
STNet: An End-to-End Generative Framework for Synthesizing
Spatiotemporal Super-Resolution Volumes

Jun Han, Hao Zheng, Danny Z. Chen Fellow, IEEE and Chaoli Wang, Senior Member, IEEE

Abstract— We present STNet, an end-to-end generative framework that synthesizes spatiotemporal super-resolution volumes with
high fidelity for time-varying data. STNet includes two modules: a generator and a spatiotemporal discriminator. The input to the
generator is two low-resolution volumes at both ends, and the output is the intermediate and the two-ending spatiotemporal super-
resolution volumes. The spatiotemporal discriminator, leveraging convolutional long short-term memory, accepts a spatiotemporal
super-resolution sequence as input and predicts a conditional score for each volume based on its spatial (the volume itself) and
temporal (the previous volumes) information. We propose an unsupervised pre-training stage using cycle loss to improve the gen-
eralization of STNet. Once trained, STNet can generate spatiotemporal super-resolution volumes from low-resolution ones, offering
scientists an option to save data storage (i.e., sparsely sampling the simulation output in both spatial and temporal dimensions). We
compare STNet with the baseline bicubic+linear interpolation, two deep learning solutions (SSR+TSR, STD), and a state-of-the-art
tensor compression solution (TTHRESH) to show the effectiveness of STNet.

Index Terms—Time-varying data, generative adversarial network, spatiotemporal super-resolution.

1 INTRODUCTION

We have witnessed the success of deep learning in scientific visual-
ization tasks, such as volume upscaling [61, 58, 21, 17, 20, 59], data
reconstruction [19, 16], variable and ensemble generation [25, 22],
rendering image synthesis [27, 2, 11], and representative selection [6,
47, 18]. However, the end-to-end spatiotemporal super-resolution
(STSR) task for time-varying data is unexplored. That is, given a set of
sparsely sampled low-resolution volumes (e.g., 128×128×128×50),
we aim to generate STSR volumes (e.g., 512× 512× 512× 200).
STSR is meaningful for scientific visualization due to its potential ap-
plications in data reduction and data recovery.

(a) SSR+TSR (b) TSR+SSR (c) GT

Fig. 1: STSR using two solutions: SSR+TSR and TSR+SSR.

A straightforward solution for generating spatiotemporal solution
is to train a spatial super-resolution (SSR) network (e.g., [20]) and a
temporal super-resolution (TSR) network (e.g., [21]) in sequence, i.e.,
SSR+TSR or TSR+SSR. An example is shown in Figure 1. The results
show that both solutions do not yield high-quality STSR volumes com-
pared with the ground-truth (GT). The is because the errors in the first
stage (e.g., SSR) could accumulate and amplify in the second stage
(e.g., TSR). Thus, such sequential solutions may not guarantee to syn-
thesize STSR volumes with high fidelity.

Three challenges remain for the STSR task. First, although SSR
and TSR have been studied independently, merely concatenating the
two solutions cannot guarantee satisfactory STSR volumes since the

• The authors are with the Department of Computer Science and
Engineering, University of Notre Dame, Notre Dame, IN 46556.
E-mail: {jhan5, hzheng3, dchen, chaoli.wang}@nd.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of
Publication xx xxx. 201x; date of current version xx xxx. 201x.
For information on obtaining reprints of this article, please send
e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx/

rendering quality is far away from GT. Designing an end-to-end STSR
architecture is critical for avoiding error accumulation and amplifica-
tion. Second, deep learning’s success depends heavily on large input
data, which is often challenging to acquire in scientific visualization.
The limited training data will prevent the network from a better gen-
eralization during inference. How to utilize inadequate data samples
to improve the generalization power should be considered in the opti-
mization. Third, the computational cost is high as it usually requires
days to train a generative adversarial network (GAN) on 3D data.
In addition, the synthesized volumes should maintain similar spatial
(e.g., structure and texture) and temporal (e.g., close similarity among
neighboring time steps) coherence compared with GTs.

To respond, we design STNet, an end-to-end spatiotemporal gener-
ative network for STSR. STNet encompasses two stages: pre-training
and fine-tuning. During pre-training, STNet accepts all available low-
resolution data as input, generates synthesized low-resolution vol-
umes, and applies cycle loss for optimization. During fine-tuning,
STNet takes low-resolution data at early time steps as input, produces
STSR volumes, and leverages volumetric and adversarial losses for
training. Specifically, we first investigate popular framework designs
in both SSR and TSR tasks and design an end-to-end spatiotemporal
model with post-upsampling for spatial upscaling and feature interpo-
lation for temporal upscaling. That is, STNet interpolates the feature
of each low-resolution volume and upscales the features into the data
(super-resolution) space. Second, we customize a pre-training task
for STSR by only leveraging the information from low-resolution vol-
umes. The goal is to explicitly promote a better generalization for
producing spatiotemporal volumes for time-varying data. Third, we
design a spatiotemporal discriminator to guarantee spatial and tempo-
ral coherence of the synthesized spatiotemporal volumes. We apply
a two-stage optimization procedure to cut the computational cost and
boost the stability of GAN training.

For evaluation, we apply STNet to different time-varying data sets
with various characteristics. Volume and isosurface rendering results
show that STNet achieves better visual quality than bicubic+linear in-
terpolation, SSR+TSR, STD (a variant of STNet), and TTHRESH [1]
(a state-of-the-art tensor compression algorithm). Moreover, qualita-
tive analysis results also confirm the effectiveness of STNet using three
metrics at the data, image, and feature levels.

The contributions of STNet are as follows. First, we design STNet,
a novel end-to-end deep learning model that applies GANs to simul-
taneously upscales volumes at both spatial and temporal dimensions.
Second, we establish a pre-training algorithm that can improve the
network’s generalization ability. Third, we perform a comprehensive
study to investigate the potential impact factors for STSR.

2 RELATED WORK

Deep learning for volume visualization. With the noticeable success
of deep learning in computer vision, robotics, and NLP, researchers
have explored neural networks’ possibility in solving volume visual-
ization problems. Such examples include SSR for volume [61, 20] and
isosurface [58], TSR for volume [21], variable selection and trans-
lation [22], ensemble generation [25], volume rendering [27, 2, 11],
and viewpoint estimation [52]. Our work is closely related to SSR-
TVD [20] and TSR-TVD [21]. Instead of only focusing on either SSR
or TSR, we upscale volumes at both spatial and temporal dimensions
simultaneously in an end-to-end style.

Deep learning for super-resolution. Deep neural networks have
been widely applied in SSR,TSR, and STSR tasks. The examples of
SSR include SRCNN [10], SRGAN [32], ZSSR [53], SRFBN [33],
SRNTT [64], and NatSR [54]. As for TSR, examples are phase-
based interpolation [38], DVF [36], SepConv [42], DeepLLE [41], and
SloMo [29]. The works of STSR include Xiang et al. [60], Shechtman
et al. [51], Mudenagudi et al. [39], Takeda et al. [55], and Shahar et
al. [50]. Our work is different from these works in three ways. First,
compared with SSR and TSR, we propose a framework with end-to-
end training for STSR. Second, unlike these computationally expen-
sive STSR solutions with limited capacity to capture complex spa-
tiotemporal patterns, we build a fast and accurate STSR framework.
Third, instead of training from scratch in these works, we design a
pre-training algorithm to improve the network’s generalization ability.

Network pre-training. Pre-training in deep learning models aims
to provide a good parameter initialization for better generalization in
a particular task (e.g., classification). Based on different tasks, pre-
training examples include inpainting [45], colorization [31], synthe-
sis [9], feature agreement [15], rotation prediction [13], context pre-
diction [8], and feature contrast [23, 5]. Unlike these pre-training ap-
proaches, which are tailored for classification, detection, or segmenta-
tion, we propose a novel unsupervised pre-training method for STSR
using cycle loss [65, 62].

time

…

V
L
1 V

L
2+t V

L
3+2t V

L
n

V
L’training data

(a)

inference data

example of inferred
time step (e.g., Fig. 7)

time

……

…

V
L
1

V
H
1

V
L
2

V
H
2

V
L
k

V
H
k

20% 80%

V
L
k+1+t V

L
k+2+2t V

L
k+i+it V

L
n

V
S
k+1

…

V
S
k+2 V

S
k+3 V

S
k+i+it

…

V
S
nV

S
k+1+t

…

V
Ttraining data

(b)

Fig. 2: Illustration of STNet’s training and inference data at (a) pre-
training and (b) fine-tuning stages.

