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Fig. 1: Given a set of multi-view DVR images produced from a volumetric dataset, StyleRF-VolVis transfers arbitrary styles from
reference images to the reconstructed 3D scene, synthesizing high-quality novel views with visual content consistency.

Abstract—In volume visualization, visualization synthesis has attracted much attention due to its ability to generate novel visualizations
without following the conventional rendering pipeline. However, existing solutions based on generative adversarial networks often
require many training images and take significant training time. Still, issues such as low quality, consistency, and flexibility persist. This
paper introduces StyleRF-VolVis, an innovative style transfer framework for expressive volume visualization (VolVis) via neural radiance
field (NeRF). The expressiveness of StyleRF-VolVis is upheld by its ability to accurately separate the underlying scene geometry (i.e.,
content) and color appearance (i.e., style), conveniently modify color, opacity, and lighting of the original rendering while maintaining
visual content consistency across the views, and effectively transfer arbitrary styles from reference images to the reconstructed 3D
scene. To achieve these, we design a base NeRF model for scene geometry extraction, a palette color network to classify regions of
the radiance field for photorealistic editing, and an unrestricted color network to lift the color palette constraint via knowledge distillation
for non-photorealistic editing. We demonstrate the superior quality, consistency, and flexibility of StyleRF-VolVis by experimenting
with various volume rendering scenes and reference images and comparing StyleRF-VolVis against other image-based (AdaIN),
video-based (ReReVST), and NeRF-based (ARF and SNeRF) style rendering solutions.

Index Terms—Style transfer, neural radiance field, knowledge distillation, volume visualization

1 INTRODUCTION

Since the early 1990s, volume visualization (VolVis) has been a central
topic in scientific visualization research. One of the most popular tech-
niques for VolVis is direct volume rendering (DVR). It works by casting
rays from the image plane to the 3D volume, gathering samples along
each ray, mapping them to visual quantities (i.e., colors and opacities)
via transfer function (TF) lookups, and compositing the final color for
each pixel in the rendering image. Thanks to the astonishing advances
in graphics hardware, DVR can be efficiently implemented to achieve
interactive framerates and high-quality visualizations, providing supe-
rior capability for users to explore volumetric datasets interactively.
This practice has been the norm for the past two decades.

The recent surge of deep learning for scientific visualization re-
search [55] has sprouted new opportunities for VolVis. Leveraging the
capabilities of generative adversarial networks (GANs), one can train a
network to synthesize rendering results under novel viewpoints, TFs, or
other parameters, eliminating the need to access the original volumetric
data and bypassing the conventional rendering pipeline [5, 23]. These
seemingly impossible advances could have shocked many researchers
just several years ago but are widely understood by the research com-
munity nowadays. After all, generative AI has swept across many fields,
culminating in its extraordinary power to synthesize novel images and
videos from text prompts and level the playing field for the masses.
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Inspired by this fantastic trend, in this paper, we aim to design a deep
learning framework to accomplish expressive visualization via style
transfer for VolVis. Similar to prior work [5,17,21,23], we are supposed
to be given a set of 2D images captured from the sample viewpoints
and rendered with a fixed, reasonably good, yet unknown TF. Also,
we assume no access to the 3D volumetric dataset during training or
inference. We aspire to develop a new model that achieves expressive
visualization by meeting the following goals (G1 to G3) for end users.
First, they can freely explore the DVR scene in excellent visual quality
from previously unseen viewpoints (G1). Second, they can further
flexibly recolor the rendering results photo-realistically by editing the
underlying colors, opacities, and lighting effects (G2). Third, and most
importantly, they can even intuitively modify the rendering results non-
photorealistically by transferring styles (e.g., salient brushstrokes) from
any image or painting of interest to the DVR scene (G3).

Realizing G1 is relatively straightforward. Unlike GAN-based tech-
niques, state-of-the-art solutions based on neural radiance field (NeRF)
can deliver high-resolution, high-quality novel view synthesis results
using a set of sample images. Nevertheless, significant challenges exist
for achieving G2 and G3 due to the considerable gaps between the
given 2D images and the 3D scene we aim to reconstruct and edit. For
G2, the main challenge lies in accurately extracting the contributing
color, opacity, and lighting information for faithful downstream edits
to ensure visual content consistency. For G3, the grand challenge is
to move beyond a fixed number of colors decoded from the original
rendering images and adapt to abundantly rich color patterns or textures
in the reference images.

We introduce StyleRF-VolVis, achieving style transfer of NeRFs for
expressive VolVis. For large volumetric data, NeRF-based scene rep-
resentations are space efficient and thus have implications for altering
renderings in a compressive manner. At its core, we highlight three key
components of StyleRF-VolVis to realize the stated goals (G1 to G3).
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First, we employ a base NeRF model to learn the density representation
(i.e., content) of the 3D volumetric data from the collection of 2D train-
ing images (G1). This component accurately extracts the underlying
scene geometry, paving the way for successful subsequent style editing.
Second, we design a new palette color network that classifies regions
of the radiance field (RF) and extracts a color palette (i.e., appearance)
from multi-view images (G2). This component enables photorealis-
tic style editing by modifying the original rendering’s color, opacity,
and lighting while maintaining visual content consistency across the
views. Third, to remove the color palette constraint, we propose a novel
knowledge distillation solution that transfers the color information from
the palette color network (i.e., teacher model) to an unrestricted color
network (i.e., student model) (G3). This component allows users to
assimilate a wide spectrum of color patterns and textures from any
reference image, supporting expressive visualization of the DVR scene
via non-photorealistic style editing. Figure 1 highlights the capability
of StyleRF-VolVis on two datasets, each using two styles extracted
from different reference images. The contributions of our work are:

• We revisit style transfer for VolVis by presenting an innovative
NeRF-based solution that supports expressive photorealistic and
non-photorealistic style editing.

• StyleRF-VolVis represents a significant leap forward for visualiza-
tion synthesis of volumetric data, advancing the state-of-the-art
solutions in quality, consistency, and flexibility.

• We show the consistency and flexibility of StyleRF-VolVis on
various combinations of DVR scenes and reference images.

• We compare StyleRF-VolVis with other image-based (AdaIN),
video-based (ReReVST), and NeRF-based (ARF and SNeRF)
style rendering solutions to demonstrate its superior quality.

2 RELATED WORK

This section discusses related work on deep learning for VolVis, style
transfer, NeRF for stylization, and knowledge distillation.

