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ABSTRACT

We present FCNR, a fast compressive neural representation for tens
of thousands of visualization images under varying viewpoints and
timesteps. The existing NeRVI solution, albeit enjoying a high com-
pression ratio, incurs slow speeds in encoding and decoding. Built on
the recent advances in stereo image compression, FCNR assimilates
stereo context modules and joint context transfer modules to com-
press image pairs. Our solution significantly improves encoding and
decoding speed while maintaining high reconstruction quality and
satisfying compression ratio. To demonstrate its effectiveness, we
compare FCNR with state-of-the-art neural compression methods,
including E-NeRV, HNeRV, NeRVI, and ECSIC. The source code
can be found at https://github.com/YunfeiLu0112/FCNR.

1 INTRODUCTION

Generating vast datasets has become indispensable for analyzing
complex phenomena across diverse fields. As technical advances
continue to shine in an era of unprecedented data acquisition, man-
aging and interpreting such enormous amounts of data becomes
increasingly challenging. Scientific visualization is important for us
to visually comprehend complicated patterns, identify trends, and
extract meaningful insights from simulation data, which are often
time-varying. When dealing with a time-varying volumetric dataset,
we can produce numerous visualization images, including those gen-
erated through isosurface rendering (IR) or direct volume rendering
(DVR). These images correspond to various parameters, such as
timesteps and camera views, offering a thorough representation of
the data. We tackle the issue of managing significant quantities of
these visualization images, which occupy substantial gigabytes of
storage and could surpass the original data size. This scenario poses
significant constraints, including storage cost, network transmission,
image access, and interactive display when conveying the visual-
ization output. Hence, efficient compression and sharing of these
visualization images become a necessity. Recent developments in
DL4SciVis [20] provide a viable direction.

To achieve this goal, we present FCNR, a fast compressive neural
representation for tens of thousands of visualization images. FCNR
takes a pair of visualization images with nearby views as input. It
encodes the image pair into quantized bitstreams with entropy cod-
ing computed and their similarity exploited. It then decodes them
to reconstruct the images. FCNR can efficiently compress a vast
array of images derived from time-varying datasets under different
viewing and timestep parameters in a relatively short time. We evalu-
ate FCNR on multiple datasets, quantitatively and qualitatively, and
compare it with state-of-the-art deep learning compression baselines,
including E-NeRV, HNeRV, NeRVI, and ECSIC, to demonstrate its
superiority. Our contributions are as follows:

• simultaneously compressing a pair of images with similar
views based on joint context transfer modules (JCTMs), which

*e-mail: ylu25@nd.edu
†e-mail: pgu@nd.edu
‡e-mail: chaoli.wang@nd.edu

extract mutual information from the whole images;
• incorporating viewpoints and timesteps into stereo context

modules (SCMs) to accommodate our compression scenario
while improving entropy estimation of one encoded image
using another as the context;

• improving encoding and decoding speeds significantly while
maintaining high reconstruction quality and satisfying com-
pression ratio expressed in bit per pixel (BPP);

• leveraging the interpolation ability by compressing all the
images of the given dataset after training on its subset, which
also expedites the encoding process.

2 RELATED WORK

In recent years, implicit neural representation (INR) has been exten-
sively studied for image and video compression [3–5, 11, 12, 14, 25].
NeRV [5] takes as input an image index, generates the image embed-
ding via multilayer perceptrons (MLPs) and convolutional layers,
and outputs the whole image. E-NeRV [12] improves the NeRV
architecture by identifying the redundant parts and decomposing the
image-wise INR into distinct spatial and temporal contexts, acceler-
ating convergence while maintaining high performance. CNeRV [3]
enables internal generalization using content-adaptive embedding,
which compactly encodes visual information. D-NeRV [25] repre-
sents various videos using the same model, which takes sampled
key-frames as input for clip-specific content encoding and outputs
video frames with a motion-aware decoder. HNeRV [4] resolves the
content-agnostic issue and the unbalanced parameter distribution
of NeRV by storing videos in small, content-adaptive frame em-
beddings and utilizing a learned decoder. NIRVANA [14] proposes
patch-wise prediction to accommodate videos with varying spatial
and temporal resolutions using the same architecture. HiNeRV [11]
addresses the limited representation capability of INR and refines
the model compression pipeline with adaptive parameter weighting
and quantization-aware training.