3 STNET

3.1 Notation
Let VL = {VL

1 ,V
L
2 ,V

L
3 , · · · ,VL

n} and VH = {VH
1 ,V

H
2 ,V

H
3 , · · · ,VH

n }
be low-resolution and high-resolution time-varying volumetric se-
quences, respectively, where n denotes the number of time steps.
VL

′
= {VL

1 ,V
L
2+t ,V

L
3+2t , · · · ,VL

n} is a sparsely sampled low-resolution
time-varying volumetric sequence, where t denotes the number of in-
termediate time steps and t ′ = t + 1 is the temporal upscaling fac-
tor (i.e., the sequence is upscaled t ′ times at the temporal dimen-
sion). VL

′
is also the pre-training data in STNet (Figure 2 (a)). VT

= {(VL
1 ,V

H
1),(V

L
2 ,V

H
2), · · · ,(VL

k ,V
H
k)} is a sequence used for fine-

tuning STNet (Figure 2 (b)), where k is the total training samples.

In this paper, we set k = 0.2n. VS = {VS
1,V

S
2,V

S
3, · · · ,V

S
n} is a super-

resolution time-varying volumetric sequence that we aim to generate
via STNet. Namely, VH ≈ VS = STNet(VL

′
). s is the spatial up-

scaling factor (i.e., each volume is upscaled s times at each spatial
dimension). Note that we purposefully refer to the synthesized data as
super-resolution data and the original data as high-resolution data for
differentiation.

D
real/

fake

fe
a

tu
re

 u
p

s
c
a

lin
g

feature

extraction &

interpolation 0

D

real/

fake

real/

fake

feature

extraction &

interpolation t

…

… …

V
L

i+t

V
L

i+1+2t

V
S

i+t

V
S

i+1+2t

D
real/

fake

V
S

i+2t

Fig. 3: Overview of STNet. The network consists of several feature
extraction and interpolation (FEI) modules for representing spatiotem-
poral features and one feature upscaling (FU) module for generating
super-resolution volumes. After that, a spatiotemporal discriminator
is utilized to discern the spatial and temporal realness.

3.2 Overview
As shown in Figure 3, given two-ending low-resolution volumes VL

i+t
and VL

i+1+2t , STNet first leverages t +1 FEI modules to learn features
of the intermediate and the two-ending volumes. One FEI module
is tailored for representing the two-ending volumes, and additional t
modules are for learning the t intermediate volumes. Once the features
are learned, a FU module transforms the spatiotemporal features into
a high-dimensional space for generating high-fidelity super-resolution
volumes. To discern the spatial and temporal realness of these synthe-
sized volumes, we apply a spatiotemporal discriminator (D) based on
convolutional long short-term memory (ConvLSTM) [21]. D accepts
a volume sequence as input and scores each volume’s realness through
its spatial (the volume itself) and temporal (its previous time steps) in-
formation. To optimize STNet, we propose a two-stage pre-training
and fine-tuning algorithm. During pre-training, we only utilize the
low-resolution volumes (i.e., VL

′
) to optimize STNet using cycle loss.

This stage aims to furnish a proper parameter initialization for STNet,
which can boost its generalization ability. During fine-tuning, we use
VT as training samples to fine-tune STNet for performance improve-
ment. In the following, we discuss the criteria and rationales for de-
signing spatial and temporal modules. Then, we provide optimization
details for the pre-training and fine-tuning stages.

3.3 Framework
STNet follows a post-upsampling architecture for spatial upscaling
and performs interpolation in the feature space for temporal upscal-
ing. The rationales are provided as follows.

Why choose post-upsampling for SSR? Considering SSR ar-
chitectures, the most widely used ones are pre-sampling and post-
upsampling frameworks [57]. Pre-sampling applies common upscal-
ing approaches (e.g., bicubic and trilinear) for upscaling and follows a
series of Conv layers to refine the upscaled data. In contrast, post-
sampling leverages Convs to represent low-resolution data and up-
scales the representations to super-resolution data using deconvolu-
tional or shuffle layers. Compared with pre-sampling, post-sampling
brings two benefits: speed and performance. First, since most opera-
tions perform in the low-dimensional space and only a few operations
occur in the high-dimensional space in post-sampling, the computa-
tional cost is low. Second, Convs cannot completely eliminate the

noises and artifacts introduced by common upscaling approaches in
pre-upsampling, while post-upsampling has no such issue in upscal-
ing because Convs already distill data in the low-dimensional space.

Why perform feature-space temporal interpolation? For TSR
architectures, two common options are performing interpolation in the
feature or data (super-resolution) space. The feature space refers to the
hidden representations of low-resolution volumes, which CNNs usu-
ally extract. The data space refers to the space composed of the origi-
nal volumes. The examples are sketched in Figure 4. For feature-space
interpolation, give two time steps at both ends, we leverage feature ex-
traction and interpolation to generate the feature of each intermediate
time step and the two-ending time steps individually. We then use a FU
module to generate the super-resolution volumes from these features.
For data-space interpolation, a unified representation is learned from
all intermediate and the two-ending time steps. Then the feature is
upscaled and interpolated in the data (super-resolution) space. Taking
into account the involvement of SSR, feature interpolation is a more
suitable solution due to the following reason. Applying data-space in-
terpolation requires a powerful FEI module to learn a representation
with rich spatiotemporal information for all intermediate and the two-
ending volumes. It also demands a powerful FU module to transform
one feature into t + 2 time steps. This would be difficult, especially
in a low-dimensional space, since the information in low-resolution
data is limited. For feature-space interpolation, the difficulties of ex-
tracting spatiotemporal information and the FU module’s demanding
capability are mitigated through interpolating multiple features.

data (low-resolution)

space

data (super-resolution)

space

feature

space

feature

extraction upscaling

& interpolation

(a) feature-space interpolation
data (low-resolution)

space

data (super-resolution)

space

feature

space

feature

extraction upscaling &

interpolation

(b) data (super-resolution)-space interpolation

Fig. 4: Illustration of two different temporal interpolation options.

Generator. The core of generator lies in the feature extraction and
interpolation (FEI) and feature upscaling (FU) modules. The FEI
module comprises four dense blocks (DBs) [28]. As shown in Fig-
ure 5 (a), in each DB, it includes three Conv layers. Each Conv ac-
cepts all previous outputs stacked together as input. In particular, we
utilize t + 1 FEI modules to interpolate features of the intermediate
and the two-ending volumes. One module accepts the low-resolution
volumes as input and produces the corresponding features. The rest of
the t modules take the two ending volumes as input and interpolate t
features of the intermediate volumes. As sketched in Figure 5 (b), in
the FU module, we first separate the input into two branches. In each
branch, one voxel shuffle (VS) layer [21] is used to upscale the input.
Then in the second branch, after VS, a Conv and a sigmoid activation
function follow. This result is multiplied by the output from the first
branch. After merging, two Conv layers and skip connection [28, 49]
are utilized to produce the final output [7, 43]. The motivation of using
this two-branch-based FU module is that the network can estimate the
importance of each neuron in the feature maps, and the more important
neurons will offer a larger weight in the following convolution compu-
tation. This design forces the network to pay more attention to inter-
esting volumetric regions instead of treating interesting (e.g., features)
and uninteresting (e.g., background) regions equally. We have only a
FU module in the generator, which upscales the intermediate features

of all time steps. The architecture detail is given in the Appendix. Note
that for generating STSR volumes, we need t+1 FEI modules: one for
representing the two-ending volumes and t for the t intermediate vol-
umes. Rectified linear unit (ReLU) [40] is applied after each Conv
layer except the final output layer. No activation function follows after
the output layer. Adding tanh or sigmoid will significantly hurt the
performance for some specific data sets (e.g., supercurrent) since tanh
will saturate at the tails of −1 and 1 and sigmoid will saturate at the
tails of 0 and 1, which could kill the gradient and prevent the network
from continuous learning.

(a)(b)

real/
fake

(c)

Conv VS ConvLSTM GAPdata flow

real/
fake

! ! !

Fig. 5: Architectures of (a) dense block, (b) FU module, and (c) spa-
tiotemporal discriminator.

Spatiotemporal discriminator. We build a spatiotemporal dis-
criminator to judge the spatial and temporal realness of the volumes
generated by STNet. As displayed in Figure 5 (c), two Conv layers are
utilized to extract spatial information from the input volumes. Each
Conv decreases the dimension by half while doubling the channels.
Then, temporal coherence is evaluated by incorporating ConvLSTM
that accepts the features of the previous and current time steps as in-
puts. Finally, a Conv and global average pooling (GAP) [34] layer
compresses the feature into a single value, which scores the realness
of the input volume. ReLU is picked as the activation function, ex-
cluding the ConvLSTM and GAP layers.

