthesized intermediate volumes as input and produces a score indicating the realness of the volumes. Our
method handles multivariate data as well where the trained network from one variable is applied to generate TSR for another variable.
To demonstrate the effectiveness of TSR-TVD, we show quantitative and qualitative results with several time-varying multivariate data
sets and compare our method against standard linear interpolation and solutions solely based on RNN or CNN.

Index Terms—Time-varying data visualization, super-resolution, deep learning, recurrent generative network

1 INTRODUCTION

In many fields of science, scientists run large-scale scientific simula-
tions and produce time-varying multivariate data on a daily basis. In
this paper, we focus on augmenting the temporal resolution of these
data as scientists often simulate a long temporal sequence with many
variables involved but could only afford to store a very limited num-
ber of time steps (e.g., every hundredth time step) for post-hoc anal-
ysis. Our goal is to augment these reduced simulation data during
post-processing by generating the refined temporal resolution to en-
able more accurate investigation of dynamic spatiotemporal features of

• J. Han and C. Wang are with the Department of Computer Science and
Engineering, University of Notre Dame, Notre Dame, IN 46556.
E-mail: {jhan5, chaoli.wang}@nd.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of
Publication xx xxx. 201x; date of current version xx xxx. 201x.
For information on obtaining reprints of this article, please send
e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx/

the underlying data. That is, given a low-resolution volume sequence
of, for example, 100 time steps, we aim to generate the high-resolution
volume sequence of, for example, 500 time steps, while keeping the
spatial resolution intact.

Producing temporally refined volume sequences for time-varying
data poses two main challenges. The first challenge is that the dy-
namic change of volume data over time is typically non-linear. Con-
ventional approaches employ standard linear interpolation (LERP) to
generate intermediate volumes. These interpolations are only based
on local information around the interpolated position, and therefore
may not capture the complex evolution and non-linear changes of vol-
umes. The second challenge is how to take visual quality into consid-
eration. Applying a typical recurrence-based neural network design to
our problem would only measure the voxelwise distance, which may
not lead to high-quality rendering results even though the PSNR is
high. For example, Zhang et al. [61] pointed out that only using a pix-
elwise loss function to train a neural network could generate images
with noise and artifacts.

To address these challenges, we present TSR-TVD, a novel deep
learning framework for producing temporal super-resolution (TSR)

from time-varying data (TVD). We leverage the recurrent generative
network (RGN), a combination of the recurrent neural network (RNN)
and generative adversarial network (GAN), to achieve TSR. This is
because RNN and GAN can learn the temporal and spatial relation-
ship among different volumes non-uniformly and non-locally, thus in-
terpolating the intermediate volumes with high quality. Inspired by the
sequence learning (e.g., weather forecasting and machine translation)
and image generation (e.g., frame interpolation and video prediction)
techniques, our solution consists of a generator and a discriminator
for producing temporally coherent TSR of a sequence of volumes us-
ing adversarial learning. TSR-TVD takes the sampled volumes as in-
put and generates the intermediate volumes. We train TSR-TVD by
optimizing the loss function that includes adversarial loss, volumetric
loss, and feature loss. Our TSR-TVD handles multivariate data as well
where the trained network from one variable is applied to generate
TSR for another variable. To demonstrate the effectiveness of TSR-
TVD, we show quantitative and qualitative results with several time-
varying multivariate data sets of different characteristics. We compare
TSR-TVD against the widely-used LERP and solutions based on RNN
or CNN only. We show that our method achieves a better quality than
LERP in terms of PSNR at the data level and the best quality in terms
of SSIM at the image level.

The contributions of this paper are as follows. First, our work is
the first that applies RGN (a combination of RNN and GAN) for gen-
erating TSR of a volume sequence. Second, we apply ConvLSTM
layers for capturing spatiotemporal relationships and propose a new
voxel shuffle layer for accelerating the training process. Third, we
design a new architecture for the TSR task, which supports not only
same-variable inference but also different-variable inference. Fourth,
we investigate several hyperparameter settings and analyze how they
impact the performance of TSR-TVD.

2 RELATED WORK

Time-varying multivariate data analysis and visualization is a key
topic in scientific visualization. We refer interested readers to the
survey paper [24] for an overview. Existing works on time-varying
data analysis and visualization focus on efficient organization and ren-
dering [44, 52, 59], transfer function specification [20], illustration-
inspired [23] and importance-driven [54] techniques. For time-varying
multivariate data, researchers have investigated query-driven visual-
ization [47, 9], exploration of variable correlation [43], variable group-
ing [4], and information flow between variables [53, 29], as well as
navigation interfaces [2, 48]. In the following, we restrict our attention
to related work on temporal super-resolution for video, relevant GAN
and RNN techniques, and deep learning for scientific visualization.

TSR for video. Deep learning has achieved great success in gen-
erating TSR for video. For instance, Niklaus et al. [35] introduced
a convolutional neural network (CNN) for frame interpolation where
the network learns a kernel through the input frames and then applies
the learned kernel to generate the missing frames. Nguyen et al. [34]
proposed a deep linear embedding model to interpolate the interme-
diate frames. They transformed each frame into a feature space, then
linearly interpolated the intermediate frames in the feature space, and
finally recovered the interpolated features to the corresponding frames.
Jiang et al. [21] established a CNN to estimate the forward and back-
ward optical flows via two given frames. They then wrapped these
optical flows into the frames to generate arbitrary in-between frames.

Our work differs from the above works. First, we leverage RNN to
capture the temporal relationship rather than using CNN, since RNN
can learn the potential pattern across time. Second, unlike image gen-
eration tasks where researchers can use a pre-trained image classifi-
cation model to improve the visual quality of the synthesized results,
there is no such model for volumes. Third, many deep learning mod-
els compute the optical flow to generate intermediate frames but these
models need either a lot of labeled optical flow data for training or
an additional subnetwork to calculate the optical flow in an unsuper-
vised way. Therefore, We apply GAN to ensure the high quality of
the synthesized volumes. There are works that use RNN or GAN for
similar purposes [18, 30, 6], but not at the same time as our work does.

Our approach does not require a lot of labeled data or additional mod-
ules, which reduces its complexity and training time. We incorporate
ConvLSTM to achieve temporal coherence. Based on this mechanism,
TSR-TVD uses all information from time steps i, i+1, · · · , i+ j−1 to
interpolate time step i+ j.

GAN and RNN techniques. Introduced by Goodfellow et al. [10],
a GAN includes two networks: a generator G and a discriminator D.
G tries to synthesize data samples from noise or observation to fool
D, while D aims to distinguish the data generated by G from the real
samples. GAN has been applied to image translation [19, 55], style
transfer [22], image inpainting [37], and image super-resolution [28]
tasks. Due to the problem of unstable training, different techniques
have been considered during training, such as L2 loss [37], gradient
regularization [32], and separate learning rates for G and D [42]. An
RNN accepts a sequence as input and builds the temporal relation-
ships through the internal states. One of the most frequently used
RNN architectures is long short-term memory (LSTM) [15], which has
been applied to video colorization [27] and video caption [51]. Due to
the problem of gradient vanishing and explosion, different techniques
have been applied in RNN training, such as stacked LSTMs [51] and
gradient clipping [36].

Deep learning for scientific visualization. There is a growing
body of works that apply deep learning to solve scientific visualization
problems. Tzeng et al. [49, 50] pioneered the use of artificial neural
networks for classifying 3D volumetric data sets. Ma [31] pointed out
the use of neural networks as a promising direction for visualization
research. With the explosive growth of modern deep learning tech-
niques, researchers have recently started to explore the capabilities of
deep neural network (DNN) to address various problems.

