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Abstract

Flow visualization plays an important role in many scientific and engineering disci-

plines such as climate modeling, turbulent combustion, and automobile design. The

most common method for flow visualization is to display integral flow lines such as

streamlines computed from particle tracing. Effective streamline visualization should

capture flow patterns and display them with appropriate density, so that critical flow

information can be visually acquired.

In this dissertation, we present several approaches that facilitate expressive flow field

visualization and exploration. First, we design a unified information-theoretic frame-

work to model streamline selection and viewpoint selection as symmetric problems.

Two interrelated information channels are constructed between a pool of candidate

streamlines and a set of sample viewpoints. Based on these information channels, we

define streamline information and viewpoint information to select best streamlines

and viewpoints, respectively. Second, we present a focus+context framework to mag-

nify small features and reduce occlusion around them while compacting the context

region in a full view. This framework parititions the volume into blocks and deforms

them to guide streamline repositioning. The desired deformation is formulated into

energy terms and achieved by minimizing the energy function. Third, measuring the

similarity of integral curves is fundamental to many tasks such as feature detection,
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pattern querying, streamline clustering and hierarchical exploration. We introduce

FlowString that extracts shape invariant features from streamlines to form an alpha-

bet of characters, and encodes each streamline into a string. The similarity of two

streamline segments then becomes a specially designed edit distance between two

strings. Leveraging the suffix tree, FlowString provides a string-based method for

exploratory streamline analysis and visualization. A universal alphabet is learned

from multiple data sets to capture basic flow patterns that exist in a variety of flow

fields. This allows easy comparison and efficient query across data sets. Fourth, for

exploration of vascular data sets, which contain a series of vector fields together with

multiple scalar fields, we design a web-based approach for users to investigate the

relationship among different properties guided by histograms. The vessel structure is

mapped from the 3D volume space to a 2D graph, which allow more efficient inter-

action and effective visualization on websites. A segmentation scheme is proposed to

divide the vessel structure based on a user specified property to further explore the

distribution of that property over space.
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Chapter 1

Introduction

Flows widely exist in our world and influence human life in many ways. The behav-

iors of flows are studied in many scientific areas, such as aerodynamics of aircrafts

and vehicles, air flow in meteorology, ocean flow in oceanography, and blood flow in

biomedical engineering, etc. Observing the flow pattern provides a comprehensive

way to study the flow behaviors. However, most flows are transparent and their pat-

terns are not directly visible. Traditionally, experimental methods were used to make

the flow visible, e.g., spilling ink or adding dyes into liquid. With the extensive use

of computer models in modern engineering research, huge amount of flow data are

simulated through computational fluid dynamics (CFD). Flow visualization plays an

important role to make this kind of data visible, so that the flow patterns and behav-

iors can be studied in a comprehensive way. On one hand, flow visualization provides
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(a) (b)

Figure 1.1: 2D visualization of (a) a steady vector field, and (b) streamline
segments and the associated vectors on their control points.

a method for scientists to verify their computation models with observations. On the

other hand, it allows researchers to observe correlations between certain flow patterns

and the possible outcomes. This dissertation focuses on the development of visualiza-

tion techniques that provides clear observations under different view directions and

interacts with users to meet different needs.

1.1 Background

This dissertation focuses on flows defined on vector fields. A vector field on U ⊆ E
n

is a mapping V : U → E
n from an open set U ⊆ E

n to E
n, where E

n is an Euclidean

metric space. This mapping V assigns an n-dimensional vector V (v) ∈ E
n to each

point v ∈ U ⊆ E
n. The domain U is commonly represented by a grid in CFD, and

each cell of this grid is associated with a vector that indicates both direction and
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magnitude of the flow at the center of that cell. Vectors at positions rather than cell

centers are linearly interpolated. Figure 1.1 (a) shows an example of a 2D vector

field.

A flow on an open set X is a mapping φ : X × R → X such that for all x ∈ X and

all s, t ∈ R, we have the following:

φ(x, 0) = x

φ(φ(x, t), s) = φ(x, s+ t) (1.1)

Thus, the flow φ sends a point x ∈ X to another point φ(x, t) ∈ X for each t ∈ R.

Given a point x ∈ X, the set of φ(x, t) for all t ∈ R is referred to as the orbit of x

under the map φ. It is the trajectory of the movement of x over time. A steady flow

is a flow in which the properties assigned to any point are independent of the time

parameter. Because we only focus on the velocity at each point, a flow is steady if

the vector assigned to any point does not vary over t; otherwise, a flow is an unsteady

flow.

A C0 (continuous) vector field can produce a flow φ so that the given vector field is

the induced velocity field of φ. More precisely, the vector assigned to any point is

tangent to the orbit of a flow φ through that point. Intuitively, this means that given

a C0 vector field V : U → E
n, the flow is fully determined in the sense that the orbit
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of every point X0 ∈ U can be found. The orbit with initial position X0 is simply a

curve C : R → U (i.e., C(t) ∈ U for every t ∈ R) such that C(0) = X0. The vector

assigned to a point of C(t) is V (C(t)). V (C(t)) is supposed to be Ċ(t), where Ċ(t)

is the tangent vector at point C(t). Therefore, we have the following equations:

V (C(t)) = Ċ(t)

C(0) = X0 (1.2)

The above is a first-order ordinary differential equation and has a unique solution

C(t) via integration. An orbit obtained in this way is referred to as an integral curve.

In this dissertation, we use the term “flow field” and “vector field” interchangeably,

because our flows come from vector fields.

Scientific visualization provides a transformation from vector fields into displayable

forms such as images, where phenomenons can be observed by human. The most

common way to visualize the flow using the integral curves as described before, which

is usually referred to as field-lines in flow visualization literature. The field-lines are

called streamlines (for a steady flow) or pathlines (for an unsteady flow). An example

of streamlines is shown in Figure 1.1 (b), where the streamlines are drawn in red and

the vectors are drawn in blue. Unlike Figure 1.1 (a), which shows the flow direction

of every grid point, only the flow directions on control points of streamlines are

immediately available in (b). But it is difficult to visually obtain the flow pattern at
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(a) (b) (c)

(d) (e) (f)

Figure 1.2: Six types of 2D critical points. (a) saddle, (b) sink, (c) source,
(d) center, (e) attracting spiral, and (f) repelling spiral. (© 2013 ASEE.
Reprinted by permission.)

larger scale from an image displaying an arrow for every grid point, especially for a 3D

data set where there are much more grid points creating occlusions during projection.

On the contrary, using streamlines, the flow pattern of a flow field is revealed in a

continuous form, and it is easier for researchers to build connections between different

regions from perception. In addition, with the appropriate streamlines, the flow

direction at a point can still be implied from the neighboring streamlines, even if that

point is not on any streamline.

A flow field may exhibit several special types of flow pattern, which are characterized
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(a) (b) (c)

Figure 1.3: A vascular data set with an aneurysm. (a) Streamlines traced
in the vessel. (b) The pressure field in the vessel. (c) The WSS field in the
vessel.

by critical points. A critical point is a singularity in the vector field where the velocity

vanishes. Figure 1.2 1 shows six types of 2D critical points. Figure 1.2 (a) demon-

strates a saddle, where vectors repel each other at a point. Figure 1.2 (b) presents

a sink, where vectors converge into a point. Figure 1.2 (c) shows a source, where

vectors emanate from a point. In Figure 1.2 (d), (e) and (f), three types of critical

point where vectors revolve along a point are shown. They are a center, an attracting

spiral and a repelling spiral. Locating and classifying these critical points in vector

fields have important practical meaning in many disciplines.

In addition, some scalar fields may be simulated to describe properties associated

with the vector fields. A scalar field S : U → R maps a point to a scalar value, which

indicates the value of some property at that point. Examples of these properties

include carbon dioxide concentration in meteorological data sets and blood pressure

in vascular data sets. The flow pattern and the distribution of these scalar properties

1The images contained in this figure were previously published in Proceedings of American Society

for Engineering Education Annual Conference [122].
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in these data sets are not immediately visible to researchers, not to mention their

relationships. Figure 1.3 shows a vascular data set that consists of multiple fields,

including a vector field to describe the blood flow and the corresponding scalar fields

of pressure and wall shear stress (WSS). The vessel structure contains an aneurysm,

whose rupture could be life-threatening. It is believed that the cause of rupture of

an aneurysm is related to multiple factors, which includes the distribution of WSS

and pressure and the pattern of spirals in the aneurysm [94, 111]. Therefore, it is

critically important to study the relations among these properties, and possibly with

the rupture outcomes. In addition, studying the blood flow in a vessel has practical

meaning to the treatment of the aneurysm as well. It can help medical experts to

find the best locations to release drugs so that they can stay longer in the aneurysm

and closer to the vessel wall.

1.2 Challenges

The principals for flow visualization are similar to general scientific visualization,

including informative, and visually pleasing, etc. In this dissertation, we focus on

generating an informative flow visualization that helps the exploration of flow fields.

The meaning of an informative flow visualization is multifold. On one hand, being

informative indicates flow visualization should preserve as much information in the
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original data set as possible. In this sense, using more streamlines seems to be pre-

ferred, as the flow directions can only be obtained through streamlines. On the other

hand, the information contained in the visualization result should be easily obtained.

In contrast to the previous criterion, this normally requires less streamline for clarity.

Figure 1.4 demonstrates the impact of streamline density on the information con-

veyed. In (a), twenty streamlines are displayed, and the flow directions around these

streamlines can be perceptually interpreted. However, most regions are left empty

where the flow patterns are shown. In (b), although using 200 streamlines fills the

entire volume, most regions are occluded by the streamlines in the front, and their

flow patterns are still unknown to users.

Moreover, the data sets nowadays can be large and complicated. Therefore, displaying

all features clearly becomes impossible. Many recent research focus on discovering

and emphasizing features or structures of data sets. These includes the techniques

that automatically identify regions of interests and emphasize those regions in the

visualization result, and approaches that present the underlying structure of a data

set in an abstract way. Finally, visualization somewhat lies between science and art.

The ability to generate eye-catching rendered results is important for a visualization

approach as well.

There are still many remaining challenges in meeting these requirements. First, it is

challenging to maintain appropriate densities for all regions. The criteria of preserving
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(a) (b)

Figure 1.4: Randomly traced streamlines using the crayfish data set. (a)
20 streamlines. (b) 200 streamlines. The feature region highlighted in red is
sparse in (a) but occluded in (b).

information and clarity are both closely related to the density of streamlines being

displayed and contradictory in some aspect. However, the balance of these factors

is not always achievable. The densities in different regions are interrelated, since

streamlines usually pass multiple regions. In Figure 1.4 (a), the flow behavior in the

inner region is more complicated and therefore more difficult to predict if not captured

by streamlines, as highlighted in the red rectangle. Most of the inner region is still

empty and more streamlines should be added. However, most of the streamlines pass

both the inner and outer regions, and it is difficult to increase the density in inner

region and still maintain the density in outer region. For example, after adding more

streamlines in Figure 1.4 (b), the inner region is completely occluded by the outer

region.

Second, a feature can be too small to be captured and observed. In Figure 1.5 (b), a
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(a) (b) (c)

Figure 1.5: Randomly traced streamlines using the supernova data set. (a)
100 streamlines. (b) 200 streamlines. (c) 1000 streamlines. The small spiral
highlighted in the red square can only be observed clearly in (b).

small spiral is highlighted in the red rectangle, which is small and difficult to observe.

However, with less streamlines, this feature is not captured by the streamlines, as

shown in (a). With more streamlines, this feature may be easily overlooked by users,

as shown in (c).

Third, the projection from 3D streamlines to a 2D plane depends on the view. By

changing the viewing direction, the local densities of different regions on the projection

plane may change accordingly. Hence, the most appropriate density may not exist for

all viewing directions/positions. Moreover, the information conveyed by a streamline

is dependent on the view direction as well. For example, a planar curve will downgrade

to a straight line when the viewing direction lies in the plane that contains the curve.

In this case, the information of that curve is greatly lost in final rendered results.
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Fourth, there is no universal rule to identify regions of interest or useful informa-

tion to explore. The goals of flow visualization are commonly discipline/application-

dependent. For example, some medical experts may be interested in spirals as they

are believed to be related to ruptures of vessels; other medical experts researching

drug delivery may be interested in the amount of blood that enters a certain region;

and mechanical engineers may be interested in the combustion flows in engines, etc.

In recent years, many approaches have been developed for specific applications, while

some general approaches can be tuned to fulfill certain requirements.

In conclusion, an effective flow visualization should clearly convey the flow pattern in

the flow field. Maintaining appropriate streamline density for a clear observation and

allowing users to easily identify features are major tasks. Major effort are placed in the

following directions: choosing good seed points to trace streamlines; selecting good

streamlines from a large and usually randomly generated pool; measuring streamline

similarities to simplified the visualization results; and introducing interactions for

users to explore the flow field according to their own needs. Details will be provided

in the next section.
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1.3 Methodology

Our approaches target at the previously mentioned challenges in several aspects.

First, we do not consider the density of streamlines explicitly. Instead, the amount of

information conveyed by a pool of streamlines is evaluated. This naturally provides

streamlines with appropriate overall density, as the information does not increase

when a streamline is added to a region that is already dense enough. Second, we

build connections between streamline selection and viewpoint selection. We evaluate

the information conveyed by a streamline under a certain viewpoint. In this way, not

only do we consider the flow pattern represented by a streamline, but also take what

users can perceive into account. Third, we operate on streamline segments instead

of streamlines. This provides finer level of control, as it breaks the interrelation

among regions, so that they can be manipulated relatively independently. Forth, user

interactions are highly involved in our approaches. Our approaches are published

[103, 104, 105, 106] and covered in details in this dissertation. In this section, we

present a high-level description of these approaches and the related works.

12



(a) (b) (c) (d)

Figure 1.6: Generating streamlines using seed placement and streamline
selection methods. (a) The grid shows the importance values of each point,
and the seeds are placed according to the importance values. (b) Streamlines
are traced from the seeds shown in (a). (c) Randomly traced 900 streamlines
with 100 of them selected. (d) The selected streamlines in (c).

1.3.1 Streamline and Viewpoint Selection

Traditional streamline visualization consists of two major categories: seed place-

ment and streamline selection. Seed placement aims at carefully placing seeds

in the domain to generate streamlines that capture the essence of the flow field

[45, 60, 78, 109, 116, 130, 133]. A seed is an initial position to trace a streamline.

Ideally, an algorithm for seed placement should generate visually pleasing and techni-

cally illustrative images. These methods either target at evenly spaced streamlines for

visual consistence, or place more seeds around feature regions so that more stream-

lines will pass those regions, which not only ensure the features are captured but also

highlight those regions with higher streamline density. Figure 1.6 (a) demonstrates

a common procedure of seed placement. An importance value is evaluated for each

voxel in the volume, and the seeds are placed at the voxels with highest importance
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values. In this example, the importance value is computed using the entropy of flow

directions, which indicates how complicate the flow is in a small neighborhood. Then

streamlines are traced from the seeds, as shown in (b).

An alternative to seed placement is streamline selection. Streamline selection aims at

carefully selecting streamlines from a large streamline pool for effective display [13,

57, 70, 74]. Figure 1.6 (c) shows a pool of 900 streamlines that are randomly generated

in the flow field, from which 100 are selected and highlighted in red. The selection

is performed based on the streamline information described in Section 3.4. The final

rendered result is displayed in Figure 1.6 (d) with only the selected streamlines.

Compared to selecting seeds, selecting streamlines is directly related to the stream-

lines, which are the final visualization results. Streamline selection can measure the

information contained by a streamline, or even a pool of streamlines, while seed

placement usually evaluates a seeding position locally, where the global information

of a streamline is missing. On the other hand, in Figure 1.6 (b), seed placement

produces streamlines that concentrate on the important regions and their patterns

are similar as well. On the other hand, streamline selection has a better coverage

of information contained in the vector field. Seed placement was commonly used in

the past as it required less computation power. With the rapid advances of general-

purpose computing on GPUs, it is quite affordable nowadays to generate a large pool

of streamlines. As such, streamline selection has become a promising alternative to
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seed placement and has received increasing attention. Although the task is shifted

from selecting good seeds to selecting good streamlines, the goal remains the same:

we want to produce a set of streamlines that are not only descriptive as individuals,

but also informative as a group: i.e., highlighting flow features and patterns while

reducing visual clutter.

Our streamline selection improves the existing methods in two aspects: first, it con-

siders the information contained in a streamline group and the information conveyed

by a single streamline. Therefore, it provides better global pictures. Second, it con-

siders streamline selection to be closely related to viewpoint selection. Therefore, it

considers not only the shape of a 3D streamline, but also the information conveyed by

its 2D projection on the screen. In Chapter 3, we will present our approach to formu-

late streamline selection and viewpoint selection into a unified information-theoretic

framework and solve them simultaneously. This approach not only selects the most

informative streamlines to depict the vector field, but also suggests the best views to

observe the selected streamlines.

1.3.2 Focus+Context Flow Visualization

Streamline selection has its limitation as well. A streamline may pass multiple regions

with various degrees of importance. Ideally, it is desirable to achieve different densities
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for these regions according to their own importance values. However, streamline

selection either selects the entire streamline or completely ignores it. Both changes

the densities of all regions passed by this streamline in the same way. Figure 1.4

(b) presents a good example in this case. Most streamlines pass both the inner

feature region where the flow is complicated, and the outer context region where the

flow is simple and aligns along the boundary. Therefore, an effective visualization

should produce results that reduce the density of the outer region, while maintaining

appropriate density for the inner region. But we find this difficult to achieve since

removing streamlines reduces the density of the inner region as well, as shown in

Figure 1.4 (a). Moreover, some features are small in size, as shown in Figure 1.5.

They may be easily overlooked even if they are captured by some streamlines, since

only short segments of streamlines cover these features. In this case, it will help to

enlarge the regions containing this kind of segments. These all raise the need for a

finner level of control over the streamlines.

To this end, it will be beneficial to adopt a focus+context visualization to magnify

small features so that they could be easier to observe, and stretch the regions in

front of feature regions so that the streamlines blocking the features get sparser. To

achieve these two goals, we introduce our focus+context flow visualization approach

to maintain the shape of flow features and utilize less important regions to absorb the

distortion. Unlike the streamline selection approaches, this deformation framework

provides us with higher flexibility to adjust the densities of streamlines in different
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Figure 1.7: Deforming the streamline and corresponding grids with our
focus+context visualization. The streamlines are shown in the first row, and
the grids are shown in the second row. (a) displays the original streamlines
and grid. (b) displays the visualization with a moderate level of deformation.
(c) displays the visualization with a larger deformation. The first and second
row in (d) show the enlarged feature regions in (b) and (c), respectively. (©
2014 IEEE. Reprinted by permission.)

regions relatively independently. In Figure 1.72, the interesting features only occupy

a small region at the center of the volume. It cannot be observed clearly, as this

region is both small and occluded by other streamlines, as shown in (a). We measure

the importance at each voxel using the entropy of flow directions. The high entropy

regions colored in red and yellow correspond to the feature region. In (b) and (c),

we consider the feature region under focus and use different parameters to deform

the volume, so that the feature region expands and other regions shrink to absorb

the distortion. In column (d), the feature region is enlarged to show the details. We

observe that the flow patterns is more spreading out and clearer in the deformed

2The images contained in this figure were previously published in IEEE Transactions on Visualiza-

tion and Computer Graphics 2014 [105].
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volume. In Chapter 4, we will provide the details of this approach.

1.3.3 Streamline Similarity Measure

In flow visualization, measuring the similarity between discrete vectors or the sim-

ilarity between integral curves is of vital importance for many tasks such as data

partitioning, seed placement, field-line clustering and hierarchical exploration. This

need has become increasingly urgent, but fulfilling it has become more challenging as

the size and complexity of flow field data continue to grow dramatically over the years.

Early research in this direction focused on vector field similarity and hierarchical clas-

sification [39, 108]. This focus has shifted to similarity measure of integral curves in

recent years. Many of the similarity measures designed were targeted on fiber bundle

clustering in diffusion tensor imaging (DTI). In this context, spatial proximity is the

major criterion for clustering these DTI fiber tracts. Fiber bundles can be formed to

characterize different bunches of tracts that share similar trajectories.

In computational fluid dynamics, integral curves such as streamlines or pathlines

traced from flow field data are more complex than DTI fiber tracts. Many CFD

simulations produce flow field data featuring regular or turbulent patterns at various

locations, orientations and sizes. Clearly, only considering the spatial proximity alone

is not able to capture intrinsic similarity among integral curves traced over the field.

18



(a) (b) (c)

Figure 1.8: Streamline Similarity Measures. (a) pointwise distance de-
pends on not only the shape of two streamlines but also their positions and
orientations. (b) distribution-based distance may fail to catch the order in-
formation. Therefore, two streamlines different in shape may have the same
distribution of some attribute. (c) Procrustes distance measure by comput-
ing pointwise distance after registration.

As a matter of fact, pointwise distance calculation commonly used in proximity-based

distance measures is not invariant under translation, rotation and scaling. Although

other measures have also been presented that extract features from integral curves and

consider feature distribution or transformation for a more robust similarity evaluation,

none of them is able to explicitly capture intrinsic similarity that is invariant under

translation, rotation and scaling. Figure 1.8 illustrates simple examples of measures

using pointwise distance, distribution distance and our distance measure. Figure 1.8

(a) shows an example of pointwise distance. It computes the distance between two

streamlines as the average of distances between closest points, as indicated by the

brown dashed lines. We observe that using pointwise distance, two ellipses that are

almost identical in shape may have a large distance due to their different locations

and orientations. Figure 1.8 (b) shows an example of distribution distance. We

first sample the two streamlines to generate distributions of velocity directions, as
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indicated in the blue circle. These two streamlines are different in shape but share

the same direction distribution, since the order of sample points is not preserved.

In this case, these two streamlines may be considered to be almost identical using

distribution-based distance measures. Figure 1.8 (c) demonstrates the Procrustes

distance used in our approach. Streamlines are first aligned using registration, which

translates, rotates and uniformly scales one streamline. Then the Procrustes distance

is given by the pointwise distance calculated between the registered lines. We observe

that the two elliptical curves align well and has a small distance, but the other pair

of streamlines cannot be completely aligned with each other due to shape difference.

Furthermore, most of the existing solutions for streamline similarity measures take

each individual streamline of its entirety as the input, measuring partial streamline

similarity is not naturally integrated. We propose a scheme that divides streamlines

into basic segments, which allows partial streamline to be matched. In Chapter 5,

we present FlowString, our approach for streamline similarity measures using shape

invariant features.

1.3.4 Exploration of Multivariate Vascular Data Sets

It is common that a flow field also associates with multiple other scalar fields. For

example, atmospheric data sets might include variables such as temperature, pressure,

and concentration of CO2, etc.; and vascular data sets might associate with pressure,

20



wall shear stress, and level set, etc. The relationship among these scalar fields and

the flow field is of particular interest, since the changes of one field might lead to

changes in other fields. However, we still lack effective approaches for guiding the

users to explore these essential relationships.