In scientific visualization, INR has been applied to data genera-
tion and compression tasks [9, 18, 19]. Gu et al. [8] extended INR to
visualization image compression, which is much more challenging
due to the need for accommodating viewpoint and timestep parame-
ters and more significant differences between neighboring rendering
images than video frames. The proposed NeRVI achieves neural
representations with a high compression ratio and leads to good
image fidelity using mask loss. However, the rather slow encod-
ing speed restricts its use in practice, especially when compressing
high-resolution visualization images in a large collection.

In contrast, stereo-image compression methods seek to compress
image pairs simultaneously by exploiting their similarities (i.e.,
mutual information) using neural networks. For instance, Liu et
al. [13] presented DSIC, which computes a dense warp field and
feeds features from the left image after warping into the encoder
and decoder of the right image. Deng et al. [7] designed HESIC,
which improves DSIC by applying a rigid image-space homography
transform. Wödlinger et al. [22] introduced SASIC that enhances a
conventional single-image compression backbone model. To accom-
modate finer local displacements between images, it incorporates
latent-domain global shift and subtraction as well as stereo attention
modules in the decoder. Based on SASIC, Wödlinger et al. [21]
further developed ECSIC that augments the architecture with stereo
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Figure 1: Overview of FCNR. The encoder (E) encodes xl and xr to bitstreams with hyper-encoder (hE ), quantization (Q), and arithmetic encoder
(AE). The decoder (D) then reconstructs x̂l and x̂r through quantized latents (ŷl and ŷr) with arithmetic decoder (AD) and hyper-decoder (hD).
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(a) encoder (E) and hyper-encoder (hE ) (b) decoder (D) and hyper-decoder (hD) (c) SCM (contz) and SCM (conty)
Figure 2: The detailed structure of each module.

cross-attention modules (SCAMs) and SCMs. Zhang et al. [24] pro-
posed LDMIC, a simple and effective cross-attention-based JCTM
utilizing the decoder’s cross-attention mechanism to capture global
inter-view correlations efficiently. In this work, we assimilate the
notion of jointly compressing image pairs by exploiting their mutual
information. We design our network based on ECSIC, incorporate
the JCTM from LDMIC for the more complicated visualization
image compression task, and present FCNR, a fast solution for
compressive neural representation.

3 FCNR
Given a time-varying dataset Y = {Y1,Y2, . . . ,YT }, where T is the
number of timesteps, with a predefined isovalue or transfer function,
we produce a set of visualization images. Each volume Yt , t ∈ [1,T ],
is represented as a subset of images Xt associated with different
camera views. We aim to learn a mapping that encodes the input
images into latent representations, which are quantized, compressed,
and decoded to reconstruct the images.

Networks for stereo image compression often consist of the main
autoencoder and hyperprior autoencoder. We adapt this structure to
compress IR or DVR images under different views and timesteps. As
shown in Figure 1, the input to our model is a pair of images xl and
xr (l and r denote left and right) from Xt , with the two neighboring
views (θ ,ϕl) and (θ ,ϕr). We first use the encoder E to encode
xl and xr into the latents yl and yr. Then, we estimate the latent
entropy parameters ψ

y
l and ψ

y
r using the hyper-encoder hE and hyper-

decoder hD to produce quantized latents ŷl and ŷr. Finally, we utilize
the decoder D to reconstruct the images x̂l and x̂r from ŷl and ŷr. We
improve the structure with SCMs [21] (which aid in the prediction
of ψ

y
r from ŷl and hyper-latent entropy parameters ψz

r from hyper-
latent ẑl) and JCTMs [24] (which exploits the feature-space inter-
view correlations brought by overlapping viewpoints in visualization
images for generating more informative representations).