3.4 Optimization
To optimize STNet, we design a two-stage training algorithm: pre-
training and fine-tuning. Pre-training offers an appropriate starting
point for training STNet and provides the network with better gener-
alization ability during inference. Fine-tuning fits the network in the
downstream STSR task.

desired

minimum

parameter space

random

initialization

optimization

desired

minimum

parameter space

random

initialization

pre-training

fine-tuning

(a) w/o pre-training (b) w pre-training

Fig. 6: Illustration of how learnable parameters change (a) without and
(b) with pre-training.

Why pre-training? A straightforward optimization is to randomly
initialize the learnable parameters in STNet and directly use low-
resolution and high-resolution pairs to train STNet, as sketched in Fig-
ure 6 (a). Although random initialization can promote the network to a
local minimum, it could not improve further to the desired one since it
would overfit the training data. However, adding pre-training can pro-
mote the randomly initialized parameters to a local minimum based
on the pre-training task, which can be utilized in the downstream task.
Then, based on this new starting point, the network can better fit the
data, as shown in Figure 6 (b). The pre-training stage can guide the
learning process towards the minima to support better generalization
from the training data [12]. In the context of STSR, pre-training can
help STNet see the inference data in the low-dimensional space, pre-
venting the network from overfitting in the training data and enhancing
the network’s generalization ability in the inference data.

Pre-training. To pre-train in an unsupervised fashion, we leverage
cycle loss to optimize STNet. The cycle loss for VS

i is defined as

Lcyc = ||D(VS
i)−VL

i ||2, (1)

where D denotes a downsizing operation (e.g., trilinear) and || · ||2 is
L2 norm. The rationale for designing this loss is that once the super-
resolution volumes are generated and if we downsize them again to the
low-dimensional space, the downsized version (i.e., D(VS

i)) should be
consistent with the original low-resolution volumes (i.e., VL

i).
Fine-tuning. To fine-tune STNet in the STSR task, we leverage

volumetric loss for the closeness to high-resolution volumes, and ad-
versarial loss for the realness, to train STNet. The volumetric loss for
VS

i is defined as
L G

vol = ||V
S
i −VH

i ||2. (2)

The adversarial losses of generator G and discriminator D for
{VS

i , · · · ,VS
i+t+1} are defined as

L G
adv =

t+1

∑
j=0

1−D
(

VS
i+ j|VS

i+ j−1, · · · ,V
S
i

)
, (3)

L D
adv =

t+1

∑
j=0

D
(

VS
i+ j|VS

i+ j−1, · · · ,V
S
i

)
+

t+1

∑
j=0

1−D
(

VH
i+ j|VH

i+ j−1, · · · ,VH
i

)
.

(4)

Considering both volumetric and adversarial losses, we define the
total loss of G as

L G = λvolL
G
vol +λadvL

G
adv, (5)

where λvol and λadv control the weights of these two losses.
The training algorithm of STNet is listed in Algorithm 1. In the

pre-training stage, we first use the sparsely sampled low-resolution se-
quence VL

′
, as sketched in Figure 2 (a), to train STNet. After training

TP epochs, we begin to fine-tune STNet using the low-resolution and
high-resolution pairs at the early time steps VT , as shown in Figure 2
(b). Following Wang et al. [56], the fine-tuning stage contains two
steps. First, only volumetric loss is applied to optimize STNet for
training stabilization and computational cost reduction. Second, the
spatiotemporal discriminator D is involved in the training procedure
for enhancing spatial and temporal coherence.

Table 1: Variables and dimension of each data set.
data set variables dimension (x× y× z× t)
five jets intensity 128×128×128×100
ionization H, H+, He, He+ 600×248×248×100
half-cylinder [48] velocity magnitude 640×240×80×100
supercurrent rho 256×128×32×200
Tangaroa [46] velocity magnitude 300×180×120×150
vortex vorticity magnitude 128×128×128×90

4 RESULTS AND DISCUSSION

4.1 Data Sets and Network Training
We tested STNet using the data sets reported in Table 1. Note that
half-cylinder is an ensemble data set with different Reynolds numbers
(i.e., 320, 640, and 6,400). PyTorch [44] was used for implementa-
tion. Training and inference were performed on an NVIDIA TESLA
V100 GPU. The low-resolution data were obtained by applying bicu-
bic kernel with reflection padding. We scaled the range of VL and
VH to [−1,1]. We initialized parameters following He et al. [24] for
optimization and utilized the Adam optimizer [30] for parameter up-
date. In each mini-batch, one training sample is used. The learning
rates for G and D are 10−4 with β1 = 0.9, β2 = 0.999. λvol = 1 and
λadv = 10−3. TP, TF1 , and TF2 are set to 200, 400, and 50 epochs,
respectively, for all data sets. All these hyperparameter settings are
determined based on experiments.

Algorithm 1 STNet training algorithm.

Require: initial parameters θG and θD for G and D, number of training epochs
in pre-training and fine-tuning stages: TP, TF1 , and TF2 , learning rates αG and
αD for G and D, respectively.
/* pre-training stage */
for j = 1 · · ·TP do

sample low-resolution data from VL
′
;

compute Lcyc according to Equation 1;
update θG;

end for
/* fine-tuning stage 1: only using volumetric loss to optimize STNet */
for j = 1 · · ·TF1 do

sample low-resolution and high-resolution data pairs from VT ;
compute L G

vol according to Equation 2;
update θG;

end for
/* fine-tuning stage 2: taking temporal coherence into consideration */
for j = 1 · · ·TF2 do

sample low-resolution and high-resolution data pairs from VT ;
compute L D

adv according to Equation 4;
update θD;
compute L G according to Equation 5;
update θG;

end for

4.2 Results
Baselines. We compare STNet with three baseline solutions:

• BL: Bicubic interpolation is used for SSR and linear interpola-
tion for TSR. BL stands for bicubic+linear interpolation.

• SSR+TSR: SSR [20] is a GAN solution for time-varying data
SSR, and TSR [21] is a recurrent generative solution for TSR.
We train SSR for 400 epochs and TSR for 400 epochs.

• STD: STD is a variant of STNet. Instead of performing tempo-
ral interpolation in the feature space, STD directly interpolates
the volumes in the data space. Namely, given two volumes at
both ends, STD leverages a FEI module to simultaneously learn
spatiotemporal features of all intermediate and the two-ending
time steps and applies a FU module to generate super-resolution
volumes.

Note that existing STSR works [51, 39, 55, 50] are not suitable
for 3D data since they could not capture complicated spatiotemporal
patterns. As for Xiang et al. [60], it leverages deformable Conv for
spatiotemporal super-resolution. However, it is difficult to extend this
architecture to handle 3D data sets for two reasons. First, deformable
Conv needs to learn offsets to perform Convs, which requires addi-
tional parameters and memories. Second, the offsets are learned from
the whole data, not a subregion. Thus, the computational cost is ex-
tremely high when the volume is large.

Section 1 in the Appendix provides a detailed discussion of the two
deep learning baselines. The accompanying video shows the frame-
to-frame comparison results. For the same data set, all visualization
results follow the same rendering parameters for lighting, viewpoint,
transfer function (used in volume rendering), and isovalue (used in iso-
surface rendering). Except for the GT results, all results from STNet
and baseline solutions are rendered using inferred data from a later
time step (refer to Figure 2 (b)).

Evaluation metrics. We utilize three metrics, including data-level
peak signal-to-noise (PSNR), image-level structural similarity index
(SSIM), and feature-level isosurface similarity (IS) [3], for quantita-
tive evaluation.

Quantitative and qualitative analysis. Figure 7 shows volume
rendering results produced from BL, SSR+TSR, STD, STNet, and GT
using the five jets, half-cylinder (640), and vortex data sets. For the five
jets data set, both BL and SSR+TSR produce more cyan parts at the
cap, and the rendering results are overly smooth at the legs. STD and
STNet generate similar results, but taking a close comparison, STNet
synthesizes finer details at the green part (refer to the zoom-ins on the

(a) BL (b) SSR+TSR (c) STD (d) STNet (e) GT
Fig. 7: Comparison of volume rendering results. Top to bottom: five jets, half-cylinder (640), and vortex.