Our multivariate exploration approach focuses on vascular data sets. Visualization of

vessel data is critically important for disease diagnosis and therapeutic monitoring,

surgical planning and simulations. Vascular data are referring to complex three-

dimensional geometric data, hemodynamic data (e.g., time-resolved 3D blood veloc-

ity) and other parameters derived from hemodynamics. It is well known that cerebral

aneurysm is a multi-factorial diseases and relationships among these parameters are

not well understood. For example, Shojima et al. [94] found that the spatially aver-

aged wall shear stress (WSS) in ruptured cerebral aneurysms was significantly higher,

but the WSS was lower at the apex, which could be the thinnest part of the aneurysm

and therefore may be vulnerable. However, Valancia et al. [111] suggested that low

WSS regions were larger in ruptured aneurysms. They argued that low and oscilla-

tory flow might be responsible for vessel wall remodeling associated with the rupture.

Visual exploration of those hemodynamic parameters and their spatial distributions

facilitates our understanding of this kind of disease.

In Chapter 6, we propose a web-based application specifically designed for analyz-

ing the vascular data sets. It allows users to perform queries of regions that fulfill
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user-specified criteria, and provides tools to analyze the extreme value of the scalar

properties as well as their relationships. Finally, it provides a 2D representation that

serves multiple visualization purposes.

1.4 Organization

This dissertation is organized as follows. Chapter 2 introduces the related works and

discusses how our approaches relate to and differ from these approaches. Chapter

3 presents the unified information channel that solves the streamline selection and

viewpoint selection problems simultaneously. Chapter 4 describes a focus+context

flow visualization based on deformation to magnify the small features and reduce the

occlusion over regions of interest while preserving the context streamlines. Chapter 5

introduces FlowString, a vocabulary approach for partial streamline matching, which

facilitates efficient common pattern discovery and effectively locates features based on

user query. Chapter 6 presents VesselMap, a web-based approach that allows users

to interactively explore the vascular data sets based on histogram computation of

particles traced in the vessels. Chapter 7 discusses several pedagogical visualization

tools that provide users with an intuitive way to learn and understand some cryptog-

raphy algorithms, including Data Encryption Standard (DES) cipher, RSA cipher,

and ciphers based elliptic curves over finite fields.
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Chapter 2

Related Work

In this chapter, we start with a review of previous work on flow visualization. Specif-

ically, we review streamline visualization, which is a key technique in traditional flow

field visualization. In Section 2.1, the two most important branches of streamline

visualization are described: seed placement and streamline selection. Then, we dis-

cuss related algorithms that facilitate flow visualization. Section 2.2 presents previous

work in focus+context visualization and Section 2.3 reviews the work in measuring

the similarity among field-lines. For each section, we start with a general descrip-

tion of that field, followed by a brief introduction to each work. Finally, we link the

previous work and our approach together and also point out the differences.
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2.1 Streamline Visualization

Streamline visualization is the most extensively used approach to visualize the flow

pattern in a steady flow field. It consists of two major approaches: seed placement

and streamline selection. Seed placement focuses on finding good places to seed the

streamlines, so that the traced streamlines will not only capture the pattern of the

flow field but also maintain the streamline density to reduce occlusion. On the other

hand, streamline selection starts with a large pool of streamlines and selects a good

subset of streamlines to render, so that the selected streamlines will clearly show the

flow pattern.

2.1.1 Seed Placement

Seed placement is a widely used strategy in flow visualization. Early work includes

image-guided [109] and evenly-spaced [45] streamline placements. Similar to the

evenly-spaced strategy [45], Mebarki et al. [78] suggested to place a seed at the posi-

tion that is farthest from all existing streamlines, i.e., the center of the largest void

area. Verma et al. [116] introduced a feature-based approach which detects critical

points and uses seeding templates to capture the 2D flow field features. This approach

was extended to 3D vector fields by Ye et al. [133]. Li and Shen [60] placed seeds
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on a 2D projection plane and unprojected the seeds back to the 3D vector field to

avoid clutter. Xu et al. [130] used seeding templates for regions with high entropy

and then placed additional seeds at locations where the conditional entropy is high,

i.e., much information is still unrevealed. Other seeding techniques include priority

seeding [91], dual seeding [85], and surface seeding [97].

2.1.2 Streamline Selection

An alternative to seed placement is streamline selection. Previously, Chen et al. [13]

defined a metric for local similarity between streamlines and used it to explicitly

control the streamline density displayed. Marchesin et al. [74] measuresd the con-

tribution of each streamline to the understanding of the vector field, and selected

those streamlines that have higher contribution to the rendering and lower probabil-

ity leading to visual clutter. Lee et al. [57] proposed to generate a maximum entropy

projection buffer and then selected the streamlines that cause the minimum occlusion

to important regions.
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2.1.3 Our Approach

Our approach falls into the category of streamline selection. Marchesin et al. [74]

evaluated a streamline based on its 3D linear and angular entropy, which is view-

independent. For a particular viewpoint, they selected most streamlines according

to the resulting density under that viewpoint. Unlike their method, our approach

directly evaluates how much information a streamline could convey under a certain

viewpoint by measuring the information lost from 3D to its 2D projection using

mutual information. In this way, we build a transition matrix between all streamlines

and all viewpoints, which is also known as the information channel. Furthermore,

our view-independent streamline selection is performed by utilizing the information

channel to consider all streamlines and their 2D projections in all sampled views at the

same time. Due to the symmetric structure of the information channel, our approach

can also suggest good viewpoints for users to observe the flow features, which is not

achieved by previous methods.

2.2 Focus+Context Visualization

Focus+context (F+C) visualization stems from the need to show both overview (con-

text) and detail information (focus) simultaneously within a limited display area.
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Many F+C visualization techniques design lens that magnify focuses. Examples in

this category are the fisheye view [31, 32, 89] for text, image and graph visualiza-

tion, and the magnification lens [54, 121] and conformal magnifier [139] for image

and volume visualization. Another category of techniques magnifies focuses without

a predefined lens, e.g., Wang et al. [123, 124] achieved the desired F+C visualization

through energy minimization. Some other approaches also emphasize the focus by

adjusting the transparency of different regions. This is specially useful when the focus

is not a region, but a property or variable in multivariate data sets, which is common

for flow visualization.

In flow visualization, Fuhrmann and Gröller [30] presented magic lenses and magic

boxes to examine the region of interest with greater detail by showing denser stream-

lines. This technique was later extended to magic volumes of varying focal regions

such as cubes, prisms and spheres [75]. Laramee et al. [55] leveraged feature-based

techniques [22] to extract interesting flow regions, such as stagnant flow, reverse-

longitudinal flow and regions of high pressure gradient, as the focus. They achieved

F+C rendering through interactive thresholding that reduces flow complexity and

resulting visualization. Correa et al. [17] introduced physical and optical operators

to intuitively visualize the inner regions of 3D flow through illustrative deformation.

By cutting along flow traces, they allowed a clear observation of the inner regions

through optical transformation and elastic deformation. To explore blood flow in
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cerebral aneurysms, Gasteiger et al. [34] proposed an interactive 2D widget for flex-

ible visual filtering and visualization of the F+C pairs (i.e., relevant hemodynamic

attributes). Their widget supports local probing and conveys changes over time for

the lens region. Van der Zwan et al. [112] modeled several visualizations of a data set

as abstractions which represent the information at different levels of details. Given

the user-selected level of focus, F+C visualization is achieved by manipulating the

transparency of each abstraction. All these methods, however, do not shrink the con-

text of the flow field while magnifying a specific focal region in order to best utilize

the available volume space. In contrast, we devise a continuous deformation solution

based on an energy optimization model to achieve F+C streamline visualization.

2.2.1 Our Approach

Unlike fisheye view or magnification lens, our method leverages an optimized defor-

mation to minimize the global distortion, which can magnify multiple streamlines

in different focal regions simultaneously. Closely related to our work are the F+C

techniques presented by Wang et al. [123, 124] for surface models and volumetric

data. In [123], they presented a F+C technique for surface models that magnifies a

region of interest for closer examination while deforming other regions without per-

ceivable distortion. In [124], a similar technique was presented for volumetric data for

feature-preserving data reduction and F+C visualization. However, to the best of our
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knowledge, the full benefits of such a deformation framework have not been demon-

strated for interaction and visualization of flow fields. The value of our approach

lies in that it targets on solving the several challenges when applying this grid-based

deformation framework to flow fields. Unlike surface models and volumetric data

where the visualization is 2D or 3D continuous, streamlines are only 1D entities and

therefore, their F+C effect may not be readily perceivable yet the distortion could be

much easier to spot. Therefore, we carefully design energy terms specifically for the

flow field to maintain key physical properties for streamlines during the deformation

process. Finally, to make this deformation framework truly useful, we incorporate

the unique features of flow field and streamlines for both automatic and manual focus

identification and F+C visualization.

2.3 Field-line Similarity Measures

A good field-line similarity measure would benefit flow visualization and exploration

in many aspects. For example, it might guide streamline selection, so that similar

streamlines could be removed to reduce occlusion. Furthermore, it could lead to

approaches that search for similar flow patterns, and even automatically discover fre-

quently appeared flow patterns in a flow data set. Over the years, many different

similarity measures have been presented for field-line clustering. We categorize these

measures into four different kinds: proximity-based, feature-based, distribution-based
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and transformation-based measures. Note that many of the similarity measures we

review in the following are actually hybrid ones: e.g., computing or extracting fea-

tures first and then applying distribution-based or transformation-based solutions for

measuring.

2.3.1 Proximity-based Measures

The measures used to determine the spatial proximity between two integral curves are

the foundation for streamline similarity measures. The proximity of two streamlines

can be defined based on the Euclidean distance of their sampled point pairs, with one

point from each streamline. Such a measure captures the spatial closeness between

elements and therefore can be used to determine the geometric similarity of the two

curves. General examples include the closest point measure, the Hausdorff distance

and the Fréchet distance. Customized examples include the average of point-by-point

distances between corresponding pairs [21], the mean of thresholded closest distances

[137], the mean of closest point distances [16], the thresholded average distance [12],

and the weighted normalized sum of minimum distance [44]. For fiber bundle clus-

tering in diffusion tensor imaging, Moberts et al. [81] evaluated combinations of four

clustering methods and four similarity measures, and reported that the use of hierar-

chical single-link clustering combined with the mean of closest point distances gives

the best results.
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2.3.2 Feature-based Measures

While proximity-based measures are solely based on point locations, feature-based

measures extract geometrical, topological or domain specific features from the vector

field or integral curves for similarity analysis. For example, Chen et al. [13] com-

pared randomly-seeded candidate streamlines based on the Euclidean distance among

the streamlines as well as their shape and orientation. Shi et al. [93] leveraged the

variation of different local and global geometric properties of pathlines for effective

classification. Li et al. [63] used the bag-of-features approach to evaluate similarities

among streamlines based on multiple scalar properties. Salzbrunn and Scheuermann

[88] presented streamline predicates as functions that indicate the connection between

streamlines and features selected by the user, such as which streamlines flow through

a given vortex, separation bubble or shock wave.

2.3.3 Distribution-based Measures

Distribution-based distance measures aim to capture the feature distributions of inte-

gral curves for a more robust similarity comparison. Compared to pointwise distance

measures, these measures are less sensitive to noise in the data and sharp turns or
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twists at certain locations. Information-theoretic measures such as entropy, condi-

tional entropy and mutual information have been extensively used in streamline seed-

ing, importance ranking, and similarity measure [10, 74, 103, 130]. These measures

are commonly based on the computation of the distribution of vector direction and

magnitude over the field or the streamlines. Lu et al. [68] employed a distribution-

based solution for robust streamline similarity evaluation and performed a detail study

that explores different distance measures between two distributions. McLoughlin et

al. [76] targeted rake-based streamline seeding and computed streamline signatures

based on a set of curve-based attributes. Fast similarity comparisons are performed

using the χ2 method on the derived signatures.

2.3.4 Transformation-based Measures

Transformation-based measures map data properties or features into a transformed

space for measuring the similarity or difference between integral curves. For instance,

Brun et al. [6] embedded the fiber tracts into a feature space for distance calculation,

and created a weighted undirected graph which is partitioned into coherent sets using

the normalized cut criterion. Wei et al. [125] extracted the shape of a streamline

as a string by sampling curvature and torsion values at equal arc length intervals,

and measured the similarity between two strings using the edit distance. Rössl and

Theisel [86] presented streamline embedding which constructs a map from the space
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of all streamlines to points in Rn based on the preservation of the Hausdorff metric.

2.3.5 Our Approach

Our FlowString advocates a shape-based solution for streamline resampling, feature

characterization, and pattern search and recognition. It distinguishes from all previ-

ous solutions in that it is specifically designed for robust and flexible partial streamline

matching, invariant under translation, rotation and uniform scaling. We enable this

through the construction of character-level alphabet and word-level vocabulary. A

character is a primitive extracted from a streamline which is invariant to its geometric

position and orientation. A word is a common pattern of concatenation of characters,

which captures a meaningful pattern of the flow. Closely related to our work are the

work of Schlemmer et al. [90], Wei et al. [125] and Lu et al. [68]. Schlemmer et al.

[90] leveraged moment invariants to detect 2D flow features or patterns which are

invariant under translation, scaling and rotation. However, their work is restrictive

to 2D flow fields and patterns are detected based on local neighborhoods rather than

integral curves. Wei et al. [125] extracted features along reparameterized streamlines

at equal arc length and used the edit distance to measure streamline similarity. Fea-

tures of varying scales are only roughly captured by simply recording the length of

each resampled streamline. Lu et al. [68] computed statistical distributions of mea-

sures, such as curvature, curl and torsion, along the trajectory to measure streamline
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similarity. Their approach is invariant to translation and rotation, but not scaling.

Other than the geometry invariant similarity measure, our FlowString approach is

also nicely integrated into a user interface to support intuitive and convenient user

interaction and streamline exploration, expressing a more powerful way to visual an-

alytics of flow field data.

2.4 Exploration of Multivariate Vascular Data

Computed tomography angiography (CTA) is commonly visualized with maximum

intensity projection (MIP) and direct volume rendering (DVR) techniques. To en-

hance the perception of vessel structures, researchers often approximate vessel sur-

face using model-based or model-free surface rendering approaches. The model-based

surface rendering approach utilizes the information of centerline and radius, and ap-

proximates the vessel surface using models, such as truncated cones [36], B-splines

[40], subdivision surfaces [27], or convolution surfaces [84]. The model-free surface

rendering approach extracts the isosurface using algorithms such as marching cubes

[67] based on a given threshold. Instead of approximating the vessel surface, Lathen

et al. [56] proposed spatially varying transfer functions. It locally shifts the transfer

function to enhance the perception of low intensity structure. Mistelbauer et al. [80]

used halo rendering to enhance the lumen of vessel structure. Schumann et al. [92]

used Multi-level Partition of Unity Implicits (MPUI) approach to reconstruct the
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surfaces.

Unlike approaches based on MIP or DVR, other approaches flatten the vessel structure

and map the corresponding information to 2D images. One of the commonly used

approaches in this category is curved planar reformation (CPR). Kanitsar et al. [47]

introduced CPR as a curved cutting through the data set along the centerline of a

single vessel. Then, they extended the CPR approach to multi-path CPR (mpCPR)

that supports multiple vessel branches and spiral CPR that flattens the vessel along a

spiral to show its interior [47]. Kretschmer et al. [52] extended the mpCPR approach

and used a bilateral filtering to remove undesired depth discontinuities. Mistelbauer

et al. [79] proposed an approach based on CPR that aggregates the information

around the centerline along circular rays. Borkin et al. [4] introduced a 2D vessel

visualization method that uses a tree diagram to represent the structure of a coronary

artery tree. Each branch is straighten and displayed as a tape with varying widths,

which represents the diameter of the vessel. Zhu et al. [140] presented a work that

produces flattened visualization of vessel branches. Two algorithms were proposed

in this work. The first one is a conformal mapping algorithm by minimizing two

Dirichlet functionals, and the second one adjusts the conformal mapping to produce

a flatten representation that preserves areas.

Other than scalar volumes, vascular data sets often come with a simulated blood flow

field as well. Recently, different flow visualization techniques have been developed
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specifically for these data sets. van Pelt et al. [113] used various techniques to de-

pict the blood flow and associated characteristics in different styles, together with

an evaluation to measure the value of those visualization styles. Köhler et al. [51]

extracted vortices in blood flow data sets using line predicates and highlighted the

corresponding regions. van Pelt et al. [114] proposed to semi-automatically place and

align a probe in the blood flow field, which serves as an seeding basis. Then, parti-

cles, integral curves and integral surfaces are used to convey distinct characteristics

of the flow field. Born et al. [5] found the representatives of a bundle of lines, and

used streamtapes with arrow heads to visualize the bundles. The tape-like structure

provides a clear picture of how the representatives diverge and merge. Oeltze et al.

[83] proposed to cluster the streamlines and use the cluster representatives for a clear

view. They conducted a qualitative study on using different similarity measures,

including geometry-based similarities and attribute-based similarities.

Due to the presence of multiple fields, some vessel visualization approaches also pro-

vide contextual information. Straka et al. [98] proposed VesselGlyph which combines

both DVR and CPR. It depicts the vessels using CPR which is naturally placed in

a DVR anatomic context. Mistelbauer et al. [79, 80] provided optional context ren-

dering that displays the volume outside the lumen of vessel as well. Gasteiger et al.

[34] presented a focus+context approach called FlowLens that uses some predefined

lens templates to combine visualization results of different properties. The property

of focus and property in context are both selected by users.
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2.4.1 Our Approach

First, our approach focuses on providing an abstract view of the vessel structure

in 2D, which enables the efficient interaction and observation. Among the above

approaches, those that flatten the vessel and produce 2D images are closest to our

approach. However, unlike those approaches, our 2D visualization serves not only

as an overview but also as an interface for convenient interaction. We provide very

concise information on the 2D visualization as a guidance to explore the data. Our

approach does not require the centerline and radius information as CPR-based tech-

niques do [46, 47, 79], or the triangulated vessel surface as the conformal mapping

technique does [140].

Second, in terms of exploring multiple fields, our approach provides an interface

guided by histograms of different properties to enable users to discover the statistical

information for regions of interest. A segmentation scheme is proposed based on the

local histograms of a user specified property. This facilitates the process of finding

a region with a certain feature, or exploring relationships among different regions.

It differs from those focus+context techniques [34, 98], which focus on visualizing

multiple fields at the same time by blending several rendered results.
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Chapter 3

A Unified Approach to Streamline

Selection and Viewpoint Selection

for 3D Flow Visualization

3.1 Overview

Streamline selection and viewpoint selection are two major problems in flow visual-

ization. In this work 1 , we combine these two problems into a unified information-

theoretic framework by constructing two interrelated information channels between

1The material contained in this chapter was previously published in IEEE Transactions on Visual-

ization and Computer Graphics 2013 [103].
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a set of streamlines and a set of viewpoints. Based on the information channel from

streamline to viewpoint, we define streamline information as a measure of streamline

quality to guide streamline selection. Similarly, in the inverted channel from view-

point to streamline, we define viewpoint information to guide viewpoint selection for

the selected streamlines. Leveraging the two channels, we also present a unified al-

gorithm for streamline clustering and viewpoint partitioning. In addition, a camera

path is designed for automatic exploration of the flow field.

In our approach, the information channel is built in two directions S → V and V → S,

where S is a set of streamlines and V is a set of viewpoints. These two directions are

characterized by two probability transition matrix p(S|V ) and p(V |S), which connects

two distributions p(S) and p(V ), where p(S) and p(V ) represent how interesting each

streamline and viewpoint is, respectively. Intuitively, p(s|v) indicates how informative

a streamline s ∈ S is from a viewpoint v ∈ V and p(v|s) indicates how appropriate

a viewpoint v is to show the information of a streamline s. Based on the transition

matrix p(V |S) and the distribution p(S), we can update p(V ) to incorporate the

contribution of each streamline, and based on p(S|V ) and p(V ), p(S) can be updated

similarly. In the following section, we will show how these probability distributions

are used to capture the importance of each streamline and viewpoint, and how the

relationship among streamlines and viewpoints are taken into consideration.

This chapter is organized as follows. Section 3.2 introduces the information channel
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between a streamline set and a viewpoint set is introduced. Section 3.3 defines the

conditional probability used in the information channel. Section 3.4 describes the

best streamline selection and streamline clustering based on the information channel.

Section 3.5 describes the best viewpoint selection and viewpoint partitioning and

further explains the construction of a camera path. Finally, Section 3.6 compares the

visualization results with existing approaches.

3.2 Information Channel

We propose to solve the problems of streamline selection and viewpoint selection in

a single, unified framework. We consider a set of streamlines S = {s1, s2, . . . , sn}

and a set of viewpoints V = {v1, v2, . . . , vm} as discrete random variables and build

two interrelated information channels between them: V → S and S → V . Our

assumptions for viewpoints are (1) the flow field is centered in a sphere of sample

viewpoints constructed from the recursive discretization of an icosahedron; and (2)

the camera at a sample viewpoint is looking at the center of the sphere.

The main components in the information channel V → S are the following:

• The transition probability matrix p(S|V ) where conditional probability p(s|v)

represents the probability of “seeing” streamline s from viewpoint v (i.e., the
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Figure 3.1: We model the problems of streamline selection and viewpoint
selection in a single, unified framework. (a) Sample viewpoints are con-
structed along a sphere from the recursive discretization of an icosahedron.
Velocity magnitudes are mapped to streamline colors. (b) The information
channel V → S (left) and the inverted channel S → V (right) are connected
via the Bayes theorem. (© 2013 IEEE. Reprinted by permission.)

importance of s with respect to v).

• The input probability distribution p(V ) where p(v) represents the probability

of selecting viewpoint v. If we assume p(v) to be evenly distributed, then

p(v) = 1/m where m is the number of sample viewpoints.

• The output probability distribution p(S) where p(s) represents the average prob-

ability that streamline s is seen from all viewpoints V . That is, p(s) =

∑

v∈V p(v)p(s|v).

Similarly, we can construct the inverted information channel S → V , where the

input and output probability distributions are swapped: p(S) becomes the input and

p(V ) becomes the output. In this inverted channel, the new transition probability

matrix is p(V |S), where p(v|s) represents the probability of selecting viewpoint v

given streamline s. As shown in Figure 3.1 (b), these two channels are connected via

the Bayes theorem, i.e., p(v)p(s|v) = p(v, s) = p(s, v) = p(s)p(v|s), which provides us
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a means to compute p(v|s) given p(v), p(s), and p(s|v).

3.3 Conditional Probability Definition

The key for deriving the information channel V → S lies in how to define the con-

ditional probability p(s|v). In our scenario, we consider the following two view-

dependent factors for computing p(s|v):

3.3.1 Mutual Information

This measure, denoted as I(s; sv), indicates how much information about streamline

s is revealed in its 2D projection sv under viewpoint v. We know that information

loss is inevitable due to streamline projection. A large value of I(s; sv) shows that

3D streamline s itself contains a high amount of information and its 2D projection sv

preserves well the information of s. Therefore, the probability of “seeing” s from v is

high. Conversely, if s itself contains a low amount of information or its 2D projection

sv loses much of the information of s, then the probability of “seeing” s from v is low.