Encoding modules and quantization. We develop our E and
hE based on the structure proposed in ECSIC. Each consists of sev-
eral convolutional (Conv) layers, a JCTM, and parametric ReLU
(PReLU) activation functions [10]. Their detailed structures are
shown in Figure 2 (a). Unlike the epipolar assumption in ECSIC,
the transformations between two visualization images in a pair are
much more complex, involving the 3D rotation of the volume. Since
SCAM [21] only computes cross-attention between the correspond-
ing epipolar lines, it fails to fully capture the inter-view information
brought by the more complicated transformations. Therefore, we
replace SCAMs with JCTMs to exploit mutual information globally.
Given xl and xr, E computes the main latent representations yl and

yr by
yi = E(xi), i ∈ {l,r}. (1)

hE accepts yl and yr and generates the hyper-latents zl and zr

zi = hE(xi), i ∈ {l,r}. (2)

Introducing z for entropy estimation is effective to model the
dependencies between y, which are assumed to be independently
conditioned on z [2]. yl , yr , zl , and zr then go through a quantization
process. For example,

ŷi = round(yi −µ
y
i )+µ

y
i , i ∈ {l,r}, (3)

where µ
y
i is the estimated mean of the disrtibution of yi. A similar

process is applied to zl and zr to generate quantized hyper-latents
ẑl and ẑr. To make the process differentiable, we use approximate
quantization by adding the uniform noise ε ∼ U (−0.5,0.5) for the
rate loss [1].

ỹi = yi + ε, i ∈ {l,r}. (4)

Thus, the density function of ŷi is a continuous relaxation of the
probability mass function of yi, allowing the differential entropy
of ŷi to approximate the entropy of ŷ. Additionally, independent
uniform noise approximates the quantization error, modeling its
marginal moments for distortion measurement. zl and zr follow
a similar process. For the distortion loss, we employ a straight-
through-estimation quantization [15].

Decoding modules and entropy model. As shown in Figure 2
(b), D and hD each have Conv layers, a JCTM, PReLU activation
functions, and transposed convolutional (ConvT) layers for upsam-
pling. ẑl and ẑr are stored as side information to help predict ψ

y
l

and ψ
y
r of ŷl and ŷr. The distribution of each latent representation

is modeled by a Laplacian distribution with parameters ψ = (µ,b).
The process of distribution modeling and parameter estimation cor-
responds to the arithmetic encoders (AEs) and arithmetic decoders
(ADs) shown in Figure 1. We model the distribution of ẑl by a
channel-wise Laplacian distribution with parameters ψ

z
l computed

from visualization parameters (tl ,θl ,ϕl)

ψ
z
l = MLP(PE(tl ,θl ,ϕl)), (5)

where PE denotes positional encoding which projects (tl ,θl ,ϕl) into
a higher-dimensional space

PE(u) = (sin(b0
πu),cos(b0

πu), . . . ,sin(bL−1
πu),cos(bL−1

πu)),
(6)



PE(t,θ ,ϕ) = (PE(t),PE(θ),PE(ϕ)). (7)

Here, we set b = 1.25 and L = 8. Since our visualization image
pairs have greater variations than the stereo image pairs compressed
by ECSIC, computing distribution parameters from visualization
parameters can help mitigate the gap by allowing for detailed quanti-
tative differences between images and improve model performance.
The distributions of ẑr, ŷl , and ŷr are modeled by factorized Lapla-
cian distributions. We further reduce the bitrate by conditioning
the distributions of ŷr and ẑr on the information from ŷl and ẑl with
SCMs conty and contz, and their structures are shown in Figure 2
(c). In this way, ψz

r are predicted from ẑl and parameters φ z
r

ψ
z
r = contz(ẑl ,φ

z
r ), (8)

where, likewise, φ z
r is generated with (tr,θr,ϕr)

φ
z
r = MLP(PE(tr,θr,ϕr)), (9)

Then hD computes φ
y
l and φ

y
r from quantized hyper-latents

φ
y
i = hD(ẑi), i ∈ {l,r}. (10)

In the main branch, we set ψ
y
l = φ

y
l . For ψ

y
r , we similarly apply the

SCM
ψ

y
r = conty(ŷl ,φ

y
r ). (11)