Table 2: Average PSNR (dB), SSIM, and training time (in seconds). The best ones are highlighted in bold (same for other tables in the paper).
data set method PSNR SSIM training time data set method PSNR SSIM training time

five jets

BL 27.96 0.751 —

supercurrent

BL 26.92 0.812 —
SSR+TSR 27.30 0.685 64.024 SSR+TSR 44.54 0.995 87.258
STD 40.00 0.892 24.662 STD 44.74 0.995 31.443
STNet 39.63 0.901 43.702 STNet 44.71 0.995 66.285

half-cylinder (640)

BL 28.12 0.864 —

Tangaroa

BL 21.85 0.853 —
SSR+TSR 24.15 0.792 66.187 SSR+TSR 26.96 0.858 96.037
STD 35.60 0.907 27.884 STD 30.07 0.879 37.964
STNet 36.84 0.944 45.580 STNet 33.26 0.892 65.568

ionization (H)

BL 33.52 0.862 —

vortex

BL 29.78 0.749 —
SSR+TSR 43.05 0.908 68.123 SSR+TSR 23.89 0.576 57.622
STD 40.67 0.892 28.556 STD 31.12 0.693 24.573
STNet 43.19 0.913 44.781 STNet 32.73 0.720 39.329

left) and the legs (refer to the zoom-ins on the right). For the half-
cylinder (640) data set, both BL and SSR+TSR do not produce high-
quality rendering results. STD generates the result with tiny noises
and artifacts at the front (refer to the zoom-ins on the left) and more
purple parts (refer to the zoom-ins on the right). As for the vortex data
set, BL, SSR+TSR, and STD produce more blue and red parts over
the whole volume. STNet generates closer results compared with GT.
For the quantitative results, we report average PSNR and SSIM values
in Table 2. In general, STNet achieves the best performance among

these four solutions, except for the average SSIM for the vortex data
set and the average PSNR for the five jets and supercurrent data sets.
The model sizes of SSR+TSR, STD, and STNet are 74.0MB, 138MB,
and 62.5MB, respectively. As for the training time, STD requires the
shortest time for optimization, and SSR+TSR needs the longest time.
This is because SSR has one generator and two discriminators, and
TSR has a recurrent generator and one discriminator. SSR+TSR needs
to optimize two generators and three discriminators to go through one
training data sample, incurring an expensive computational cost. Since

(a) BL (b) SSR+TSR (c) STD (d) STNet (e) GT
Fig. 8: Comparison of isosurface rendering results. Top to bottom: five jets, ionization (H), Tangaroa, and supercurrent. The chosen isovalues
are 0, 0.5, 0, and −0.2 , respectively.

STNet has more FU modules than STD (t +1 vs. 1), it demands more
time to compute gradients and optimize. However, there is no signifi-
cant difference for the inference time.

Figure 8 shows isosurface rendering results among BL, SSR+TSR,
STD, STNet, and GT using the five jets, ionization (H), Tangaroa, and
supercurrent data sets. For each data set, we pick one isovalue for
comparison. For the five jets data set, both BL and SSR+TSR do not
capture the isosurface details (refer to the zoom-ins on the right), and
the lighting on the isosurface generated by STD shifts too much com-
pared with GT (refer to the zoom-ins on the left). For the ionization
(H) data set, STNet can capture finer structures (refer to the zooms-in
on the right) compared with other solutions. For the Tangaroa data set,
both BL and SSR+TSR do not produce isosurfaces with fine details.
In addition, the isosurfaces generated by SSR+TSR contain noticeable
noises and artifacts. For STD and STNet, both can synthesize similar
isosurfaces compared with GT. However, STNet can extract more de-
tails. For example, it produces close isosurfaces at two corners (refer to
the zoom-ins). For the supercurrent data set, BL does not extract close
isosurfaces compared with GT, while SST+TSR, STD, and STNet pro-

duce similar results, and all of them are comparable to GT. In terms of
quantitative comparison, Table 3 reports the average IS score for BL,
SSR+TSR, STD, and STNet. STNet achieves the best performance for
all data sets. Note that for the five jets and supercurrent data sets, STD
and STNet achieve similar performance. This is because the overall
content does not change too much over different time steps for these
two data sets (i.e., the training and inference data are similar), which
means data-space interpolation could lead to satisfactory results. But
to achieve similar performance, STD needs around 36 million param-
eters while STNet requires about 16 million.

Comparison with baselines. As shown in Figures 7 and 8,
STNet outperforms SSR+TSR and STD in terms of visual quality and
achieves better quantitative scores for most data sets compared with
STD. The potential reasons are as follows. SSR+TSR directly uses
two networks to perform SSR and TSR, respectively. It forces the lat-
ter network (i.e., TSR) to complete two tasks, i.e., TSR and denoising,
since the results generated from the former network (i.e., SSR) are not
GT, and they contain unobservable noises. These noises could be sen-
sitive [63, 26] when synthesizing high-quality volumes. This explains

Table 3: Average IS values at chosen isovalues.
data set (isovalue) BL SSR+TSR STD STNet
five jets (v = 0) 0.78 0.80 0.88 0.88
half-cylinder (640) (v = 0.2) 0.62 0.60 0.74 0.79
ionization (H) (v =0.5) 0.71 0.78 0.79 0.81
supercurrent (v =−0.2) 0.23 0.96 0.96 0.96
Tangaroa (v = 0) 0.57 0.59 0.73 0.75
vortex (v =−0.2) 0.82 0.79 0.84 0.86

why the rendering results produced by SSR+TSR contain noises and
artifacts. We try to add a denoising module into the TSR framework
to clean up these noises, but the results are not satisfactory. For STD,
it achieves comparable PSNR values for simple data sets (e.g., super-
current) but cannot generate high fidelity results for complex data sets
(e.g., half-cylinder). This is because extracting a global spatiotempo-
ral representation for all intermediate and the two-ending time steps is
extremely difficult for these volumes whose patterns change dynami-
cally. We point out that the number of parameters in STD is twice of
those in STNet. The reason is as follows. Ideally, to achieve a fair
comparison between STD and STNet, we need to set the same number
of parameters in both STD and STNet. However, under the model size
of 62.5MB, STD cannot generate satisfactory STSR volumes. There-
fore, we expand the width (i.e., the number of channels) of STD.

Table 4: Comparison of TTHRESH and STNet. Top: average SSIM
under the same PSNR of 36.84 dB. Bottom: average PSNR (dB) and
SSIM under the same compression ratio of 206.74×.

data set method compression ratio SSIM

half-cylinder (640) TTHRESH 1745.33 × 0.902
STNet 162.62 × 0.944

data set method PSNR SSIM

ionization (H) TTHRESH 49.37 0.906
STNet 43.19 0.913

Comparison with state-of-the-art compression. Figure 9 shows
volume rendering results obtained from the upscaled volumes gener-
ated by STNet and the volumes compressed then decompressed using
TTHRESH [1]. We choose TTHRESH, a tensor compression solu-
tion, because it smoothly degrades the data, leads to errors smaller
than other state-of-the-art algorithms, and requires a low cost for com-
pression and decompression. We consider two scenarios: (1) keeping
the same PSNR (i.e., 36.84 dB) for the half-cylinder (640) data set and
(2) controlling the same compression ratio (i.e., 206.74×) for the ion-
ization (H) data set. To achieve a fair comparison against TTHRESH,
we include the model size in the computation of compression ratio.
We utilize a lossless compression algorithm [35] to further reduce the
storage of the saved model and data. For the first scenario, as shown
in Figure 9 (a), the image rendered by TTHRESH contains fewer cyan
parts. It also produces noticeable noises in the rendering image. The
top part of Table 4 reports the compression ratios and average SSIM
values for both methods. Under the same PSNR, although TTHRESH
achieves a higher compression ratio, which is about 10 times com-
pared with that of STNet, STNet achieves a higher SSIM value for the
synthesized volumes than those recovered from TTHRESH. For the
second scenario, as shown in Figure 9 (b), TTHRESH generates more
red parts. The bottom part of Table 4 gives average PSNR and SSIM
values for both methods. Under the same compression ratio, although
TTHRESH produces a higher PSNR value, STNet achieves a higher
SSIM value and better visual quality.

Evaluation of ensemble and multivariate data sets. In Fig-
ures 10 and 11, we compare volume and isosurface rendering results
from the synthesized volumes given by BL and STNet on ensemble
and multivariate data sets to evaluate the generalization ability. We use
an ensemble parameter (variable) XS of a data set for training, while
another ensemble parameter (variable) XT of the same data set is used
for inference (i.e., XS→XT). For the half-cylinder data set, we test two
cases: 640→ 320 and 640→ 6,400. The complexity increases as the

(a) TTHRESH (b) STNet (c) GT
Fig. 9: Volume rendering results. Top and bottom: half-cylinder (640)
and ionization (H).