I(s; sv) is defined as [18]

I(s; sv) =
∑

i∈s

∑

j∈sv

p(i, j) log
p(i, j)

p(i)p(j)
, (3.1)
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where p(i) and p(j) are the marginal probabilities of s and sv respectively, and p(i, j)

is their joint probability. Here we treat a streamline as a finite set of points. That

is, i and j loop through the lists of points obtained either from streamline tracing

or parameterization by the arc length along s and sv, respectively. To compute p(i),

we interpolate vectors from the original flow data based on the positions of all the

points along s. These vectors are used to construct a 2D histogram based on vector

magnitude and direction. To compute p(j), we use the projections of these vectors

along sv to construct the corresponding 2D histogram. To quantize vector directions,

we use the recursive discretization of an icosahedron for 3D quantization, and the

even circle partition by angle for 2D quantization. All vectors falling into the same

range are quantized into the same bin of vector direction. The joint probability p(i, j)

can be computed by constructing a joint histogram for s and sv where each of the

two axes consists of all vector direction and magnitude combinations. In the joint

histogram, the normalized bin count corresponds to p(i, j).

3.3.2 Shape Characteristics

This property indicates how stereoscopic the shape of streamline s is reflected under

viewpoint v. Since the number of points along each streamline could be fairly large

(e.g., in the order of hundreds or thousands of points), we propose to approximate a

streamline using its skeleton for fast shape characteristics analysis. The “skeleton” of
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a streamline is obtained using a uniform subsampling scheme along the integration

points of the streamline to reduce the number of points to a smaller scale (e.g., in

the order of tens of points). Let us denote the skeleton of streamline s as s̃ =

{p̃1, p̃2, . . . , p̃k}, the viewing vector as −→v , and the angle between −→v and
−−−→
p̃ip̃i+1 as θ.

We define the shape characteristics of
−−−→
p̃ip̃i+1 as

αp̃ip̃i+1;v = αmin + (1.0− αmin)
(

1.0− |π/4− θ′|
π/4

)

, (3.2)

where αmin is the minimum value for the shape characteristics (we set αmin = 0.1 in

this paper) and

θ′ =















π − θ, θ > π/2

θ, θ ≤ π/2

(3.3)

The intuition is that αp̃ip̃i+1;v gets its maximum (minimum) value of 1.0 (αmin) when

−→v and
−−−→
p̃ip̃i+1 form a 45◦ or 135◦ (0◦, 90◦, or 180◦) angle. The shape characteristics

of streamline skeleton s̃ is defined as

αs̃;v =

∑k−1
i=1 αp̃ip̃i+1;v‖p̃ip̃i+1‖
∑k−1

i=1 ‖p̃ip̃i+1‖
. (3.4)

3.3.3 Conditional Probability

With mutual information and shape characteristics defined for streamline s under

viewpoint v, we define conditional probability p(s|v) as

p(s|v) = αs̃;vI(s; sv)
∑

s∈S αs̃;vI(s; sv)
. (3.5)
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With p(s|v) defined, besides simply assuming p(v) = 1/m, we can also obtain p(v)

from the normalization of the summation of all streamlines’ conditional probabilities

under v over all viewpoints V . That is, p(v) = p(S|v)/p(S|V ), where p(S|v) =

∑

s∈S p(s|v) and p(S|V ) =
∑

v∈V p(S|v). We use this nonuniform specification of

p(v) in our work.

3.4 Streamline Selection and Clustering

In this section, we propose two methods to evaluate streamline quality, so that the best

streamlines can be selected to capture the features of the flow. In addition, we explain

how the representative streamlines are selected guided by streamline information of

a set of streamlines, and how the streamlines are clustered based on their distances

to the representatives.

3.4.1 Best Streamlines Selection

We start from a pool of randomly or uniformly traced streamlines and select the

best streamlines for display. The “best” streamlines are those that best capture flow

features by passing through the vicinity of critical points or interesting regions. We

propose two methods to evaluate each individual streamline and then introduce our
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selection process.

Our first method uses the probability distribution p(S). Since p(s|v) indicates how

interesting streamline s is from viewpoint v, p(s) gives us the summation of impor-

tance of s from all viewpoints V . If the distribution p(V ) is not uniform, p(s) can

be considered as a weighted summation, in which a more interesting viewpoint has a

higher weight.

Our second method uses the streamline information (SI). In the information channel

S → V , We define SI as

I(s;V ) =
∑

v∈V

p(v|s) log p(v|s)
p(v)

, (3.6)

which represents the degree of dependence between streamline s and the set of view-

points V . Intuitively, SI indicates the quality of s with respect to V . Note that I(s;V )

is the contribution of streamline s to I(S;V ) which expresses the degree of correla-

tion between the set of streamlines S and the set of viewpoints V . Low values of SI

correspond to streamlines seen by a large number of viewpoints in a balanced way.

The term “balance” indicates that the conditional probability distribution p(V |s) is

similar to p(V ). This similarity can be expressed by the Kullback-Leibler divergence

[53] between p(V |s) and p(V ), which equals zero when p(V |s) = p(V ). Conversely,

a high value of I(s;V ) means a high degree of dependence between streamline s and

the set of viewpoints V . Therefore, streamline s that shows more information over
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the set of viewpoints V have a lower value of SI. The advantage of this streamline

information over the streamline entropy, i.e., H(V |s) = −∑

v∈V p(v|s) log p(v|s), lies

in its robustness to deal with any type of discretization or resolution of the view-

points V . This property has been shown by Viola et al. [117] in the context of volume

visualization.

After streamline evaluation, we sort all the streamlines S into a priority queue. If p(s)

is used, the streamlines are sorted in the decreasing order of p(s), where a streamline

with a higher value of p(s) is preferred. If SI is used, the streamlines are sorted in

the increasing order of SI, since a streamline with a lower value of SI is better.

The best streamlines are selected according to the sorted order. However, it is very

likely that two or more streamlines are spatially close to each other and have a

similar shape. In this case, those similar streamlines might not only convey redundant

information, but also cause occlusion and clutter. Therefore, we use the mean of

closest point distances as suggested by Moberts et al. [81] to evaluate streamline

similarity. A streamline will not be selected if it is very similar to another streamline

which is already selected.
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3.4.2 Streamline Clustering

The streamline clustering algorithm also leverages the information channels built be-

tween S and V . The first stage of our algorithm is to find the representative stream-

lines. Unlike the “best” streamlines (Section 3.4) which are evaluated individually,

the “representative” streamlines are defined as a small set of streamlines in which the

streamlines as an entirety best characterize the flow field. This is formed by selecting

the streamlines such that their merging minimizes the distance to the target distribu-

tion p(V ). That is, our selection algorithm should select n′ streamlines (n′ ≪ n) so

that their merging ŝ minimizes I(ŝ;V ). Since finding an optimal solution to this algo-

rithm is NP-complete, we adopt a greedy strategy by selecting successive streamlines

to minimize I(ŝ;V ). At each merging step, we aim to maximize the Jensen-Shannon

divergence between the set of previously merged streamlines and the new streamline

to be selected.

Our solution proceeds as follows. First, we select the best streamline s1 with distri-

bution p(V |s1) corresponding to the minimum I(s;V ). Next, we select s2 such that

the mixed distribution p(s1)
p(ŝ)

p(V |s1) + p(s2)
p(ŝ)

p(V |s2) minimizes I(ŝ;V ), where ŝ repre-

sents the merging of s1 and s2 and p(ŝ) = p(s1) + p(s2). At each step, a new mixed

distribution

p(s1)

p(ŝ)
p(V |s1) +

p(s2)

p(ŝ)
p(V |s2) + . . .+

p(si)

p(ŝ)
p(V |si), (3.7)
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initial p(s) I(s;V ) representative random

Figure 3.2: Streamline selection of the computer room data set. (© 2013
IEEE. Reprinted by permission.)

where p(ŝ) = p(s1) + p(s2) + . . .+ p(si), is produced until the streamline information

ratio (SIR), denoted as I(ŝ;V )/I(S;V ), is lower than a given threshold or we have

selected n′ streamlines. The SIR can be interpreted as a measure of the representa-

tiveness of the selected streamlines.

The second stage of our algorithm is to cluster other streamlines to the representatives

we have identified in the first stage. Following the data processing inequality [18],

we know that any clustering of streamlines reduces the mutual information I(S;V )

between the set of streamlines S and the set of viewpoints V . Therefore, a good

clustering is the one that minimizes this mutual information loss. Assuming that

two streamlines s1 and s2 are merged into one cluster ŝ, the reduction of mutual

information can be described by

δI(s1; s2) = I(S;V )− I(Ŝ;V )

= p(s1)I(s1;V ) + p(s2)I(s2;V )− p(ŝ)I(ŝ;V ), (3.8)
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Figure 3.3: Streamline clustering of the two swirls data set. Five clusters
are produced from 500 streamlines. The appropriate number of clusters is
suggested by the elbow criterion. (© 2013 IEEE. Reprinted by permission.)

where Ŝ is the resulting streamline set and p(ŝ) = p(s1) + p(s2). Note that δI(s1; s2)

is small if the two streamlines have very similar distributions (i.e., p(V |s1) ≈ p(V |s2))

and it reaches zero if the two streamlines share the same distribution (i.e., p(V |s1) =

p(V |s2)). At each step, we pick a streamline s and calculate δI(s; s′) for each of

the streamlines s′ in the representative set. Then, s is merged into the cluster in

which δI(s; s′) between s and its representative s′ is minimal. Figure 3.2 shows an

example, where streamlines are selected from an initial pool of 800 streamlines using

the streamline selection based on p(s), I(s;V ) and a representative set.

We use the elbow criterion to determine the proper number of clusters. That is, we

should choose a number of clusters so that adding another cluster does not greatly

increase the percentage of variance explained (i.e., the ratio of the between-group

variance to the total variance). Specifically, if we plot the percentage of variance
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explained by the clusters against the number of clusters, the first few clusters will

add much information (explain a lot of variance), but at some point the marginal

gain will drop, giving an angle in the graph (the elbow). In practice, we run from two

to ten clusters from which we choose the appropriate number of clusters. In Figure

3.3, five clusters are generated from 500 streamlines using the two swirl data set.

3.5 Viewpoint Selection and Partitioning

Similar to the streamline selection, we derive the viewpoint information to rank and

select the best viewpoints. Similar to the streamline clustering, the viewpoints parti-

tioning is performed by clustering the viewpoints to the representatives. Furthermore,

we propose a camera path construction strategy to connect a set of viewpoints.

3.5.1 Best Viewpoints Selection

In the information channel V → S, we define the viewpoint information (VI) as

I(v;S) =
∑

s∈S

p(s|v) log p(s|v)
p(s)

, (3.9)

which represents the degree of dependence between viewpoint v and the set of stream-

lines S. Note that in our scenario, the set of streamlines now is actually the set of

51



selected streamlines, not the original pool of streamlines. This corresponds to (1)

removing all rows in the transition probability matrix p(V |S) in the channel S → V

and the input probability distribution p(S) for all streamlines that are not selected;

and (2) renormalizing all remaining p(s) in p(S) and recomputing all p(v) in the out-

put probability distribution p(V ). For simplicity, we still use the notation S in this

section when referring to the selected streamlines.

Similar to streamline selection, the best viewpoints can be defined either by p(v) or

VI. If we use p(v) to select the best viewpoints, we mainly consider the amount of

information about the set of streamlines S revealed by viewpoint v. As a result, the

best viewpoints are those that show more information of S than others. If we use

VI to select best viewpoints, VI indicates the quality of viewpoint v with respect to

the set of streamlines S. Low (high) values of VI correspond to more independent

(coupled) viewpoints. Thus, viewpoints with low values of VI are considered as better

ones.

To avoid selection of viewpoints providing similar information, we filter the view-

points according to similarity among them. Considering p(S|v) as a vector associated

with each viewpoint (i.e., p(S|v) =< p(s1|v), p(s2|v), . . . , p(sn|v) >), the difference

between two viewpoints can be expressed as the Euclidean distance between their

corresponding vectors. Thus, a viewpoint is not selected if its distance to any of the

selected viewpoints falls below a given threshold dv. In Figure 3.4, we show the best
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best view p(v) worst view p(v)
best view I(v;S) worst view I(v;S)

Figure 3.4: Viewpoint ranking of the tornado data set. In each of the view
sphere images, red to blue is for the best viewpoint to the worst viewpoint.
Streamline rendering from the best viewpoint and the worst viewpoint is
also shown. All cases use the best streamlines selected. (© 2013 IEEE.
Reprinted by permission.)

and worst viewpoints selected by p(v) and I(v;S), respectively. For the two best

viewpoints, both the circular pattern and the stereoscopic pattern can be observed.

But these patterns are not available in the worst viewpoints. Therefore, we consider

these results are reasonable, although there may not be ground truth for best and

worst viewpoints.
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Figure 3.5: Viewpoint partitioning of the five critical points data set. We
denote the three partitions in red, blue, and yellow, respectively. Streamline
rendering corresponding to the viewpoint centering at each of the view sphere
partition images is also shown. (© 2013 IEEE. Reprinted by permission.)

3.5.2 Viewpoint Partitioning

Similar to streamline clustering, we perform viewpoint partitioning in two stages. The

first stage is the selection of representative viewpoints and the second stage is clus-

tering other viewpoints to the representatives. The most representative viewpoints

are a small number of viewpoints (m′ << m) that provide the best representation of

the selected streamlines. Leveraging the VI measure (Equation (3.9)), our solution

for viewpoint selection is the same as the greedy solution we propose for identifying

representative streamlines (Section 3.4) with the only difference being the swap of

notations for streamline and viewpoint. The viewpoint selection process stops when

the viewpoint information ratio (VIR), denoted as I(v̂;S)/I(V ;S), is lower than a

given threshold or we have selected m′ viewpoints. Similar to the SIR, the VIR can

be interpreted as a measure of the representativeness of the selected viewpoints.

For viewpoint partitioning, we measure the difference between two viewpoints by the

54



reduction of mutual information, where the reduction δI(v1; v2) is defined in the same

way as δI(s1; s2) (Equation (3.8)). Then, we apply the same procedure of streamline

clustering to partitioning viewpoints in a similar manner: at each step, a viewpoint

v is merged into the partition whose representative v′ minimizes the information loss

measured by δI(v; v′). Similarly, we use the elbow criterion to identify the proper

number of partitions for all viewpoints. Figure 3.5 demonstrates an example of view-

point partitioning using the five critical points data set.

3.5.3 Camera Path

Given a set of best or representative (Section 3.5) viewpoints, we construct a smooth

camera path that goes through all selected viewpoints for automatic flow field ex-

ploration. Our algorithm creates a graph by treating all sample viewpoints as nodes

and their neighboring relationships as edges. The weight of an edge is defined as

the Jensen-Shannon divergence between the two viewpoints. With this graph, we

can define the camera path by finding the shortest path among the set of selected

viewpoints using the Dijkstra’s algorithm. Specifically, we use the best (or the most

representative) viewpoint as the starting point, and find the nearest viewpoint (with

the minimum Jensen-Shannon divergence) from selected viewpoints as the next target

viewpoint. The path between these two viewpoints is derived from the shortest path

between their corresponding nodes in the graph. When the first target viewpoint is
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Figure 3.6: Camera paths for the five critical points data set (left), the
solar plume data set (middle), and the supernova data set (right). (© 2013
IEEE. Reprinted by permission.)

achieved, we select a new target viewpoint among the rest of selected viewpoints and

proceed in the same way until all viewpoints have been considered.

Figure 3.6 shows the camera paths we derived using the shortest path strategy. The

shortest path is not based on geodesic distances, but according to the Jensen-Shannon

divergences. Representative viewpoints were used to plan the camera path. Each

path visits the representative viewpoints one by one. The resulting camera path is

smooth because the shortest path between any two target viewpoints ensures that the

change along the path is minimized. In other words, the viewpoints selected along

the path are the most stable. Our solution is able to make meaningful exploration in

an automatic fashion. For example, the camera path of the five critical points data

set clearly reveals the two spirals, two saddles, and one source in the data.
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3.6 Comparisons

We compared our streamline selections with two existing approaches by Xu et al.

[130] and Marchesin et al. [74]. The visualization results are shown and discussed for

a qualitative comparison. In addition, a user study was performed for a quantitative

comparison.

3.6.1 Comparison with Other Methods

We compared our algorithm with other information theory based streamline place-

ment and streamline selection algorithms. For streamline placement, we chose to

implement a prototype of the entropy-guided streamline placement algorithm pro-

posed by Xu et al. [130]. We implemented their template-based seeding technique

based on the derived entropy field in conjunction with redundant streamline pruning.

We used a moving window of 93 to compute the entropy centered at each voxel. Vec-

tor directions are quantized into 50 bins for histogram computation. If a voxel has

a high entropy value, we placed the seeds at the voxel and also its eight corners of

the 93 window. For streamline selection, we selected the view-dependent streamline

visualization algorithm presented by Marchesin et al. [74]. We implemented their

streamline evaluation based on angular and linear entropies and an approach similar
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to their occupancy buffer to account for streamline occlusion. We weighted angular

and linear components equally by setting α = β = 0.5. For the initial streamlines, we

used the same pool of streamlines used in our method. For streamline pruning in [130]

and occlusion consideration in [74], we used the mean of the closest point distances

between two streamlines. The threshold was set as 5.0. This parameter determines

the minimum distance between any two streamlines in the streamline pool that can

be selected for visualization.

Figure 3.7 shows the comparison of the results on six data sets. Our judgement is

that our approach yields results that are as good as the ones produced by the other

two methods for the first five data sets. In Sections 3.6.2, we show our user study

to testify this. For the computer room data set, our results perform better. In [130],

in order to avoid large voids, the seeding method needs to consider the conditional

entropy between the original field and the field reconstructed from currently displayed

streamlines to decide the additional seeding locations. In [74], using the linear and

angular entropies actually favors streamlines that have a constant angle change and a

constant segment length along the points of the streamlines. This criterion, however,

actually prefers well-behaved streamlines and misses those interesting streamlines that

vary greatly in length and angle along their points. Our information channel approach

works well and is conceptually simple and easy to understand. It does not involve

several steps as required in other methods for additional touch-up treatment (e.g.,

importance-based seed sampling in [130] and view-dependent streamline addition in
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(a) (b) (c) (d) (e)

Figure 3.7: Comparison of our approach based on (a) p(s), (b) I(s;V ),
and (c) representative with (d) Xu et al. [130] and (e) Marchesin et al. [74].
Top to bottom are the car flow, solar plume, two swirls, crayfish, supernova,
and computer room data sets, respectively. All five methods show the same
number of streamlines: 40, 100, 60, 70, 100, and 100 for the six data sets,
respectively. (© 2013 IEEE. Reprinted by permission.)

[74]). Moreover, our approach is powerful as the same solution for streamline selection

applies to viewpoint selection in the inverted information channel. This feature is not

available in other methods.
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3.6.2 User Study

We conducted a user study to evaluate the effectiveness of our approach based on

p(s), I(s;V ), and representative (REP). We also implemented Xu et al. [130] and

Marchesin et al. [74] for comparison. We did not use the conditional entropy to

introduce new streamlines as in [130], because this technique could also be applied

to other streamline selection methods to fill in void regions. All methods are view-

independent, except for [74] where we selected the streamlines with respect to a good

viewpoint and kept the set of streamlines selected for view-independent observation.

The major goal of this study is to find out how effective our methods are compared

to the existing ones and whether our methods work in the way they are designed to

be.

The five methods were evaluated anonymously by a set of questions without timing

followed by a feature identification task with timing. The users were 20 unpaid

graduate students, including 12 students majoring in computer science and eight

majoring in mechanical engineering, physics, and mathematics. All students majoring

in computer science (CS) have knowledge in flow visualization and the students from

other disciplines (non-CS) have flow field backgrounds. In the following, we describe

the design of our user study, analyze the rating score, timing and accuracy results,

and present the user comments.
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3.6.2.1 Rating Task Design and Procedure

We conducted a within-subjects experiment for this task using five data sets: the car

flow, crayfish, solar plume, supernova, and two swirls. Two more data sets were used

for initial practice: the computer room and tornado. The users were asked to rate

the five methods for each data set in the following three aspects:

• ease to locate flow features and identify their patterns ;

• ease to follow flow directions ; and

• overall effectiveness to help understand the flow field.

For each method, each of these three aspects was rated by an integer between 1 and

5 with 1 being the worst and 5 the best. We collected the evaluation scores and the

background information of the users (rank and major). This part of the evaluation

was not timed and the users had enough time to complete the work.

This user study was conducted in a lab using four PCs with the same configuration.

Each PC has a monitor with the resolution of 1920 × 1080 and the visualization

result occupied an 800 × 800 viewport. The users could sit in any fashion they

found comfortable. They started with a practice session to become familiar with

our visualization system and the rating criteria. They could ask questions about the

interface, interaction, and rating criteria, but not which visualization result is better.
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Evaluation activities began when the users felt ready and were performed one data set

at a time. The users were not allowed to go back to a previous data set once they move

forward. For each data set, the five methods were displayed anonymously in a random

order, and the user could switch among the visualization results of all five methods

for cross comparison. Specifically, we used a 5× 5 Latin square for counterbalancing

to rule out the learning effect. The order of methods for each of the five data sets was

decided by a row of the Latin square. For the five methods to be evaluated, the users

could rotate and zoom, but could not change the number of streamlines displayed.

As a reference, the user could also display streamlines randomly selected from the

streamline pool and rotate, zoom, and change the number of selected streamlines.

This helps them answer questions such as if the pre-determined streamline density

for each of the five methods is appropriate or not. Random selection also avoids

any bias in the users’ subsequent rating of the five methods. Two sets of open

questions were asked for the crayfish and solar plume data sets, which required the

users to elaborate why the most and least helpful methods were selected and to

comment on the limitation of each method. For each user, it took about 20 minutes

for introduction, 40 minutes for the rating tasks, and 10 minutes for the timing and

accuracy tasks.
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(a) (b) (c)

Figure 3.8: (a) Mean values and standard errors of user rating for “ease to
locate flow features”, “ease to follow directions”, and “overall effectiveness”.
(b) User rating for streamline density. (c) Mean values and standard errors
of the completion time (in seconds) and accuracy for identifying five critical
points. (© 2013 IEEE. Reprinted by permission.)

3.6.2.2 Effectiveness Evaluation

Using Kolmogorov-Smirnov test, we found out that most of our data do not pass the

normality test. Therefore, instead of using ANOVA, we mainly used Kruskal-Wallis

non-parametric test (KW-test) and Mann-Whitney U test for effectiveness evaluation.

We used significant level α = 0.05 in all tests and investigated the following four

important issues.

First, we study the effectiveness of locating flow features. Since Figure 3.8 (a) shows

that the average scores for our and Xu et al. are lower than the others, there is

a significant difference for the five methods (H(4) = 11.35, p = 0.023). Further

analysis shows that excluding Xu et al. yields an insignificant result, and pairwise

U -tests suggest significant difference between REP and Xu et al. and other meth-

ods. Consequently, p(s), I(s;V ), and Marchesin et al. are comparable to each other
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(H(2) = 1.40, p = 0.50) and better than our REP and Xu et al. in terms of lo-

cating features. Additionally, both the CS (H(4) = 4.39, p = 0.36) and non-CS

(H(4) = 8.44, p = 0.077) groups show no difference among the five methods. For

the non-CS group, the p-value is much higher (H(3) = 2.22, p = 0.53) for the four

methods excluding Xu et al. As mentioned earlier, we only implemented the entropy-

based seeding part of Xu et al. Since a seed placed around the critical regions does

not guarantee that the streamline will capture the features, this method might not

show a clear flow pattern. Our REP is designed to focus on the general flow patterns,

which makes it less effective to locate the features. However, our p(s), I(s;V ), and

Marchesin et al. are all based on streamline importance evaluation (albeit different

criteria), which might explain why they were viewed similarly.