Deep learning for VolVis. Over the past few years, deep learning
has emerged as a promising solution for improving the DVR process.
One application is to use deep learning models to replace the traditional
DVR pipeline. For instance, Berger et al. [5] constructed a GAN to
synthesize volume-rendered images by investigating the image space
of volume rendering under various TFs and viewing parameters. Hong
et al. [23] proposed a GAN to synthesize high-resolution images from
volume data under the desired rendering effect without knowing the TF.
He et al. [21] developed InsituNet, a surrogate model that correlates
simulation and visualization parameters with visualization outcomes,
allowing users to preview visualization results under different simula-
tion settings with a trained model. Shi et al. [46] built a view-dependent
neural-network-latent-based surrogate model that supports producing
high-resolution visualization results. Han and Wang [17] presented
CoordNet, a coordinate-based neural network to synthesize rendering
images under novel viewpoints given a set of DVR images for training.
Another application employs a scene representation network (SRN) to
represent volumetric data, minimizing disk storage requirements and
enabling interactive neural rendering without direct access to volume
data. For example, Weiss et al. [59] designed a dense-grid encoding
method fV-SRN that directly renders from compressed representation
with no additional memory for storing volume data during render-
ing. Wu et al. [60] leveraged multiresolution hash grid encoding and
achieved fast volume encoding and real-time rendering. Wurster et
al. [61] developed APMGSRN, an adaptively placed multi-grid SRN
with a domain decomposition training approach for efficient VolVis.
Other deep learning works in the context of VolVis focus on data or
visualization generation [14,15,19,51,58], compression [13,36,37,50],
translation [20, 62], and completion [16]. Our work represents the first
step in applying style transfer techniques to volume rendering results
using a NeRF model. Compared with existing works [5, 17, 21, 23],
StyleRF-VolVis takes a smaller set of DVR images for training and
infers higher-quality results, maintaining content consistency across
different viewpoints and supporting flexible style transfer.

Style transfer. Ever since Gatys et al. [11] demonstrated the capabil-
ity of convolutional neural networks (CNN) in applying diverse artistic

styles to natural images, neural style transfer [27] has emerged as a
trending topic in both academia and industry. Numerous techniques
have been developed to improve or extend the original algorithm. John-
son et al. [28] introduced a feed-forward network to solve the slow
optimization problem and achieved real-time style transfer. Huang et
al. [25] further maintained speed comparable to [28] without sacrificing
the flexibility of transferring inputs to arbitrary new styles. This was
realized using an adaptive instance normalization layer that aligns the
statistics information of the content and style features. Ruder et al. [45]
extended style transfer to video sequences by computing optical flow
to achieve consistent style transfer across frames. Wang et al. [57]
presented ReReVST that relaxes the objective function of style loss to
make the transfer more robust to motions in content video.

In VolVis, Bruckner and Gröller [6] introduced a style TF using
the lit sphere, which assigns the optical properties of voxel values
with rendering styles instead of simple colors and opacities. However,
extracting or designing the lit sphere requires artist involvement, and the
rendering relies on a traditional pipeline. Our StyleRF-VolVis adopts
an advanced NeRF representation, supporting end-to-end style transfer
and rendering without accessing the original volume.

NeRF for stylization. Since the groundbreaking work of Mildenhall
et al. [39] in 2020, NeRF has been widely used for novel view synthesis.
We refer readers to recent survey papers [7, 53] to follow the roadmap
of NeRF-based applications. While extensive studies [3, 10, 24, 29, 40]
emphasize the quality or speed enhancement of NeRF, there is also a
growing body of work focusing on editing a base NeRF to perform 3D
style transfer of a scene. Generally, editing NeRF for style transfer can
be classified into photorealistic and non-photorealistic. One main task
for photorealistic editing is recoloring the scene. For example, Kuang
et al. [32] and Gong et al. [12] utilized optimizable base colors in a
palette to fit the scene and modify the base colors to recolor the scene
during inference. Lee et al. [33] modified the essential weights in the
color multilayer perceptron (MLP) of a trained NeRF to perform local
recoloring. Unlike photorealistic editing, non-photorealistic editing
transfers more abstract information, such as textures or brushstrokes of
an artistic work. For instance, Chiang et al. [8] utilized a hypernetwork
to transfer style features into the NeRF representation. Huang et al. [26]
proposed a mutual learning strategy to integrate 2D stylization with
NeRF geometry consistency. Zhang et al. [63] designed a nearest
neighbor-based loss to stylize a trained NeRF, which performs better
stylization quality compared with standard Gram matrix-based loss.
Liu et al. [34] transformed the grid features within RFs to match a
reference style. Even though the quality is less impressive than [63],
it supports zero-shot transfer to an unseen reference image. StyleRF-
VolVis differs from all these works in that it supports photorealistic
and non-photorealistic editing in a single framework. We will show
that conducting photorealistic editing before non-photorealistic editing
yields better quality and flexibility for stylization results.

Knowledge distillation. Hinton et al. [22] introduced knowledge
distillation (KD), which optimizes a small network to match the pre-
dictions of a large model. KD has been used in model compression
and optimization [18, 22, 38]. In the NeRF space, Reiser et al. [44]
leveraged a large global pre-trained NeRF to speed up the training of
multiple small local NeRFs. Barron et al. [4] improved the rendering
quality with an online distillation strategy. Wang et al. [56] designed
R2L to learn the light fields of a pre-trained NeRF model effectively.
Fang et al. [9] proposed progressive volume distillation, which provides
a systematic KD method that allows the distillation between explicit
and implicit NeRF architectures. Instead of applying KD to optimize
a small network for model compression or optimization purposes, we
utilize KD to transfer the knowledge of a photo-realistically edited RF
to improve the quality of later non-photorealistic editing.

3 STYLERF-VOLVIS

The objective of StyleRF-VolVis is to edit the style (i.e., appearance) of
the DVR scene represented by a NeRF model without losing the original
content (i.e., geometry) information. The style can be photorealistic
(such as adjusting the original rendering’s color, opacity, and lighting
attributes) or non-photorealistic (such as altering the texture to resemble
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Fig. 2: The workflow of StyleRF-VolVis. (a) Given a collection of multi-view images, we first optimize a base NeRF model for accurate density
representation. (b) Then, we train a PCN for PSE, allowing color, opacity, and lighting changes. (c) Next, we utilize KD to optimize a UCN with no
color palette constraint. Optimized with the stylization loss, the trained UCN can produce NPSE results.

the brushstroke of an artistic image). Distinct from conventional 3D
neural stylization methods, our StyleRF-VolVis aims to unify two
types of style editing into a single framework. Additionally, from
a visualization perspective, users design TFs to classify the regions
of interest in the DVR process. These TFs map distinct colors and
opacities to each region users specify, highlighting relevant data ranges
through visual mapping. Such visual content is critical in obtaining
helpful visualization. Our method must keep the original visual content
consistent across the views to ensure the stylized visualization remains
meaningful, facilitating accurate interpretation and analysis.

Figure 2 illustrates the three-stage workflow of StyleRF-VolVis: (a)
a base NeRF model for optimizing the density representation of the
scene, (b) a palette color network (PCN) for supporting photorealistic
style editing (PSE) and maintaining visual content consistency during
style editing, and (c) an unrestricted color network (UCN) for enabling
non-photorealistic style editing (NPSE). Accordingly, our method is
structured into three optimization stages, each dedicated to training the
parameters of one network while others are frozen for stability.