For volume visualization, Zhou et al. [62] presented a CNN-based
solution for volume upscaling which better preserves structural de-
tails and volume quality than linear upscaling. Raji et al. [39] lever-
aged CNNs to iteratively refine a transfer function, aiming to match
the visual features in the rendered image of a similar volume data
set with the one in the target image. Cheng et al. [7] presented a
deep-learning-assisted solution which depicts and explores complex
structures that are difficult to capture using conventional approaches.
Berger et al. [3] designed a GAN to compute a model from a large
collection of volume-rendering images conditioned on viewpoints and
transfer functions. Shi and Tao [45] proposed a CNN-based view-
point estimation method that achieves good performance on images
rendered with different transfer functions and rendering parameters.
Xie et al. [60] designed a temporally coherent approach to generate
spatial super-resolution volumes where temporal coherence is guaran-
teed through a temporal discriminator. Weiss et al. [57] presented an
image-space solution that learns to upscale a sampled representation
of geometric properties of an isosurface at low resolution to a higher
resolution. They considered temporal variations by adding a frame-to-
frame motion loss to achieve improved temporal coherence.

For flow visualization, Hong et al. [16] used LSTM to learn and
predict data access patterns in particle tracing in order to hide the I/O
latency in distributed and parallel flow visualization. Wiewel et al.
[58] took a LSTM-based approach to predict dense 3D+time func-
tions of physics system using an autoencoder framework. Kim and
Günther [25] combined filter and feature extraction in an end-to-end
manner using CNN for robust reference frame extraction from un-
steady 2D vector fields. Han et al. [12] proposed a deep learning
method for vector field reconstruction that takes the streamlines traced
from the original vector fields as input and applies a two-stage process
to reconstruct high-quality vector fields. Han et al. [11] designed an
autoencoder to learn the features of flow lines or surfaces in the latent
space and performed dimensionality reduction and interactive cluster-
ing for representative selection.

Although generating a spatial high-resolution volume from a low-
resolution one has been studied [62, 60], to our best knowledge, in the
context of time-varying data analysis and visualization, no work has
been done that generates a temporal high-resolution volume sequence
from a low-resolution one, which is the focus of this work.

3 OUR RECURRENT GENERATIVE APPROACH

We define the TSR problem as follows. Given a pair of volumes
(Vi,Vi+k) from time steps i and i+k (where k > 1), we seek a function
φ that satisfies φ(Vi,Vi+k) ≈ V, where V = {Vi+1,Vi+2, · · · ,Vi+k−1}
are the intermediate volumes between Vi and Vi+k.

We propose a novel recurrent generative network (RGN) which is
a combination of RNN and GAN. The RGN includes a generator G
and a discriminator D. G uses two modules to estimate the function
φ , as sketched in Figure 1. The first module, the predicting module
(φPREDICT), is a volume prediction network that produces a forward
prediction VF through Vi and a backward prediction VB through Vi+k,
respectively. Namely,

VF = φ
F
PREDICT(Vi), (1)

VB = φ
B
PREDICT(Vi+k), (2)

φPREDICT = {φ F
PREDICT,φ

B
PREDICT}. (3)

The second module, the blending module (φBLEND), takes Vi, Vi+k,
and the corresponding pair of volumes from VF and VB that share
the same time step (for clarity, Figure 1 only illustrates the blending
flow connections with time step i+1) as input, and blends them into a
volume that represents the final prediction Ṽ, i.e.,

Ṽ = φBLEND(Vi,Vi+k,VF,VB). (4)

As we use the down-sampling and up-sampling framework to re-
construct intermediate volumes, detailed features may be lost dur-
ing down-sampling which cannot be recovered perfectly during up-
sampling. Adding Vi and Vi+k into the blending will help to elimi-
nate noise generated from the predictions. The discriminator D dis-
tinguishes Ṽ from V. That is, given different inputs to D, D outputs
a score to indicate the realness of the input. Ideally, D(V) ≈ 1 and
D(Ṽ) ≈ 0. In this regard, D can be treated as a binary classifier. The
score from D can guide G in synthesizing high-quality volumes since
the goal of G is to fool D so that D cannot distinguish Ṽ as fake vol-
umes.

In the following, we describe the details of TSR-TVD, including the
definition of the loss function and the architectures of G and D. The
training algorithm and optimization details can be found in Section 1
in the Appendix.
3.1 Loss Function
Notations. Let us denote VT = {(V1,Vk1),(Vk1 ,Vk2), · · · ,(Vkn−1 ,Vkn)}
as a set of input volume pairs for our TSR-TVD framework, and VI =
{{V2, · · · ,Vk1−1},{Vk1+1, · · · ,Vk2−1}, · · · ,{Vkn−1+1, · · · ,Vkn−1}} as the
ground truth (GT) intermediate volumes that we aim to interpolate. Let
θG and θD be the learnable parameters in G and D, respectively, and K
be the maximal interpolation step (i.e., ki+1−ki 6K+1, i∈ [0,n−1]).

Adversarial loss. Following the definition in GAN [10], we define
the adversarial loss for G and D as follows

min
θG

LG = EV∈VT
[

logD(G(V))
]
, (5)

min
θD

LD =
1
2
EV∈VI

[
logD(V)

]
+

1
2
EV∈VT

[
log

(
1−D(G(V))

)]
, (6)

where E[·] denotes the expectation operation.
The idea behind this formulation is that we let G and D compete

with each other so that G can produce synthesized volumes which fully
fool D as the training goes, while the goal of D is to distinguish the
synthesized volumes as fake and return this information to G to force
G to be more powerful until D and G achieve a balance. Through this
process, G can learn how to synthesize high-quality volumes that are
highly close to the GT. This competition idea behind adversarial loss
encourages a perceptual solution rather than a PSNR or SSIM orien-
tated solution by minimizing voxelwise loss, such as L1 loss. Note that
using the adversarial loss alone would lead to an unstable training for
G and D. Therefore, we further consider volumetric loss and feature
loss, which are described next.

Volumetric loss. Since the adversarial loss only considers percep-
tual results, we add a volumetric loss in LG, which means that the
task of G is to not only fool D but also get close to the GT output in
the L2 sense, while the job of D remains unchanged. In addition, the
training stability can also be improved through adding the volumetric
loss [37, 19]. Therefore, we utilize the L2 distance as a part of our loss
function for G

LV = EV ′∈VT ,V∈VI
[
||G(V ′)−V ||2

]
, (7)

where || · ||2 denotes the L2 norm.
Feature loss. Zhang et al. [61] suggested that features extracted

from DNNs can be used as a metric to evaluate the output of gener-
ative models. Following this guideline, we also compute the feature
difference between VI and G(VT) based on D. This feature loss en-
forces G to produce similar features between G(VT) and VI at differ-
ent scales. Specifically, the features are extracted from every convo-
lutional (Conv) layers of D except the final Conv layer and G can try
to minimize these intermediate representations between the real and
synthesized volumes. We denote the feature representation extracted
from the kth Conv layer as Fk. Then the feature loss is defined as

LF = EV ′∈VT ,V∈VI

N−1

∑
k=1

1
Nk

[
||Fk(G(V ′))−Fk(V)||2

]
, (8)

where N is the total number of Conv layers in D and Nk denotes the
number of elements in the kth Conv layer. This feature loss is related to
the VGG loss [22, 55] which has achieved impressive results in image
super-resolution and style transfer tasks.

Taking all three losses into consideration, we define the final loss
function for G as

min
θG

LG = λ1
(
EV∈VT

[(
D(G(V))−1

)2])
+λ2LV +λ3LF , (9)

where λ1, λ2, and λ3 are hyperparameters, which control the relative
importance of these three losses.

(c)

(b)

ConvLSTM SN Conv Residual Block

(a)

P1

P2

…

feature learning temporal upscaling

Fig. 2. Network architecture of (a) the predicting module in generator G
and (b) discriminator D. (c) An example of the residual block.