Finally, D reconstructs x̂l and x̂r from ŷl and ŷr

x̂i = D(ŷi), i ∈ {l,r}. (12)
Loss functions. Image compression models can be optimized for

a weighted sum of the rate and distortion losses [1]

Ltotal = LR +λLD, (13)

where LR is the rate loss, LD is the distortion loss, and λ ∈ R is a
trade-off weight. LD is the expectation of the mean squared errors
between the input and reconstructed images

LD = Exl ,xr∼px

[
∥xl − x̂l∥2

2 +∥xr − x̂r∥2
2
]
. (14)

Following the rate loss in ECSIC, LR is the expected sum of the cross
entropy between the predicted distribution of our entropy model and
the true distribution of the latents or hyper-latents

LR = Exl ,xr∼px

[
− log2 p(ẑl | φ

z
l )

− log2 p(ẑr | Φcontz ,φ
z
r , ẑl)

− log2 p(ŷl | ΦhD , ẑr, ẑl)

− log2 p(ŷr | Φconty ,ΦhD , ŷl , ẑr, ẑl)
]
,

(15)

where Φcontz ,Φconty ,ΦhD denote the parameters of contz,conty, and
hD, respectively.
4 RESULTS AND DISCUSSION

Datasets, setting, and training. Table 1 shows the three datasets
we experimented with. We picked 30 consecutive timesteps for each
dataset. To ensure an even distribution of viewpoints across the
volume data, we determined camera positions using the vertices of
an icosphere, approximating a sphere using equilateral triangles. We
selected a subdivision level resulting in 812 vertices to generate the

Table 1: The resolution and total sampled images of each dataset. “#
st” denotes the number of timesteps we subsample from the dataset.

dataset resolution (x× y× z× t) # views # st # images
vortex [17] 128×128×128×90 812 30 24360

Tangaroa [16] 300×180×120×150 812 30 24360
tornado [6] 128×128×128×48 812 30 24360

Table 2: Average PSNR (dB) and LPIPS, BPP, and total ET (hours)
DT (seconds). Each case has 24360 images with a resolution of
1024×1024. The best ones are highlighted in bold.

IR images DVR images
dataset method PSNR↑ LPIPS↓ BPP↓ ET↓ DT↓ PSNR↑ LPIPS↓ BPP↓ ET↓ DT↓

E-NeRV 27.17 0.1432 0.0031 149.46 1925.47 21.77 0.1154 0.0031 151.58 1939.19
HNeRV 21.15 0.2701 0.0019 72.72 391.25 20.17 0.2022 0.0019 69.63 916.33

vortex NeRVI 26.80 0.1386 0.0356 251.46 3965.49 24.30 0.0602 0.0356 255.56 2982.23
ECSIC 36.27 0.0980 0.0915 1.20 259.90 34.77 0.0139 0.1437 1.20 250.66
FCNR 37.47 0.1025 0.0693 1.18 269.67 34.85 0.0132 0.1212 1.19 296.70

E-NeRV 25.96 0.0093 0.0031 147.52 4362.98 25.43 0.1103 0.0031 147.13 4203.47
HNeRV 23.91 0.1690 0.0015 57.07 4872.01 24.17 0.1759 0.0015 71.50 1239.88

Tangaroa NeRVI 28.16 0.0750 0.0356 181.13 2015.16 26.39 0.0964 0.0359 247.33 2137.02
ECSIC 37.82 0.0149 0.0895 1.18 306.94 34.61 0.0153 0.1405 1.20 246.52
FCNR 38.12 0.0145 0.0709 1.18 319.84 34.45 0.0177 0.1109 1.17 211.73

E-NeRV 36.72 0.1389 0.0031 50.14 4643.82 35.09 0.0038 0.0031 50.34 5157.63
HNeRV 34.53 0.0544 0.0015 28.54 5359.20 31.97 0.0506 0.0016 30.75 1804.20

tornado NeRVI 38.21 0.0359 0.0356 90.56 9609.40 36.27 0.0336 0.0356 88.99 2030.20
ECSIC 36.30 0.0700 0.0580 0.40 231.71 36.51 0.0501 0.0982 0.42 180.17
FCNR 38.07 0.0685 0.0280 0.39 326.91 37.35 0.0386 0.0359 0.39 352.00