The first stage focuses on training a base NeRF model to reconstruct
the scene geometry for subsequent style editing. The parameters of the
trained base NeRF are then frozen to ensure that the following style
editing does not affect the underlying scene geometry.

The second stage optimizes the PCN. Similar to TFs that differentiate
volumetric regions with user-defined colors and opacities, the goal here
is to classify regions of the RF with a color palette extracted from multi-
view images. To this end, the PCN is optimized to fit input images with
a weighted linear combination of extracted palette colors, given the
density representation obtained from the previous stage. By learning
to represent the colors of the RF, our model achieves PSE, including
modifying the original rendering’s color, opacity, and lighting.

The number of palette colors inherently restricts the network’s ability
to utilize more diverse color patterns for NPSE, where each style often
consists of multiple colors. To address this issue, in the third stage, we
start with stylizing the palette colors to match the target style colors.
Leveraging KD, we then transfer the color information from the PCN
(i.e., teacher model) to a UCN (i.e., student model), representing the
colors of the RF without the color palette constraint. In addition, we
can apply different styles to different visual regions extracted from the
PCN. As a result, we stylize the visualization scene with NPSE while
maintaining the original visual content.

The rest of Section 3 is structured as follows. In Section 3.1, we
provide the preliminary knowledge of NeRF representation [39] and
how we optimize the base NeRF model. In Sections 3.2 and 3.3, we
discuss how we adapt NeRF’s palette-based recoloring strategy [12, 32,
54] to fit PCN and achieve PSE. The utilization of KD [9] to extract
UCN was described in Section 3.4, followed by the NPSE details
that combine stylization loss [31, 63] and unsupervised segmentation
techniques [30] in Section 3.5. Finally, we brief our interactive interface
design in Section 3.6.

3.1 Base NeRF Model

StyleRF-VolVis is built upon the scene representation from a base NeRF
model. In general, a NeRF model [39] represents the scene with two
neural functions: a density function σ(x) that maps any 3D position
x to a density value σ and a color function c(x,d) that outputs RGB
color c given an arbitrary 3D position x and viewing direction d. NeRF
samples rays from the camera origin o to the rendering pixels for each
training camera view d. For one sample ray r = (o,d), if we sample
M points along ray r with 3D positions x1...M at depths t1...M . The
predicted pixel color ĉ(r) of ray r is computed as

ĉ(r) =
M

∑
i=1

αi(1−ωi)c(xi,d), (1)

where ωi = exp(−(ti − ti−1)σ(xi)) represents the transmittance along
the ray between xi and xi−1. αi = ∏

i−1
j=1 ωi denotes the attenuation of

the ray from its origin o to xi. We select the advanced architecture from
Instant-NGP [40] to optimize the RF, ensuring fast convergence and
efficient rendering. Specifically, Instant-NGP comprises a multireso-
lution hash-grid encoding and a tiny MLP for efficient optimization.
During the optimization of the base NeRF, we optimize with a loss
LBASE defined as

LBASE = ||c(r)− ĉ(r)||22, (2)

where c(r) and ĉ(r) are the ground-truth (GT) and predicted pixel
colors corresponding to ray r. After optimizing the base NeRF, we
freeze its model parameters in the subsequent stages to avoid style
editing influencing the scene geometry. Note that the colors of the base
NeRF will not be used in rendering the stylized RF; we employ the
PCN for PSE and the UCN for NPSE.
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Fig. 3: The PCN architecture. The final predicted color is obtained by
summing the view-dependent specular color output from the lighting MLP
and the view-independent diffuse color output from the palette MLP. After
training, palette weights ω are used for classifying points within the RF.



3.2 Palette Color Network (PCN)

After training the base NeRF model for accurate density representation,
we optimize a PCN that represents the scene appearance with colors
from a palette. The trained PCN can classify any 3D position within
the RF with its palette color. The classification of the PCN preserves
region classification from the user-defined TF, ensuring visual content
consistency of the downstream style editing. Figure 3 shows the PCN ar-
chitecture. The network is composed of two branches: one branch uses
the lighting MLP to predict the view-dependent specular color cs and
the other branch uses the palette MLP to output the view-independent
diffuse color cd .

For the specular color branch, we use a structure similar to the
Instant-NGP’s color function. The lighting MLP also ingests geometry
features output from the density MLP and spherical harmonics (SH)
encoded view direction as input. The only difference is that the output
of the lighting MLP is a grayscale color instead of the original RGB
color. Before optimization, we leverage the hidden parameters of the
base NeRF’s color function to initialize the shallow layers of the palette
MLP to improve the prediction of cs at the early stage.

(a) w/o refinement (b) w/ refinement (c) GT
Fig. 4: Classification and rendering results without and with palette
refinement. Top: classification results for each palette color. Bottom:
rendering results when considering all palette colors.

For the diffuse color branch, we design a palette MLP that captures
the weights ω of palette colors P for any points within the RF. This way,
we can use ω to classify points in the RF according to their primary
colors, preserving visual content consistency across different views
during style editing. Similar to the recent NeRF’s palette-based recolor-
ing strategy [12, 32, 54], we apply the RGB convex hull method [49]
to extract colors PCONVEX from training images. However, unlike
previous palette recoloring methods that directly employ PCONVEX to
initialize the palette, we further refine PCONVEX as it usually contains
many similar colors that may significantly hinder the classification. We
remove similar colors when the distance between two colors is below
a certain threshold. This distance is measured by the hue component
of colors in the hue-saturation-brightness (HSB) space. The satura-
tion and brightness components of palette colors are not considered in
measuring the distance as they can be easily optimized during training.
Figure 4 gives an example that compares classification and rendering
results without and with palette refinement. Refer to the appendix for
more details about the refinement algorithm.

Once the palette colors are initialized and the number of palette
colors NP is determined, we construct and optimize the PCN. During
the optimization, the density MLP and hash-grid encoder Eσ learned in
the first stage are fixed for invariant density representation. The palette
MLP takes features output from the palette hash-grid encoder Ep as
input and outputs three values: an intensity value I shared by all palette
colors to counteract the range shift caused by the RGB convex hull
color normalization, a set of weights ω that indicate the contribution
of each palette color to cd , and a color offset vector δ to enhance the
expressiveness of palette colors. Given the refined palette colors P and
specular color cs, the output color c associated with position x and view

direction d is computed as

c(x,d) = cs(x,d)+ I(x)
NP

∑
i=1

ωi(x)(Pi +δi(x)), (3)

where I(x) is the intensity value at position x, ωi(x) and δi(x) denote
the weight and color offset for palette color Pi at x, respectively. We
then predict pixel color ĉ(r) using Equation 1 for c(x,d), and optimize
network parameters and palette colors with loss LPALETTE defined as

LPALETTE = ||c(r)− ĉ(r)||22 +λδ

M

∑
i=1

NP

∑
j=1

||δ j(xi)||22. (4)

The first term of LPALETTE is the MSE loss between the GT pixel
color c(r) and predicted pixel color ĉ(r). The second term is the offset
regularization loss for sample points along ray r, aiming to suppress the
magnitudes of color offsets and avoid significant palette color shiftings.
We set λδ = 0.1 to control the regularization strength.