3.2 Network Architecture
Generator. As sketched in Figure 1, the generator G contains two
modules: a predicting module and a blending module. The predicting
module is composed of three components: a feature learning compo-
nent, a temporal component with multiple ConvLSTM layers, and an
upscaling component, as sketched in Figure 2 (a). The feature learning
component extracts feature representations from the volumes, the tem-
poral component bridges the spatial and temporal information among
different volumes, while the upscaling component recovers the vol-
umes from the spatiotemporal features. The blending module takes
all outputs from the predicting module as input and generates the final
synthesized volumes.

Since a traditional residual block cannot change the resolution of
the input [14], we propose an advanced residual block (still referred to
as the residual block for the rest of paper), which allows to downscale
or upscale its input. This treatment brings several benefits to training
TSR-TVD. First, it captures multiscale features. Second, it prevents
the network from gradient vanishing. Third, it allows us to build a
deeper neural network to enhance performance.

The core of the feature learning component is four residual blocks.
Each residual block contains two parts (P1 and P2): P1 consists of
four Conv layers followed by spectral normalization (SN) [32] (which
normalizes the parameters in the Conv layer to stabilize the training)
and ReLU [33], and P2 contains one Conv layer followed by SN and
ReLU. These two parts are bridged by skip connection [41], as shown
in Figure 2 (c). We set the kernel size for the first residual block to
5×5×5 and for the last three residual blocks to 3×3×3. We set the
stride to two, which means that the resolution of the input is halved
in each residual block. We set the feature maps in these four residual
blocks to 16, 32, 64, and 64, respectively.

For the temporal component, we apply ConvLSTM [46] to transfer
the spatial features into spatiotemporal features so that TSR-TVD can
predict the next volumes via the previous volumes. Compared with the
traditional LSTM [15], the weight-sharing mechanism in convolution
allows us to use fewer parameters to train ConvLSTM, which saves
much memory and speeds up the training process. There are three
states in ConvLSTM: input state, forget state, and output state. These
three states determine whether or not we should let new input in (input
state), delete the information because the input is not important (forget
state), or let the input impact the output at the current time step (output
state). Taking the data (xt), previous hidden state (ht−1), and memory
state (ct−1) as input, ConvLSTM is defined as follows

ft = σ(Wx f ?xt +Wh f ?ht−1 +b f), (10)

it = σ(Wxi ?xt +Whi ?ht−1 +bi), (11)
ot = σ(Wxo ?xt +Who ?ht−1 +bo), (12)

c′t = tanh(Wxc ?xt +Whc ?ht−1 +bc), (13)

ct = it � c′t + ft � ct−1, (14)
ht = ot � tanh(ct), (15)

where it , ft , ct , ot , ht are the input, forget, memory, output, and hid-
den states at the tth step in ConvLSTM, respectively. σ(·), tanh(·),
?, and � represent the logistic sigmoid activation function, hyperbolic
tangent activation function, Conv operation, and elementwise multipli-
cation, respectively. (Wx f ,Wh f ,b f), (Wxi,Whi,bi), (Wxo,Who,bo),
and (Wxc,Whc,bc) are learnable parameters in ConvLSTM. By de-
fault, we set h0 = 0 and c0 = 0. Note that ConvLSTM does not change
the resolution of the input. An example of the ConvLSTM is shown in
Figure 3 (a).

itft ot

ct

ht

ct-1

xt-1

htht-1

tanh

tanh

Voxel

Shuffle

(a) (b)
Fig. 3. (a) An example of the ConvLSTM. (b) An example of the voxel
shuffle layer.

The upscaling component takes the spatiotemporal features from
ConvLSTM as input and outputs a synthesized volume. A common
approach to recover resolution from max-pooling or Conv layers is to
use deconvolutional (DeConv) layers. However, this approach brings
two problems: high computational cost and unnecessary zero padding.
For example, if we need to upscale a feature of size [L,W,H] with a
factor f , the DeConv operation will first expand the feature to a reso-
lution of [f L+ S− 1, fW + S− 1, f H + S− 1] through zero padding,

where S is the kernel size, then apply Conv operations to produce the
output of size [f L, fW, f H]. To address these problems, we propose an
effective sub-voxel Conv layer, which we call the voxel shuffle layer,
for upscaling. The definition is as follows

O = S (W? I+b), (16)

where I and O are the input and output, respectively, W and b are
the learnable parameters, and S is a periodic shuffle operation that
rearranges the elements of a [C f 3,L,W,H] tensor to a tensor of size
[C, f L, fW, f H] (C denotes the number of channels). An example of
this operation is illustrated in Figure 3 (b).

We apply the same architecture used in the feature learning com-
ponent to the upscaling component. The difference is that we add the
voxel shuffle layer after the last SN layer in P1 and P2. As for hyper-
parameter setting, the kernel size is set to 3× 3× 3 in the first three
residual blocks and 5×5×5 in the last residual block. We set the up-
scaling factor to 2 for each voxel shuffle layer and the feature maps in
these four residual blocks to 64, 32, 16, and 1, respectively. Note that
we apply tanh(·) after the final residual block.

Through the prediction module, we obtain the forward prediction
VF

i and backward prediction VB
i . The blending module accepts Vki ,

Vki+1 , VF
i , and VB

i as input to produce the final synthesized volume Ṽi

Ṽi = wiVki +(1−wi)Vki+1 +
1
2
(VF

i +VB
i), (17)

where wi is the weight which controls the importance of Vki and Vki+1 .
Discriminator. To discriminate real volumes from synthesized

ones, we train a discriminator network D. The architecture is shown in
Figure 2 (b). Following the guidelines in Radford et al. [38] and Miy-
ato et al. [32], we use several Conv and SN layers with leaky ReLU
activation (α = 0.2), and avoid pooling layers throughout the network.
D includes five Conv layers with 4×4×4 kernel size, which contains
64, 128, 256, 512, and 1 feature maps, respectively. Strided convo-
lutions are used to reduce the volume resolution at each Conv layer
except the last one. The stride is set to two at the first four Conv lay-
ers. At the last Conv layer, it produces an output of size 1×1×1 and
we do not apply the activation function.

Table 1. The dimensions and training epochs of each data set.
data set (variable) dimension (x× y× z× t) epochs
climate (cam-fv) 360×181×30×31 100
climate (fim) 360×181×30×31 100
combustion (HR) 480×720×120×121 100
combustion (MF) 480×720×120×121 100
combustion (YOH) 480×720×120×121 100
ionization (He) 600×248×248×100 100
ionization (He+) 600×248×248×100 100
solar plume 126×126×512×28 200
supernova (E) 256×256×256×60 200
supernova (VM) 256×256×256×60 200
vortex 128×128×128×90 200

Table 2. Comparison of average PSNR and SSIM values.
PSNR (dB) SSIM

data set (variable) LERP RNN CNN TSR LERP RNN CNN TSR
combustion (HR) 25.61 26.13 25.72 25.81 0.66 0.70 0.69 0.72
combustion (MF) 25.12 25.86 25.43 25.62 0.71 0.73 0.73 0.74
supernova (E) 22.34 24.31 23.81 23.74 0.61 0.64 0.63 0.66
vortex 26.62 27.42 26.85 26.90 0.73 0.75 0.75 0.75

4 RESULTS AND DISCUSSION

4.1 Data Sets and Network Training
We experimented with TSR-TVD using the data sets listed in Table 1.
The climate data set comes from the simulations of the Earth’s climate
in the dynamical core model intercomparison project (DCMIP) [1].

difference image colormap

(a) LERP (b) RNN (c) CNN (d) TSR-TVD (e) GT
Fig. 4. Comparison of volume rendering results of same-variable inference. Top to bottom: combustion (MF), solar plume, supernova (VM), and
vortex. For (a) to (d), the difference image with respect to the corresponding GT is shown at the corner.