Second, we investigate the effectiveness of following flow directions. A significant effect

is found for the five methods (H(4) = 19.71, p = 0.0006), and there is no significant

difference for the remaining four methods if Xu et al. is excluded (H(3) = 7.12, p =

0.068). Moreover, the CS group (H(3) = 8.67, p = 0.034) exhibits a significant

difference while the non-CS group (H(3) = 2.59, p = 0.459) does not. Our I(s;V )

has the highest average score of 4.02, and our REP and Marchesin et al. are very

close, while that of Xu et al. is lower. Furthermore, since the p-values of U -test

between Xu et al. against other methods are all small and the other four methods

have no significant difference (H(3) = 7.12, p = 0.068), our p(s), I(s;V ), REP, and

Marchesin et al. do not have a significant performance difference. In addition, a
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U -test was performed to compare locating flow features and following flow directions

and the test result (z = −2.62, p = 0.009) suggests that REP is better in following

flow directions (average = 3.87) than in locating features (average = 3.42). Since

our REP only considers the overall information revealed by the selected streamlines

without evaluating each individual streamline, its selection result provides a good

indication in terms of general flow directions but does not guarantee that the detailed

features will be captured.

Third, as for overall effectiveness, our analysis indicates that there is a significant

difference for the five methods (H(4) = 19.65, p = 0.0006). If Xu et al. is excluded,

no significant difference is found (H(3) = 5.25, p = 0.155). Thus, our p(s), I(s;V )

and REP, and Marchesin et al. do not have a significant performance difference. The

CS group and non-CS group do not exhibit in-group difference.

Fourth, for density analysis, the five methods do exhibit a significant difference

(H(4) = 25.32, p = 0.00004). We divided the five methods into two groups, and

found that there is no significant difference between our p(s) and I(s;V ) (H(1) =

0.04, p = 0.831) and among the other three methods (H(2) = 3.30, p = 0.192). There-

fore, our p(s) and I(s;V ) do not have a significant performance difference and are

better than our REP, Xu et al. and Marchesin et al. as indicated by the averages

shown in Figure 3.8 (b).
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3.6.2.3 User Comments

For the crayfish data set, we asked the users which method was the most/least helpful

to “locate and identify the features”, and also requested them to comment on each

method. Our p(s) and I(s;V ) were each selected four times as the most helpful

methods with similar reasons and typical comments were “it provides general idea

of surrounding streamlines, while putting more streamlines in the focus regions” and

“it captures the characteristics of the feature regions with less occlusion”. One user

selected p(s) as the least helpful method because the feature regions were too dense,

and three users selected I(s;V ) as the least helpful one because the feature regions

could be a little denser. REP was selected by two users as the most helpful one to

locate the features, yet by seven users as the least helpful one, although this method

does not focus on the feature regions. Xu et al. was selected five times as the most

helpful method, but it was also selected seven times as the least helpful one. Some

users stated that it mainly placed streamlines in the interesting regions, which made

the features stand out, while other users considered the feature regions to be too

cluttered. Marchesin et al. was rated as the most and least helpful methods by five

and two users, respectively, with similar reasons as our I(s;V ).

For the solar plume data set, we asked the users to select the most/least helpful

method to “show the flow directions”, and also requested them to comment on each
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method. Our REP was selected by eleven users as the most helpful one, mostly

due to “it fills the entire volume evenly without much occlusion”. Our I(s;V ) was

also considered as the most helpful one by six users for a similar reason. Note that

these two methods are the only two that take the spacing and overall density into

consideration. Our p(s) was rated as the least helpful one by fifteen users, since it

left a large portion empty. Xu et al. was selected as the most helpful one by two

users, since they believed a few streamlines were enough for the non-feature regions.

On the other hand, three users considered it as the least helpful one because some

regions were too sparse. Marchesin et al. was neither selected as the most helpful

one nor as the least helpful one.

3.6.2.4 Timing and Accuracy Task

We conducted a between-subjects experiment for this task using the five critical points

data set. The ABC flow data set was used for initial practice. The users were asked

to locate the five critical points in the task. Since it would be difficult to locate 3D

points using mouse, the users selected only the 2D projection of each critical point

by mouse clicking. For each critical point selected, an image was saved with a red

circle marking the selected position. We then graded these images manually to derive

the accuracy of user selection. Each user was required to complete the task with

one method, and each method was performed by four users. We informed the users
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that accuracy is more important than timing, so that they would try their best to

identify the correct locations of critical points. Moreover, the users could also switch

to previous selection results and make modification if needed. The timer started when

the data set was displayed, and stopped when the users clicked a button to finish.

Figure 3.8 (c) shows our p(s) has the shortest average completion time and is closely

followed by that of Marchesin et al. Our REP has the longest average completion

time with the largest standard error, since the representatives do not necessarily

capture the features. In terms of accuracy, our p(s) is the highest (100% correct),

while the other methods are close. In terms of the type of critical points, seven users

missed one saddle, and one user missed one saddle and one spiral. This is probably

because streamlines passing a saddle do not have high importance values compared

to those passing spirals. We also observed that most users took a long time to find

saddles. Among the five methods, our p(s) appears to be the best one in terms of

capturing saddles, since all users located the two saddles successfully. Both timing

and accuracy results indicate that our p(s) is a good performer in terms of locating

features. However, this is not verified by statistical testing, since our sample size is

too small.
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3.6.2.5 Summary

Our methods are designed to focus on different aspects: p(s) selects more stream-

lines that show interesting patterns, REP mainly produces evenly-spaced results, and

I(s;V ) is somewhat in between. The major goal of this evaluation is to determine

whether our methods are effective in the way they are designed to be. The averages

of rating scores seem to support this to some degree. Our REP has high scores for

following flow directions and low scores for locating flow features, and p(s) has higher

scores for locating features than following flow directions. In addition, our I(s;V ) has

the highest average scores for all the three aspects. The timing and accuracy study

shows a consistent result that p(s) has highest accuracy with the least completion

time, while REP takes the longest time to complete.

Hypothesis tests based on KW-test suggest that our methods do not have a significant

performance difference as other existing methods. KW-test also indicates that our

REP is more helpful to follow flow directions than to locate flow features, which

confirms that it focuses on a different aspect compared to other methods. This is also

an advantage, since we may benefit not only from the fact that our framework can

provide different meaningful results, but also from the potential that we can develop

a hybrid method based on this framework.
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User comments indicate that streamline density is a very important factor. The meth-

ods that generate higher density around the feature regions and lead to a balanced

overall density are highly appreciated. We also found that there was a connection

between the three ratings and the density rating (Figure 3.8 (b)). Our I(s;V ), which

has the highest average score, also has the highest percentage of being rated “appro-

priate”. The users tended to rate the density of methods that are not satisfactory to

be either “should be higher” or “should be lower”, although some users also mentioned

that the problems for those methods might be the locations of streamlines instead of

the number of streamlines. The methods that miss certain kind of streamlines are

more likely to be rated “should be higher”, e.g., our REP might miss the features and

Xu et al. might miss the surrounding streamlines. Finally, the methods that place

many streamlines in the feature regions are often rated “should be lower”.
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Chapter 4

A Deformation Framework for

Focus+Context Flow Visualization

4.1 Overview

Our focus+context (F+C) flow visualization1 is designed to magnify small flow fea-

tures while keep all the context information and reduce occlusion over critical regions

at the same time. The basic idea of our F+C flow visualization is to partition the flow

field’s volume space into blocks and deform the blocks to guide streamline reposition-

ing. Given a vector field, we uniformly partition it into a grid space, G = {V,E,B},

1The material contained in this chapter was previously published in IEEE Transactions on Visual-

ization and Computer Graphics 2014 [105].
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where V is the set of all vertices V = {vT
0 ,v

T
1 , . . . ,v

T
n}, and E and B are the sets

of all edges and all blocks, respectively. During a deformation, we compute a new

set of vertex positions V′ = {v′T
0 ,v′T

1 , . . . ,v′T
n }, with the intention that the deformed

blocks under focus will grow while others blocks will shrink. Clearly, some distortion

will be introduced in this deformation process. By minimizing the energy function

described in Section 4.4, we aim to spread the unresolved distortion to the blocks

according to their importance values, so that interesting blocks of focus can maintain

their shapes while less interesting blocks and empty blocks can absorb more distortion

and even be squeezed excessively into a plane. Our deformation framework consists

of four key steps: block importance evaluation, manual feature specification, grid space

deformation and streamline repositioning. The user can choose automatic block im-

portance evaluation and/or manual feature specification for F+C visualization. Note

that although the outputs of some steps depend on how the streamlines are placed

or selected, our deformation framework can work with any streamline placement and

selection algorithm.

This chapter is organized as follows: in Section 4.2 and Section 4.3, we introduce

the automatic block importance evaluation and user-specified importance based on

different feature templates, respectively; in Section 4.4, the grid deformation based

the block importance values is covered; in Section 4.5, we explain how to reposition

the streamlines based on the deformed grid and discuss the evaluation of errors caused

by the deformation; in Section 4.6, we present the visualization results and compare
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our method with the traditional fisheye view; finally, in Section 4.7, the results of an

empirical evaluation is presented.

4.2 Block Importance Evaluation

Our deformation framework supports two different ways to define the importance of

a block. One is to automatically derive block importance based on flow information,

such as the flow entropy [10, 130]. The other way is to manually decide block im-

portance by incorporating user input (Section 4.3). Once we derive the importance

values of all blocks, we normalize them to [0, 1] and use them as the weighting factors

for individual block expansion (Section 4.4). Note that our deformation framework

does not depend on any specific approach for importance evaluation. Thus, other

importance evaluation techniques could also be applied.

4.2.1 Automatic Importance Computation

For the automatic importance evaluation, we measure the importance of a block using

its entropy. Intuitively, by considering both the magnitude and direction of a vector,

the blocks that contain simple flow patterns will have small entropy values, since the

vectors in those blocks are similar; while the blocks that contain complicated flow
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patterns will have large entropy values, since the vectors in these blocks might vary

in both direction and magnitude.

There are multiple ways to compute the entropy of a block. For example, we can

compute the entropy of a block over the vectors at all points sampled along the

streamlines passing through the block, or we can compute it over the vectors at all

grid points inside the block. In our framework, we apply the first method, since it

considers only the current streamline pool, and will give a high entropy value for

blocks that are intersected by the generated streamlines and zero for blocks that do

not contain any streamline. We favor this method since the original volume of vectors

are not directly visible to user. The features can only be observed if they are captured

by the streamlines. Thus, by applying the first method, we consider those regions

that contain interesting patterns and are well captured by the streamlines to be more

important. The flow patterns that are more complicated and difficult to predict are

considered to be more interesting. Note that the importances of blocks also depend

on the tasks of users. In some scenarios, the users might prefer to enlarge a region

even if there are only a few streamlines passing through it. We enable this through

manual feature specification (Section 4.3).

74



(a) (b) (c) (d)

Figure 4.1: Automatic multi-F+C visualization on a 2D flow field and the
corresponding block importance grid. (a) is the original streamline visual-
ization. (b) is the näıve deformation that only considers individual block
expansion. (c) is the deformation with adding neighboring block smoothing.
(d) is the deformation with considering both neighboring block smoothing
and flow-aware adjustment. (© 2014 IEEE. Reprinted by permission.)

4.2.2 Flow-aware Adjustment

The computed entropy field might has some discontinuities, where the streamlines

cross multiple blocks of varying importance value might suffer from greater distortion.

The distortion will be obvious when a less important block is surrounded by the

important ones, as shown in Figure 4.1 (c). To address this problem, we introduce

flow-aware adjustment to smooth the importance values between neighboring blocks

that share a large number of streamlines. The importance values are considered as

some energy term: when the flow moves from an important block to a less important
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Figure 4.2: (a) flow-aware adjustment. (b) flow-aware smoothing. (©
2014 IEEE. Reprinted by permission.)

one, it will also carry the energy along with it. In other words, neighboring blocks

sharing more streamlines in common should have more similar importance values, as

illustrated in Figure 4.2 (a). This can be formulated as minimizing the following term

Dd =
∑

bi

∑

bj∈B(bi)

wij

(

I ′i − I ′j
)2

+
∑

bi

β
(

I ′i − Ii
)2
, (4.1)

where B(bi) is the set of neighboring blocks of block bi, wij = nij/nmax is a nor-

malized weight, nij is the number of streamlines shared by blocks bi and bj , nmax is

the maximum number of streamlines shared by two neighboring blocks, β is a user-

specified weight, Ii is the importance value of bi before the adjustment, and I ′i and

I ′j are the importance values of bi and bj after the adjustment, respectively. This

is similar to filtering the importance values along the streamlines. Note that the

adjusted field will be closer to the original one if β is larger, and the effect of this

flow-aware adjustment will be weaker. The adjusted field will be almost unchanged

when β = 1.0. Since Equation (4.1) is a quadratic function, the method of least

squares can be used to solve for the importance values.

76



4.3 Manual Feature Specification

Besides the automatic importance evaluation, we can also assign importance values

based on the focal region specified by the user. Our approach provides two different

options for manual feature specification: block focus and streamline focus.

4.3.1 Block Focus

For this option, the user simply clicks on the visualization result to specify a block as

the center of focus. For a 3D flow field, the visualization result is a 2D projection, so

we still need to estimate the depth value to pinpoint the focal point. A straightforward

solution is to follow the first hit on the streamlines displayed in the projection, but the

focal region selected in this way may miss internal flow features. A better solution

which we will use is to identify the most prominent feature along the direction of

projection. For instance, Lee et al. [57] presented the concept of maximal entropy

projection (MEP). For each pixel on the screen, a ray is cast into the entropy volume

and the z-value is given by that of the voxel with the maximal entropy. In this way,

we will select the most important block along the ray specified by the user. We can

use this manual feature selection to modulate the automatic importance evaluation

and modify the automatic focus result.
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(a) (b) (c) (d)

Figure 4.3: The grids before and after the deformation using block focus.
(a) and (b) show original and deformed grids for the spherical block focus,
where the focus is at the center of the volume with the largest importance
value. (c) and (d) show original and deformed grids for the hourglass block
focus, where the focus is highlighted with the blue circle in the first row and
the deformed shape is enhanced by the red dashed lines for clearer exposition.
(© 2014 IEEE. Reprinted by permission.)

We can also use the manual focus independently, starting from uniform importance

values for all blocks and modulating those values according to some predefined tem-

plates. We design two templates for exploring small or occluded flow features: spher-

ical block focus and hourglass block focus. Examples are shown in Figure 4.3. The

spherical block focus assigns the largest importance value to the specified block, and

the importance values gradually decrease for blocks further away from the focus.

This template is suitable for magnifying small features, since the center region, which

contains the features, will grow as other regions shrink.

This template, however, could be ineffective when the features are hidden by other

streamlines due to occlusion, since the blocks located at the outer rings or layers

could be denser than those at the center. The hourglass block focus is designed to

solve this problem. Instead of magnifying the feature region, we enlarge the blocks
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along the user-specified ray except the feature region. It assigns larger importance

values for the blocks that are closer to the ray and gradually decreases the values for

those further away. Furthermore, it assigns smaller importance values for the blocks

whose depth are close to the depth of the specified block. In this way, the blocks with

large importance values form the shape of an hourglass, whose axis is along the ray

and whose center is the block of focus. By magnifying the blocks that occlude the

block of focus, we are now able to see through and observe the flow features that are

previously occluded.

4.3.2 Streamline Focus and Animation

Another useful way of manual focus specification is to allow the user to select a stream-

line of interest through first hit. We then perform F+C visualization on the entire

streamline by assigning larger importance values for the blocks that the streamline

goes through and smaller values for other blocks. An animation of F+C visualiza-

tion can also be generated by moving the focal point along a streamline from end to

end. To produce smoother animation, we insert additional frames, in which the grid

vertices are linearly interpolated from the grid vertices of the two neighboring frames

and the streamlines are repositioned according to the intermediate grids. In cases

where there are no desired streamlines going through the regions to be explored, a

user-drawn path could be used instead for an effective exploration.
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4.4 Grid Space Deformation

The grid space deformation should serve the following purposes: the blocks in focus

regions should be magnified while pushing the context regions to be shrunk; the

streamlines in focus regions should keep their shape unchanged while the distortion for

other streamlines should be minimized; and the relative position among streamlines

should not change dramatically. To perform grid space deformation, we consider

individual block expansion, neighboring block smoothing, and flow-aware smoothing,

inspired by Wang et al. [124]. Individual block expansion allows each block to resize

independently based on a global scaling factor and its weighting factor (Section 4.4.1).

Neighboring block smoothing preserves the continuity of neighboring blocks while

flow-aware smoothing preserves the shape of the streamlines. Please refer to (Section

4.4.2) and (Section 4.4.3) for details. We add edge flipping constraints to avoid

neighboring block intersection and volume boundary constraints to retain the size

and shape of the bounding space. We formulate these considerations into energy

terms and search for a deformed grid that minimizes the objective function under the

edge flipping and volume boundary constraints. To achieve this, we transform the

objective function into a linear system and solve for the unknown vertex positions in

a least-squares sense.
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4.4.1 Individual Block Expansion

We introduce this energy term to preserve the cube shape of the blocks. Given a block

bi, ideally, its deformed version b′
i can be obtained by applying scaling, rotation and

translation to the original block, i.e., b′
k = sbk

Rbk
bk + tbk

, where sbk
is a scaling

factor, Rbk
is a 3 × 3 rotation matrix and tbk

is a vector indicating the translation.

Note that by multiplying the rotation term Rbk
, we allow the block to rotate in order

to better utilize the space and incur less distortion. Denoting the set of edges of block

bk as E(bk), we express the energy term of block deformation as

Df (bk) =
∑

eij∈E(bk)

wbk
‖e′ij − sbk

Rbk
eij‖2, (4.2)

where wbk
is the normalized importance value of block bk, eij = vi − vj and e′ij =

v′
i − v′

j are the edges before and after the deformation, respectively. The translation

tbk
is canceled out due to the simple fact

e′ij = v′
i − v′

j = (sbk
Rbk

vi + tbk
)− (sbk

Rbk
vj + tbk

) = sbk
Rbk

(vi − vj). (4.3)

Initially, we set sbk
to a user-defined scaling factor sf and Rbk

to an identity matrix

for all blocks to solve for a new set of vertex positions V′. Then, for each block,

we compute sbk
and Rbk

from the deformed vertices, and apply the updated sbk

and Rbk
to solve for another set of vertex positions. This procedure is repeated for

several iterations, until the system converges or a predefined number of iterations is
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reached. Although we assign the same scaling factor sf for all the blocks, only the

blocks with larger importance values can get the chance to be enlarged, since they will

receive larger penalty (i.e., increase Df (bk)) for not approaching the target scaling

factor. In contrast, those less important or trivial blocks, with very small or even zero

importance values, can be squeezed substantially without receiving much penalty.

4.4.2 Neighboring Block Smoothing.

We introduce this smoothing term in order to reduce the size difference between

neighboring blocks. As shown in Figure 4.1 (b), such a näıve deformation distorts

streamlines that span across multiple blocks and lead to pronounced artifacts along

block boundaries. To avoid this, we preserve the Laplacian coordinates [96] of the

deformed vertices v′
i by minimize the following energy term

Dℓ =
∑

vi∈V

‖L(v′
i)− svi

Rvi
L(vi)‖2, where

L(vi) =
1

|V (vi)|
∑

vj∈V (vi)

(vi − vj), svi
=

1

|B(vi)|
∑

bk∈B(vi)

sbk
,

and Rvi
=

1

|B(vi)|
∑

bk∈B(vi)

Rbk
. (4.4)

In Equation (4.4), svi
andRvi

are the scaling factor and rotation matrix for the Lapla-

cian coordinates of vertex vi, respectively; V (vi) and B(vi) are the sets of neighboring
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vertices and blocks of vi, respectively; and |V (vi)| and |B(vi)| are the numbers of

neighboring vertices and blocks of vi, respectively. Since the Laplacian coordinates

are zero vectors for all the inner vertices, we can actually simplify Equation (4.4) to

Dℓ =
∑

vi∈V

‖L(v′
i)‖2, (4.5)

and only add these constraints to the inner vertices. To simplify the calculation for the

boundary vertices, we apply a similar approach that only considers the inner vertices

on each boundary face. For each vertex, the Laplacian coordinates are computed

from the four neighboring vertices that are also located on the boundary face. In this

way, the Laplacian coordinates are still zero vectors and therefore we do not need to

apply the scaling and rotation.

4.4.3 Flow-aware Smoothing

Flow-aware smoothing serves a similar purpose as flow-aware adjustment in the block

importance evaluation step. By introducing this term into the deformation process,

we are able to reduce the difference between the transformations of two neighboring

blocks that share a large number of streamlines. In the left side of Figure 4.2 (b)

on page 76, we illustrate an example of severe streamline distortion, where straight

streamlines are deformed into polylines due to the different orientations of the two

neighboring blocks b1 and b2. To reduce this kind of distortion, we drag v1 shared
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by b1 and b2 back to the center of the two adjacent vertices v′
2 and v′

3, as shown

in the right side of Figure 4.2 (b). The flow-aware smoothing can be achieved by

minimizing the energy term

Ds(bi,bj) =
∑

vi∈V (bi)∩V (bj)

wij‖v′
j + v′

k − 2v′
i‖2, (4.6)

where V (bi) ∩ V (bj) is the set of vertices shared by blocks bi and bj, wij is defined

in the same way as in Equation (4.1), and v′
j and v′

k are the two neighboring vertices

adjacent to v′
i.

4.4.4 Edge Flipping Constraints

Although edge flipping can only be found for edges that belong to less important

blocks, it is still not desirable. We detect edge flipping by computing the angle

formed by the deformed edge and the original one. If the angle is larger than 90◦, we

consider the edge as flipped. Note that a flipped edge indicates that it has a negative

scaling factor. Therefore, we enforce the flipped edge to be aligned with its original

direction, but with a very small scaling factor, by adding the following energy term

Deij
= α‖e′ij − δeij‖2, (4.7)

where eij is a flipped edge, α is a large constant to enforce the constraints, and δ is

a small constant to preserve the block from being shrunk to zero size or even being

negatively scaled.
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4.4.5 Volume Boundary Constraints

In order to retain the size and shape of the volume bounding space, we add the

boundary constraints to ensure that the vertices in the grid are always placed within

the boundary throughout the deformation process. The following equations are the

constraints:






























v′
i,x = vi,x if vi,x is on the yz boundary plane,

v′
i,y = vi,y if vi,y is on the xz boundary plane,

v′
i,z = vi,z if vi,z is on the xy boundary plane.

(4.8)

4.4.6 Solving Linear System

The energy function that we would like to minimize is

D =
∑

bk∈B

Df (bk) + wℓDℓ + ws

∑

bi,bj∈B

Ds(bi,bj) +
∑

eij∈E
∗

Deij
, (4.9)

where bi and bj are neighboring blocks, E∗ is the set of flipped edges, and wℓ and

ws are parameters to adjust the weights of the two smoothing terms. Each energy

term is converted into rows in a linear system, and each dimension of the vertex
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coordinates can be solved independently in multiple passes. In each pass, we solve

the linear system to obtain a new set of vertex positions V′, and update the scaling

factor sbk
and rotation matrix Rbk

for each block to better estimate the desired

transformation. We use the method described by Horn [41] to calculate the scaling

factors and rotation matrices. From the corresponding coordinates of the vertices

of one block before and after the deformation, a 4 × 4 matrix for that block can be

constructed. Then, the rotation matrix is represented by a unit quaternion, which is

the eigenvector associated with the most positive eigenvalue of this matrix. To achieve

interactive deformation, we leverage a GPU implementation of the concurrent number

cruncher (CNC) sparse solver [7] to solve the linear system.