3.3 Photorealistic Style Editing (PSE)
When inferring the PCN, the output palette weights ω(x) can classify
any 3D position within the RF according to its palette color. We then
tune the network values to support PSE. Interactive PSE is achieved
using Instant-NGP’s fast inference ability.

We use the HSB space for recoloring following [32]. Given the
target palette colors P′, we compute the difference ∆P between the
original palette colors P and P′ in the HSB space. ∆Pi are then added
to Pi +δi(x) in Equation 3. To achieve opacity or lighting editing, we
multiply σ(xPi) or cs(xPi ,d) by a scalar value, where xPi denotes a
point position receiving its primary color contribution from Pi.

3.4 Unrestricted Color Network (UCN)
Although the PCN can represent the colors of the RF with PSE, it
prohibits using diverse colors in NPSE. To address this issue, we utilize
KD to optimize a UCN (student model) that produces similar diffuse
colors within the PCN (teacher model) with no color palette constraint.

Before distillation, we initially extract the average palette colors P̄
from each reference style to replace the original palette colors P. This
color transfer step ensures the distilled student network can match with
styles, reducing optimization effort in NPSE. Our UCN comprises one
hash-grid encoder Eu following an unrestricted MLP that outputs color
cu. During distillation, we first randomly sample camera views from
the scene. Then we optimize Eu with volume-aligned loss LVOLUME
adopted from [9] for each view. LVOLUME is defined as

LVOLUME = ||Ep(x)−Eu(x)||22, (5)

where Ep(x) and Eu(x) are the output features from the palette and
unrestricted encoders for each sample point x. We optimize LVOLUME
for 150 iterations to initialize Eu(x) to accelerate the subsequent distil-
lation. For the following 500 iterations, we optimize both Eu(x) and
unrestricted MLP with color loss LCOLOR, which is defined as

LCOLOR = ||c̄d(x)− cu(x)||22, (6)

where c̄d(x) and cu(x) are the diffuse colors output from the PCN with
the average palette colors P̄ and the UCN at x.

3.5 Non-Photorealistic Style Editing (NPSE)
Given one or multiple reference images, we first extract NP desired ref-
erence styles S = {S1,S2, · · · ,SNP} for NP regions of the RF. When the
number of reference images is less than NP, or users are only interested
in local patterns of one image, we can leverage unsupervised segmen-
tation techniques such as the segment anything model (SAM) [30]
to automatically or manually (with point prompt selection) divide a
reference image into localized style regions for flexible stylization.

Figure 5 shows our training process for non-photorealistic style opti-
mization. We use the optimizable unrestricted color cu(x) (Section 3.4)
and frozen density σ(x) of the base NeRF (Section 3.1) to construct
a new RF. During training, we first compute NP rendering images



R = {R1,R2, · · · ,RNP} from the new RF for each camera view. For
one sample point x, it only contributes to Ri if its palette weight ωi(x)
is greater than other palette weights. Once we have NP renderings R
and styles S, a pre-trained VGG-16 model [47] computes a stylization
loss based on a user-specified or randomly assigned style mapping.
Specifically, we use the nearest neighbor feature matching (NNFM)
loss [31, 63] for each rendering and style, which is formulated as

LNNFM(R,S) =
1

(NF NP)

NP

∑
i=1

∑
f j∈φ(Ri)

min
fk∈φ(Si)

d( f j, fk), (7)

where φ(Ri) and φ(Si) are the rendering and style feature vectors
extracted from the VGG-16 model φ . NF is the number of feature
vectors for φ(Ri), and d is the cosine distance between feature vectors
f j and fk.
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Fig. 5: The process of NPSE. We start segmenting one reference image
into styles (S1,S2) via SAM. Each rendering (R1,R2) showing separate
content is then stylized by one assigned style.

Unlike previous NeRF-based non-photorealistic stylization meth-
ods [26,34,63], our style transfer process involves three unique designs
for the VolVis scenario. First, different from traditional NeRF-based
stylization that directly discards the view-dependent color to maintain
visual content consistency across the views, we optimize cu(x) (i.e.,
diffuse color) during training and output cu(x)+cs(x,d) (i.e., diffuse
and specular colors) during inference. The rationale behind this de-
sign is to prevent the view-dependent color from influencing visual
content consistency and preserve the specular lighting effect in the
final output. Second, when rendering R in training, we observe that
varying background colors could impact the stylization results (refer
to an example shown in Figure 6). This phenomenon is caused by the
inherent transparency in the DVR scene, which is not often present in
natural scenes. Consequently, different background colors could lead
to distinct renderings using the identical network, potentially incurring
unsatisfactory stylization. To address this issue, we extract the lumi-
nance value from each style Si as the corresponding background color
for each rendering Ri. Third, we omit the content loss between the
original and stylized images due to suboptimal stylization outcomes.

(a) black (b) white (c) luminance
Fig. 6: Inference results using different background colors to optimize
the NNFM loss. (c) yields the best stylization outcome.

(a) (b)

(c)

(d)

(e)

Fig. 7: The screenshot of StyleRF-VolVis interface. (a) the stylization
result of the DVR scene; (b) the reference image with selected styles
highlighted with segmentation boundaries; (c) the PSE panel for color,
density, and lighting editing; (d) the NPSE panel for style selection and
UCN parameter training, resetting, and saving; (e) rendering options for
adjusting the background color or saving stylized images, etc.

3.6 Interactive interface
Figure 7 shows our visual interface for users to conduct PSE and
NPSE for a given DVR scene. For PSE, users select a palette ID and
interactively modify the corresponding scene region’s color, opacity,
and lighting. For NPSE, users first specify the target style for each
scene region from single or multiple reference images. They then start
optimizating UCN. After NPSE, users can still change the opacity and
lighting of the stylized DVR scene but cannot modify the color as the
stylized scene is represented with UCN. Refer to the accompanying
video for the recorded interaction with the interface.