Table 3. Comparison of average IS values at selected isovalues.
LERP TSR-TVD

data set (variable) v = 0 v = 0.176 v = 0 v = 0.176
supernova (E) 0.56 0.24 0.71 0.68

v = 0.255 v = 0.569 v = 0.255 v = 0.569
combustion (HR) 0.65 0.59 0.73 0.72

We acquired two ensemble runs generated by different models (cam-
fv and fim). In these models, the volumes are fairly static in the early
time steps and later on two turbulent branches appear. The combustion
data set comes from direct numerical simulation of temporally evolv-
ing turbulent non-premixed flames where combustion reactions occur
within the two layers. These layers are initially thin planar layers and
then evolve into complex structures as they interact with the surround-
ing turbulence. The simulation generates multiple variables and we
used three of them: heat release (HR), stoichiometric mixture fraction
(MF), and OH mass fraction (YOH). The ionization data set is made
available through the IEEE Visualization 2008 Contest. The simula-
tion is concerned with 3D radiation hydrodynamical calculations of
ionization front instabilities for studying a variety of phenomena in
interstellar medium such as the formation of stars. The simulation
generates multiple variables and we used two of them: He mass abun-
dance (He) and He+ mass abundance (He+). The solar plume data set
comes from a simulation that aims to investigate the role of the so-
lar plume plays in the transport of the heat, momentum, and magnetic

field in the sun. The simulation generates a velocity vector field and we
computed the velocity magnitude for our use. The supernova data set
comes from a simulation that models the dynamics of exploding stars,
which reveal instability in the shock wave blasts, imparting rotation to
the newborn neutron stars in their cores. The simulation generates the
entropy (E) scalar field and a velocity vector field for which we com-
puted the velocity magnitude (VM) for our use. Finally, the vortex
data set has been widely used in feature extraction and tracking. The
data set comes from a pseudo-spectral simulation of vortex structures.
We used the vorticity magnitude scalar variable.

A single NVIDIA TITAN Xp 1080 GPU was used for training.
For each epoch, we randomly cropped four subvolumes with size
64× 64× 64 from a volume pair (Vki ,Vki+1). This cropping mecha-
nism can speed up the training process and reduce the memory re-
quirement. We scaled the range of inputs in V to [−1,1] and that of
output volumes to [−1,1] (because the value range for the output of
the final activation function tanh(·) is [−1,1]). For optimization, we
initialized parameters in TSR-TVD using those suggested by He et al.
[13] and applied the Adam optimizer [26] to update the parameters.
We set one training sample per minibatch. We set different learning
rates for G and D in order to reduce the training time and stabilize the
training process [42]. The learning rates for G and D are 10−4 and
4×10−4, respectively. β1 = 0.0, β2 = 0.999. λ1 = 10−3, λ2 = 1, and
λ3 = 5× 10−2. We found that if λ1 is larger than λ2 and λ3, TSR-
TVD will fail to generate synthesized volumes that are similar to the
GT volumes. This is because TSR-TVD will pay more attention to
adversarial loss rather than volumetric and feature losses and the goal

(a) combustion (MF→ HR) (b) combustion (MF→ YOH) (c) ionization (He→ He+) (d) supernova (VM→ E)
Fig. 5. Comparison of volume rendering results of different-variable inference. Displayed here are combustion (HR), combustion (YOH), ionization
(He+), and supernova (E). Top to bottom: LERP, TSR-TVD, and GT.

of adversarial loss is to synthesize novel volumes rather than volumes
close to the GT volumes. We set ε to 10−4 in SN, and nG and nD
to 1 and 2, respectively (refer to Section 1 in the Appendix). Dur-
ing training, we set the maximal interpolation step K to 3 because a
large K would lead to gradient vanishing in ConvLSTM and prevent
TSR-TVD from finding the globally optimal solution. However, dur-
ing inference, we can increase K to interpolate more immediate time
steps since the gradient computation is not required.
4.2 Results
Due to the page limit, we are not able to show TSR-TVD results for
multiple time steps in the paper. These results can be found in the
accompanying video, which shows visualization results over the en-
tire sequence and highlights the better quality of synthesized volumes
generated using TSR-TVD over LERP, RNN, and CNN. Unless other-
wise stated, all visualization results presented in the paper for volumes
synthesized by TSR-TVD are the inferred results (i.e., the network
does not see these volumes during training). These inferred results are
from a volume subsequence that is far away from the training data, and
within the subsequence, we select the time step that is farthest away
from the GT volumes at the two end time steps (i.e., we show the
worst possible TSR-TVD results). All visualizations for the same data
set use the same setting for lighting, viewing, and transfer function (for
volume rendering). For network analysis, please refer to Section 2 in
the Appendix.

Evaluation metrics. We utilize the peak signal-to-noise ratio
(PSNR) to evaluate the quality of synthesized volumes at the data
level. PSNR is defined as

PSNR(V,V′) = 20log10 I(V)−10log10 MSE(V,V′), (18)

where V and V′ are the original and synthesized volumes, I(V) is
the difference between the maximum and minimum values of V, and

MSE(V,V′) is the mean squared error between V and V′.
We apply the structural similarity index (SSIM) [56] to evaluate the

quality of rendered images at the image level. SSIM is defined as

SSIM(I,I′) =
(2µIµI′ + c1)(2σI,I′ + c2)

(µ2
I +µ2

I′ + c1)(σ
2
I +σ2

I′ + c2)
, (19)

where I and I′ are sub-images from the rendered images of V and
V′, µI and µI′ are the average values of I and I′, σ2

I and σ2
I′ are the

variances of I and I′, σI,I′ is the covariance of I and I′, and c1 and c2 are
two small constants for stabilizing the division with the denominator.

To quantify the similarity between two isosurfaces extracted, re-
spectively, from the synthesized and GT volumes, we compute the
mutual information of their corresponding distance fields [5]. Mutual
information is computed by constructing a joint histogram of the two
distance fields, where each entry (i, j) in the joint histogram contains
the number of voxels that fall into bins i and j in the first and second
distance fields, respectively. The larger the isosurface similarity (IS),
the more similar the two surfaces are.

Qualitative and quantitative analysis. In Figure 4, we compare
the rendering results of the synthesized volumes generated by LERP,
RNN, and TSR-TVD. To train an RNN, we still use the architecture
of TSR-TVD but eliminate the discriminator. To train a CNN, we use
the same TSR-TVD architecture without ConvLSTM as the built-in
temporal coherence predictor. For easy comparison, we calculate pix-
elwise differences (the Euclidean distances) of images generated from
the synthesized and original volumes in the CIELUV color space. We
map the noticeable pixel differences (with ∆ > 6.0) to nonwhite col-
ors (clamping differences larger than 255) and display the difference
image at the corner. The GT is provided for a fair comparison. For the
combustion (MF) data set, RNN, CNN, and TSR-TVD can generate

(a) combustion (HR) (b) combustion (MF) (c) supernova (E) (d) vortex
Fig. 6. Comparison of PSNR of synthesized volumes (top row) and SSIM of rendered images (bottom row) using LERP, RNN, and TSR-TVD. The
projection views for computing SSIM are shown in the respective volume-rendering images in the paper. We only report PSNR and SSIM values
for a volume subsequence where the GT time steps are available at both ends. The results for other subsequences follow a similar trend.

(a) w/o fwd prediction (b) w/o bwd prediction (c) w/o original volumes (d) full model (e) GT
Fig. 7. Comparison of volume rendering results of same variable inference with the variants of TSR-TVD using the combustion (YOH) data set.
Displayed here are the cropped left-half of the rendering images.

more details compared with LERP, for example, the small red compo-
nent at the left corner. But the rendering result from TSR-TVD has
fewer artifacts than the result from RNN or CNN. For the solar plume
data set, all four methods generate similar results, but TSR-TVD is
closest to the GT. It is clear that TSR-TVD leads to the best visual
quality for the supernova (VM) data set while LERP is the worst and
RNN or CNNgenerates many artifacts on the right side. For the vor-
tex data set, LERP generates the worst result while RNN, CNN, and
TSR-TVD yield similar results. Upon close examination, we can see
that TSR-TVD yields the closest result at the bottom-left corner.