4.5 Streamline Repositioning and Error Evalua-

tion

After grid deformation, we reposition the streamlines by computing each point along

the line as a linear combination of its corresponding eight block vertices in the de-

formed grid. To measure block distortion, we transform each original block to have

the same size and orientation as the deformed one and compare their difference

Derr(bk) =
∑

eij∈E(bk)

wbk
‖e′ij − sbk

Rbk
eij‖2

s2
bk

. (4.10)
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Figure 4.4: F+C visualization results with automatic importance evalu-
ation. First row: the crayfish data set. Second row: the two swirls data
set. (a) is the original visualization result. (b) is the näıve deformation
that only considers individual block expansion. (c) is the deformation with
adding neighboring block smoothing, flow-aware adjustment and flow-aware
smoothing. (d) shows deformed streamlines with block errors mapped to
colors along the points on each streamline. (© 2014 IEEE. Reprinted by
permission.)

Note that Equation (4.10) is the block deformation term (Equation (4.2)) divided by

the square of the scale, which normalizes the error for blocks with different sizes. We

measure the distortion whenever we update the scaling factor and stop the magnifi-

cation when increasing the scaling factor does not further magnify the flow features.

Since distortion are inevitable in the deformation process, it will be helpful to inform

the users where the distortion exists and how severe the distortion each block suffers,

so that they will not be misled by some abnormal patterns created. We visualize

the distortion with two methods. One method is to map error values to streamline

colors, as shown in the second row of Figure 4.4 (d). With this method, error values

can be better revealed while the information (e.g., velocity magnitude) about the
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flow field shown by the original color map is lost. The other method is to draw

green semitransparent tubes over the streamlines with higher opacity values indicating

larger distortion. With this method, the error values only provide a rough idea about

which regions suffer larger distortion. In the first row of Figure 4.4 (d), we observe

that the grids with larger distortion are mostly located around the volume boundary.

The first method provides more accurate information of the distortion value, while

the second method is better to be used as an additional visual hint.

4.6 Results and Discussion

To demonstrate the effectiveness of our method, we experiment our method with

multiple data set and present both a qualitative analysis on the visualization results

(Section 4.6.2), and a quantitative comparison with the traditional fisheye view (Sec-

tion 4.6.3). The performance and parameter settings are discussed as well.

4.6.1 Performance and Parameter Settings

Table 5.1 shows the data sets we experimented with and the timing results for the

block importance evaluation, flow-aware adjustment, block deformation and stream-

line repositioning steps. The timing was collected on a PC with an Intel Core i7-960
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CPU running at 3.2GHz, 24GB main memory, and an nVidia GeForce GTX 580

graphics card with 1.5 GB graphics memory. As expected, the deformation time was

proportional to the grid dimension, since a grid with larger resolution would have

more vertex positions to solve which means the linear system has more variables and

equations. Since our framework is designed to visualize the entire flow field in a F+C

manner, the grid resolution is not supposed to grow significantly even with larger data

sets. Nevertheless, the time cost for streamline repositioning appeared to be similar.

Although the total number of streamline points for the supernova data set is much

larger than the others, the repositioning time was only slightly longer. Our imple-

mentation utilized the CUDA OpenGL interoperability so that the repositioning was

performed in parallel on the GPU and there was no need to transfer the rendering

data between main memory and graphics memory. For block importance evaluation

and flow-aware adjustment, although they took a longer time for the supernova data

set, there was no clear pattern in timing among the grid resolution, number of stream-

lines, and total number of points on streamlines at the scales of other data sets we

explored. The timing was dominated by the deformation time. Except for the large

supernova data set, the overall time to update the F+C visualization results was less

than 0.5 second, which makes our deformation approach interactive.

The parameters used include a user-defined scaling factor sf , a user-specified weight

β in the flow-aware adjustment (Equation (4.1)), and the two weighting factors wℓ

and ws for smoothing the energy terms (Equation (4.9)). In our experiments, we
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Table 4.1

The flow data sets and their timing results. We run ten iterations for the
deformation step. All the timing results are calculated by averaging the

results gathered from 100 runs. The evaluation time is for block
importance evaluation and the adjustment time is for flow-aware

adjustment. The evaluation, adjustment, and repositioning time are
measured in milliseconds, and the deformation time is measured in seconds.

grid eval. adj. def. # pts. rep.
data set dimension time time time # lines per line time

five critical points 10× 10× 10 0.77 8.99 0.23 140 58.8 0.16
tornado 12× 12× 12 1.26 12.08 0.31 60 365.4 0.17
two swirls 12× 12× 12 1.46 11.56 0.30 100 236.7 0.18
electro 12× 12× 12 1.07 8.35 0.29 200 52.6 0.16
car flow 36× 23× 5 2.10 11.84 0.49 140 198.7 0.18
crayfish 21× 10× 7 1.73 8.82 0.28 100 248.8 0.16
computer room 27× 22× 3 2.57 9.64 0.28 200 182.7 0.17
hurricane 24× 24× 4 2.71 11.82 0.36 140 346.7 0.17
supernova 20× 20× 20 9.52 23.76 0.90 200 692.4 0.24

usually used a fixed scaling factor sf = 5.0 and set β = 0.1, wℓ = 2.5, ws = 3.0.

The scaling factor could be a bit larger than the actual scaling that can be achieved,

since the blocks would stop growing up to a certain degree. Normally, we found

that β = 0.1 was appropriate for most cases, and β = 0.04 for a few cases where

neighboring blocks sharing many streamlines are of different sizes. For the Laplacian

smoothing, we might increase wℓ to 3.0, if obvious size change between neighboring

blocks can be found. We might decrease wℓ to 2.0 to obtain a larger scaling when the

change in size was already smooth. For the flow-aware smoothing, ws = 3.0 was good

for most cases. However, if many streamlines were distorted to polylines, we would

increase ws to 6.0. All visualization results we present in this section were generated

with these parameter settings.
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4.6.2 Focus+Context Visualization Results

We experiment multiple data sets using both the automatic importance evaluation

and the three types of focuses. Snapshots from streamline animation are also cap-

tured, where the focal points move along a selected streamline and a user-drawn path,

respectively. The image results are presented for a qualitative discussion.

4.6.2.1 Automatic Importance Evaluation

Figure 4.4 on page 87 shows the F+C visualization results with automatic impor-

tance evaluation. As shown in (b), without adding any smoothing term, the regions

that are evaluated as the more important ones occupy most of the space, while less

important ones are squeezed into thin layers which creates serious distortion. By

adding neighboring block smoothing, flow-aware adjustment and flow-aware smooth-

ing terms, we observe from (c), that important regions are still well magnified and

the volumes are almost filled with streamlines everywhere. Meanwhile, perceptually,

those less important streamlines suffer from less distortion. Error results shown in

(d) also demonstrate that important regions almost keep their original shapes and

less important ones are not seriously distorted either. Although the measured block

distortion seems to be large for the two swirls data set, the swirl patterns are still
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(a) (b) (c) (d) (e)

Figure 4.5: F+C visualization results with automatic importance evalua-
tion for different scaling factors sf and grid resolutions. (a) is the original
visualization result of the supernova data set. (b), (c), (d) and (e) are defor-
mation results produced with sf and grid resolution as 5.0 and 20× 20× 20,
10.0 and 20× 20× 20, 5.0 and 30× 30× 30, and 10.0 and 30× 30× 30, re-
spectively. The second row shows the corresponding grid, block distortions
mapped to streamline colors, and deformed grids. (© 2014 IEEE. Reprinted
by permission.)

clear in the deformation result. This is due to the fact that the distortion mainly

comes from block stretching, which only slightly changes the perceived shape of the

streamlines.

In Figure 4.5, we compare the F+C results with different grid resolutions and scaling

factors using the supernova data set. Compared with using 30×30×30 grid resolution,

the important region at the center expands more using 20× 20× 20 grid resolution.

This holds for both cases under different scaling factors: 5.0 and 10.0. Even though

less important blocks would shrink due to the individual block expansion term, the

smoothing terms still maintain the shape of those blocks to some degree. With a

higher grid resolution, the number of less important blocks surrounding the important
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(a) (b) (c)

Figure 4.6: F+C visualization results with the user-specified spherical
block focus for the two swirls data set . (a) the original streamlines. (b)
the deformed streamlines. (c) the deformed streamlines with block errors
mapped to colors along the points on each streamline. (© 2014 IEEE.
Reprinted by permission.)

region becomes larger, which increases the resistance and prevents important blocks

from growing further. Meanwhile, using a scaling factor of 10.0 does not further

magnify the important region, because the smoothing terms stop less important blocks

from being further squeezed. From deformed grids and evaluated error results, we

observe that using a scaling factor of 10.0 shrinks the blocks around the boundary of

the important regions, leading to larger distortion. Therefore, in practice, we need

to carefully select the appropriate grid resolution and scaling factor instead of simply

aiming for higher grid resolutions and larger scaling factors.

4.6.2.2 Spherical Block Focus

In Figure 4.6, we show the F+C visualization results with the user-specified spherical

block focus. For the two swirls data set, the focus is at the center of the upper
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(a) (b) (c)

Figure 4.7: F+C visualization results that reveal hidden features for the
five critical points. The user-specified regions are highlighted in the green cir-
cle, together with the enlarged images to the right side of each visualization
result. (a) shows the original streamlines. (b) shows the deformed stream-
lines with the spherical block focus. (c) shows the deformed streamlines with
the hourglass block focus. (© 2014 IEEE. Reprinted by permission.)

swirl. Before the deformation, the two swirls occupy similar space in the volume.

By applying the spherical block focus on the upper swirl, the focal region grows,

pushing the lower swirl and the two ends of the upper one to the boundary. From

the error image, we observe that the focal region does not suffer much distortion, as

the distortion is mainly distributed to the squeezed regions. The five critical points

data set also shows a similar result, where the focus is the spiral located at the upper

right conner. After the deformation, that spiral is magnified and shifted closer to the

center, while the other regions shrink and absorb most of the distortion.

4.6.2.3 Hourglass Block Focus

Figure 4.7 demonstrates the effectiveness of our hourglass block focus. For the five

critical points data set, the source located at the center of the volume is occluded

by some less interesting streamlines with a similar pattern, as shown in Figure 4.7
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Figure 4.8: F+C visualization results with the user-specified streamline
focus for the crayfish (top) and computer room (bottom) data sets, where
the focal streamline is highlighted in black and surrounded by green semi-
transparent tubes. (© 2014 IEEE. Reprinted by permission.)

(a). After the spherical block focus is applied, the source still cannot be observed

clearly as shown in Figure 4.7 (b), although the source itself has been magnified.

This is because the density of streamlines in the front does not change significantly.

The hourglass block focus is used to specify the same source as the focus. In Figure

4.7 (c), the source becomes clearly visible since the streamlines at the outer ring are

much sparser. A similar result can be found for the electro data set as the streamlines

occluding the source become sparser with the hourglass block focus.
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(a) (b) (c)

Figure 4.9: Snapshots of F+C animation results. The first row shows a
user-specified streamline for the hurricane data set and the second row shows
a user-drawn path for the computer room data set. The focal streamline/-
path is highlighted in black and the current focal point is marked with a red
cube. (© 2014 IEEE. Reprinted by permission.)

4.6.2.4 Streamline Focus

In Figure 4.8, we show the streamline focus results. Unlike the block focus, the

streamline focus treats all the blocks into two different categories: the blocks that

the focal streamline does and does not pass through, respectively. Blocks in the same

category are assigned the same importance value, so that the transformation for the

blocks that contain the focal streamline will be similar and the distortion will be

distributed to the rest of blocks more evenly. From the visualization results for both

data sets, we see that the shape of the focal streamline is almost the same as the

original one after the deformation, while no obvious change can be observed for other
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surrounding areas. This implies that the streamlines in the context are more stable

and the relationships between the focal streamline and the rest of streamlines are

easier to interpret.

4.6.2.5 Streamline Animation

In Figure 4.9, we show selected snapshots of streamline animation results where the

focal point moves along a user-specified streamline or a user-drawn path. As shown

in the first row of Figure 4.9, the animation helps the user explore the regions that

a streamline passes through. This is different from our previous approach that mag-

nifies the entire streamline simultaneously. Since the space in the volume is limited,

enlarging multiple regions could either decrease the scaling factor that can be achieved

or result in more serious distortion. Using the animation to move the focal point will

be more efficient to magnify the regions consecutively. As such, we should select those

long streamlines that pass through different regions over short ones. The second row

of Figure 4.9 shows another example where we explore F+C animation using the

user-drawn path.
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(a) (b) (c) (d)

Figure 4.10: Mapping block errors to streamline colors for the tornado and
electro data sets. (a) and (c) are with our spherical block focus. (b) and (d)
are with the fisheye focus. (© 2014 IEEE. Reprinted by permission.)

4.6.3 Comparison with Fisheye View

For comparison, we implemented the fisheye view F+C technique presented by Sarkar

and Brown [89]. For each vertex within the user-specified focal region with radius

rfocus, we transform the vertex based on the polar coordinate system originated at

the center of focus. This maps a vertex with the original coordinates (rori, θ, γ) to

the fisheye coordinates (rfeye, θ, γ), where rfeye is given by

rfeye = rfocus
(d+ 1) rori

rfocus

d rori
rfocus

+ 1
= rfocus

d+ 1

d+
rfocus
rori

. (4.11)

Here, d is a constant distortion factor and a larger value of d results in a higher degree

of magnification. In this paper, we set d = 3.0.

In Table 5.2 and Figure 4.10, we show quantitative and qualitative results comparing
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Table 4.2

Block distortion evaluated using Equation (4.10). The blocks are grouped
by the distances (in voxels) from their center to the focus.

dist. to spherical focus fisheye focus
focus # blocks avg. max avg. max

tornado
< 10 27 1.641 2.665 13.572 15.987
< 20 251 17.145 37.969 88.950 843.750
< 40 1283 49.445 505.412 66.443 843.750
all 1728 49.434 505.412 49.333 843.750

electro
< 10 27 2.332 4.219 18.382 43.927
< 20 230 19.749 55.511 95.026 844.575
< 40 1283 42.603 191.895 64.261 844.575
all 1728 40.833 434.848 42.841 844.575

block distortions for our spherical grid focus and the fisheye focus. For the tornado

data set, the focus is set at the center of the volume. We observe from Figure 4.10

that the focal region has much less distortion using our method. For the surrounding

regions, although both methods lead to some distortion, our method does not gather

the distortion around the boundary of the focus. The measured errors shown in Table

5.2 are consistent with the image results. The radius of focal region is 20 voxels for our

spherical focus, and 35 voxels for the fisheye focus to achieve a similar scaling effect.

The overall errors are close for both methods, but our method has much smaller

average and maximum errors near the focus. For our spherical block focus, the errors

are mainly distributed to the blocks that are at least 20 voxels away. However, for the

fisheye focus, the blocks located outside of the focal region will not deform at all. All

the errors are accumulated within the focal region, especially for the blocks around

the boundary of the focal region, which results in the undesired ringing artifact.
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4.7 Evaluation

To evaluate our deformation framework, we collaborated with a domain expert in

fluid mechanics (Professor Seung Hyun Kim) for an empirical expert evaluation. His

research focuses on the modeling of multiscale and multiphysics problems in relation

to energy science and technology. In addition, we performed a user study involving five

graduate student with fluid mechanics background. They were required to complete

six tasks and provide comments based on six criteria.

4.7.1 Empirical Expert Evaluation

After learning the framework and using our program multiple times with various

data sets, Dr. Kim provided his feedback. We organize and present his feedback as

the following. In general, the use of deformation for F+C visualization in flow field

exploration is novel and effective. Having multiple methods developed for users to

select the focus is a significant advantage. This allows users to determine the best

method in their respective cases or even apply multiple methods in a certain order

to achieve more desired results. In terms of distortion, both the spherical focus and

streamline focus provide better F+C visualization effects than the fisheye view. When

the interesting region is at the corner, focusing on a streamline in that region might
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be more effective than the spherical focus, since the spherical region might go out of

bound and lead to inevitable distortion on the boundary. In many cases, he found

it very useful to explore the data sets with multiple focus selection methods. For

example, the users could first use the streamline focus to enlarge the regions that a

streamline goes through. Based on the deformation result, the users might be able

to find some small features in those regions and apply the spherical focus to further

enlarge the small features. It is also beneficial to use the hourglass focus on the

features that are hidden in the central region of volume, e.g., the source around the

center in the five critical points data set. That is, the users can use the hourglass

focus to push away the streamlines that occlude the interesting features, and then

apply the streamline focus or spherical focus to further explore that region of interest.

With the GPU implementation, our program is fairly interactive which allows the

users to fine tune the parameters to achieve satisfactory deformation results on the

fly. According to the suggestions of Dr. Kim, we also modified our initial single view

interface to support multiple views, which benefits parameter tuning by eliminating

the need to switching between different views back and forth. We allow the users

to freely select any three items for simultaneous display. Our experience shows that

visualizing the deformed streamlines, original streamlines and deformed grid simul-

taneously is particularly useful. The connection among these three views is helpful

for the users to determine the actual scaling obtained in focused regions and fine

tune the distortions accordingly. Even if some distortions are inevitable, they could
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be easily identified under multiple views and with error indications (introduced in

Section 4.5). In addition, as the users get familiar with each parameter, they can

predict the changes due to parameter tuning accordingly.

Since one of the main current areas of interest of the expert is the modeling of tur-

bulent combustion, he further commented that the application of this deformation

framework to flame visualization could be valuable for investigation. The combustion

reactions can be confined into a relatively thin region and be substantially influenced

by a flow field, strain or vorticity. Using our deformation framework to emphasize the

species concentrations or temperature in the region of high strain rate or vorticity

would provide very useful information. The current deformation framework could

also be extended to be of further use in two aspects. First, in addition to the vec-

tor field, the deformed blocks could also guide the deformation of scalar fields for a

mix rendering to provide more context information or apply to F+C visualization of

time-varying data sets. Second, a diverse choice for automatic evaluation could be

applied to enlarge the regions with any other desired properties, e.g., high vorticity.

4.7.2 User Study

We also recruited five unpaid researchers for a user study: two postdoctoral scholars,

one PhD student, and two master students. All of them are researchers majoring
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in mechanical engineering with at least one year of research experience in fluid dy-

namics. The user study was conducted in a lab using the same PC. The PC has a

27-inch monitor with 1920× 1080 resolution, where the visualization result occupied

an area of 1200 × 800. The users were first introduced to the concepts of automatic

importance evaluation, spherical block focus, hourglass block focus, streamline focus,

and error indication. Then they were given the crayfish data set for free exploration

to get familiar with the system. They could perform the tasks whenever they felt

comfortable. Each study took about two hours to two and a half hours to complete.

Although each task could be performed in a few minutes, the users frequently re-

turned to the interface for further verification when writing their comments, which

occupied most of the time.

We designed six tasks (T1 to T6). T1 and T2 asked the user to select a deformation

method and the viewing direction to best observe the source for the five critical points

data set and the flow pattern at the center for the supernova data set, respectively.

T3 and T4 asked the user to evaluate the distortion given a deformation result using

the crayfish and two swirls data sets, respectively. T5 and T6 asked the user to

select a deformation method and reproduce the deformation result given an image

of deformation result using the car flow and computer room data sets, respectively.

The users were informed that the tasks were not timed and their comments were of

crucial importance.
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Six criteria (C1 to C6) were given as guidelines for users to evaluate the deforma-

tion framework: C1 effectiveness to magnify features; C2 effectiveness to reduce the

occlusion over a feature; C3 ease to notice the distortion; C4 ease to understand

the relationship between deformed and original streamlines; C5 ease to estimate the

original pattern from the deformed one; and C6 ease to reproduce a deformed visu-

alization result. We asked the users to comment on the effectiveness of the proposed

F+C techniques for T1, T2, T5 and T6, the distortion evaluation for T3 and T4,

and the ease of reproducing a deformation result for T5 and T6. Finally, a set of

open questions were also presented which ask the users to provide general impression

of the methods for each of the criteria. The deformation result for T3 and T4 can

be found in Figure 4.4 (d). The images presented to the users for T5 and T6 are the

bottom right image in Figure 4.8 and Figure 1.7 (c), respectively.

In terms of C1, the feedback was very positive. Yet the selection of methods varied

due to the different foci between disciplines or personal preference. The only excep-

tion was T6, where the deformation result to be reproduced was apparently generated

using streamline focus. Other than that, each user selected the deformation method

to complete the tasks in a consistent way. User 1 used a combination of automatic

importance evaluation and spherical block focus for T1, T2, and T5. He commented

that “automatic importance evaluation and spherical block focus combined could pro-

vide more magnifying features compared to using any single choice”. He would finally

select spherical block focus to produce the result, since “spherical block focus does it
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better because the feature is within a local area”. User 2 also preferred a combination

of multiple methods. He applied automatic importance evaluation and then hour-

glass block focus for T1, because of “secluding the source that is obscured by other

streamlines”. For T2 and T5, he used automatic importance evaluation to gain an

overview and spherical block focus to magnify a specific region. The other three users

would like to apply a single method to perform the task, User 3 preferred hourglass

block focus and User 4 and User 5 mostly used spherical block focus. User 5 also

used streamline focus for T2, which asked the users to observe the pattern of the

supernova data set. The central region was complex and difficult to understand even

if it was magnified. He said that the streamline focus “allowed to better understand

the features”, since most streamlines shared a similar pattern and the analysis should

start from understanding one of them.

Although the selections differed among the users, their comments on each method

were similar. All of them rated spherical block focus to be the most effective one

to magnify features, followed by automatic importance evaluation and streamline

focus. They indicated that “automatic importance evaluation method could find the

region of importance”, but spherical block focus was better, since “user interaction is

involved” and “in most fluid flow problems, we are interested in a region in space”.

Spherical block focus was favored over streamline focus mostly because streamline

focus only had “limited ability to magnify the adjacent fluid flow”. But a user also

mentioned that this might be discipline dependent, since “if the particle tracing is
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the concern, maybe the streamline focus could do a better job”. Hourglass block focus

was considered to be the least effective one, since it did not magnify a feature.

In terms of C2, most users selected spherical block focus or hourglass block focus.

Although spherical block focus was not designed to reduce the occlusion, users found

that when the influence region was large enough, the outer layer could still get sparser.

This would definitely sacrifice the quality of context streamlines, but a user stated that

he “chose to focus more in the point” rather than “worry much about the distortion

on the boundary”. In our observation, the users usually used automatic importance

evaluation to gain an overall impression of the field, and applied spherical or hourglass

block focus for further analysis, since the interaction allow them to specify a region

for detail observation.

The error estimation corresponds to our criteria C3, C4, and C5. All users agreed

that with error indication, it was easy to notice the distortion. A user even mentioned

that he could notice the distortion by just moving the scale slider, and “the error

indication helped me to quantify”. The ease of understanding the relationship between

deformed and original streamlines depended on the complexity of the deformation.