Table 1: The datasets and their respective settings.
volume # visible # training # inference image

dataset resolution ranges images images resolution
aneurysm 256×256×256 1 92 181 800×800

combustion 480×720×120 3 92 181 800×800
earthquake 256×256×96 3 92 181 800×800

five jets 128×128×128 3 92 181 800×800
mantle 360×201×180 2 92 181 800×800
rotstrat 4096×4096×4096 2 92 181 800×800

solar plume 128×128×512 2 92 181 800×800
supernova 432×432×432 2 92 181 800×800

vortex 128×128×128 2 92 181 800×800

4 RESULTS AND DISCUSSION

4.1 Datasets, Training, Baselines, and Metrics
Datasets and network training. To show the quality, consistency, and
flexibility of StyleRF-VolVis, we evaluate it using the datasets listed in
Table 1. The visible ranges are the opacity bumps in the TF specification
corresponding to distinct visual contents for generating the original
rendering. All reference images used are copyright-free, coming from
WikiArt [2, 42] and Pexels [1]. We implemented StyleRF-VolVis using
PyTorch and ran experiments on an NVIDIA RTX A4000 graphics card
with 16 GB memory. We trained the base NeRF model with 30,000
iterations and PCN with 2,500 iterations using 92 DVR images with
cameras evenly placed along a sphere enclosing the volume. The KD of
UCN and NPSE does not need GT images. For KD, we optimized UCN
with 624 iterations, where each iteration trains on one of the randomly
sampled 312 camera views. For NPSE, we optimized UCN using the
NNFM loss with 210 iterations, where each iteration trains on one of
the uniformly sampled 42 camera views. For all three stages (base
NeRF, PCN, and UCN), we applied the Adam optimizer with a learning
rate of 0.01 and β1 = 0.9, β2 = 0.999 for training and set the batch size
to 4,096 rays. For the base NeRF model, PCN, and UCN during KD,
we decayed the learning rate exponentially for every iteration until it
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Fig. 8: Comparison of VolVis stylization. We provide two reference images for each dataset. For StyleRF-VolVis, we highlight extracted style regions
and their correspondence with the DVR scene regions. None of the other methods support customized style selection and content mapping.

reached 0. During NPSE, we fixed the learning rate and followed the
setting of ARF [63]. We used the conv3 block of VGG-16 to extract
features for computing the NNFM loss. Deferred backpropagation
was employed to update UCN’s parameters for the entire image under
limited GPU memory. During inference, we generated 181 stylized
images with novel views, with cameras evenly placed along a trajectory
to capture the full 360-degree view.

Baselines. We compare four baseline methods for NPSE:
• ARF [63] is a NeRF-based method that trains a NeRF model to

represent the scene and then updates the pre-trained NeRF param-
eters with NNFM loss to generate stylized novel view images.

• SNeRF [41] is a NeRF-based method that first constructs the
scene with a NeRF model and then alternatively finetunes the
parameters of the pre-trained NeRF and an additional image styl-
ization module to achieve stylization.

• ReReVST [57] is a video-based stylization method. It first per-
forms novel view synthesis with a NeRF model, then arranges

the novel view images as a video sequence, and finally performs
video stylization to yield the result.

• AdaIN [11] is an image-based stylization method that optimizes a
NeRF model for generating novel view images of the scene and
then applies stylization to the NeRF synthesized images.

Note that we did not compare StyleRF-VolVis with the more recent
StyleRF [34] work as it mainly focuses on the ability of zero-shot trans-
fer to unseen reference images. StyleRF trains on all reference images
from the WikiArt dataset to ensure better generalization for unseen ref-
erence images. However, this could lead to inferior stylization results
compared to optimization methods like ARF and SNeRF. Existing vi-
sualization generation methods in scientific visualization [5, 17, 21, 23]
were also excluded because they were not designed for style transfer.

Evalutation metrics. Since 3D style transfer is relatively novel
and scarcely explored, limited metrics are available for quantitatively
assessing stylization quality. Consequently, our evaluation focuses on
cross-view consistency of stylization results. Specifically, we generated



testing videos in which each frame represents a rendered image from
one of the 181 novel viewpoints of our stylized scene. Then, we warped
one view to the other using softmax splatting [43] according to the
optical flow estimated with RAFT [52]. Finally, we computed the
MSE and LPIPS [64] scores to measure the cross-view consistency.
Similar to [34, 41, 57], we calculated the long-range consistency for
faraway views (with an interval of 10 among the 181 inference views)
and short-range consistency for adjacent views, respectively.
4.2 Qualitative Comparison
We compare StyleRF-VolVis against baseline methods using DVR
scenes of vortex, supernova, combustion, and five jets. Each scene
showcases two stylization results using distinct reference images. Fig-
ure 8 shows the qualitative comparison. Unlike all baseline methods,
StyleRF-VolVis supports customized style selection and mapping to
distinct visual contents, which we highlight in the DVR scene.

Overall, StyleRF-VolVis produces clearer and more consistent styl-
ization results than other methods. In contrast to video- and image-
based stylization methods (ReReVST and AdaIN), NeRF-based styl-
ization methods (StyleRF-VolVis, ARF, and SNeRF) preserve better
geometry consistency and are capable of separating foreground objects
from the background during stylization. Among NeRF-based methods,
SNeRF captures the overall style of the reference image but cannot
assign distinct styles to different visual regions of the original scene.
Thus, SNeRF’s stylization is blurry and mixed, making it hard to iden-
tify the difference between individual visual contents in the original
DVR scene. For the vortex dataset, ARF shows better stylization than
SNeRF in preserving visual content distinction. However, the uncon-
trollable ARF style selection process could let the model choose a
negligible local style that does not match the overall style (e.g., the
WikiArt-1 case) or select one style for multiple visual regions (e.g.,
the WikiArt-8 case). Both drawbacks could lead to poor stylization
results. In addition, in the stylization process, ARF and SNeRF discard
view directions in their input to ensure cross-view stylization consis-
tency. Consequently, they cannot preserve the view-dependent lighting
of the DVR scene. Unlike ARF and SNeRF, StyleRF-VolVis utilizes
the lighting MLP to preserve lighting information of visual content
while ensuring cross-view consistency during NPSE by removing view
direction input in UCN optimization. Moreover, StyleRF-VolVis allows
explicit assigning of different styles to different DVR regions. Via color
transfer, we ensure that the region color always aligns with the overall
style color, avoiding the disadvantage of NNFM loss, which focuses on
negligible local style.

Table 2: Comparing the total training time and per-image inference time
for NeRF-based methods. The best ones are shown in bold.

dataset method training time inference time
ARF 14.6 m 204 ms

vortex SNeRF 3.6 h 173 ms
StyleRF-VolVis 29.7 m 373 ms

ARF 20.1 m 210 ms
combustion SNeRF 3.8 h 195 ms

StyleRF-VolVis 1.2 h 564 ms

4.3 Quantitative Comparison
Training and inference time. We report the training and inference time
for all NeRF-based methods in Table 2. The training of StyleRF-VolVis
is slower than ARF but faster than SNeRF. Unlike ARF, StyleRF-VolVis
requires additional steps to optimize PCN and apply KD to UCN before
NPSE. Moreover, optimizing on a single camera view during NPSE
requires rendering different regions independently. This process maps
a style to a region, slowing the stylization process. Although the
alternative training process of SNeRF is relatively straightforward, it
demands significant time to train the image stylization module, leading
to the longest training time. For inference, StyleRF-VolVis needs
additional feedforward steps of the lighting MLP to provide lighting
information, which takes longer than ARF or SNeRF.