(a) E-NeRV (b) HNeRV (c) NeRVI (d) ECSIC (e) FCNR (f) GT
Figure 3: Decompressed IR and DVR images. The datasets are
vortex, Tangaroa, and tornado, respectively.

training set for each timestep, producing a good quantity of images
for compression. The image resolutions were all set to 1024×1024.
For ECSIC and FCNR, which require image pairs, we sorted the
images at each timestep first by θ and then by ϕ if there is a tie. We
then chose the image with an even index j (starting from 0) as the
left image and the image with index j+ 1 as its right counterpart.
Since ECSIC and FCNR possess generalization ability, we decreased
the number of training images to 1/6 (evenly selected 1/2 of the
sampled views and 1/3 of the timesteps), i.e., 4060 images. We
evaluated these two models on all 24360 images during inference.

We implemented FCNR using PyTorch. We chose the number
of channels in the encoding and decoding modules to be 192, the
number of latent channels to be 48, and the number of attention
heads in JCTM to be 2. All experiments were run on an NVIDIA
A40 GPU. Adam optimizer was utilized for gradient descent (β1=0.9,
β2=0.999), and the learning rate was set as 10−4. We trained FCNR
with a batch size of 1. The number of training epochs was 3 for the
vortex and Tangaroa datasets and 1 for the tornado dataset.

Baselines and evaluation metrics. We compared FCNR with
three state-of-the-art INR-based methods, including E-NeRV [12],
HNeRV [4], and NeRVI [8], and one stereo image compression
method, ECSIC [21]. We extended E-NeRV by feeding all (t,θ ,ϕ)
to the model, first normalized to [0,1] and then input to the network
after PE. All INR-based methods were trained until convergence for
a fair comparison. The number of training epochs for ECSIC was
the same as FCNR for each dataset. For quantitative evaluation in



the image space, we employed peak signal-to-noise ratio (PSNR)
and learned perceptual image patch similarity (LPIPS) [23]. Besides,
encoding time (ET) and decoding time (DT) are also recorded.

Table 3: Average PSNR (dB) and LPIPS, BPP, and total ET (hours)
DT (seconds) of ECSIC, its varying modifications, and FCNR on the
tornado IR dataset.

method PSNR↑ LPIPS↓ BPP↓ ET↓ DT↓
ECSIC 36.30 0.0700 0.0580 0.40 231.71

JCT-Only 37.81 0.0685 0.0666 0.39 270.15
PE-Only 37.19 0.0708 0.0370 0.40 228.91
FCNR 38.07 0.0685 0.0280 0.39 326.91

Figure 4: PSNR comparison of all methods on the vortex IR dataset.
E-NeRV, HNeRV, and NeRVI were all trained for 200 epochs. Both
ECSIC and FCNR were trained for 3 epochs.

Results. Table 2 compares FCNR with state-of-the-art baselines
quantitatively. Figure 3 shows the decompressed rendering images
for all datasets under chosen (t,θ ,ϕ). All images are cropped for
closer comparison.

FCNR achieves the highest PSNR and lowest LPIPS for most
cases, even on images unseen during training, demonstrating its in-
terpolation ability. Although INR-based methods (E-NeRV, HNeRV,
and NeRVI) lead to lower BPP, they have limited reconstruction
quality as depicted in Figure 3. The vortex and Tangaroa datasets
vary greatly at different timesteps, posing greater reconstruction
challenges. HNeRV produces the most blurry images. The results
of E-NeRV and NeRVI are much clearer. However, they still yield
artifacts and distortions when multiple components overlap in ren-
dering images and miss some components when images become
complex. For the tornado dataset, all methods generate clear im-
ages, but FCNR generates images with better PSNR and LPIPS than
E-NeRV and HNeRV. Though NeRVI achieves the highest PSNR
and the lowest LPIPS in the tornado IR dataset, it fails to recon-
struct high-frequency details as shown in Figure 3. By contrast,
FCNR generates the best visual quality images, with the clearest
high-frequency details and the fewest artifacts.