For the deformation result using the two swirls data set, a user stated that “if the

deformed style is a regular shape, it is easy to relate to the original streamlines, even

when the fluid flow is complex”. Most users believed it was easy to understand this

relationship by moving the scale slider and observing the deformation process, even for
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relatively complex deformation. But a user also mentioned that the absence of error

indication with a small scale value (close to 1.0) “makes tracking all the distorted

streamlines impossible”, although he admitted that “it is able and relative easy to

track just one streamline”. Once the relationship between deformed and original

streamlines was built, the estimation of original shape of streamlines would not be an

issue. Only one user mentioned that “it is able to make relatively rough estimations,

but not into details”. This is acceptable since the distorted streamlines are mostly in

the context.

In terms of C6, all users stated it was easy to produce a similar result with comments

such as “it is not difficult to reproduce the results, since the feature of each function is

clear and easily recognized”. The selection of parameters seemed not to be a problem.

A user mentioned that “it may take some time to select the correct cell, and select the

correct parameters, but it can be done within a short time”. Two users also commented

that it might be more difficult to reproduce a result generated with hourglass block

focus. This was probably because hourglass block focus is view-dependent and has

more parameters to adjust.
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Chapter 5

FlowString: Partial Streamline

Matching Using Shape Invariant

Similarity Measure for Exploratory

Flow Visualization

5.1 Terminology and Notation

Before describing the overview of our algorithm1 , we first define the following terms

that will be frequently used in this section:

1The material contained in this chapter was published in Proceedings of IEEE Pacific Visualization

Symposium 2014 [104] and IEEE Transactions on Visualization and Computer Graphics 2016 [106].
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• Character: A character is a unique local shape primitive extracted from stream-

lines which is invariant to its geometric position and orientation. Characters

are the low-level feature descriptors for categorizing different streamline shape

features.

• Alphabet: The alphabet consists of a set of characters that describe various local

shape features of streamlines traced from a given flow data set.

• Word: A word is a sequence of characters expressing a meaningful streamline

shape pattern. Words are the high-level feature descriptors for differentiating

regional streamline shape features.

• Vocabulary: The vocabulary consists of a set of words describe various regional

shape features of streamlines traced from a given flow data set.

• String/Substring: A string is the mapping of a global streamline to a sequence

of characters. A substring encodes a portion of the corresponding streamline.

A substring could match with a word in the vocabulary.

The notations for string operation are mostly consistent with the convention. How-

ever, some minor changes are also introduced to adapt to this specific context, which

are listed as follows:

• Character: The shape primitive represented by a character is formed by an

ordered set of points. A character is denoted as a single lowercase letter a if

109



the sample points on the streamline to be matched is in the same order of the

shape primitive. It is denoted as a single lowercase letter followed by a prime

symbol a’ if the sample points is in the reversed order of the shape primitive.

We use the uppercase letter A to indicate that the sample points could be in

both directions.

• Multiple characters with common features: “|” This notation denotes multiple

characters that share some common properties, e.g., (a1|a2| . . . |al) denotes a

local shape represented by any one character appearing in the parenthesis.

• Single character repetition “+”: The repetition of a single character usually

indicates the appearance of a pattern formed by repeating a local shape, e.g.,

spirals. In this case, the repetition number mainly depends on the length of the

corresponding segment, which does not change human perception. For example,

if character a represents a circle, a+ will match any spiral which corresponds to

the concatenation of a number of a.

• Wildcard characters “?” and “*”: We enable querying using wildcard charac-

ters: the question mark ? for substituting zero or one character and the asterisk

* for zero or more characters. The wildcard characters are usually used to con-

nect two patterns. The asterisk could be useful to search for any streamline

that contains both patterns, while the question mark could further constrain

the distance between the two patterns.
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• Word concatenation “|” and “&”: We use two shortcuts | (or) and & (and) to

concatenate two words with the square brackets “[ ]” for distinguishing word

boundaries. For example, [aaa]|[bbb] returns the segments that matches

either aaa or bbb, while [aaa]&[bbb] finds the segments that contain both aaa

and bbb within some distance apart.

5.2 Overview

Our FlowString algorithm consists of two major components: alphabet generation

and string operation. Alphabet generation is to generate the alphabet that describes

unique local shape features of streamlines traced from a given flow data set. String

operation refers to the matching, querying and pattern recognition of the strings

based on this alphabet. We consider each character in the alphabet as a local shape

descriptor, which is invariant to its geometric position and orientation. Concatenating

the characters defines unique shape features in a larger scope. In order to be invariant

to the local feature size, we first resample the streamlines, so that the number of

sample points will be similar for the local features with the same shape but different

scales. For each sample point, its local shape will be represented by a set of sample

points in its neighborhood with a size of r, i.e., the sample point itself and the

(r − 1)/2 nearest neighbors in both the forward and backward directions along the

streamline. The dissimilarity between the local shapes of any two sample points is
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given by the Procrustes distance between the two sample point sets centering on

these two points. Using the pairwise dissimilarity as the distance matrix, we apply

affinity propagation to perform a two-level bottom-up clustering on these local shapes

and treat each cluster at the higher level as a character. Each sample point will

be assigned the character corresponding to the cluster in which it resides. With

this treatment, we can consider the streamlines as strings that are concatenation of

characters assigned for each of their sample points. A suffix tree is constructed to

represent all the strings to enable efficient search and pattern recognition. In the

following, alphabet generation is discussed in 5.3, string operation is discussed in

5.4, the user interface and interactions are introduced in 5.6, and some additional

considerations are discussed in 5.5. Finally, we present the visualization results in

Section 5.7 and findings in an empirical expert evaluation 5.8.

5.3 Alphabet Generation

Alphabet generation is performed in three steps: streamline resampling to generate

the sample points; dissimilarity measure to evaluate the difference of local shapes

between every pair of sample points; and affinity propagation clustering to group the

sample points according to the dissimilarity matrix.
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5.3.1 Streamline Resampling

We first resample the streamlines, so that the number of sample points is similar for

the local features with the same shape but different scales. For each sample point, its

local shape is represented by a set of sample points in its neighborhood with a size of

r, i.e., the sample point itself and the (r−1)/2 nearest neighbors in both the forward

and backward directions along the streamline. Our streamline resampling should

meet two crucial requirements. First, a streamline segment between two sample

points should be simple enough, so that no feature is ignored due to under-sampling.

Second, since we use a neighborhood of size r to represent the local shape, the density

of sample points should be related to the local feature size. That is, for a meaningful

comparison, the local features with the same shape should contain the same number

of sample points.

Let us consider a continuous 3D curve C and another curve C ′ which is the result of

uniformly scaling C by a factor s. Let p1 and p2 be two points on C, and p′1 and p′2

be two points on C ′ which correspond to p1 and p2, respectively. The curvature κ
′ of

each point on C ′ is κ/s, where κ is the curvature of the corresponding point on C.

Since the arc length l′ between p′1 and p′2 is s× l, where l is the arc length between p1

and p2, the accumulative curvature between p′1 and p′2 is the same as that between

p1 and p2. This implies that keeping a constant accumulative curvature between two
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neighboring sample points will produce similar resampling for features with the same

shape but of different scales.

For a streamline which is often represented as a polyline, the curvature is not im-

mediately available. In our approach, the discrete curvature at a point could be

approximated by the angle between its two neighboring line segment, and the accu-

mulative curvature becomes the winding angle of a streamline segment. Although the

winding angle might be affected by the density of points along a polyline, it is very

stable if the points traced along the streamline are dense enough.

Our resampling starts from selecting one end of a streamline as the first sample

point, and iterates over the other traced points along the streamline. During the

iterations, we accumulate the winding angle from the last sample point to the current

point. Once the winding angle is larger than a given threshold α, the current point

is saved as a new sample point and the winding angle is reset to zero. Note that the

neighborhood size r is closely related to the selection of α. That is, when α is smaller,

r should be larger to cover the same range of the streamlines in order to capture the

shape of local features. In our experiments, we find that setting α = 1 (in radian)

and r = 7 works well for all our test cases. This is because when α = 1, the pattern

of a streamline segment between two neighboring sample points is relatively simple,

and seven consecutive points cover mostly the range of a circle, which is enough to

describe a local shape and yet not too complex. In Figure 5.1, we show an example
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Figure 5.1: Resampling a streamline traced from the crayfish data set. The
red dots are resampled points. Three regions selected are highlighted in the
right. (© 2014 IEEE. Reprinted by permission.)

of our resampling result. The three highlighted regions are with three different local

scales, which all contain a similar number of sample points after resampling.

5.3.2 Dissimilarity Measure

We compute the dissimilarity between the local shapes of two sample points as the

Procrustes distance between their neighborhoods, where each neighborhood is a sam-

ple point set of size r. This distance only considers the shape of objects and ignores

their geometric positions and orientations. The two point sets must first be superim-

posed before shape comparison, which calls for a registration to obtain the optimal

translation, rotation and uniform scaling. This registration is often referred to as

the Procrustes superimposition. After the superimposition, the two point sets rep-

resenting the same shape will exactly coincide and thus have the distance of zero.

The optimal translation T, rotation R, and uniform scaling s from one point set
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Figure 5.2: Characters generated from a two-level bottom-up affinity prop-
agation clustering of the crayfish data set. (a) shows the 11 high-level cluster
centers, which are assigned to characters a to k in order. (b) shows the 23
members in the cluster highlighted with a box in (a), which are low-level
cluster centers. (c) shows the 24 members in the cluster highlighted with a
box in (b). (© 2014 IEEE. Reprinted by permission.)

Pa = {pa1, pa2, . . . , par} to another point set Pb = {pb1, pb2, . . . , pbr} are the ones that

minimize the summation of the pairwise point distances [41]

d =
r

∑

i=1

|pbi − p′ai|2, where p′ai = sRpai +T. (5.1)

Note that the minimized d is the Procrustes distance between Pa and Pb. However,

in Equation (5.1), we assume that pai should be paired with pbi, which might not

always be the case for two streamline segments, since two segments with the same

shape might be indexed in the opposite directions. Therefore, instead of accepting d

as their dissimilarity between Pa and Pb immediately, we also compute the distance

d′ with points being paired in a reversed order, and use the minimum of d and d′ as

the final dissimilarity value.
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5.3.3 Affinity Propagation Clustering

Given the dissimilarity measure, we compute the pairwise dissimilarity among all

sample points and apply affinity propagation for clustering. The similarity values are

then obtained as the negative of the dissimilarity values, as suggested by Frey and

Dueck [29]. Unlike k-means and k-medoids clustering algorithms, affinity propagation

simultaneously considers all data points as potential exemplars and automatically de-

termines the best number of clusters, with the preference values for each data point

as the only parameters. The preference value indicates the probability of selecting

the corresponding data point as a cluster center. Using a uniform preference value

indicates that all the data points are considered with an equal chance to be clus-

ter centers, and a smaller preference value (i.e., a more negative value in our case)

produces a smaller number of clusters. In our scenario, affinity propagation usually

generates a fine level of clustering result (with hundreds of clusters). Therefore, we

use the minimum of the similarity values as the preference. Although affinity prop-

agation generates high-quality clusters for all the sample points, it is unnecessary to

keep the clusters at such a fine level. To support pattern query and recognition at

a coarser level, the cluster centers at the first level are then clustered by applying

affinity propagation again to generate the second-level clusters. In our experiments,

the second-level cluster indices serve as the characters, and we find that they already

have enough discriminating powers. Figure 5.2 shows an example of the clustering
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Figure 5.3: Character concatenation. The blue and red lines indicate the
neighborhoods of blue and red sample points, respectively. (a) characters are
assigned to all sample points. r−1 sample points are shared by the neighbor-
hoods of blue and red sample points, which produce a deterministic shape.
(b) and (c) characters are assigned to every r − 1 sample points. Only one
point is shared by the neighborhoods of blue and red sample points, which
could produce different shapes. (© 2014 IEEE. Reprinted by permission.)

results. We see that the members in the same clusters are usually similar to each

other.

5.3.4 Character Concatenation

In our work, a character corresponding to a sample point determines the local shape

of its neighborhood of size r. If the characters are assigned to every sample point, a

concatenation of two characters represents the shape of a neighborhood of size r+ 1.

As shown in Figure 5.3 (a), this shape is uniquely determined by the two characters

centering on the blue and red sample points. However, if the characters are only

assigned to every r − 1 points, even if the two characters are exactly the same, the

resulting shape of 2r − 1 points could vary significantly. This is because the relative

orientation of the two local shapes is undetermined, as shown in Figure 5.3 (b) and
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(c). Moreover, since these r points in a neighborhood might not be evenly spaced,

the overlapping region of two neighborhoods also decides their relative scale. Also

notice that the order of points for each character might affect the shape represented

by a string. Certainly, if r is large, we might not need to assign characters to every

sample point to maintain the overlapping region of size r − 1. In practice, since we

opt to use a small value for r to avoid too complex local shapes, assigning a character

to every sample point seems to be necessary in order to produce deterministic shapes

for a string.

5.4 String Operation

Our string operation is based on suffix trees [110]. In this section, we give a brief

introduction of suffix trees, and explain how to construct vocabularies and perform

searches on a suffix tree.

5.4.1 Streamline Suffix Tree

After we convert each streamline to a string, we construct a suffix tree in linear time

and space to enable efficient operations on these strings. A suffix tree is a special

kind of tree that presents all the suffixes of the given strings. Each edge of the suffix
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tree is labeled with a substring in the given strings. For a path starting from the root

to any of the leaf nodes, the concatenation of these substrings along this path is a

suffix of the given strings.

The problem of search for a string then becomes the search for a node in the suffix

tree. Considering that the size of the alphabet is constant, the decision on which edge

to visit could be made in constant time, and the search of a string with length m can

be performed in O(m) time. Assuming the number of appearance of a string to be

searched is z, reporting all the positions of that string takes O(z) time. As a result,

with the suffix tree, an exact match of a substring that appears in the given string

multiple times only takes O(m+ z) time.

5.4.2 Vocabulary Construction

Given a pool of traced streamlines, one interesting yet challenging problem is to auto-

matically identify meaningful words in these streamlines to construct the vocabulary.

Since the words are depicted by a sequence of characters, we need to not only select

representative streamlines, but also extract important segments from them for word

identification. With our streamline suffix tree, this could be efficiently solved as we

select the most common patterns from the streamlines. In other words, streamline

segments that appear most frequently could be identified as words.
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We implement our approach on the streamline suffix tree by a simple tree traversal

scheme. Since the shape of each streamline segment is captured by a substring in our

suffix tree, selecting the common patterns of streamline segments could be consid-

ered as the detection of the most frequently appeared substrings. Considering that

each potential substring is associated with a node in the suffix tree, the number of

appearance for a substring can be efficiently counted with the following two cases:

• If the substring corresponds to a leaf node, its number of appearance is the

number of position labels attached to that node;

• If the substring corresponds to an internal node, its number of appearance is

the summation of the counts for all the children of that node.

This information could be gathered by a traversal of the tree in the depth-first search

manner. Then, all substrings with the length and number of appearance larger than

certain thresholds could be reported by another tree traversal. Therefore, identifying

words to form the vocabulary can be performed in O(n) time, where n is the total

length of the original strings, since the number of nodes is linear to n.

5.4.3 Exact vs. Approximate Search

Since the string is used to represent the shape of streamline segments, exact string

matching normally does not provide enough flexibility to capture streamline segments
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with similar shapes. First, the similarities among the shapes represented by different

characters are different, e.g., a portion of spiral with large torsion is more similar to

that with small torsion than other shapes. But, exact match only produces a binary

result, which is either the same or different. Second, with respect to human percep-

tion, different numbers of repetition of a certain shape often seem to be similar. For

instance, a spiral that contains three circles and another one contains five circles are

usually considered to be similar. Assuming a shape similar to a circle is represented

by character a, then strings aaa and aaaaa should be matched in our search. To

enable these approximate searches, we first introduce a straightforward dynamic pro-

gramming approach to detect k-approximate match on the suffix tree, where k is a

threshold used in the edit distance. Then, this approach is extended to support the

repetition of a single character.

In our scheme, computing the edit distance of two strings P = P1P2 . . . Pnp
and

T = T1T2 . . . Tnt
is the same as the traditional approach by filling a table DP of

size np × nt, where DP[i, j] is the edit distance for substrings P1 . . . Pi and T1 . . . Tj .

Our straightforward k-approximate match on a suffix tree traverses the tree in the

depth-first search manner and expands the table column by column.

During the traversal, each time we expand the string T by one character along the

edge being visited and fill the column DP[∗, nt]. If DP[np, nt] is smaller than k,

then we find a match T whose edit distance to P is within k. Note that we only
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(a) (b) (c) (d)

Figure 5.4: Matching results using the crayfish data set. A zoomed-in
view is used to show a partial volume for clearer observation. (a) and (b)
show respectively, exact match results for patterns EE and FF, where E (F)
is a spiral pattern with large (small) torsion (Figure 5.2 (a)). (c) and (d)
show respectively, exact and approximate (k = 15) match results for pattern
(E|F)(E|F). (© 2014 IEEE. Reprinted by permission.)

need to traverse to a certain depth whose corresponding label string is shorter than

np + k/costi, where costi is a constant for insertion cost, since otherwise we would

have an edit distance larger than k. The benefit of implementing approximate search

on the suffix tree is that we only need to compute the edit distance once between P

and all the appearances of the same substring. Furthermore, if the traversal finishes

exploring a branch under a node u and starts to traverse another branch, the columns

in the table DP representing the edit distance between P and the label string on the

path from the root to u could also be reused.

The single character repetition symbol “+” and the multiple characters with common

features symbol “|” are implemented by extending the traditional edit distance. For

the single character repetition, a minimum number of repetition q is used to guarantee

that the pattern is significant enough for human perception. For example, if q = 3,

aaa is considered to be the same as aaaaa but not aa. For the multiple characters
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(a) (b) (c)

Figure 5.5: Using smoothed streamlines to capture high-level features. (a)
illustration of resampling on original streamlines. (b) illustration of resam-
pling on smoothed streamlines. (c) resampling on a streamline before and
after smoothing. The original streamline is shown on the left with a seg-
ment highlighted in a red rectangle. The smoothed streamline is shown on
the right with the corresponding segment highlighted in a green rectangle.
(© 2016 IEEE. Reprinted by permission.)

with common features, Figure 5.4 shows some search results using the crayfish data

set, where E is a character representing a spiral pattern with large torsion and F

represents a spiral pattern with small torsion. E and f correspond to e and f as

shown in Figure 5.2 (a) respectively. We observe from Figure 5.4 (a) that streamline

segments matched with EE are mostly spirals with large torsion, and those matched

with FF in (b) are mostly spirals with small torsion. In (c), streamline segments

include the results from both (a) and (b). If we enable approximate search, more

swirling streamline segments are detected, as shown in (d).
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5.5 Further Consideration

In this section, we discuss two points to further improve our FlowString approach:

first, we smooth streamlines to remove small scale features and capture high-level

ones; second, we introduce the universal alphabet to support queries and comparisons

across multiple data sets.

5.5.1 High-Level Features

Large-scale shapes or features at higher levels that contain small-scale features could

be challenging to detect, due to the extra characters created for small-scale features.

For example, in Figure 5.5 (a), the streamline segment forms a circle, but with a

small turbulent portion. Our resampling strategy will densely sample this portion to

capture the turbulent feature. This hinders the overall circular shape to be captured.

As shown in the Figure 5.5 (a), neither the neighborhood of the green sample point

nor the blue sample point can cover the entire circle. The corresponding shapes to

these two sample points are most likely to be identified as a turbulent segment and a

hook shape, respectively.

To allow the overall shape of a streamline segment to be correctly understood, we first
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smooth the streamlines, which removes small-scale features. As shown in Figure 5.5

(b), the turbulent portion of streamline is smoothed out, so that the circular pattern

can be captured at the red sample point. In Figure 5.5 (c), we demonstrate this

with a streamline traced in the crayfish data set. On the left, we observe that the

small features create denser sample points on the original streamline. The right one

has the streamline smoothed, and the sample points distribute more evenly along the

streamline.

In our implementation, we apply a simple Laplacian smoothing for several iterations.

In each iteration, we move a point on a streamline towards the center of its two

neighbors. More precisely, in each iteration, we update the position of a point pi with

λp′i + (1− λ)

(

p′i−1 + p′i+1

2

)

, (5.2)

where p′i, p
′
i−1 and p′i+1 are the positions of points pi, pi−1 and pi+1, respectively, and

λ is a factor that controls the smoothing speed. The smoothing speed is maximized

when λ = 0, which means that we update the position of pi with the center of its two

neighbors. In this paper, we use a moderate smoothing speed with λ = 0.5. Once

the smoothed streamlines are available, users can choose to include the smoothed

streamlines in a query. The query will then be performed on both the original and

the smoothed streamlines. Streamline segments matched on the smoothed streamlines
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will be mapped back to the original streamlines. The matched segments will always

be shown in the form of the original streamlines.

5.5.2 Universal Alphabet

The approach described above can be naturally extended to multiple data sets by

applying the alphabet generation procedure on multiple streamline sets produced

from different data sets. As a result, a universal alphabet will be generated for all

the data sets. This is possible because for different data sets or streamline sets, most

characters will still be similar, although certain characters might be absent in some

data sets due to the lack of corresponding features. In practice, we find that most flow

patterns can be captured by a limited set of characters, and the universal alphabet

can be generated using a moderate number of data sets that contain various flow

features. The universal alphabet is beneficial in two aspects. First, it will eliminate

the need to generate an alphabet for each data set, if the basic shape primitives

presented in one data set are already captured by the universal alphabet. Second, it

will provide a more natural way to compare flow patterns across multiple data sets.

Our universal alphabet is also generated using affinity propagation. Similar to the

alphabet generation procedure for a single data set, the universal alphabet is gener-

ated in two steps. The first step still computes the first-level cluster centers for each

127



data set independently. Then, we simultaneously consider all the first-level cluster

centers as the candidates for the universal alphabet, by computing the dissimilarity

values among them and applying affinity propagation for the second-level clustering.

Note that we can also generate the universal alphabet in an incremental way using

leveraged affinity propagation. Assume the data point set is P and the range of pos-

sible dissimilarity values is S, the entire dissimilarity matrix can be considered as

a mapping M : P × P → S. Affinity propagation considers all data points at the

same time and computes the best exemplars (i.e., clustering centers) from M . Unlike

affinity propagation, leveraged affinity propagation samples a subset of data points

P ′ ∈ P and computes the best exemplars from the mapping M ′ : P × P ′ → S. In

each iteration, leveraged affinity propagation keeps the best exemplars from the pre-

vious sample points and replaces the other data points with new sample points. This

iterative scheme could be applied to extend our alphabet to include extra features

from a new data set by a simple modification: in each iteration, we consider the

previous universal alphabet and a subset of data points from the new data set as the

candidates for the second-level cluster centers, i.e., characters.

The benefit of incremental clustering is mostly on the performance side. However, a

data set normally has hundreds of first-level cluster centers. This implies that affinity

propagation should be able to handle tens of data sets, which is enough to generate

the universal alphabet. Therefore, we prefer affinity propagation that considers all

first-level cluster centers at the same time, since it usually yields better clustering
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(a) (b)

(c) (d)

Figure 5.6: Alphabet widget (a), vocabulary widget (b), and query string
widget (c) with the solar plume data set. Streamline widget (d) with the
computer room data set. (a) shows the alphabet visualization where the
last character is created by the user to match either G, K or L. (b) shows
the first page of the vocabulary widget. (c) shows a query string in the
forms of text and polyline. (d) shows the user-selected query segment on the
upper-left subwindow (where two red spheres are used to delimitate the blue
segment as the query pattern), all streamlines on the lower-left subwindow,
and the query result on the right subwindow. (© 2014 IEEE. Reprinted by
permission.)

results.