In Figure 5, we compare the rendering results of the synthesized
volumes generated by LERP and TSR-TVD through different-variable
inference. For different-variable inference, we use a variable X of a
data set for training and use another variable Y of the same data set
for inference (X → Y). For MF → HR of the combustion data set,
TSR-TVD produces high-quality and detailed visual results in the pur-
ple part at the top-left corner and in the green and yellow parts at the
middle-right corner while LERP yields less accurate results. For MF
→ YOH of the combustion data set, TSR-TVD generates more accu-
rate rendering result compared with LERP. For example, the purple
part at the top-right corner and the green part at the bottom-right cor-
ner are closer to the GT. As for He→ He+ of the ionization data set, it
is clear that TSR-TVD gives high-quality visual results at the middle
and bottom layers while LERP leads to color shifting due to content
change (even though the same transfer function is used to render the
GT and synthesized volumes). It is obvious that TSR-TVD generates
a better visual result for VM → E of the supernova data set. TSR-
TVD produces more accurate details in the orange, navy blue, and
cyan parts. LERP, however, cannot faithfully recover these parts as we
can clearly see color shifting due to content change.

In Figure 6, we compare TSR-TVD results against LERP and RNN
results at the data (PSNR) and image (SSIM) levels. At the data level,
we can see that RNN achieves the highest PSNR values. This is
because RNN is a PSNR-oriented solution while TSR-TVD is con-
strained by not only the volumetric loss (PSNR-oriented loss) but also

adversarial (perception-oriented loss) and feature losses, which could
lead to lower PSNR values. For these four data sets, the PSNR curves
follow a similar trend: PSNR values peak at both ends of the volume
subsequence where the GT time steps are available and fall steadily as
we move toward the time steps in the middle of the interval. We also
see lower PSNR values across the three methods for the supernova (E)
data set. This is because the supernova exhibits a fast-pacing rotational
behavior which is more difficult to capture compared with other behav-
iors exhibited by the other two data sets. At the image level, TSR-TVD
yields the highest SSIM values. It is a clear winner for the combustion
(HR), combustion (MF), and supernova (E) data sets. TSR-TVD pro-
duces average SSIM values of ∼ 0.72, ∼ 0.72, ∼ 0.65, respectively,
but LERP produces average SSIM values of ∼ 0.62, ∼ 0.70, ∼ 0.60,
respectively. For the vortex data set, TSR-TVD still slightly outper-
forms LERP and RNN. In Table 2, we report the average PSNR and
SSIM values over the entire volume sequence for LERP, RNN, CNN,
and TSR-TVD. Again, RNN performs the best in terms of PSNR while
TSR-TVD performs the best in terms of SSIM.

In Figure 7, we show the variants of TSR-TVD using the combus-
tion (YOH) data set. We can see that only using forward or backward
prediction can still generate the synthesized volumes reasonably well
but the results lack fine details. For example, there is a closed light
cyan part in the GT volume at the middle-right corner, which is cap-
tured in the full mode in Figure 7 (d) but missed in both Figure 7
(a) and (b). Moreover, we find that without adding the original vol-
umes into the blending module, the rendering result leads to obvious
noise, as shown in Figure 7 (c). This is because we use a traditional
down-sampling and up-sampling framework to reconstruct intermedi-
ate volumes. In the down-sampling phase, TSR-TVD will compress
the volumes and lose some information, however, in the up-sampling
phase, the lost information cannot be perfectly recovered. This kind of
information loss leads to the inferior quality of rendering images.

In Figures 8 and 9, we compare the isosurface rendering results
of the synthesized volumes generated by LERP, TSR-TVD without
blending original volumes, and TSR-TVD using the supernova (E) and

(a) LERP (b) w/o ori volumes (c) TSR-TVD (d) GT (e) left-end GT (f) right-end GT
Fig. 8. Comparison of isosurface rendering results of same-variable inference using the supernova (E) data set. First row: time steps 39 with v = 0.
Second row: time steps 39 with v = 0.176. Third row: time steps 55 with v = 0. Last row: for time steps 55 with v = 0.176. The two-end GT time steps
are 37 and 41 for time step 39, and 53 and 57 for time step 55.

combustion (HR) data sets. For each data set, the value range is nor-
malized to [−1,1] and we pick two time steps and two isovalues to
show the isosurfaces. For the supernova (E) data set, we can observe
that for v = 0, the isosurface generated by TSR-TVD includes more
details (e.g., the bottom-right corner for time step 39 and the top-right
corner for time step 55). For v = 0.176, TSR-TVD produces a higher-
quality isosurface since LERP totally fails to construct the isosurface
close to the GT at time step 39 (we can see that the surface is severely
shifted in the value space). Adding backward and forward predictions
along with the use of voxel-wise volumetric loss, TSR-TVD is able to
largely mitigate this and produces a surface very close to the GT. For
the combustion (HR) data set, TSR-TVD can still generate closer iso-
surfaces than LERP, such as the bottom-left corner (v = 0.255) and the
top-right corner (v = 0.569). For both data sets, it is clear that the full
mode of TSR-TVD generates better results than those without adding
the original volumes into the blending module. In addition, we report
in Table 3 the average IS values over the entire volume sequence for
these two data sets. The quantitative results also confirm that TSR-
TVD leads to isosurfaces of better quality than LERP.

Failure case. As shown in Figure 10, both LERP and TSR-TVD
cannot interpolate the intermediate time steps well for the climate (fim)
data set. We can see that voxel values are shifted in both results. For
example, the green parts in the GT become yellow and the blue parts
almost vanish in the results of LERP and TSR-TVD. This is due to
the limitation of TSR-TVD in estimating the difference between data

distributions of neighboring time steps. Refer to Section 3 in the Ap-
pendix for further discussion.

4.3 Discussion
As a deep learning technique, TSR-TVD takes a considerable amount
of time for training. In Figure 2 in the Appendix, we report the train-
ing time curves for selected data sets under different hyperparame-
ter settings. With 40% of training samples and subvolume size of
64× 64× 64, it takes nearly six hours to train the combustion data
set (100 epochs) and half a day to train the supernova data set (200
epochs). The training time forms a nearly linear relationship with the
increase in the number of training samples or the subvolume size. We
note that the actual size of the volume (i.e., the spatial dimension of the
data) is not a critical limiting factor for network training because we
apply the cropping mechanism in TSR-TVD training. Therefore, the
training time mainly depends on the (cropped) subvolume size rather
than the volume size. The inference time depends on the number of in-
terpolated time steps and volume resolution. Due to the limited GPU
memory, we infer individual subvolumes to form the entire volume.
The time is between one hour (vortex) to one day (combustion). Re-
fer to Section 3 in the Appendix for further discussion. Our current
TSR-TVD framework has the following limitations. First, our solu-
tion does not consider the input transfer function or the visualization
process. We simply treat the input 3D volumes as numerical data for
producing the temporally resolved results. In terms of visualization,
we use 1D transfer functions that map scalar values to color and opac-

(a) LERP (b) w/o ori volumes (c) TSR-TVD (d) GT (e) left-end GT (f) right-end GT
Fig. 9. Comparison of isosurface rendering results of same-variable inference using the combustion (HR) data set. First row: time steps 97 with
v = 0.255. Second row: time steps 97 with v = 0.569. Third row: time steps 114 with v = 0.255. Last row: for time steps 114 with v = 0.569. The
two-end GT time steps are 95 and 99 for time step 97, and 112 and 116 for time step 114.