Reynolds number gets large. For 640→ 320, compared with the result
generated by BL, STNet produces better visual results in the purple
and cyan parts of volume rendering results and extracts finer details of
isosurfaces as shown in isosurface rendering results. For 640→ 6,400,
STNet synthesizes more detailed rendering results. For example, the
cyan part’s lighting and the isosurfaces at the middle and right corners
are closer to GT results. As for H→ H+ of the ionization data set, BL
produces fewer details at the bottom of the ionization for both render-
ing results. For instance, for volume rendering, the image generated
by BL shows more purple color. For isosurface rendering, the lighting
at the bottom generated by BL is inconsistent with that of GT. As for
quantitative results, STNet also outperforms BL in terms of PSNR and
SSIM, as shown in Table 5.

(a) BL (b) STNet (c) GT
Fig. 10: Variable and ensemble volume rendering results. Top to bot-
tom: half-cylinder (320), half-cylinder (6,400), and ionization (H+).

Table 5: Average PSNR (dB) and SSIM for ensemble and multivariate
data sets.

data set (XS→XT) method PSNR SSIM

half-cylinder (640→ 320) BL 30.01 0.886
STNet 35.26 0.951

half-cylinder (640→ 6,400) BL 26.47 0.857
STNet 33.86 0.926

ionization (H→H+) BL 33.53 0.867
STNet 42.99 0.910

Evaluation of s and t. To analyze the performance of STNet with
different s and t, we set s = 4 and s = 8 with different t using the
five jets and supercurrent data sets, respectively. As shown in the top
rows of Figures 12 and 13, t = 3 achieves the best quality. However,
all of them can capture the overall shape and details of the five jets,
and the main difference is the size of the cyan cap. For the supercur-
rent data set, the rendering results are shown in the bottom rows of
Figures 12 and 13. All produce similar results compared to GT for

(a) BL (b) STNet (c) GT
Fig. 11: Variable and ensemble isosurface rendering results. Top
to bottom: half-cylinder (320), half-cylinder (6,400), and ionization
(H+). The chosen isovalues are −0.2, 0, and −0.2, respectively.

volume and isosurface rendering. But taking a close comparison, un-
der t = 10, the isosurface is broken into two parts at the top-left corner
(refer to the red arrow). Besides, average PSNR and SSIM values are
shown in Figure 14. STNet significantly outperforms BL for the five
jets and supercurrent data sets under different settings of s and t.

s = 4, t = 7 s = 4, t = 5 s = 4, t = 3 GT

s = 8, t = 10 s = 8, t = 6 s = 8, t = 2 GT
(a) (b) (c) (d)

Fig. 12: Volume rendering results under different s and t. Top and
bottom: five jets and supercurrent.

Based on the above results, our suggestions for choosing s and t for
different data sets are as follows.

• With s = 4, the appropriate value for t could be large for sim-
ple data sets (e.g., five jets and supercurrent), where the patterns
change slowly over time. The suitable value is determined by
the total sample time steps. With sufficient samples, t could be 9
for the supercurrent data set (200 time steps), while with limited
samples, t could be 5 for the five jets data set (100 time steps).

• With s = 4, for complex data sets (e.g., half-cylinder and vortex)
where the patterns could evolve rapidly in neighborhood time
steps, 3 is a proper value for t.

• With s= 8, it is almost infeasible with the current architecture for
upscaling these data sets (e.g., half-cylinder and vortex), where
the spatial structures are complex.

• For data sets (e.g., five jets and supercurrent) where the shapes
are simple and less complicated, s = 8 could still work.

Refer to Section 2 in the Appendix for additional results.
Temporal coherence. To compare how well temporal coherence is

preserved using BL and STNet, we show five consecutive time steps
using the half-cylinder (320) data set. As shown in Figure 15, STNet
can better capture temporal coherence compared with BL as BL does

s = 4, t = 7 s = 4, t = 5 s = 4, t = 3 GT

s = 8, t = 10 s = 8, t = 6 s = 8, t = 2 GT
(a) (b) (c) (d)

Fig. 13: Isosurface rendering results under different s and t. Top and
bottom: five jets and supercurrent. The chosen isovalues are 0.4 and
−0.2, respectively.

BL

STNet

1 3 5 7
Temporal Upscaling Factor

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

0 2 4 6 8 10
Temporal Upscaling Factor

15

20

25

30

35

40
PS

NR
 (d

B)

0 2 4 6 8 10
Temporal Upscaling Factor

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

(a) PSNR (b) SSIM
Fig. 14: Average PSNR and SSIM under different s and t. Top and
bottom: five jets with s = 4 and supercurrent with s = 8.

not produce meaningful intermediate time steps. This is because BL
only assumes that features evolve linearly, which is not the case for
most data sets.

(a) 94 (b) 95 (c) 96
Fig. 15: Volume rendering results of the half-cylinder (320) data set
with five time steps (94 to 96). Top to bottom: BL, STNet, and GT.

4.3 Network Analysis
To analyze STNet, we study the impact of pre-training and loss func-
tion. A detailed discussion is as follows.

Evaluation of pre-training. To investigate the effectiveness of
adding pre-training, we train STNet with and without pre-training.
Table 6 gives the average PSNR and SSIM under these two training
schemes. As we can see, the pre-training can improve about 1dB and
0.01 for the average PSNR and SSIM values, respectively. Moreover,
we plot the PSNR curves over the whole sequence, as shown in Fig-
ure 16. The curves indicate that pre-training can boost the PSNR value
at almost every time step. As for visual quality, volume rendering re-
sults are shown in the top row of Figure 17. Clearly, using pre-training

Table 6: Average PSNR (dB) and SSIM under different settings.
data set method PSNR SSIM

Tangaroa w/o pre-training 32.26 0.883
w pre-training 33.26 0.892

vortex w/o pre-training 31.75 0.709
w pre-training 32.73 0.720

five jets w/o volumetric loss 22.11 0.621
w volumetric loss 39.63 0.892

half-cylinder (640) w/o volumetric loss 20.62 0.888
w volumetric loss 36.84 0.944

ionization (H) w/o adversarial loss 43.80 0.904
w adversarial loss 43.19 0.913

— w/o pre-training

— w pre-training

(a) Tangaroa (b) vortex
Fig. 16: PSNR curves with and without pre-training.

can generate results closer to GT (refer to the yellow ellipse). These
quantitative and qualitative analysis results confirm the usefulness of
the pre-training algorithm.

Evaluation of volumetric loss. Cycle and volumetric losses serve a
similar role in optimization while constraining the volumes in the low-
dimensional and high-dimensional spaces, respectively. So, would it
still work if we only leverage one loss to train the network? To answer
this question, we optimize the network with and without considering
volumetric loss. Note that training without cycle loss means removing
pre-training, which has been discussed. As shown in Table 6, without
volumetric loss, average PSNR and SSIM values drop significantly.
As for rendering quality, we display volume rendering results in Fig-
ure 17. Using cycle loss only captures the overall shape of the five
jets but could not preserve fine details. This is because different data
samples in the high-dimensional space can be downsized to the same
data in the low-dimensional space with the same downsizing function
(e.g., bicubic) [37]. Constrained only in the low-dimensional space,
the network could jump into an undesired local minimum in the high-
dimensional space.

Evaluation of adversarial loss. To study the impact of adversarial
loss, we optimize STNet with and without adversarial loss. Table 6 re-
ports the average PSNR and SSIM under these two optimizations. Al-
though we can achieve a higher PSNR value without adversarial loss,
adding adversarial loss improves SSIM values (i.e., the image-level
metric). Moreover, the rendering images also confirm that adversarial
loss can boost perceptual quality, as shown in Figure 17. For exam-
ple, without adversarial loss, the rendering image produces more red
parts at the ionization’s head. Therefore, these results demonstrate the
usefulness of adversarial loss in improving visual quality.

5 CONCLUSIONS AND FUTURE WORK

We have presented STNet, a novel generative solution for produc-
ing STSR volumes for time-varying data analysis and visualization.
Leveraging post-upsampling and feature interpolation, STNet can
synthesize high fidelity super-resolution sequence given two low-
resolution volumes at both ends as input. Compared to BL, SSR+TSR,
and STD, STNet produces time-varying sequences of better visual
quality, both qualitatively and quantitatively. We also compare STNet
with TTHRESH to verify its effectiveness.

STNet can be applied to the in-situ scenario: at simulation time, sci-
entists can store the early time steps for STNet training while saving
the later time steps sparsely for storage saving. For example, they can
keep one time step for every ten time steps simulated and downsize
these time steps by 4 at each spatial dimension. During postprocess-

w/o cyc loss w cyc loss GT

w/o vol loss w vol loss GT

w/o adv loss w adv loss GT
(a) (b) (c)

Fig. 17: Volume rendering results under different loss settings. From
top to bottom: Tangaroa, five jets, and ionization (H).

ing, the network is trained with the early time steps only. Once trained,
they can recover the super-resolution intermediate time steps with high
fidelity, given the sparsely output low-resolution time steps.