5.6 User Interface and Interactions

To make our FlowString a useful tool to support exploratory flow field analysis and

visualization, we design a user interface for intuitive and convenient streamline feature

querying and matching. Our interface includes four major components: the alphabet,

vocabulary, query string, and streamline widgets, as shown in Figure 5.6. These
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(a) (b) (c) (d)

Figure 5.7: Circular patterns queried by MMM in “universal 1” alphabet
(Figure 5.11 (a)) at the user-specified scale using the two swirls data set. (a)
small-scale features. (b) medium-scale features. (c) large-scale features. (d)
histogram of feature scales. The red, brown and cyan rectangles represent
the selected scale ranges corresponding to (a), (b) and (c), respectively. (©
2016 IEEE. Reprinted by permission.)

components support visual query and result retrieval.

The alphabet widget visually displays all the characters, as shown in Figure 5.6 (a).

Users can construct a query string from this widget by clicking on the displayed

characters or typing in an input box. After clicking on each character, the query

string and the query result will be updated on the fly. Users can also select multiple

existing characters to create a new character, which can match with either of the

selected characters. For example, they can select G, K and L to create the character

G|K|L, as shown in the bottom of (a). Clicking on this new character, the query string

widget will append (G|K|L) to the current query string. The query string generated

from clicking on (G|K|L) five times is shown in (c). The vocabulary widget visualizes

all the words automatically detected from the streamline suffix tree, as shown in

Figure 5.6 (b). Users can click on a word to retrieve the corresponding pattern in

the flow field. They can also select multiple words in sequence to search streamline
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segments matching with the concatenation of those words. In the first row of Figure

5.8 on page 135, we show the selected words in the vocabulary widget and their

corresponding query result in the streamline widget. The query string widget displays

the query in both textual and visual forms, as shown in Figure 5.6 (c). Users can

freely change the textual query string and its visual form will be updated accordingly.

Several sliders are provided to adjust the parameter for k-approximate search, and

the thresholds of frequency and length for word generation. In Figure 5.6 (d), the

streamline widget shows the input streamlines at the bottom left, from which users

select a streamline. Users can then specify a segment of the streamline to query by

moving the two end points, which are shown as the red balls. In this example, a

“U”-shape segment is selected, and the query result is shown on the right of this

widget.

In addition, we provide a bar chart histogram for users to see the scales of matched

segments and specify a desired range of scales to further refine the query result. In

Figure 5.7, the circular pattern is queried by MMM, and the histogram of scales is

plotted in the bar chart as shown in (d). Then, users can brush the histogram to

select a range of scales for query. In (a), (b) and (c), we show the matched segments

at small, medium and large scales, respectively. The brushed ranges are indicated in

(d) by the red, brown and cyan rectangles, respectively. To compute the scale of a

matched segment, we follow the optimal scale computation in the registration of two

point sets [41]. Formally, if P = {p1, p2, . . . , pn} is the set of sample points on the
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Table 5.1

The ten flow data sets and their parameter values. The timing for matrix
is the running time for computing pairwise distance among the

neighborhoods of sample points. The timing for affinity propagation
clustering includes both the first- and second-level clustering. The column
“max dist.” shows the maximum dissimilarity between any two sample
point in that data set. The timing results are measured in seconds.

# sample # cluster max timing
data set # lines # points points 1st level # char. dist. matrix cluster setup

vessel 100 25606 1338 56 5 31.11 1.45 2.0 0.06
five c. p. 150 18618 1720 75 6 31.06 2.39 3.6 0.07
electron 200 24191 1415 38 4 13.98 1.62 3.3 0.05
tornado 200 200735 12363 141 6 29.80 126.06 115.0 1.77
two swirls 200 209289 13508 156 6 36.05 150.39 247.1 2.07
supernova 200 56210 8542 150 7 35.28 35.28 139.0 1.08
crayfish 150 164605 7590 178 11 33.77 33.77 89.6 0.97
solar plume 200 257087 12484 247 12 36.63 128.47 221.6 2.09
comp. room 400 361258 9772 262 11 35.91 78.94 75.2 1.43
hurricane 200 293572 4766 98 7 35.13 18.42 16.5 0.28

matched segment, the scale of this segment is given by

s =

√

√

√

√

n
∑

i=1

(pi − c)2, (5.3)

where s is the computed scale and c = (p1 + p2 + · · · + pn)/n is the center of points

in P .

5.7 Results and Discussion

We experiment FlowString with multiple data sets. The performance and image

results are presented in this section. We also discuss the impact of using universal
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alphabets and smoothed streamlines.

5.7.1 Performance and Parameters

Table 5.1 shows the configurations of ten data sets, the timing for the first- and

second-level affinity propagation clustering, and launching the program. For each of

the data sets, we randomly placed seeds to trace the pool of streamlines. All the

timing results were collected on a PC with an Intel Core i7-960 CPU running at

3.2GHz, 24GB main memory, and an nVidia Geforce 670 graphics card with 2GB

graphics memory.

Affinity propagation clustering can be time-consuming when performed on GPU. We

leveraged GPU CUDA to speed up this procedure. For most of the data sets, we

performed the clustering by affinity propagation using the GPU. For the solar plume

and two swirls data sets, a GPU implementation of leveraged affinity propagation was

used, since the memory needed to perform affinity propagation exceeds the limit of

graphics memory. Unlike affinity propagation which considers all the data points (and

the similarities among them) at the same time, leveraged affinity propagation samples

from the full set of potential similarities and performs several rounds of sparse affinity

propagation, iteratively refining the samples. Thus, the required memory space is

reduced with leveraged affinity propagation. For most of the data sets, the clustering
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step only took around one minute. For the two swirls data set which contains the

most number of sample points, it still could be completed in five minutes. We believe

that the timing for clustering is acceptable, since it only needs to run once for a pool

of streamlines.

The dissimilarity matrix computation can be performed in reasonable time using the

GPU. For the two swirls data set, it took 150 seconds to complete, and the costs for

other data sets were even less. Other than these preprocessing steps, the other steps

could be finished on the fly. It only took seconds to setup the program for a new run,

which includes the time for resampling, computing the dissimilarities between each

sample point and each character, and constructing the suffix tree.

Parameter setting is straightforward. The approximation threshold k, minimum num-

ber of repetition q, and minimum length and frequency for generating the vocabulary

are four parameters that users can configure. They could be adjusted to update the

query result in real time. The insertion and deletion costs are automatically decided

for each data set. To avoid frequent insertion and deletion, they are both assigned

twice the value of maximum dissimilarity between any two sample points in that data

set. This rule applies to all the following case studies.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.8: Case study for the crayfish data set. (a) to (d)
show streamline segments matched by four automatically generated
words. (e) to (h) show query results of (A|I)

+
(D|E|F|K)(D|E|F|K),

(A|I)(A|I)
+
(D|E|F|K)(D|E|F|K), (A|I)???(D|E|F|K)(D|E|F|K), and

(A|I)*(D|E|F|K)(D|E|F|K), respectively. (© 2014 IEEE. Reprinted by
permission.)

5.7.2 Case Studies

5.7.2.1 Crayfish

Figure 5.8 demonstrates query results of both automatically generated words and user

inputs using the crayfish data set. In the first row of Figure 5.8, the four words are

selected from a vocabulary of seven words, which are generated with the minimum

number of appearance and the minimum length set to 100 and 3, respectively. We

see that the word b’b’b’ mostly corresponds to streamline segments of “C”-shape.

The word ch’h’ finds those turbulent segments inside. The word d’d’d’ matches

segments with swirling patterns. Unlike those in Figure 5.4 (b), d’d’d’ is usually

135



an elliptical spiral instead of a circular one. Finally, the word iii corresponds to

streamline segments of “L”-shape on the outer layer along the boundary. We find

that most of words with clear patterns are repetitions of a single character. A word

with multiple characters often indicates a streamline segment that connects multiple

patterns, which is less distinguishable by human observers.

In the second row of Figure 5.8, we demonstrate an example of using user input

to search for a combined pattern that contains a straight segment followed by a

spiral pattern. As shown in Figure 5.2, characters A and I represent shapes that

start with straight segments and D, E, F and K are mostly swirling patterns. (e)

shows the query result for user input (A|I)+(D|E|F|K)(D|E|F|K), where + indi-

cates that character A|I could repeat multiple times. We then further refine the

query result by repeating character A|I, which ensures that the straight segment is

obvious enough for human perception. As shown in (f), the refined query matches

less streamline segments, but the straight segment can be better observed in most

of the matched segments. The query (A|I)???(D|E|F|K)(D|E|F|K) allows any pat-

tern represented by less than three characters to be inserted between the straight

pattern and the swirling pattern, which makes the resulting segments in (g) contain

more complex patterns. Finally, if we allow any pattern with arbitrary length to be

inserted by querying (A|I)*(D|E|F|K)(D|E|F|K), almost all the input streamlines

could be matched, since most of the streamlines contain a straight portion on the

outer layer and spirals inside the volume.
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(a) (b) (c) (d)

Figure 5.9: Case study for the tornado data set. (a) shows all stream-
lines. (b) shows query results for a user-selected streamline segment with
different settings. (c) and (d) show streamline segments matched by two
automatically generated words. (© 2014 IEEE. Reprinted by permission.)

5.7.2.2 Tornado

In Figure 5.9 (b), the query result on the left is matched by using the exact string

a’bbba’a’bbba’a’a’b, which corresponds to the user-selected segment. The query

result on the right is found by replacing each of the characters with a user-defined

character (A|B|E), since these three characters are similar. The exact string matches

only the segments that are almost the same as the query segment, while the modified

query matches more segments in the core of the tornado. Figure 5.9 (c) and (d) show

the segments corresponding to the words ccca and c’c’c’d, respectively. Characters

a and c are mostly circles, and character d matches the segments with “S”-shape

on the outer layer of the tornado. We observe that when c concatenates with a, it

corresponds to the small-scale circles. When c connects with d, it matches the large-

scale circles. This demonstrates that the scale of a character in a streamline depends

on its context, which ensures that the shape for a string is mostly determined.
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(a) (b) (c) (d)

Figure 5.10: Case study for the two swirls data set. (a) shows all stream-
lines. (b) shows the query result for a user-selected streamline segment with
the minimum number of repetition q = 1. (c) and (d) show query results for
a user-selected streamline segment with q = 0 and q = 1, respectively. (©
2014 IEEE. Reprinted by permission.)

5.7.2.3 Two Swirls

Figure 5.10 demonstrates query results of two user-selected streamline segments. In

(b), the query segment is one that connects a small spiral pattern and a large swirling

pattern. The corresponding query string is d’d’c’c’c’e’e’a’a’c’d’d’d’, which

matches only the query string itself. The reason is that the query string is somewhat

complicated, and even the very similar segments might vary for one or two characters,

especially in terms of the number of repetition. We then change the minimum number

of repetition q to one, and the query string is modified to D+C+E+A+C+D+. Note that

D+ at the beginning and the end allows the spirals to be displayed in the query result.

This query finds two more similar patterns, as shown in (b). In (c) and (d), the query

segment is one that connects two large swirling patterns. The query using the exact

string d’c’c’a’aba’a’c’d’d’d’d’d on that segment finds itself and another very

similar one. For the same reason as the previous example, we set q = 1. The query
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(a) (b)

Figure 5.11: Universal alphabets when matching with the solar plume data
set. The green bar on the left side of each character indicates its number of
appearance in the data set. The alphabets are generated using (a) all the
ten data sets and (b) five of the ten data sets, respectively. (© 2016 IEEE.
Reprinted by permission.)

string is changed to D+C+A+B+A+C+D+ accordingly. It matches more segments with

the same pattern. In (d), we manually change the query string to DC+A+B+A+C+D,

which ignores the swirling pattern at the two ends for a clearer observation.

5.7.3 Universal Alphabet

In this section, we compare the results of using alphabets generated from single data

set and universal alphabet. The comparison is performed both qualitatively and

quantitatively, followed by a detailed discussion on the discriminative power of using

universal alphabet.
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5.7.3.1 Qualitative Comparison

Figure 5.11 demonstrates two examples of universal alphabet when matching with the

solar plume data set. Figure 5.11 (a) shows the universal alphabet generated with all

the ten data sets, and Figure 5.11 (b) shows the universal alphabet generated from five

data sets (namely, crayfish, computer room, solar plume, supernova, and two swirl

data sets). Data sets used to generate the second universal alphabet are selected

according to their coverage of flow patterns. The five selected data sets are more

complicated and contain various kinds of flow pattern, so that they are more likely

to generate a meaningful universal alphabet. By comparing the shape and frequency

of appearance in the solar plume data set for each character, we observe that the two

universal alphabets are actually quite similar. The most common character is H in

the first alphabet and L in the second one. The shapes of these two characters are

almost the same. This relationship can be found between I and P, M and E, A and

B, E and K, and D and J, where the first characters in these pairs are from the first

universal alphabet and the second characters are from the second universal alphabet.

In Figure 5.12, we demonstrate the matching result for III using the first universal

alphabet with different data sets. The character I mostly corresponds to the small-

scale spirals. Figure 5.12 shows that in the hurricane, supernova, and computer room

data sets, string III finds us the small-scale spirals, which are difficult to notice and

140



(a) (b) (c)

Figure 5.12: The small-scale spirals matched by the character I in the
universal alphabet. The data sets used are (a) hurricane, (b) supernova,
and (c) computer room. (© 2016 IEEE. Reprinted by permission.)

Table 5.2

The ten flow data sets and their average and standard deviation of errors.
“uni 1” and “uni 2” correspond to the universal alphabets generated using
all the ten data sets and five of the ten data sets, respectively. “single”

indicates the alphabet for each data set generated using only that data set.
“uni 1 vs. single” and “uni 2 vs. single” show the differences of average

errors between the corresponding alphabets.

two solar comp.
vessel 5cp elec. tor. swirls super. cray. plume room hurr.

uni 1 average 7.61 6.90 4.52 5.35 4.48 6.31 7.49 6.35 7.19 5.61
std. dev. 1.70 2.05 1.62 2.01 2.32 2.36 1.94 1.98 2.57 2.19

uni 2 average 7.59 8.14 5.32 6.65 3.60 6.04 7.50 5.98 7.18 5.35
std. dev. 1.97 3.28 2.28 2.64 2.53 2.31 2.56 1.98 2.71 2.45

single average 6.63 6.15 2.56 3.93 3.84 5.1 6.89 5.56 7.61 5.01
std. dev. 2.54 2.86 1.84 1.94 2.77 2.43 1.92 1.98 2.49 2.54

uni 1 vs. single 0.97 0.75 1.96 1.42 0.64 1.25 0.60 0.79 -0.42 0.60
uni 2 vs. single 0.96 1.99 2.76 2.71 -0.25 0.99 0.61 0.42 -0.43 0.34

locate. However, if the alphabet from a single data set is used, the comparison of

the same flow feature across multiple data sets needs to start from the very first step

for every data set. Moreover, users will have to make the connection of strings or

words across data sets by themselves. Using the universal alphabet, users can simply

apply the previous query on the later data sets. Thus, the universal alphabet makes

it convenient to compare and explore flow patterns for multiple data sets.
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5.7.3.2 Quantitative Comparison

In addition to qualitative comparison, we also evaluate the effectiveness of different

alphabets through quantitative comparison. Table 5.2 shows the average and standard

deviation of errors for each data set using different alphabets. The error is given

by the Procrustes distance between the neighborhood of a sample point and the

corresponding character. We observe that the errors using the universal alphabet are

usually slightly larger, which is expected. Note that the errors using the alphabet

from a single data set is not always smaller due to the fact that affinity propagation

is not specifically designed to reduce the within-group variance.

We apply t-tests to evaluate differences between errors using the alphabet “universal

1” and “single”, and using the alphabet “universal 2” and “single” for each data

set. All the p-values are smaller than 1 × 10−26, indicating that for each data set

significant difference is found between the universal alphabets and the alphabet from

a single data set. This is not surprising with the large sample size and relatively small

standard deviation. According to the central limit theorem, the estimated variance

of sample averages is very small in this case. Thus, even small difference between

the sample averages could be significant. However, even if the errors are unlikely to

come from the same distribution, the differences between the averages are not large.

We observe in Table 5.2 that most of the differences are smaller than one, and the
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largest difference is 2.76 (between “universal 2” and “single” for the electron data

set). These value are relatively small compared to the maximum distance between

the neighborhoods of any two sample points, which is usually larger than 30 (Table

5.1). In addition, for the more complicated data sets, e.g., the crayfish, solar plume,

computer room, and two swirls data sets, we find that although the errors are usually

larger, the differences between errors from universal and single alphabets are actually

smaller. For example, the computer room data set has the largest average error with

the alphabet from a single data set, but the average errors even decrease with the

universal alphabets. In contrast, the data sets that have simple flow patterns, e.g., the

electron and tornado data sets, suffer from larger error differences. This is probably

due to the fact that the streamlines in these data sets are similar and better captured

by a small alphabet generated from a single data set. Thus, they are more likely to

be affected when we consider other data sets with different features.

5.7.3.3 Discriminative Power

Our results show that although the universal alphabet usually produces compara-

ble results for those complicated data sets, the discriminative power of the univer-

sal alphabet to simple data sets often reduces. The first row of Figure 5.13 shows

that the alphabet generated from only the electron data set produces a high-quality

vocabulary. The word aaa finds the mostly straight streamlines; bbb matches the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.13: The words of electron data set using the alphabets generated
from itself (first row), from all the ten data sets (second row), and from five
of the ten data sets (third row), respectively. (© 2016 IEEE. Reprinted by
permission.)

dissymmetric curvy streamlines; ccc corresponds to the symmetric curvy streamlines

with different winding angles. The second and third rows of Figure 5.13 shows six

words based on the universal alphabet generated from all the ten data sets and five

of the ten data sets, respectively. Although the words still distinguish streamlines

with different winding angles to some degree, the discriminative power apparently

decreases compared to the alphabet generated from a single data set. This is due to

the fact that the streamlines in the electron data set contain only simple patterns. If
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(a) (b)

Figure 5.14: Patterns matched by GGG (a) and OOO (b) in “universal 1”
alphabet using both the original and smoothed streamlines of the crayfish
data set. The yellow segments are matched on the original streamlines. The
blue segments are only matched on the smoothed streamlines. (© 2016
IEEE. Reprinted by permission.)

the electron data set is the only one to generate the alphabet, these patterns could be

well captured. However, when other data sets are considered, these clusters have to

compromise with other data sets. As a result, the discriminative power for this data

set is traded to enhance the overall effectiveness. As we observe in Figure 5.13, the

features shown in (a) and (b) are merged in (d), when all the data sets are considered.

On the other hand, since more complicated data sets already contain various kinds of

flow pattern, including other data sets might not introduce new patterns or increase

the in-group variance. Therefore, applying our approach on these kinds of data set

seems to produce more stable results.
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5.7.4 Smoothed Streamlines

In Figure 5.14, we query the crayfish data set using “universal 1” alphabet with both

the original and smoothed streamlines. The segments that are only matched on the

smoothed streamlines are highlighted in blue. In (a), the queried pattern corresponds

to GGG, which is a hook shape with a small circle-like pattern at one end. We observe

that the yellow segments matched on the original streamlines have exactly the queried

shape, but the blue segments are more likely to contain some turbulent portion of

the hook. In (b), a “U”-shape pattern is queried. The segments matched on the

smoothed streamlines seem to contain even more diversified shapes. But overall, they

are either in the “U”-shape or elongated ellipse shape, which can be considered as the

concatenation of two “U”-shape patterns. Actually, this query result depends on the

degree that we smooth the streamlines, because this degree determines which features

will be smoothed out. If the degree is large, more features will be removed, and the

query result will be more diversified when mapped back to the original streamlines.

5.8 Empirical Expert Evaluation

To evaluate the effectiveness and learning difficulty of FlowString, we collaborate with

a domain expert in turbulent flow (Dr. Raymond Shaw), whose research focuses on
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understanding the influence of turbulence on cloud particle growth through condensa-

tion and collision. Although three tasks were designed, this study aimed at providing

comprehensive reasoning on the effectiveness instead of quantitative results. Dr. Shaw

was informed that the comments on reasons behind his rating and selection were more

important than the accuracy of tasks. The three tasks are:

• Task 1: In the solar plume data set, find the streamline segments of the small

spiral pattern and those of the turbulent flow pattern.

• Task 2: In the crayfish data set, find the streamline segments corresponding to

the pattern of a hook connecting with a spiral, and those corresponding to the

pattern of small repeated spirals.

• Task 3: In the two swirls data set, find all the common flow patterns.

For the first two tasks, images of the specific flow patterns to find are provided along

with text description. For each task, similar questions are asked. These questions

can be summarized in three categories:

• Rate the effectiveness in the five-point Likert scale of the vocabulary, approxi-

mate search, multiple characters with common features, single character repe-

tition, and wildcard characters.

• Select the most helpful functions to accomplish the tasks.

• Provide detailed comments on the rating and selection.
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5.8.1 Comments

After learning the features and interface of the program and practicing on various

data sets, Dr. Shaw performed the tasks and provided his feedback. We organize and

present his feedback as the following. In general, FlowString is novel and effective.

It provides multiple searching features to identify and locate flow features. The

characters successfully capture the basic pattern of flow features. The overlapping of

six sample points for two neighboring characters enforces their unique shapes, which

is powerful for identifying specific features of interest. In many cases, the repeated

use of a single character is very useful for narrowing down the matched results to

a specific pattern. In addition, users can define a feature that combines multiple

characters which appear similarly. This greatly enhances the ability to locate specific

types of flow features. The ability to work with the alphabet, including wildcard

characters, allows for great flexibility. Even early in the evaluation the question mark

was found to be especially useful in matching a set of characters in a more flexible

or general way. For example, if a set of characters was combined so as to search for

a specific flow structure of interest, but had become too narrowly defined, inclusion

of one or more question marks efficiently allowed the query to become more general.

As experience was gained with the range of alphabet capabilities, aspects such as the

“prefer user alphabet” proved to be powerful in identifying specific types of features.

In particular, the ability to impose directionality on the ordering of the characters is
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very useful in finding specific geometries of interest.

Visual aspects of FlowString were found to be very effective. Specifically, the interface

visualizes characters and words effectively. In this regard, the ability to rotate indi-

vidual characters in 3D is very important, e.g., for observing the torsion of a spiral.

Certain characters, when viewed as 2D projections, initially look like minor variations

on a theme, but when viewed in 3D their differences become much clearer. The user

interface tools for rotating and viewing shapes are easy to learn. The streamline wid-

get was another graphical interaction tool that proved to be very simple to use and

efficient in its ability to allow interaction between the streamlines themselves and the

alphabet. In fact it was found that this widget was very useful in “teaching” users

how to use the alphabet, e.g., the important aspects like repeated characters.

The vocabulary was found to be one of the most powerful tools, especially for a

new user. In effect, the vocabulary has already identified dominant flow structures,

even when these features were complex, varying widely in shape and across scales.