(a) LERP (b) TSR-TVD (c) GT
Fig. 10. Comparison of volume rendering results of same-variable inference using the climate (fim) data set.

ity. The volume renderer also implements lighting calculation. Nev-
ertheless, qualitative and quantitative evaluations show the overall ad-
vantage of TSR-TVD over LERP and RNN. While incorporating the
transfer function, especially the opacity transfer function, may help
boost the performances at the image level, it comes at the price of
making the training process dependent on the input transfer function,
which would demand the training from scratch whenever the transfer
function changes. Second, TSR-TVD can only infer the intermediate
volumes at any integer time steps rather than arbitrary time steps. We
would further study how to infer arbitrary in-between volumes from
two given volumes through disentangled representation [8, 17]. Third,
TSR-TVD considers temporal coherence through the recurrent mod-
ule. A better way is to incorporate temporal coherence into loss func-
tion design. We will investigate temporal and cycle losses that take
the coherence of neighboring time steps into consideration to achieve
better temporal coherence.

5 CONCLUSIONS AND FUTURE WORK

We have presented TSR-TVD, a deep learning solution for generating
temporal super-resolution of time-varying data. Given a volume pair
as input and its intermediate volumes as the GT, we leverage an RGN
to make forward and backward predictions and train TSR-TVD. The
trained network is then able to generate temporally resolved volume
sequences for the rest of time series via same-variable inference or

different-variable inference. Compared with LERP, RNN, and CNN,
TSR-TVD yields synthesized intermediate volumes of better visual
quality. TSR-TVD is part of our research effort toward what we call
data augmentation for scientific visualization. Data augmentation in
this context refers to the addition of spatial, temporal, and variable de-
tails to reduced data by incorporating information derived from inter-
nal and external sources. Besides temporal super-resolution (TSR), we
would also consider spatial super-resolution (SSR) for time-varying
data. Our eventual goal is to achieve spatiotemporal super-resolution
(STSR) by producing volume sequences with greater spatial and tem-
poral resolutions and details. The ability to upscale time-varying data
in both spatial and temporal dimensions is critical for large-scale sci-
entific simulations and applications. As scientists often have to save
their simulation data sparsely due to the limited storage, our research
will provide a promising alternative for them to make better decisions
depending on the nature of the simulations and the characteristics of
the data.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. National Science
Foundation through grants IIS-1455886, CNS-1629914, and DUE-
1833129, and the NVIDIA GPU Grant Program. The authors would
like to thank the anonymous reviewers for their insightful comments.

REFERENCES

[1] The 2012 dynamical core model intercomparison project (DCMIP).
https://earthsystemcog.org/projects/dcmip-2012/.

[2] H. Akiba and K.-L. Ma. A tri-space visualization interface for analyzing
time-varying multivariate volume data. In Proceedings of Eurographics -
IEEE VGTC Symposium on Visualization, pages 115–122, 2007.

[3] M. Berger, J. Li, and J. A. Levine. A generative model for volume ren-
dering. IEEE Transactions on Visualization and Computer Graphics,
25(4):1636–1650, 2019.

[4] A. Biswas, S. Dutta, H.-W. Shen, and J. Woodring. An information-
aware framework for exploring multivariate data sets. IEEE Transactions
on Visualization and Computer Graphics, 19(12):2683–2692, 2013.

[5] S. Bruckner and T. Möller. Isosurface similarity maps. Computer Graph-
ics Forum, 29(3):773–782, 2010.

[6] H. Cai, C. Bai, Y.-W. Tai, and C.-K. Tang. Deep video generation, pre-
diction and completion of human action sequences. In Proceedings of
European Conference on Computer Vision, pages 374–390, 2018.

[7] H.-C. Cheng, A. Cardone, S. Jain, E. Krokos, K. Narayan, S. Sub-
ramaniam, and A. Varshney. Deep-learning-assisted volume visual-
ization. IEEE Transactions on Visualization and Computer Graphics,
25(2):1378–1391, 2019.

[8] E. L. Denton and V. Birodkar. Unsupervised learning of disentangled
representations from video. In Proceedings of Advances in Neural Infor-
mation Processing Systems, pages 4414–4423, 2017.

[9] M. Glatter, J. Huang, S. Ahern, J. Daniel, and A. Lu. Visualiz-
ing temporal patterns in large multivariate data using textual pattern
matching. IEEE Transactions on Visualization and Computer Graphics,
14(6):1467–1474, 2008.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Pro-
ceedings of Advances in Neural Information Processing Systems, pages
2672–2680, 2014.

[11] J. Han, J. Tao, and C. Wang. FlowNet: A deep learning framework for
clustering and selection of streamlines and stream surfaces. IEEE Trans-
actions on Visualization and Computer Graphics, 2019. Accepted.

[12] J. Han, J. Tao, H. Zheng, H. Guo, D. Z. Chen, and C. Wang. Flow field
reduction via reconstructing vector data from 3D streamlines using deep
learning. IEEE Computer Graphics and Applications, 39(4):54–67, 2019.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Sur-
passing human-level performance on ImageNet classification. In Pro-
ceedings of IEEE International Conference on Computer Vision, pages
1026–1034, 2015.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[15] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[16] F. Hong, J. Zhang, and X. Yuan. Access pattern learning with long short-
term memory for parallel particle tracing. In Proceedings of IEEE Pacific
Visualization Symposium, pages 76–85, 2018.

[17] J.-T. Hsieh, B. Liu, D.-A. Huang, F.-F. Li, and J. C. Niebles. Learning to
decompose and disentangle representations for video prediction. In Pro-
ceedings of Advances in Neural Information Processing Systems, pages
515–524, 2018.

[18] Z. Hu, Y. Ma, and L. Ma. Multi-scale video frame-synthesis network with
transitive consistency loss. arXiv preprint arXiv:1712.02874, 2017.

[19] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image transla-
tion with conditional adversarial networks. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 1125–1134,
2017.

[20] T. J. Jankun-Kelly and K.-L. Ma. A study of transfer function generation
for time-varying volume data. In Proceedings of Eurographics - IEEE
TCVG Workshop on Volume Graphics, pages 51–66, 2001.

[21] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and
J. Kautz. Super SloMo: High quality estimation of multiple interme-
diate frames for video interpolation. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pages 9000–9008, 2018.

[22] J. Johnson, A. Alahi, and F.-F. Li. Perceptual losses for real-time style
transfer and super-resolution. In Proceedings of European Conference on
Computer Vision, pages 694–711, 2016.

[23] A. Joshi and P. Rheingans. Illustration-inspired techniques for visualiz-
ing time-varying data. In Proceedings of IEEE Visualization Conference,

pages 679–686, 2005.
[24] J. Kehrer and H. Hauser. Visualization and visual analysis of multifaceted

scientific data: A survey. IEEE Transactions on Visualization and Com-
puter Graphics, 19(3):495–513, 2013.

[25] B. Kim and T. Günther. Robust reference frame extraction from unsteady
2D vector fields with convolutional neural networks. Computer Graphics
Forum, 38(3), 2019.

[26] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In
Proceedings of International Conference for Learning Representations,
2015.

[27] W.-S. Lai, J.-B. Huang, O. Wang, E. Shechtman, E. Yumer, and M.-H.
Yang. Learning blind video temporal consistency. In Proceedings of
European Conference on Computer Vision, pages 170–185, 2018.

[28] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. P. Aitken, A. Tejani, J. Totz, Z. Wang, et al. Photo-realistic single im-
age super-resolution using a generative adversarial network. In Proceed-
ings of IEEE Conference on Computer Vision and Pattern Recognition,
pages 4681–4690, 2017.

[29] X. Liu and H.-W. Shen. Association analysis for visual exploration of
multivariate scientific data sets. IEEE Transactions on Visualization and
Computer Graphics, 22(1):955–964, 2016.

[30] Z. Liu, R. A. Yeh, X. Tang, Y. Liu, and A. Agarwala. Video frame syn-
thesis using deep voxel flow. In Proceedings of IEEE International Con-
ference on Computer Vision, pages 4473–4481, 2017.

[31] K.-L. Ma. Machine learning to boost the next generation of visualiza-
tion technology. IEEE Computer Graphics and Applications, 27(5):6–9,
2007.