Short- and long-range consistency. In Table 3, we compare short-
and long-range cross-view consistency for different methods. We use

Table 3: Average short- and long-range cross-view consistency for styl-
ization cases shown in Figure 8.

short-range long-range
method MSE↓ LPIPS↓ MSE↓ LPIPS↓
AdaIN 0.087 0.171 0.118 0.217

ReReVST 0.049 0.096 0.075 0.137
ARF 0.053 0.056 0.093 0.105

SNeRF 0.046 0.060 0.082 0.106
StyleRF-VolVis 0.045 0.054 0.076 0.092

MSE and LPIPS as the metrics. For each metric, we report the average
value over eight stylization cases (WikiArt-1 to WikiArt-8) shown in
Figure 8. StyleRF-VolVis achieves the best cross-view consistency,
while AdaIN performs the worst as this image-based stylization method
treats each image independently. ReReVST leads to comparable or even
better MSEs than the NeRF-based methods because it produces styl-
ization with relatively uniform colors, resulting in smaller pixel-wise
errors. However, under the image-level LPIPS metric, the consistency
of ReReVST significantly lags behind the NeRF-based methods.

Table 4: The votes of 14 participants on better solutions gathered from
eight stylization cases (WikiArt-1 to WikiArt-8).

vortex supernova combustion five jets
method 1 2 3 4 5 6 7 8 sum

ARF 8 8 2 5 11 10 11 19 74
SNeRF 23 12 27 15 6 9 10 8 110

StyleRF-VolVis 11 22 13 22 25 23 21 15 152

Voting results from a user study. As the consistency metrics do
not necessarily reflect the perceived style transfer quality, we con-
ducted a user study to measure user preference for different stylizations
following the University’s IRB protocol. Per Figure 8, we included
four datasets, each with two reference images, and considered three
leading methods (ARF, SNeRF, and StyleRF-VolVis) for pairwise com-
parison. This leads to 24 (4×2×3) image pairs organized into eight
(4×2) groups. We recruited 14 students from a visualization class of
undergraduate, Master’s, and Ph.D. students in computer science and
engineering, aerospace and mechanical engineering, and psychology
majors.

The participants were briefed on the evaluation criteria before pro-
ceeding to the study. A full-screen display shows each pair. At the top
of each display, the original DVR and reference images (with extracted
style regions highlighted in different color boundaries) are shown. At
the bottom, the stylized images of two methods, randomly placed on
the left and right sides and labeled ‘A’ and ‘B,’ are presented. The
participants were asked to decide which one (‘A’ or ‘B’) achieved
the better stylization outcome, and no tie was allowed. We asked the
participants to take their time, as we did not record how much time
they spent on each pair, each group, or the entire study. During the
evaluation, they could go back and forth to update their votes. We
advised them that many factors should be considered, including the
overall impression, content preservation, style application, and visuals
(color, opacity, and lighting). They could decide how to weigh them,
and their criteria should be consistent throughout the study. The entire
study was completed in the classroom within 10 minutes.

The voting results are shown in Table 4. We can see that StyleRF-
VolVis wins for all stylization cases except WikiArt-1, WikiArt-3, and
WikiArt-8. This may be attributed to the fact that some participants
prefer the stylization result of ARF that provides a detailed local pattern
for the WikiArt-8 case or the stylization results of SNeRF, which
contain a more global pattern in WikiArt-1 (i.e., the dark tone and
contrasting colors of The Starry Night) and WikiArt-3 cases. However,
StyleRF-VolVis wins for all other cases and gains the most overall
preference. The cross-view consistency of StyleRF-VolVis is also
better than ARF and SNeRF, as shown in Table 3.

4.4 Flexibility of NPSE
Our NPSE strategy allows users to define which style should be ap-
plied to which part of a DVR scene (analogous to using the TF), which
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Fig. 9: StyleRF-VolVis results on the solar plume dataset where three
style pairs from one reference image are used for flexible stylization.

provides more flexibility than other NPSE methods. Specifically, users
can apply styles obtained from one reference image for multiple styl-
izations, leverage styles extracted from multiple reference images for
one stylization, or only stylize one part of the DVR scene. All these
additions are the unique features of StyleRF-VolVis.

One reference image for multiple stylizations. Unlike conven-
tional NeRF-based stylization methods, which only produce one styl-
ized scene from a single reference image, StyleRF-VolVis can generate
various stylized outcomes with only one reference image. Thanks to the
advanced segmentation of PCN and SAM for the RF and reference im-
age, we can extract multiple distinct styles and apply them to different
scene regions. By pairing styles and regions in various combinations,
StyleRF-VolVis achieves controllable and diverse stylization outcomes.
Figure 9 shows multiple stylization results of the solar plume DVR
scene using the same reference image. By comparing Pair-1 and Pair-
2, we can see that when the style of one region remains unchanged,
altering the style of another region keeps the unchanged style region
intact. Further comparison of Pair-2 and Pair-3 reveals that applying
the same style to different regions consistently transfers the expected
texture. These favorable features allow StyleRF-VolVis to offer users
flexible stylization.

reference im
ages

stylization result

Fig. 10: StyleRF-VolVis result on the earthquake dataset where three
styles from different reference images are used for flexible stylization.

Multiple reference images for one stylization. Previous ap-
proaches like StyleRF [34] suggest leveraging extra supervision from
large models pre-trained on extensive image datasets for segmenting
scene elements to support style transfer from multiple reference im-
ages to a single scene. However, such a strategy cannot be directly
applied to VolVis scenes. One reason lies in the inherent difference
between DVR and natural scenes. DVR images exhibit more complex
geometric relationships, with different visual contents often nested in
layers with varied transparencies, rendering 2D segmentation methods

futile. Another reason is that large models are typically pre-trained on
natural images. Adapting such models to process DVR images would
require extensive DVR images and substantial hardware resources for
fine-tuning, a demand that is impractical for user-oriented VolVis scene
stylization. Our model can segment various regions via PCN, even
though separate GT rendering results for different regions are missing
during optimization and additional supervision from a 2D segmentation
method is lacking. As illustrated in Figure 10, StyleRF-VolVis achieves
stylized results for different regions using styles from multiple refer-
ence images. With a collection of reference images, StyleRF-VolVis
could create vast combinations of different stylization results for one
DVR scene.

(a) DVR scene and styles (b) partial stylization 1 (c) partial stylization 2
Fig. 11: StyleRF-VolVis partial stylization results on the supernova
dataset.