Our future work aims to improve STNet in three aspects. (1) Adap-
tive sampling. The current temporal sampling strategy is based on
uniform sampling, which may not capture the dynamic pattern well.
Ideally, we need to densely store time steps when the pattern evolves
rapidly and sparsely save time steps when the pattern changes slowly.
Based on adaptive sampling, STNet can better learn the data struc-
tures in both spatial and temporal dimensions, and the performance
can be improved further. (2) Unsupervised super-resolution. So far,
STNet still relies on the high-resolution data as a reference to learn
the mapping from low-resolution to super-resolution. However, this
requirement impedes its implementation in the in-situ scenario. We
want to explore the possibility of generating super-resolution in an un-
supervised manner by incorporating knowledge distillation [14] with
cycle loss. (3) Larger spatial upscaling factor. For now, given com-
plex data sets, STNet can only upscale the volumes 4 times along each
spatial dimension (leading to 64 times reduction) due to the network’s
limited capability. We will design a more powerful framework that can
handle a larger spatial upscaling factor, such as 8 or 16 [4].

ACKNOWLEDGMENTS

This research was supported in part by the U.S. National Sci-
ence Foundation through grants IIS-1455886, CCF-1617735, CNS-
1629914, DUE-1833129, IIS-1955395, IIS-2101696, and OAC-
2104158. The authors would like to thank the anonymous reviewers
for their insightful comments.

REFERENCES

[1] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola. TTHRESH: Tensor
compression for multidimensional visual data. IEEE Transactions on Vi-
sualization and Computer Graphics, pages 7324–7334, 2019.

[2] M. Berger, J. Li, and J. A. Levine. A generative model for volume ren-
dering. IEEE Transactions on Visualization and Computer Graphics,
25(4):1636–1650, 2019.

[3] S. Bruckner and T. Möller. Isosurface similarity maps. Computer Graph-
ics Forum, 29(3):773–782, 2010.

[4] K. C. Chan, X. Wang, X. Xu, J. Gu, and C. C. Loy. GLEAN: Genera-
tive latent bank for large-factor image super-resolution. arXiv preprint
arXiv:2012.00739, 2020.

[5] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework
for contrastive learning of visual representations. In Proceedings of In-
ternational Conference on Machine Learning, 2020.

[6] Z. Chen, W. Zeng, Z. Yang, L. Yu, C.-W. Yu, M. Raj, and H. Qu. Las-
soNet: Deep lasso-selection of 3D point clouds. IEEE Transactions on
Visualization and Computer Graphics, 26(1):195–204, 2020.

[7] T. Dai, J. Cai, Y. Zhang, S.-T. Xia, and L. Zhang. Second-order atten-
tion network for single image super-resolution. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pages 11065–
11074, 2019.

[8] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representa-
tion learning by context prediction. In Proceedings of IEEE International
Conference on Computer Vision, pages 1422–1430, 2015.

[9] J. Donahue and K. Simonyan. Large scale adversarial representation
learning. In Proceedings of Advances in Neural Information Processing
Systems, pages 10542–10552, 2019.

[10] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-resolution using
deep convolutional networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38(2):295–307, 2016.

[11] D. Engel and T. Ropinski. Deep volumetric ambient occlusion. IEEE
Transactions on Visualization and Computer Graphics, 27(2):1268–
1278, 2021.

[12] D. Erhan, A. Courville, Y. Bengio, and P. Vincent. Why does unsuper-
vised pre-training help deep learning? In Proceedings of the International
Conference on Artificial Intelligence and Statistics, pages 201–208, 2010.

[13] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation
learning by predicting image rotations. In Proceedings of International
Conference on Learning Representations, 2018.

[14] J. Gou, B. Yu, S. J. Maybank, and D. Tao. Knowledge distillation: A
survey. arXiv preprint arXiv:2006.05525, 2020.

[15] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya,
C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, B. Piot,
K. Kavukcuoglu, R. Munos, and M. Valko. Bootstrap your own latent: A
new approach to self-supervised learning. In Proceedings of Advances in
Neural Information Processing Systems, 2020.

[16] P. Gu, J. Han, D. Z. Chen, and C. Wang. Reconstructing unsteady
flow data from representative streamlines via diffusion and deep learn-
ing based denoising. IEEE Computer Graphics and Applications, 41(5),
2021. In Press.

[17] L. Guo, S. Ye, J. Han, H. Zheng, H. Gao, D. Z. Chen, J.-X. Wang, and
C. Wang. SSR-VFD: Spatial super-resolution for vector field data analy-
sis and visualization. In Proceedings of IEEE Pacific Visualization Sym-
posium, pages 71–80, 2020.

[18] J. Han, J. Tao, and C. Wang. FlowNet: A deep learning framework
for clustering and selection of streamlines and stream surfaces. IEEE
Transactions on Visualization and Computer Graphics, 26(4):1732–
1744, 2020.

[19] J. Han, J. Tao, H. Zheng, H. Guo, D. Z. Chen, and C. Wang. Flow field
reduction via reconstructing vector data from 3D streamlines using deep
learning. IEEE Computer Graphics and Applications, 39(4):54–67, 2019.

[20] J. Han and C. Wang. SSR-TVD: Spatial super-resolution for time-varying
data analysis and visualization. IEEE Transactions on Visualization and
Computer Graphics, 2020. Accepted.

[21] J. Han and C. Wang. TSR-TVD: Temporal super-resolution for time-
varying data analysis and visualization. IEEE Transactions on Visualiza-
tion and Computer Graphics, 26(1):205–215, 2020.

[22] J. Han, H. Zheng, Y. Xing, D. Z. Chen, and C. Wang. V2V: A deep learn-
ing approach to variable-to-variable selection and translation for multi-
variate time-varying data. IEEE Transactions on Visualization and Com-
puter Graphics, 27(2):1290–1300, 2021.

[23] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast
for unsupervised visual representation learning. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pages 9729–
9738, 2020.

[24] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Sur-
passing human-level performance on ImageNet classification. In Pro-
ceedings of IEEE International Conference on Computer Vision, pages
1026–1034, 2015.

[25] W. He, J. Wang, H. Guo, K.-C. Wang, H.-W. Shen, M. Raj, Y. S. G.
Nashed, and T. Peterka. InSituNet: Deep image synthesis for parameter

space exploration of ensemble simulations. IEEE Transactions on Visu-
alization and Computer Graphics, 26(1):23–33, 2020.

[26] D. Hendrycks, K. Lee, and M. Mazeika. Using pre-training can improve
model robustness and uncertainty. In Proceedings of International Con-
ference for Learning Representations, 2019.

[27] F. Hong, C. Liu, and X. Yuan. DNN-VolVis: Interactive volume visual-
ization supported by deep neural network. In Proceedings of IEEE Pacific
Visualization Symposium, pages 282–291, 2019.

[28] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely
connected convolutional networks. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pages 4700–4708, 2017.

[29] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and
J. Kautz. Super SloMo: High quality estimation of multiple interme-
diate frames for video interpolation. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pages 9000–9008, 2018.

[30] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In
Proceedings of International Conference for Learning Representations,
2015.

[31] G. Larsson, M. Maire, and G. Shakhnarovich. Learning representations
for automatic colorization. In Proceedings of the European Conference
on Computer Vision, pages 577–593, 2016.

[32] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. P. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-realistic
single image super-resolution using a generative adversarial network. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 4681–4690, 2017.

[33] Z. Li, J. Yang, Z. Liu, X. Yang, G. Jeon, and W. Wu. Feedback net-
work for image super-resolution. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 3867–3876, 2019.

[34] M. Lin, Q. Chen, and S. Yan. Network in network. In Proceedings of
International Conference for Learning Representations, 2014.

[35] P. Lindstrom and M. Isenburg. Fast and efficient compression of floating-
point data. IEEE Transactions on Visualization and Computer Graphics,
12(5):1245–1250, 2006.

[36] Z. Liu, R. A. Yeh, X. Tang, Y. Liu, and A. Agarwala. Video frame syn-
thesis using deep voxel flow. In Proceedings of IEEE International Con-
ference on Computer Vision, pages 4463–4471, 2017.

[37] S. Menon, A. Damian, S. Hu, N. Ravi, and C. Rudin. PULSE: Self-
supervised photo upsampling via latent space exploration of generative
models. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 2437–2445, 2020.

[38] S. Meyer, O. Wang, H. Zimmer, M. Grosse, and A. Sorkine-Hornung.
Phase-based frame interpolation for video. In Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 1410–1418,
2015.