[32] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normaliza-
tion for generative adversarial networks. In Proceedings of International
Conference for Learning Representations, 2018.

[33] V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltz-
mann machines. In Proceedings of International Conference on Machine
Learning, pages 807–814, 2010.

[34] A.-D. Nguyen, W. Kim, J. Kim, and S. Lee. Video frame interpola-
tion by plug-and-play deep locally linear embedding. arXiv preprint
arXiv:1807.01462, 2018.

[35] S. Niklaus, L. Mai, and F. Liu. Video frame interpolation via adaptive
convolution. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, pages 670–679, 2017.

[36] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recur-
rent neural networks. In Proceedings of IEEE International Conference
on Machine Learning, pages 1310–1318, 2013.

[37] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Con-
text encoders: Feature learning by inpainting. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pages 2536–
2544, 2016.

[38] A. Radford, L. Metz, and S. Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

[39] M. Raji, A. Hota, R. Sisneros, P. Messmer, and J. Huang. Photo-guided
exploration of volume data features. In Proceedings of Eurographics
Symposium on Parallel Graphics and Visualization, pages 31–39, 2017.

[40] A. Ramdas, N. Trillos, and M. Cuturi. On Wasserstein two-sample testing
and related families of nonparametric tests. Entropy, 19(2):47–62, 2017.

[41] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks
for biomedical image segmentation. In Proceedings of International Con-
ference on Medical Image Computing and Computer-Assisted Interven-
tion, pages 234–241, 2015.

[42] K. Roth, A. Lucchi, S. Nowozin, and T. Hofmann. Stabilizing training of
generative adversarial networks through regularization. In Proceedings of
Advances in Neural Information Processing Systems, pages 2018–2028,
2017.

[43] N. Sauber, H. Theisel, and H.-P. Seidel. Multifield-Graphs: An approach
to visualizing correlations in multifield scalar data. IEEE Transactions on
Visualization and Computer Graphics, 12(5):917–924, 2006.

[44] H.-W. Shen, L.-J. Chiang, and K.-L. Ma. A fast volume rendering algo-
rithm for time-varying fields using a time-space partitioning (TSP) tree.
In Proceedings of IEEE Visualization Conference, pages 371–377, 1999.

[45] N. Shi and Y. Tao. CNNs based viewpoint estimation for volume vi-
sualization. ACM Transactions on Intelligent Systems and Technology,
10(3):27:1–27:22, 2019.

[46] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-C. Woo.
Convolutional LSTM network: A machine learning approach for precip-

https://earthsystemcog.org/projects/dcmip-2012/

itation nowcasting. In Proceedings of Advances in Neural Information
Processing Systems, pages 802–810, 2015.

[47] K. Stockinger, J. Shalf, K. Wu, and E. W. Bethel. Query-driven visualiza-
tion of large data sets. In Proceedings of IEEE Visualization Conference,
pages 167–174, 2005.

[48] J. Tao, M. Imre, C. Wang, N. V. Chawla, H. Guo, G. Sever, and S. H. Kim.
Exploring time-varying multivariate volume data using matrix of isosur-
face similarity maps. IEEE Transactions on Visualization and Computer
Graphics, 25(1):1236–1245, 2019.

[49] F.-Y. Tzeng, E. B. Lum, and K.-L. Ma. A novel interface for higher-
dimensional classification of volume data. In Proceedings of IEEE Visu-
alization Conference, pages 505–512, 2003.

[50] F.-Y. Tzeng, E. B. Lum, and K.-L. Ma. An intelligent system approach to
higher-dimensional classification of volume data. IEEE Transactions on
Visualization and Computer Graphics, 11(3):273–284, 2005.

[51] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, and
K. Saenko. Sequence to sequence-video to text. In Proceedings of IEEE
International Conference on Computer Vision, pages 4534–4542, 2015.

[52] C. Wang and H.-W. Shen. A framework for rendering large time-varying
data using wavelet-based time-space partitioning (WTSP) tree. Technical
Report OSU-CISRC-1/04-TR05, Department of Computer and Informa-
tion Science, The Ohio State University, 2004.

[53] C. Wang, H. Yu, R. W. Grout, K.-L. Ma, and J. H. Chen. Analyzing
information transfer in time-varying multivariate data. In Proceedings of
IEEE Pacific Visualization Symposium, pages 99–106, 2011.

[54] C. Wang, H. Yu, and K.-L. Ma. Importance-driven time-varying data vi-
sualization. IEEE Transactions on Visualization and Computer Graphics,
14(6):1547–1554, 2008.

[55] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro.
High-resolution image synthesis and semantic manipulation with condi-
tional GANs. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, pages 8798–8807, 2018.

[56] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality
assessment: From error visibility to structural similarity. IEEE Transac-
tions on Image Processing, 13(4):600–612, 2004.

[57] S. Weiss, M. Chu, N. Thuerey, and R. Westermann. Volumetric isosur-
face rendering with deep learning-based super-resolution. arXiv preprint
arXiv:1906.06520, 2019.

[58] S. Wiewel, M. Becher, and N. Thuerey. Latent-space physics: Towards
learning the temporal evolution of fluid flow. Computer Graphics Forum,
38(2):71–82, 2019.

[59] J. Woodring, C. Wang, and H.-W. Shen. High dimensional direct render-
ing of time-varying volumetric data. In Proceedings of IEEE Visualiza-
tion Conference, pages 417–424, 2003.

[60] Y. Xie, E. Franz, M. Chu, and N. Thuerey. tempoGAN: A temporally
coherent, volumetric GAN for super-resolution fluid flow. ACM Transac-
tions on Graphics, 37(4):95:1–95:15, 2018.

[61] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceed-
ings of IEEE Conference on Computer Vision and Pattern Recognition,
pages 586–595, 2018.

[62] Z. Zhou, Y. Hou, Q. Wang, G. Chen, J. Lu, Y. Tao, and H. Lin. Volume
upscaling with convolutional neural networks. In Proceedings of Com-
puter Graphics International, pages 38:1–38:6, 2017.

APPENDIX

1 TRAINING ALGORITHM AND OPTIMIZATION

Algorithm. As sketched in Algorithm 1, our TSR-TVD training algo-
rithm contains two parts: optimizing D (discriminator) and G (gener-
ator). The algorithm runs over a certain number of epochs T and for
each epoch, it optimizes the two networks with nD and nG times, re-
spectively. In order to generate high-quality results, the discriminator
must be powerful, which means that D should distinguish the syn-
thesized results as fake ones even if they only have few differences.
Therefore, we usually set nD > nG.

Algorithm 1 TSR-TVD training algorithm.
Require: initial generator parameters θG and initial discriminator pa-

rameters θD
Require: number of D updates nD per G iteration, number of G up-

dates nG per D iteration, number of training epochs T , learning rates
αG and αD for G and D, respectively
for t = 1 · · ·T do

for i = 1 · · ·n do
sample (Vki ,Vki+1) and (Vki+1, · · · ,Vki+1−1)
for 1 · · ·nD do

compute LD according to Equation 6
θD = θD−αD

∂LD
∂θD

end for
for 1 · · ·nG do

compute LG according to Equation 9
update θG according to Equation 21

end for
end for

end for

(a) 30 epochs (b) 60 epochs

(c) 100 epochs (d) GT
Fig. 1. Comparison of volume rendering results under different training
epochs using the combustion (HR) data set. The best match with the
GT is the result with 100 epochs.

Optimization. We apply backpropagation through time (BPTT), a
gradient-based approach to optimize TSR-TVD. Compared with tra-
ditional optimization techniques, such as evolutionary optimization,
BPTT can accelerate the training process. We formulate BPTT from
the ith ConvLSTM (Li) to the (i+ j)th ConvLSTM (Li+ j) as follows

∂Li+ j

∂Li =
i+ j

∏
t=i+1

∂Lt

∂Lt−1 . (20)

The detail for computing ∂Lt

∂Lt−1 is in Hochreiter and Schmidhuber [15].