Partial stylization. In some scenarios, users may wish to stylize only
certain regions of the scene while keeping others unchanged. Unlike
previous NeRF-based stylization methods, StyleRF-VolVis achieves
such partial stylization by combining the color representations of PCN
and UCN. After completing the NPSE of each region, PCN can still
utilize the original palette colors to represent the DVR scene. Users
can thus specify which regions should maintain the NPSE texture and
which should keep the original appearance. During rendering, regions
that preserve the original scene’s appearance utilize colors represented
by PCN, while those stylized regions are processed through UCN.
Figure 11 shows an example of partial stylization, providing extra
freedom for users to achieve desirable results.
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Fig. 12: Comparision of StyleRF-VolVis PCN classification rendering
results with GT for each region of the earthquake dataset.

4.5 PCN Classification and PSE
As discussed in Section 4.4, the PCN classification outcomes are crucial
for style editing. Visual contents in a DVR scene are often nested with
each other. However, as demonstrated in Figure 12, even for a complex
scene like the earthquake, PCN can still produce region classification
closely resembling GT, even though only DVR images are used for
training. Although the colors and lighting of PCN classification results
are not perfect, the boundary of each region is clear, and even fine
details maintain consistency with GT. This ensures precise PSE and
NPSE of each region in subsequent stages.

In Figure 13, we showcase the PSE outcomes for various DVR
scenes. With the assistance of PCN classification, we can perform a



distinct PSE in each region. Such flexibility further assists users in
achieving desired stylization results.

Fig. 13: StyleRF-VolVis PSE of color, opacity, and lighting on earthquake,
combustion, and five jets datasets, respectively.

4.6 Ablation Study
Benefit of PSE to NPSE. At the beginning of UCN optimization, we
perform the color transfer in PCN (teacher network) to ensure that the
color representation of UCN (student network) matches the selected
styles before NPSE. This PSE step is essential for speeding up the
convergence and improving the stylization quality of UCN during
NPSE optimization. Figure 14 compares the style transfer process
without and with color transfer. Comparing the stylization results of 42
and 168 iterations, we can see that NPSE without color transfer suffers
from inaccurate style color matching at an early stage and shows unclear
stylization (i.e., black borders, see arrows) at 168 iterations. In contrast,
NPSE with color transfer matches the overall style color well at the
early stage and reveals well-stylized texture at 168 iterations.

w/o PSE
w/ PSE

(a) DVR scene and styles (b) 42 iterations (c) 168 iterations
Fig. 14: Comparison of the style transfer process of StyleRF-VolVis
without and with PSE for color transfer on the supernova dataset.

View-dependent lighting in NPSE. Recent NeRF-based stylization
methods [8,26,34,41,63] discard view directions in the input to ensure
cross-view stylization consistency. However, they ignore that view-
dependent lighting of the original scene is essential for maintaining
consistency between the original content and the stylized scene. In
contrast, StyleRF-VolVis utilizes the additional lighting MLP optimized
in the PCN training stage to preserve the DVR lighting during NPSE.
In Figure 15, we show examples of vortex and supernova datasets to
compare the effect of DVR lighting on NPSE outcomes. The results
show that the stylized scene with lighting is more consistent with the
original DVR scene than that without.
4.7 Limitations
Although StyleRF-VolVis achieves flexible, high-quality stylization
of DVR scenes, it has the following limitations. First, given an ini-
tial TF, NeRF cannot represent the value ranges where opacity equals

(a) DVR scene and styles (b) w/o lighting (c) w/ lighting
Fig. 15: Comparison of the stylization results of StyleRF-VolVis without
and with lighting on vortex and supernova datasets.

zero. Consequently, StyleRF-VolVis cannot perform PSE or NPSE for
regions with zero opacity in the initial TF. Second, StyleRF-VolVis
supports interactive PSE but not interactive NPSE. Third, even though
users can adjust the lighting intensity for the DVR scene, they cannot
modify the lighting direction because no normal information is avail-
able. Finally, if the colors among different regions within the input
DVR scene are similar, color refinement may not separate these regions
correctly. In such cases, users may need to manually adjust the number
of palette colors and their RGB values to obtain the desired results.

5 CONCLUSIONS AND FUTURE WORK

We have presented StyleRF-VolVis, the first work in VolVis that targets
style transfer in the NeRF space. The crux of our approach lies in the
accurate extraction of content and appearance information separately
from the given DVR scene and the bridging between photorealistic
and non-photorealistic style editing via knowledge distillation. With
these innovations, StyleRF-VolVis achieves high-quality, consistent,
and flexible 3D style transfer outcomes with novel view synthesis. The
efficacy of StyleRF-VolVis is demonstrated with various combinations
of DVR scenes and reference images. Moreover, we compare StyleRF-
VolVis against other image-based (AdaIN), video-based (ReReVST),
and NeRF-based (ARF and SNeRF) solutions via objective and subjec-
tive evaluation to showcase its superior quality performance.

In the future, we will extend StyleRF-VolVis to handle dynamic
DVR scenes produced from time-varying datasets. The challenge is
maintaining a consistent appearance over timesteps to achieve tem-
porally coherent stylization. We will also explore StyleRF-VolVis for
multivariate or ensemble VolVis, where different variables or ensembles
could be mapped to visually distinct styles beyond colors for better
differentiation. It remains to be seen what the appropriate number
of styles and their mixing should be to leverage the human’s visual
capacity best while maintaining observation clarity.

To ease the difficulty for non-professionals using StyleRF-VolVis,
we will explore integrating natural language interaction into the current
graphical user interface and broaden the selection of reference images
from the WikiArt collection to images created by generative AI. The
success of StyleRF-VolVis will unfold exciting opportunities for VolVis
beyond the originated scientific domain. We envision that such a
solution will enable citizen science by fusing diverse disciplines, such
as science and art, for the general public’s exploration, understanding,
and appreciation, which we would like to pursue.
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APPENDIX

1 IMPLEMENTATION DETAILS

Palette refinement algorithm. When initializing palette colors P be-
fore PCN training, we refine PCONVEX extracted from the RGB convex
hull method to eliminate similar colors within the palette. Specifi-
cally, for any two colors in PCONVEX, if they are similar (i.e., their
L1 distance of hue value in the HSB space is below a threshold Th),
we remove one of them. Furthermore, there is a small chance that
PCONVEX may contain gray colors corresponding to the light color in
the DVR scene. Such gray colors are unnecessary in P as the lighting
MLP has represented lighting components. Therefore, we remove any
color in PCONVEX if its brightness value in the HSB space is less than
a threshold Tb. For normalized color component values in the HSB
space, we empirically set Th = 0.1 and Tb = 0.2 to obtain refined P.