[39] U. Mudenagudi, S. Banerjee, and P. K. Kalra. Space-time super-
resolution using graph-cut optimization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(5):995–1008, 2010.

[40] V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltz-
mann machines. In Proceedings of International Conference on Machine
Learning, pages 807–814, 2010.

[41] A.-D. Nguyen, W. Kim, J. Kim, and S. Lee. Video frame interpola-
tion by plug-and-play deep locally linear embedding. arXiv preprint
arXiv:1807.01462, 2018.

[42] S. Niklaus, L. Mai, and F. Liu. Video frame interpolation via adaptive
separable convolution. In Proceedings of IEEE International Conference
on Computer Vision, pages 261–270, 2017.

[43] B. Niu, W. Wen, W. Ren, X. Zhang, L. Yang, S. Wang, K. Zhang, X. Cao,
and H. Shen. Single image super-resolution via a holistic attention net-
work. In Proceedings of European Conference on Computer Vision, pages
191–207, 2020.

[44] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style, high-
performance deep learning library. In Proceedings of Advances in Neural
Information Processing Systems, pages 8024–8035, 2019.

[45] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Con-
text encoders: Feature learning by inpainting. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pages 2536–
2544, 2016.

[46] S. Popinet, M. Smith, and C. Stevens. Experimental and numerical study
of the turbulence characteristics of airflow around a research vessel. Jour-

nal of Atmospheric and Oceanic Technology, 21(10):1575–1589, 2004.
[47] W. P. Porter, Y. Xing, B. R. von Ohlen, J. Han, and C. Wang. A deep

learning approach to selecting representative time steps for time-varying
multivariate data. In Proceedings of IEEE VIS Conference (Short Papers),
pages 131–135, 2019.

[48] I. B. Rojo and T. Günther. Vector field topology of time-dependent flows
in a steady reference frame. IEEE Transactions on Visualization and
Computer Graphics, 26(1):280–290, 2019.

[49] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks
for biomedical image segmentation. In Proceedings of International Con-
ference on Medical Image Computing and Computer-Assisted Interven-
tion, pages 234–241, 2015.

[50] O. Shahar, A. Faktor, and M. Irani. Space-time super-resolution from a
single video. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, pages 3353–3360, 2011.

[51] E. Shechtman, Y. Caspi, and M. Irani. Increasing space-time resolution
in video. In Proceedings of European Conference on Computer Vision,
pages 753–768, 2002.

[52] N. Shi and Y. Tao. CNNs based viewpoint estimation for volume vi-
sualization. ACM Transactions on Intelligent Systems and Technology,
10(3):27:1–27:22, 2019.

[53] A. Shocher, N. Cohen, and M. Irani. Zero-shot super-resolution using
deep internal learning. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pages 3118–3126, 2018.

[54] J. W. Soh, G. Y. Park, J. Jo, and N. I. Cho. Natural and realistic single
image super-resolution with explicit natural manifold discrimination. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 8122–8131, 2019.

[55] H. Takeda, P. Van Beek, and P. Milanfar. Spatiotemporal video upscaling
using motion-assisted steering kernel (mask) regression. In M. Mrak,
M. Grgic, and M. Kunt, editors, High-Quality Visual Experience, pages
245–274. 2010.

[56] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and
C. Change Loy. ESGAN: Enhanced super-resolution generative adversar-
ial networks. In Proceedings of the European Conference on Computer
Vision Workshops, 2018.

[57] Z. Wang, J. Chen, and S. C. H. Hoi. Deep learning for image super-
resolution: A survey. arXiv preprint arXiv:1902.06068, 2019.

[58] S. Weiss, M. Chu, N. Thuerey, and R. Westermann. Volumetric isosurface
rendering with deep learning-based super-resolution. IEEE Transactions
on Visualization and Computer Graphics, 27(6):3064–3078, 2021.

[59] S. Weiss, J. Han, C. Wang, and R. Westermann. Deep learning-based
upscaling for in situ volume visualization. In H. Childs, J. Bennett,
and C. Garth, editors, In Situ Visualization for Computational Science.
Springer, 2021. Accepted.

[60] X. Xiang, Y. Tian, Y. Zhang, Y. Fu, J. P. Allebach, and C. Xu. Zooming
Slow-Mo: Fast and accurate one-stage space-time video super-resolution.
In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pages 3370–3379, 2020.

[61] Y. Xie, E. Franz, M. Chu, and N. Thuerey. tempoGAN: A temporally
coherent, volumetric GAN for super-resolution fluid flow. ACM Transac-
tions on Graphics, 37(4):95:1–95:15, 2018.

[62] Y. Yuan, S. Liu, J. Zhang, Y. Zhang, C. Dong, and L. Lin. Unsuper-
vised image super-resolution using cycle-in-cycle generative adversarial
networks. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 701–710, 2018.

[63] R. Zhang. Making convolutional networks shift-invariant again. In Pro-
ceedings of IEEE International Conference on Machine Learning, pages
7324–7334, 2019.

[64] Z. Zhang, Z. Wang, Z. Lin, and H. Qi. Image super-resolution by neural
texture transfer. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, pages 7982–7991, 2019.

[65] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings of
IEEE International Conference on Computer Vision, pages 2223–2232,
2017.

APPENDIX

1 IMPLEMENTATION DETAILS AND BASELINES

For easy reproduction of STNet, we list the pseudocode of the DB and
FU modules in Algorithm 1. In addition, the architecture details of
STNet with s = 4 and s = 8 are listed in Tables 1 and 2, respectively.

Algorithm 1 The DB and FU modules in the PyTorch-like format.
/* inc: input channels; outc: output channels */
class DenseBlock():

def init (self, inc, outc, ac): // ac: activation function
self.conv1 = Conv(inc, 2×inc, 3, 1, 1)
self.conv2 = Conv(3×inc, 4×inc, 3, 1, 1)
self.conv3 = Conv(7×inc, outc, 3, 1 ,1)
self.ac = ac

def forward(self, x):
x1 = self.ac(self.conv1(x))
x2 = self.ac(self.conv2(torch.cat((x,x1), dim=1))
x3 = self.ac(self.conv3(torch.cat((x,x1,x2), dim=1)))
return x3

class FeatureUpscaling():
def init (self, inc, outc, s, ac): // s: spatial upscaling factor

self.up1 = VS(inc, outc, s)
self.up2 = VS(inc, outc, s)
self.conv = Conv(outc, outc, 3, 1, 1)
self.conv1 = Conv(outc, outc, 3, 1, 1)
self.conv2 = Conv(2×outc, outc, 3, 1, 1)
self.ac = ac

def forward(self, x):
x1 = self.ac(self.up1(x))
/* multiply a weighted mask to the upscaled features */
x1 = torch.sigmoid(self.conv(self.up2(x)))

⊙
x1

x2 = self.ac(self.conv1(x1))
x3 = self.ac(self.conv2(torch.cat((x1, x2), dim=1)))
return x3

We provide the implementation details of the two deep learning
baselines (SSR+TSR, STD) in the following.

• SSR+TSR: SSR uses a post-upsampling architecture for upscal-
ing volumes in the spatial dimensions (SSR-TVD), and TSR is
a recurrent generative framework for upscaling volumes in the
temporal dimension (TSR-TVD). We first leverage SSR for spa-
tial upscaling, then TSR for temporal upscaling. We also attempt
the reverse order; however, SSR could not converge. We spec-
ulate that TSR+SSR makes SSR struggle in learning the true
and synthesized data distributions, which fails spatial upscaling.
SSR+TSR only requires TSR to learn the synthesized distribu-
tion, which is an easier task. In addition, we modify SSR and
TSR in the following ways. First, Tanh is removed in the last
Conv layer in both SSR and TSR because we find this activation
function will compress the data distribution of the supercurrent
data set, leading to poor quality of the rendering results. Second,
we add skip connections in TSR to bridge the feature learning
and upscaling modules. Third, we only blend forward and back-
ward prediction results in the blending module.

• STD: STD is a variant of STNet. Instead of performing temporal
interpolation in the feature space like STNet, STD directly inter-
polates the volumes in the data space. That is, given two ending
volumes, STD leverages a feature extraction module to simulta-
neously learn spatiotemporal features of all intermediate and the
two ending time steps. It then applies several FU modules to gen-
erate super-resolution volumes. Note that the number of output
channels in the final Conv layer is t + 2, where t is the number
of intermediate time steps, and 2 represents the two ending time
steps. The architecture details are listed in Table 3. We use the
same loss functions and training settings in STNet to optimize
STD.