Moreover, the significant encoding time (48.36× to 232.21×)
and decoding time (1.45× to 29.39×) over FCNR put INR-based
baselines at a disadvantage. This is because E-NeRV and NeRVI
need substantial training and more parameters to restore the lost
information and reconstruct images from the rather limited and
low-dimensional input and the necessity of learning both input em-
bedding and decoder weights in HNeRV leads to a more complex
design. In contrast, like ECSIC, FCNR drastically enhances en-
coding and decoding speed by fully utilizing the images for direct
compression and reconstruction and exploiting mutual information
between them. Compared with ECSIC, FCNR achieves very close,
high-quality results for all datasets, with slight improvements in
PSNR and LPIPS for the majority of cases. While ECSIC performs
similarly to FCNR in image quality and encoding and decoding
speed, its BPP is from 18.56% (vortex DVR dataset) to 173.54%
(tornado DVR dataset) higher than FCNR across all cases. Such
improvements make FCNR stand out from ECSIC.

Figure 4 compares FCNR and baseline methods in PSNR during
training on the vortex IR dataset. It shows that all methods have
been trained until convergence to ensure a fair comparison. The
comparison highlights the effectiveness and efficiency of FCNR.

Ablation study. We performed an ablation study on the tornado
IR dataset to show FCNR’s differences from ECSIC. We compared
FCNR and ECSIC with two architectural modifications: JCT-only
and PE-only. For the JCT-only case, we modified ECSIC by chang-
ing all SCAMs to JCTMs. For the PE-only case, we extended ECSIC
by transforming (tl ,θl ,ϕl) to the input ψ

z
l of xl’s AD and (tr,θr,ϕr)

to the corresponding parameter φ z
r of contz through PE and MLP.

(a) ECSIC (b) JCT-only (c) PE-only (d) FCNR (e) GT
Figure 5: First row: decompressed images of FCNR and ECSIC with
variations. Second row: zoom-ins for closer examination.

Table 3 shows that both modifications lead to improvements
in image quality measured by PSNR (JCT-only and PE-only) and
LPIPS (JCT-only). Moreover, though JCT-only leads to higher BPP
than ECSIC, PE-only lowers BPP. By incorporating both modifi-
cations, FCNR achieves even lower BPP with the best PSNR and
LPIPS. Figure 5 demonstrates visual improvements in image quality.
JCT-only yields images with smoother surfaces and more natural
lighting, and PE-only reduces visual artifacts to some extent and
enhances lighting concentration. As the zoom-ins indicate, FCNR
further improves border clearness, lighting concentration, and color
consistency, generating an image closest to GT.

Discussion. Our results demonstrate that FCNR can compress
a large collection of visualization images in high fidelity within a
short time. It is much more promising than INR-based methods
when image quality and encoding and decoding speed are of greater
importance. Though ECSIC can achieve high-quality compression
in a similar timeframe, FCNR leads to a higher compression ratio.

5 CONCLUSIONS AND FUTURE WORK

We present FCNR, a novel method for neural compression of visual-
ization images borrowing insights from stereo image compression
frameworks. The model of ECSIC reduces the bitrate with distri-
butions of the right image learned from the left image using SCMs.
We integrate this model with JCTMs to extract mutual information
globally and incorporate visualization parameters to allow for more
detailed quantitative differences between images, further improving
image quality and compression ratio. Compared with state-of-the-art
INR-based methods, FCNR provides previously unavailable inter-
polation ability and demonstrates improved encoding and decoding
time. Compared with ECSIC, FCNR achieves a higher compression
ratio and slightly better reconstruction quality.

The future work of FCNR can be summarized as follows. First,
given the substantial differences between stereo images and visu-
alization images, designing a more tailored model architecture for
visualization images is necessary for further gains in quality and
speed. Second, FCNR lags behind INR-based methods in terms of
compression ratio. Our method will be more promising if BPP can
be reduced to the same level as INR-based methods. Finally, more
visualization parameters, such as isovalues and transfer functions,
may be included, and a better fusion of these parameters with images
is worthy of exploration.
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