Luminance background. Before NPSE, we calculate each style’s
luminance value L to compute the NNFM loss using VGG-16. Fol-
lowing the calculation steps given in [48], for each average RGB color
of the selected style, we normalize each component, such as R, and
convert it into the linear-scale counterpart Rlin

Rlin = R2.2. (8)

L of the selected style can be computed as

L = 0.2126×Rlin +0.7152×Glin +0.0722×Blin, (9)

where the RGB component coefficients reflect the average spectral sen-
sitivity of lighting perceived by humans. We use L as the corresponding
background color for each style rendering. This way, the stylization of
StyleRF-VolVis can better match the overall brightness of the selected
style.

(a) NPSE scene (b) opacity PSE (c) lighting PSE
Fig. 1: Applying various opacity or lighting PSEs to the stylized NPSE
scenes.

2 ADDITIONAL RESULTS

PSE after NPSE. After NPSE, users can still apply further PSE to
the stylized scene. When doing so, one limitation is that if a region
of the NPSE scene utilizes the UCN to represent the color term, users
cannot apply a color PSE to the region as the PCN does not represent
the color. However, users can modify the opacity and lighting of each
region without restriction. Figure 1 shows examples of applying various
opacity or lighting PSEs to the scene after NPSE.

Choice of λδ . When optimizing the PCN to avoid palette color
shiftings, we include an offset regularization loss and use λδ to control

Table 1: Averaging PSNR (dB), LPIPS, and SSIM values across all PCN-
inferred images with the combustion dataset. The best ones are shown
in bold.

λδ PSNR↑ LPIPS↓ SSIM↑
0.0 20.47 0.079 0.954
0.1 23.93 0.056 0.969
1.0 22.99 0.058 0.967

(a) λδ = 0.0 (b) λδ = 1.0

(c) λδ = 0.1 (d) GT
Fig. 2: Comparison of PCN rendering results under different λδ on the
combustion dataset.

the regularization strength. We conduct an ablation study to investigate
the effect of λδ on PCN performance. After optimizing the PCN with
different λδ , we compare PCN rendering results with GT using PSNR,
LPIPS, and SSIM, as shown in Table 1. Figure 2 presents the rendering
results. We can see that the offset regularization loss is essential for
PCN training. When offset regularization is missing (λδ = 0), the
PCN does not predict correctly, as it tries to focus more on leveraging
offsets instead of palette colors to represent the DVR scene. However,
the PCN may leverage more on palette colors instead of offsets to
represent colors when λδ gets larger, resulting in less accurate scene
reconstruction. Therefore, we choose λδ = 0.1 for a good control of
the regularization strength.

Iterative style refinement for NPSE. For NPSE, StyleRF-VolVis
does not support direct control over the stylization process. However,
users can indirectly achieve their desired stylization by iterative refining
the selection in the reference image. Figure 3 shows such an example.
Based on the style selection in (a), we apply several negative point
prompts for SAM in (b) to exclude undesired styles and retrain the
UCN to achieve the desired stylization.

Comparison with NPR. Conventional non-photorealistic render-
ing (NPR) of a DVR scene relies on predefined generation rules to
mimic a reference style. Due to the complexity of hyperparameter
settings, the effectiveness of these methods depends on the choice of
hyperparameters to some extent. Moreover, such an approach limits
the stylization results to a single style. In contrast, StyleRF-VolVis
can transfer arbitrary styles according to different reference images
within a unified framework, offering higher flexibility and robustness.
In Figure 4, we compare the stylization results of StyleRF-VolVis and
a conventional NPR method for stipple drawing style [35]. We use
the stipple drawing in [35] as a reference image and adjust the TF and
camera pose to align the viewpoint for comparison. StyleRF-VolVis
matches the overall texture of the reference style more closely.

Comparison with DVR. In DVR, users can adjust the TF to explore
the scene. StyleRF-VolVis can also achieve similar objectives through
the PSE of PCN. However, PSE cannot adjust invisible parts of the
scene constructed via training the multiview images. Despite this
limitation, PCN supports random access to any position within the
scene during the rendering’s sampling process. Compared to DVR,
PCN may achieve faster render speed and require smaller memory
footprints for large volumes under the same TF. In Table 2, we compare
DVR and PCN regarding the average rendering time per image, CPU



Table 2: Average rendering time, CPU memory, and GPU memory footprints for DVR and PCN as well as average PSNR (dB) and LPIPS values of
PCN under different volume and image resolutions of the rotstrat dataset. Since E3 cannot be rendered in our local test machine using DVR due to
out-of-memory (OOM), we record its performance on a high-performance cluster and highlight it in bold for reference.

experiment volume DVR PCN
ID resolution size resolution time CPU mem GPU mem PSNR↑ LPIPS↓ time CPU mem GPU mem
E1 5123 0.5 GB 8002 111 ms 3.3 GB 1.4 GB 28.71 0.0326 145 ms 4.9 GB 4.6 GB
E2 10243 4.1 GB 8002 388 ms 11.3 GB 6.5 GB 26.68 0.0462 153 ms 4.9 GB 4.6 GB
E3 20483 32.8 GB 8002 –/3526 ms OOM/74.8 GB OOM/45.5 GB 25.28 0.0469 166 ms 4.9 GB 4.6 GB
E4 10243 4.1 GB 4002 323 ms 11.2 GB 6.5 GB 25.05 0.0369 76 ms 4.7 GB 3.1 GB
E2 10243 4.1 GB 8002 388 ms 11.3 GB 6.5 GB 26.68 0.0462 153 ms 4.9 GB 4.6 GB
E5 10243 4.1 GB 12002 510 ms 11.4 GB 6.9 GB 26.89 0.0503 314 ms 5.2 GB 7.2 GB

(a) before refinement (b) after refinement
Fig. 3: Iterative style refinement on the vortex dataset. Y/N shows a
positive/negative point prompt to include/exclude a certain selection.

memory, and GPU memory requirement for the rotstrat dataset with
different volume and image resolutions (denoted by experiment IDs).
We run DVR using the open-source software ParaView with NVIDIA
IndeX plugins. All models converge around four minutes and occupy
a storage of 168 MB. PSNR and LPIPS values reported in Table 2
and the difference images (with respect to the GT rendering image)
shown in Figure 5 suggest that PCN achieves acceptable accuracy but
requires a smaller rendering memory footprint and faster rendering
speed compared to DVR. Note that the NeRF-based representation
is independent of the volume resolution. Storing the training images
and the network model for large data is more space-efficient than
the original volume. Therefore, StyleRF-VolVis provides an efficient
means for altering renderings of large volumes.

(a) reference stipple drawing [35] (b) stylization from [35]

(c) DVR (d) stylization from StyleRF-VolVis
Fig. 4: Comparison of the stylization results generated by a NPR
method [35] and StyleRF-VolVis on the aneurysm dataset.

(a) E1 (b) E3

(c) E2

(d) E4 (e) E5
Fig. 5: PCN rendering results with different volume and image resolutions
on the rotstrat dataset.
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