Table 1: Architecture parameter details of STNet for s = 4. The two
parameters in DB are input channels and output channels. The five
parameters in Conv are input channels, output channels, kernel size,
stride, and padding. The three parameters in VS are input channels,
output channels, and spatial upscaling factor. The output size is a five-
dimensional tensor (batch size, channels, length, width, height). L, W,
and H are the dimensions of the super-resolution volumes.

layer operator output size
input — 1 × 2 × L/4 ×W/4 × H/4

FEI-0


DB(1,16)
DB(16,32)
DB(32,64)
DB(64,64)

 2 × 64 × L/4 ×W/4 × H/4

FEI-{1,2, · · · , t}


DB(2,16)
DB(16,32)
DB(32,64)
DB(64,64)

 1 × 64 × L/4 ×W/4 × H/4

FU-1


VS(64,64,2)

Conv(64,64,3,1,1)
VS(64,64,2)

Conv(64,64,3,1,1)
Conv(128,64,3,1,1)

 (t +2) × 64 × L/2 ×W/2 × H/2

FU-2


VS(64,32,2)

Conv(32,32,3,1,1)
VS(64,32,2)

Conv(32,32,3,1,1)
Conv(64,32,3,1,1)

 (t +2) × 32 × L ×W × H

output Conv (32,1,3,1,1) (t +2) × 1 × L ×W × H

t = 11 t = 7 t = 3 GT

t = 7 t = 5 t = 3 GT

t = 5 t = 3 t = 1 GT
(a) (b) (c) (d)

Fig. 1: Volume rendering results under different t with s = 4. Top to
bottom: supercurrent, half-cylinder (640), and vortex.

2 EVALUATION OF s AND t

To investigate the performance of STNet on different data sets with
various s and t, we test STNet on four data sets (five jets, half-cylinder,
supercurrent, and vortex) with s ∈ {4,8} and t ∈ {0,1, · · · ,11}.

With s = 4, volume and isosurface rendering results are shown in
Figures 1 and 2 for the supercurrent, half-cylinder (640), and vortex
data sets. In terms of volume rendering results (Figure 1), there is no
clear difference under different t for the supercurrent data set. But
taking a closer comparison, under t = 11, one blue line is broken into
two separate lines at the top-right corner (refer to the green arrow).
As for the half-cylinder and vortex data sets, STNet can only achieve
high-fidelity rendering results under t = 3. Furthermore, the results are
far away from GT. In terms of isosurface rendering results (Figure 2),
again, we can see that using a smaller t leads to a better rendering
result. While the results for the supercurrent data set are indistinguish-
able, we can observe clear quality degradation as t goes beyond 3 for
both half-cylinder and vortex data sets. Besides, we show the quanti-
tative results in Figure 3. STNet outperforms BL for all data sets in
terms of PSNR and SSIM, and the only exception is SSIM for the vor-

Table 2: Architecture parameter details of STNet for s = 8.

layer operator output size
input — 1 × 2 × L/8 ×W/8 × H/8

FEI-0


DB(1,16)
DB(16,32)
DB(32,64)
DB(64,64)

 2 × 64 × L/8 ×W/8 × H/8

FEI-{1,2, · · · , t}


DB(2,16)
DB(16,32)
DB(32,64)
DB(64,64)

 1 × 64 × L/8 ×W/8 × H/8

FU-1


VS(64,64,2)

Conv(64,64,3,1,1)
VS(64,64,2)

Conv(64,64,3,1,1)
Conv(128,64,3,1,1)

 (t +2) × 64 × L/4 ×W/4 × H/4

FU-2


VS(64,32,2)

Conv(32,32,3,1,1)
VS(64,32,2)

Conv(32,32,3,1,1)
Conv(64,32,3,1,1)

 (t +2) × 32 × L/2 ×W/2 × H/2

FU-3


VS(64,32,2)

Conv(32,32,3,1,1)
VS(64,32,2)

Conv(32,32,3,1,1)
Conv(64,32,3,1,1)

 (t +2) × 32 × L ×W × H

output Conv (32,1,3,1,1) (t +2) × 1 × L ×W × H

Table 3: Architecture parameter details of STD with s = 4.

layer operator output size
input — 1×2× L/4 ×W/4 × H/4

FE


DB(2,32)
DB(32,64)

DB(64,128,3,1,1)
DB(128,256,3,1,1)

 1×256× L/4 ×W/4 × H/4

FU-1


VS(256,128,2)

Conv(128,128,3,1,1)
VS(256,128,2)

Conv(128,128,3,1,1)
Conv(256,128,3,1,1)

 1×128× L/2 ×W/2 × H/2

FU-2


VS(64,64,2)

Conv(64,64,3,1,1)
VS(64,64,2)

Conv(64,64,3,1,1)
Conv(128,64,3,1,1)

 1×64× L ×W × H

output Conv(64, t +2,3,1,1) 1× (t +2)× L ×W × H

t = 11 t = 7 t = 3 GT

t = 7 t = 5 t = 3 GT

t = 5 t = 3 t = 1 GT
(a) (b) (c) (d)

Fig. 2: Isosurface rendering results under different t with s = 4. Top
to bottom: supercurrent, half-cylinder (640), and vortex. The chosen
isovalues are 0.2, −0.4, and 0, respectively.

tex data set. However, STNet can produce better visual quality than
BL, as indicated by the results in the main paper. We cannot inter-
polate more time steps for the half-cylinder and vortex data sets since
there are not sufficient training samples available. Hence, with s = 4,

1 3 5 7 9 11
Temporal Upscaling Factor

25

30

35

40

45

PS
NR

 (d
B)

BL

STNet

1 3 5
Temporal Upscaling Factor

25

30

35

40

45

PS
NR

 (d
B)

1 3 5 7 9 11
Temporal Upscaling Factor

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

1 3 5 7
Temporal Upscaling Factor

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

1 3 5
Temporal Upscaling Factor

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

(a) supercurrent (b) half-cylinder (640) (b) vortex
Fig. 3: Average PSNR and SSIM under different t with s = 4. Top and
bottom: PSNR and SSIM.

(a) t = 4 (b) t = 2 (c) t = 0 (d) GT
Fig. 4: Volume and isosurface rendering results under different t with
s = 8 using the five jets data set. The chosen isovalue is −0.2.

(a) BL (b) STNet (c) GT
Fig. 5: Volume rendering results with s= 8 and t = 0. Top and bottom:
half-cylinder (640) and vortex.

the appropriate value for t is 9 for simple data sets (e.g., supercurrent),
where the pattern changes slowly over time. For complex data sets
(e.g., half-cylinder and vortex) where the pattern could evolve rapidly
in neighboring time steps, 3 is a proper value for t.

With s = 8, the rendering results are displayed in Figures 4 and 5.
As we can see, STNet can reach a satisfactory quality with t = 0 for the
five jets data set. Beyond that, volume rendering results reveal obvious
noises and artifacts. As for the half-cylinder (640) and vortex data sets,
both STNet and BL cannot produce high-fidelity volume rendering re-
sults. Moreover, the quantitative results are shown in Figure 6. STNet
outperforms BL in terms of PSNR and SSIM under different t. We
also try to increase the training samples and expand the model’s depth
and width for performance improvement; however, none of these at-
tempts work for the half-cylinder and vortex data sets. To conclude,
under the current architecture, upscaling volumes with s = 8 is almost
infeasible for these data sets (e.g., half-cylinder and vortex) where the
spatial structures are complex. For other data sets (e.g., five jets and
supercurrent) where the structures are simple and less complicated,

0 2 4 6
Temporal Upscaling Factor

20

25

30

35

40

PS
NR

 (d
B)

BL

STNet

0 1 2
Temporal Upscaling Factor

20

25

30

35

40

PS
NR

 (d
B)

0 2 4 6
Temporal Upscaling Factor

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

0 2 4 6
Temporal Upscaling Factor

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

0 1 2
Temporal Upscaling Factor

0.5

0.6

0.7

0.8

0.9

1.0

SS
IM

(a) five jets (b) half-cylinder (640) (b) vortex
Fig. 6: Average PSNR and SSIM under different t with s = 8. Top and
bottom: PSNR and SSIM.

s = 8 could still work. In terms of model size, it exhibits a linear re-
lationship with t, from around 25MB for t = 0 to around 165MB for
t = 11, when s = 4. There is almost no additional cost on the model
size when s switches from 4 to 8 with the same setting for t.

	template
	Introduction
	Related work
	STNet
	Notation
	Overview
	Framework
	Optimization

	Results and Discussion
	Data Sets and Network Training
	Results
	Network Analysis

	Conclusions and Future Work

	appendix
	Implementation Details and Baselines
	Evaluation of s and t