(a) (b)

(c) (d)

(e)
Fig. 2. Comparison of hyperparameter settings. (a) Average PSNR and
training time (per epoch) under different training samples using the ion-
ization (He) data set. (b) Average PSNR and SSIM under different sub-
volume sizes using the combustion (MF) data set. (c) Average training
time (per epoch) under different subvolume sizes using the combustion
(MF) data set. (d) Average PSNR and SSIM under different ConvLSTM
layers using the combustion (HR) data set. (e) Average training time (per
epoch) under different upscaling methods using the vortex data set.

We then update the generator parameter θG through

θG = θG−αG

K

∑
i=1

∂LG

∂U i
∂U i

∂LK
∂LK

∂Li
∂Li

∂F i
∂F i

∂θG
, (21)

where F i and U i are the ith feature learning and upscaling components,
K is the maximal interpolation step, and αG is the learning rate of G.

2 NETWORK ANALYSIS

In order to evaluate TSR-TVD, we analyze the following hyperparam-
eter settings: training epochs, training samples, subvolume size, num-
ber of ConvLSTM layers, maximal interpolation step, and upscaling
methods. A detailed discussion is as follows.

Training epochs vs. visual quality. We investigate how the visual
quality of the synthesized volume using TSR-TVD evolves with dif-
ferent training epochs with the combustion (HR) data set. Rendering
of the volumes obtained after different numbers of training epochs is
illustrated in Figure 1. We can observe that the rendered images un-
der 30 and 60 epochs have more blurring artifacts compared with the
result under 100 epochs. For example, the purple part at the top-left
corner and the green part at the middle-right corner have fewer arti-
facts as the training goes. Moreover, we find that beyond 100 epochs,
there is no significant difference among synthesized results. There-
fore, we choose 100 epochs to train the combustion data set. The same
experiment is taken to decide the training epochs for other data sets.

Training samples vs. PSNR. We study the influence of the num-
ber of training samples on PSNR and training time. For example, 20%
training samples for a time-varying data set of 100 time steps mean that
we have the first 20 time steps available as the GT data during training.
We use 20%, 40%, 60%, and 80% training samples to train TSR-TVD
using the ionization (He) data set. We plot the PSNR and average
training time curves under different numbers of training samples, as
shown in Figure 2 (a). We can see that using more training samples

(a) 32×32×32 (b) 64×64×64 (c) 96×96×96 (d) GT
Fig. 3. Comparison of volume rendering results under different subvolume sizes using the combustion (MF) data set.

(a) (b) (c) (d)
Fig. 4. Comparison of volume rendering results under different maximal interpolation steps. Top row: supernova (VM) data set. Bottom row: vortex
data set. (a) shows the GT. (b) to (d) show the rendering results with K = 3, 7, 11 (supernova) and K = 3, 5, 7 (vortex), respectively.

improves PSNR. However, this demands a longer training time. More-
over, we observe that visual quality does not benefit significantly from
using more training samples. To achieve a balance between quality
and speed, we use 40% samples to train TSR-TVD.

Subvolume size vs. visual quality and PSNR. We train TSR-TVD
with subvolume sizes of 32×32×32, 64×64×64, and 96×96×96
using the combustion (MF) data set. The rendering results are shown
in Figure 3. We can see that the rendered image has more artifacts
with a subvolume size of 32× 32× 32. For example, the yellow part
at the top-left corner and the green part at the bottom-left corner are
not smooth enough as shown in Figure 3 (a). The PSNR and SSIM
curves are shown in Figure 2 (b). We can observe that using a larger
subvolume size improves PSNR since an enlarged receptive field helps
TSR-TVD capture more semantic information. However, a larger sub-
volume size takes more time to train and consumes more computing
resources, as shown in Figure 2 (c). However, SSIM does not improve
significantly as we update the subvolume size from 64× 64× 64 to
96×96×96. As a tradeoff, we use the subvolume size of 64×64×64
to train TSR-TVD.

Number of ConvLSTM layers vs. PSNR and SSIM. We study
the performance of TSR-TVD under different numbers of ConvLSTM
layers using the combustion (HR) data set. We choose 1, 3, and 5
ConvLSTM layers to train TSR-TVD and plot the average PSNR and
SSIM curves, as shown in Figure 2 (d). We can observe that using
more ConvLSTM layers achieves higher PSNR, however, this param-

eter influences little the actual rendering results as the average SSIM
value does not exhibit a significant difference. Moreover, using more
ConvLSTM layers requires more computing resources. As a trade-off,
we use one ConvLSTM layer to train TSR-TVD.

Maximal interpolation step vs. visual quality. At the inference
stage, we use different numbers of maximal interpolation step K to
interpolate the intermediate volumes using the supernova (VM) and
vortex data sets. The rendering results are shown in Figure 4. For
the supernova data set, we can observe that as K increases, the visual
content gradually warps, although not by a large margin. As for the
vortex data set, it is clear that different blue and red components grow
or shrink as we increase K. The appropriate value for K is 5 or 7 for
most of the data sets we explore. As these data sets were likely output
sparsely from the simulations (refer to the accompanying video), the
appropriate value for K would be proportionally larger than suggested
here if we consider the actual simulation time steps.

Voxel shuffle / DeConv layer vs. training time. We investigate
the training speed based on different upscaling methods for TSR-TVD
using the vortex data set. The average training time curves are shown
in Figure 2 (e). It is clear that using voxel shuffle layer can acceler-
ate the training process. This is because voxel shuffle operation only
increases the channel numbers in a tensor rather than the tensor size.
Compared with changing the tensor size for upscaling, increasing the
channel numbers uses GPU resources more efficiently and reduces the
number of multiplications.

Fig. 5. Comparison of Wasserstein distances using the climate (cam-fv
and fim) and combustion (HR and MF) data sets.

3 ADDITIONAL DISCUSSION

Failure case. The failure case for the climate (fim) data set as shown in
Figure 10 in the paper is due to the limitation of TSR-TVD in estimat-
ing the difference between data distributions. For verification, we use
Wasserstein distance [40] to measure the similarity of two neighbor-
ing time steps from two different data sets, as shown in Figure 5. We
observe that the combustion (HR and MF) data set shows small dis-
tances between two neighboring time steps. For the climate (cam-fv
and dim) data set, however, the distance fluctuates drastically. More-
over, the average Wasserstein distance for the climate (fim) data set is
0.14702, while that for the combustion (MF) data set is 0.00347. This
estimation shows the limitation of TSR-TVD in capturing the fluctua-
tion between data distributions.

Inference time. The inference time reported in Section 4.3 in
the paper is for the entire remaining volume sequence (i.e., all time
steps excluding those used for training). Take the combustion data
set for example, during training, we crop a total of 19,200 subvol-
umes. This is because we train 100 epochs; and in each epoch, we
crop 4 subvolumes for each volume pair; and we have 48 volume
pairs for training (1 ∼ 5,2 ∼ 6, . . . ,48 ∼ 52). During inference, we
need to crop 170,100 subvolumes in order to generate the interme-
diate volumes. This is because we have 18 volume pairs for infer-
ence (52 ∼ 56,56 ∼ 60, . . . ,118 ∼ 122); and for each pair, we crop
30 times along the x dimension, 45 times along the y dimension, and 7
times along the z dimension. Note that these cropped subvolumes have
overlap in space in order to avoid spatial discontinuity. The inferred
subvolumes are then concatenated through a weighted concatenation
algorithm to form the whole volume.

	Introduction
	Related Work
	Our Recurrent Generative Approach
	Loss Function
	Network Architecture

	Results and Discussion
	Data Sets and Network Training
	Results
	Discussion

	Conclusions and Future Work
	Training Algorithm and Optimization
	Network Analysis
	Additional Discussion