For example, a search was initiated for what physically could be described as an

entrainment event in the crayfish pattern, specifically a long, straight steamline near

the outside of the flow, that ends in a tight swirl as it enters the more complex

central flow region (e.g., see outer flow features in Figure 5.8 (h) on page 135). Such

entrainment events would be typical of a flow pattern of interest in exploring a physical

system. Initially the pattern was searched for by using the streamline widget to
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select a specific example, and then the resulting word was generalized by including

wildcard characters, etc. Subsequently, when moving to the vocabulary approach,

it was found that a variety of complex but similar streamline patterns were quickly

identified, including the same pattern that was originally selected using the streamline

widget. Ultimately, the vocabulary proved not only more efficient, but more effective

in generalizing the query.

Dr. Shaw further indicated that the scale independence of the method is powerful,

once fully appreciated. This would be similar to the concept of a wavelet display, in

which correlation is shown as a function of position and scale. In terms of learning dif-

ficulty, FlowString has sufficient basic features that a user can achieve an impressive

range of tasks even after minimal training. FlowString has a range of powerful but

more subtle capabilities and benefiting from the full range of these features requires

practice and development of experience. Furthermore, it is important to discuss spe-

cific features of this tool with an expert for full understanding. The biggest challenge

for a scientific user, in his opinion, is the mental picture originally brought to the

problem of scale dependence of the flow features and its relationship to streamline

sampling resolution. It is crucial to understand that the character matching involves

a resampling of seven points, i.e., that the identification of features through cumula-

tive curvature results in the ability to identify similar shapes or features across a wide

range of scales. With around an hour of experimenting with FlowString alphabet and

vocabulary options the ability to find specific types of features increases rapidly.
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5.8.2 Rating and Multiple Selection Questions

Each of the five query features, i.e., the vocabulary, approximate search, multiple

characters with common features, single character repetition, and wildcard characters,

was rated for each of the tasks. The rating scores of the effectiveness of these features

echo these comments. Two features were not rated because they were not used in

the tasks. For the thirteen scores in the five-point Likert scale we received, ten of

them were rated four points, two were rated five points, and one was rated three

points. In the first task, Dr. Shaw felt that every query feature is useful in some

aspect, and rated each of them four points. Among these query features, he selected

approximate search and single character repetition as the most helpful ones. This

might due to the fact that these two features require less experience to use, since

the approximate search can reduce the difficulty in composing the exact query string,

which is convenient for beginners and the concept of single character repetition is

straightforward.

In the second task, he rated the approximate search five points and the single char-

acter repetition three points. In addition, he selected the alphabet widget to be the

most helpful one to compose the query string, and multiple characters with common

features and wildcard characters to be the most effective ones to refine the query

results. This selection is consistent with the characteristics of the crayfish data set,
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where each streamline might cross multiple flow features, with less single character

repetition. In this case, the multiple characters with common features can group

similar flow features, and the wildcard characters can deal with the somewhat turbu-

lent segments connecting the query patterns. This indicates that with only tens of

minutes of experience with the tool, users will be able to determine the most effective

features to use, even if the use of those features is not trivial.

In the third task, Dr. Shaw rated the vocabulary widget to be very useful to find

all flow patterns with five points. He did not use the approximate search and wild-

card characters in this task, since he was confident to choose which features to use.

He selected the vocabulary widget, streamline widget, and multiple characters with

common features to be the most helpful features. The streamline widget was used to

determine the encoding of a segment when composing the query string. Overall, from

these observations, we feel that although users might experience some difficulties in

using the tool at the very beginning, they should be able to understand the use of

different features and determine the appropriate features according to the given task

within one or two hours.
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Chapter 6

VesselMap: A Web Interface to

Explore Multivariate Vascular

Data

6.1 Overview

Visualization of vascular data sets, especially revealing blood flow patterns in the

aneurysm regions and relationship among the blood flow and multiple scalar proper-

ties, is critically important to understand the formation and ruptures of aneurysms

and develop comprehensive treatment plans.
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Toward this end, we develop VesselMap, a novel web-based solution to assist medical

experts in exploring vessel data and analyze the relationships among different prop-

erties. VesselMap is centered on a scheme that enables 2D illustrative visualization of

parameters for true 3D or 4D data. Using this scheme we first flatten the 3D vessel

structure and corresponding parameters into a 2D plane. Then, all subsequent inter-

actions can be operated in 2D. Brushing is supported on VesselMap, so that users can

simply drag the mouse to select a set of blocks. This provides a much easier way to

specify and label regions of interest and eliminates the occlusion of vessel branches.

It also serves as a clearer and paper-friendly overview, since rotation and zooming are

not available on a printed report. Multiple types of queries are supported by this 2D

visualization together with a histogram visualization. Users can query the property

distribution over a region, or query regions by specifying a set of value ranges of

the scalar properties. Furthermore, a segmentation scheme is provided to investigate

local characteristics for any parameter. The groups generated from segmentation can

be effectively displayed on the 2D illustration, and their differences are evaluated and

displayed in a difference matrix. Users can easily discover the relationships among

groups and properties. Finally, the web-based environment places a minimum amount

of effort to setup and requires only the displayed information to be transferred.

Our application consists of a web front-end client for visualization and user interface,

and a back-end host for computation. The host and client talk to each other with mes-

sage passing. The host loads the data and performs the histogram computation and
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segmentation based on query messages from the web front-end, which is described in

Section 6.2. The web front-end helps visualize the computed information in multiple

forms and interacts with users, as described in 6.4.

6.2 Data Processing

6.2.1 Data Reduction

The 3D vessel flow field data set we deal with contains multiple time steps and each

time step might correspond to multiple vector/scalar fields. However, due to the

inherent structure of vessels, they only occupy a small portion of space in the entire

volume. Furthermore, it might not be necessary to load all time steps and properties

into memory at the very beginning. Instead, the volumes could be loaded on demand

when the program runs. For each volume, to reduce the data to be loaded, we first

evenly partition it into data blocks, and then the 3D vessel flow is analyzed. For

efficiency, data blocks that do not contain any vessel structure will not be loaded.

Two look-up tables are used to record the data loading status. Figure 6.1 illustrates

this data structure. The first look-up table is a mapping from a time and property

name pair to an index indicating the starting position of memory which contains the

corresponding volume. The second look-up table indicates the memory position of
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time n: pressure

time n: wss

time n-1: pressure

time n-1: wss

time 1: pressure

time 1: wss

...
...

...
...

block index table

original data

- - 1 2 - - - - - - - -

1 - - - - - - - - - - -
- - - - - - - - - - 2 -

data in memory

volume index table

Figure 6.1: Two levels of look-up tables for data reduction.

each data block within a volume. Note that we only need one look-up table for the

data blocks, since the vessel structure is the same for all the time steps and properties.

If the look-up table indicates the volume being visited does not reside in memory, it

will be loaded. If the look-up table indicates the block being visited is not loaded,

the visit will just be ignored, since this means that the data block does not contain

any vessel structure and need not to be studied. The blocks that contain the vessel

structure are marked in gray color. Taking the first row of a volume as an example, all

blocks are empty except for the third and fourth block. An index in the block index

table (first look-up table) contains a single integer indicating the position of this data

block in a volume, e.g., the third block is the first non-empty block and marked by

“1”. If an index corresponds to an empty blocks, it is marked by “-”. The volume

index table (second look-up table) has a similar structure. Assuming that we only

load the “pressure” volume for the first and n-th time step, the indices corresponding
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to these two volumes indicate the positions of these two volumes in the memory. For

the volumes that are not loaded yet, they are marked by “-”.

6.2.2 Histogram Computation

The computation of statistical information of voxels/particles is implemented using

OpenCL in order to utilize the parallelism of GPU/CPU, where each thread deals

with one voxel/particle. In this way, the removal of empty data blocks also reduces the

number of threads needed, since a less number of voxels are counted. For simplicity,

the number of bins for each histogram is defined by a single value. The range of

values being studied is first initialized as the entire value range of a property, and can

be later modified by users manually. The value of each voxel/particle is quantized

uniformly in that range to decide which bin this voxel/particle belongs to. The host

will compose the results in JSON format and send it as a text string to the web front.

6.3 Algorithm

Our exploration is guided by statistical information, mostly histograms of particles

with different properties. The property values of particles are either interpolated in

scalar volumes (e.g., pressure and WSS) or derived from particle tracing (e.g., age).
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Users can freely interact with the histograms to select a combination of bins in one or

more histograms to filter particles and highlight the corresponding region. In addition,

we propose an approach to map the 3D vessels to a 2D VesselMap, while preserving

its perceptual structure. Users can brush the 2D VesselMap or select a group from

our segmentation to specify a region of interest, and the histograms computation will

be constrained in the user-specified region. They can further interact with histograms

or select regions to gradually refine their query.

We provide a segmentation of vessel structure to compare the histograms in different

regions, so that local behavior can be observed. The segmentation can be guided by

different mapping functions to provide a variety of results. The differences of regions

are derived from their histograms. In addition to the traditional measures which

usually compute a single value to represent the difference, we visualize the difference

using the quantile-quantile plot (Q-Q plot) [8]. An interface to show all differences

between every pair of groups is developed for global investigation.

Our system consists of a web front-end client for visualization and user interface, and

a back-end server for computation. The server is responsible for histogram computa-

tion, VesselMap generation, and flow visualization. While the web front-end displays

visualization results, it also interacts with users and requests the server to update

visualization results through messages. Figure 6.2 shows the interface of VesselMap.

The interface consists of three regions. The 2D VesselMap representation and the 3D
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(b)(a)

(c)

Figure 6.2: VesselMap Interface. (a) 2D VesselMap. (b) 3D particle ren-
dering. (c) Histograms.

particle/streamline rendering are shown at the top-left and top-right regions of the

web page. The bottom region contains multiple tabs, including histograms, particle

inlet information, and group comparison.

6.3.1 VesselMap: a 2D Representation

The entire volume is evenly partitioned into small blocks (e.g., 3 × 3 × 3 in this

paper), and only blocks containing the vessel structure are loaded. These 3D blocks

approximate the vessel structure. We map the blocks to points in 2D, so that they
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can be displayed on a webpage with lower overhead and easier interaction. The

mapped points are then triangulated to form a mesh structure representing the vessel

structure. To build the connection between the original 3D volume and the 2D image,

the mapping should preserve the local shape of vessels. We formulate this as a 2D

graph layout problem, and achieve the desired layout using a minimization approach.

Assuming the blocks that contain some of the vessel structure are B = {b1, b2, · · · , bn},

the neighboring blocks of bi are those whose distances to bi are smaller than or equal

to a given threshold δ, and the non-neighboring blocks are those whose distances to

bi are larger than δ. The energy of this mapping is defined as follows:

∑

bi∈B

∑

bj∈B

cij, where

cij =















w≤ |dij − eij| , eij ≤ δ,

w> |dij − gij| , eij > δ.

(6.1)

where cij is the cost between bi and bj, w≤ and w> are weights for neighboring and

non-neighboring blocks, respectively, dij is the distance between bi and bj in the 2D

image, eij is their Euclidean distance in the original 3D volume and gij is their geodesic

distance in the 3D vessel structure. Intuitively, for neighboring blocks, we preserve

their original distances to maintain the local shape of vessels. For non-neighboring

ones, using the geodesic distance will separate two blocks in different vessel branches

to avoid occlusion. Figure 6.3 (a) shows the mapped points with triangulation, we

observe that the shape is still similar to that in 3D, but occlusion is removed.
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(a) (b)

Figure 6.3: Mapping from the 3D volume space to a 2D VesselMap rep-
resentation using the VDS1. (a) the mesh structure of VesselMap. (b)
streamline visualization with a semi-transparent vessel structure.

Considering block centers as point clouds, the geodesic distance is approximated by

the shortest path between two points. Given a threshold ǫ, we initialize the geodesic

distance matrix as follows:

gij =















eij, eij ≤ ǫ,

∞, otherwise.

(6.2)

where eij is the Euclidean distance between the centers of blocks bi and bj. Running an

all-pair shortest distance algorithm (e.g., Floyd-Warshall algorithm) on this distance

matrix, we can obtain the approximated geodesic distance in O(n3) time, where n is

the number of blocks. In our implementation, we use ǫ = 1.5, which is slightly larger

than the distance between two neighboring blocks. This means that at the initial
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stage, only the distances between neighbors are known, and the distances between

non-neighboring blocks are then approximated by the shortest paths.

To obtain the positions of blocks V = {v1, v2, · · · , vn}, where vi is the position of block

bi, Equation (6.1) is represented as a matrix, so that the minimization is performed

by solving a linear system in a least-squares sense. Since in these equations dij =

√

(vi − vj)2 is not linear, we propose a scheme to solve them in multiple iterations. Let

V = {v1, v2, · · · , vn} be the desired positions and V ′ = {v′1, v′2, · · · , v′n} be the current

positions. Then a target distance tij is achieved by moving the two blocks along the

line segment connecting them. Note that the target distance tij is eij for neighboring

blocks and gij for non-neighboring blocks. In this way, the equation |dij − tij| is

rewritten in the form of |(vi−vj)− tij(v
′
i−v′j)/(|v′i−v′j|)|, where tij(v′i−v′j)/(|v′i−v′j|)

indicates that current positions v′i and v′j are moved along the line passing them to

achieve the target distance tij. Applying the least square method will provide us a

new set of positions based on the current positions. We will repeat this procedure

until the positions do not change or some predefined number of iterations is achieved.

6.3.2 VesselMap Segmentation

In the next stage, VesselMap is segmented into regions. The connection among the

segmented regions form what is known as the nerve of VesselMap. Inspired by Singh
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et al. [95], we develop this segmentation scheme to divide the vessel structure at the

block level based on a mapping function that assigns each block a scalar value. The

regions generated from segmentation serve as a starting point to investigate their local

behaviors. The nerve of VesselMap provides an abstract overview of the vessel data.

Depending on the selection of mapping function, the nerve of VesselMap conveys

different information. For example, if the geodesic distance from a block to the inlet

is used, it represents the shape of the vessel structure; while if a scalar property in a

block is used, the nerve of VesselMap may represent the topological structure of that

property.

6.3.2.1 Background

The construction described in this section is motivated by the concept of the nerve

of a covering in the field of topology. We refer the readers to [37] for background on

topological space and simplicial complex, and only provide a brief description here.

A finite covering U = {Uα}α∈A of a topological space X is a collection of subsets Uα

of X whose union is the entire space X, where A is a finite index set. The nerve

N(U) of a finite covering U is a simplicial complex whose vertex set is the index set

A, and a k-simplex {α0, α1, ..., αk} ∈ N(U), if and only if Uα0
∩ Uα1

∩ · · · ∩ Uαk
6= ∅.

However, this requires a meaningful covering to construct the nerve, which is usually

not immediately available. In practice, we often obtain the covering of the space X
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through a parameter space Z that is equipped with a covering. Let X and Z be two

topological spaces and f : X → Z be a continuous map. If U = {Uα}α∈A is a covering

of Z, then {f−1(Uα)}α∈A is a covering of X. We denote f−1(Uα) =
⋃Nα

i=1 f
−1(Uα)i,

where each f−1(Uα)i is a connected component of f−1(Uα)i and Nα is the number of

connected components.

6.3.2.2 Our construction

We consider the space of all blocks B and a map f : B → R, which assigns

each block a real number. Assuming the range of f is [rmin, rmax], the subsets

{[rmin, r1], [r2, r3], ..., [rk, rmax]} is a covering of [rmin, rmax], where ri+1 < ri < ri+2, and

[ri−1, ri] and [ri+1, ri+2] are two overlapping subsets. Considering the interval [0, 10]

as an example, {[0, 4], [3, 7], [6, 10]} is such a covering of [0, 10]. Let U = {Uα}α∈A be

a covering of R, then the set Ū = {⋃Nα

i=1 f
−1(Uα)i}α∈A forms a covering of B. Note

that each element f−1(Uα)i ∈ Ū is represented as a vertex in the nerve of VesselMap.

Simply, given a mapping function f : B → R, we first determine the minimum

and maximum of mapped values, i.e., rmin, rmax. Then, we evenly divide the range

into overlapping sub-ranges, and each block corresponds to one or more sub-ranges

according to its mapped value. Finally, connecting the neighboring blocks that cor-

respond to the same sub-range forms a set of connected components, which serve as

the vertices in the nerve of VesselMap, denoted as V = {v0, v1, . . . , vk}, where k is
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(a) (b)

Figure 6.4: The segmentation and the nerve of VesselMap using the
geodesic distance to the inlet as the mapping function. The result is col-
ored by groups of blocks. The rectangle nodes and the edges connecting
them show the nerve of VesselMap. (a) Blocks are grouped by their dis-
tances to the inlet. (b) Blocks are grouped by the vorticity values of the
particles. In this case, the blocks that do not contain any particle are not
grouped and are colored in white.

the number of connected components. We name each connected components a group

of blocks.

For the nerve of VesselMap, we only consider simplices up to dimension one in the

nerve of a covering, i.e., vertices and edges. Therefore, only the connections between

two vertices are taken into consideration. Following the previous definition, an edge

(1-simplex) eij = (vi, vj) is in the nerve of a covering, if and only if Ui∩Uj 6= ∅, where

Ui and Uj are subsets in the covering corresponding to vi and vj, respectively. In our

context, if two groups of blocks share some blocks in common, an edge will be added

between them in the nerve of VesselMap.

However, this procedure generates segmentation results with overlapping. We further
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simplify the procedure and divide the range of f into non-overlapping sub-ranges, and

therefore, the groups are non-overlapping as well. In this case, an edge eij = (vi, vj)

is in the nerve of VesselMap, if a group represented by vi contains a block bp that is a

neighbor of some block bq ∈ vj. Figure 6.4 shows two examples of the segmentation

and the nerve of VesselMap. In Figure 6.4 (a), the neighboring blocks whose geodesic

distances to the inlet fall into the same range are grouped together. This segmentation

produces similar results as those approaches that consider the shape of structures for

segmentation. In addition, the corresponding nerve demonstrates the topological

structure of the vessel.

6.3.3 Comparing Regions and Properties

One of the major goals of our application is to guide users to explore the rela-

tionships among properties. However, we feel that the commonly used approaches

(e.g., correlation coefficients) only provide one single value indicating the difference,

which fails to answer how they differ from each other. In our approach, in addi-

tion to the traditional difference values, we use Q-Q plot to capture the details.

Quantiles are points taken at regular intervals from the cumulative density function

(CDF) of a random variable. The concept of quantiles differs from percentiles in the

sense that quantiles are indexed by sample fractions instead of sample percentages.

Generally, the p-th quantile Q(p) of a random variable Z is the value z such that
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(a) (b) (c)

Figure 6.5: Quantile-quantile plot examples. The correlation of quantiles
is mapped to the background color of the plot. The ranges of quantiles are
mapped by two blue bars. The two distributions in (a) are very similar;
those in (b) are less similar; and those in (c) are least similar.

P (Z ≤ z) = p. The Q-Q plot for two random variables Z1 and Z2 plots the quantile

pairs < QZ1
(p1), QZ2

(p1) >,< QZ1
(p2), QZ2

(p2) >, · · · , < QZ1
(pn), QZ2

(pn) > on a

2D plane, where p1 < p2 < · · · < pn are equally spaced.

Figure 6.5 shows three examples of the Q-Q plot. For a clearer view, the plotted

points always occupy the entire space, i.e., they start from the bottom-left corner

and end at the top-right corner. In addition, a blue bar is used to indicate the

local value range in a group with respect to the global value range in the volume.

In (a), the two distributions are almost identical and the points are mostly aligned

along the diagonal. In (b), the two distributions are less similar. The slope of the

Q-Q plot is first steep and then becomes flat. This indicates that the distribution

corresponding to the x-axis has slightly higher probabilities for the smaller values

while the distribution corresponding to the y-axis has slightly higher probabilities for

the larger values. In (c), the two distributions are least similar. The slope of the Q-Q

plot is almost flat for a large portion of quantiles. This indicates that the distribution

corresponding to the y-axis has very high probabilities for the smallest values. Thus,
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inlet

inlet

(a) (b) (c)

(d) (e) (f)

Figure 6.6: Cross filter and boolean filter for refining query on histograms.
The first row shows the cross filter and the second row shows the boolean
filter. The selected ranges in histograms are highlighted in red rectangles. (a)
and (d) show the interface of visualizing histograms and selection of bins.
(b) and (e) show the highlighting results on VesselMap, where red blocks
contain particles fulfilling the selection criteria and green ones do not. (c)
and (f) show the highlighting results of particles in the original 3D volume.

a Q-Q plot provides more information on how the two distributions differ from each

other.
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6.4 User Interface and Interaction

Our interface consists of three components: VesselMap, flow visualization, and infor-

mation interface, as shown in Figure 6.2 on page 159. VesselMap displays the 2D

representation of vessel structure. A blue bar is shown to indicate the inlet where

particles are released, as shown in Figure 6.6 (b). When histogram or particle inlet

information is displayed, the triangles are colored in red or green: red indicates blocks

in the triangle containing queried particles, and green indicates blocks in the triangle

containing no queried particles. When group comparison is displayed, the triangles

are colored according to the groups they belong to. Flow visualization displays the

vessel surface as a semi-transparent mesh and the flow inside the vessel, as shown in

Figure 6.6 (c) and (d). Flow can be visualized as particles, streamlines or pathlines.

Flow visualization is computed by the server, and only the resulting images are sent

to the webpage. Users can select six orthogonal directions (i.e., head, feet, anterior,

posterior, left and right) to view the data, or a predefined direction specified on the

server. Information interface contains four tabs: cross filter, boolean filter, parti-

cle inlet visualization, and group comparison. Cross and boolean filters both contain

histogram visualization, where users can interact with the histograms to filter the par-

ticles and highlight regions in the 2D VesselMap. Particle inlet visualization shows

the particle distribution over the inlet plane that feeds the user-specified region.

169



In this application, all particles are released from an inlet plane specified by a user

defined plane that cuts through a vessel branch. Note that, when referring to a

property of particle, we use the term “particle inlet”, or simply “inlet”, to indicate

the position where a particle is released in the seeding plane, instead of a specific

inlet among multiple inlets. Group comparison demonstrates the differences among

groups of blocks generated from the segmentation.

6.4.1 Histogram Visualization and Filtering

Our method visualizes statistical information of different properties, such as velocity,

vorticity, WSS, particle inlet and pressure, in real time. Users can specify a region

of interest so that the histogram will be generated from particles in that region. If

it is not specified, the entire volume will be taken into consideration for histogram

generation. As shown in Figure 6.6 (a) and (d), the histograms are shown as bar

charts and the selection of a certain range of property values to further refine the

histogram computation can be directly performed on those bar charts. This will be

very helpful for domain experts, since finding the regions that meet certain criteria is

a common task, e.g., finding the region with high pressure and low WSS. We provide

two methods to specify the refining query criteria: cross filter and boolean filter.

For cross filter, users can mouse over multiple bins of a histogram, so the computation
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of all other histograms will be restricted to these selected bins, meaning that only

the particles falling into the selected ones are used to generate the histograms. If

multiple histograms are selected, the computation of all non-selected histograms will

be restricted by the selected ones; and any selected histogram will be restricted by

other selected ones but not by itself. The first row of Figure 6.6 shows an example of

cross filter. In (a), the bins corresponding to lower velocity and higher pressure are

selected using cross filter. The blocks and particles are also highlighted according to

the selected bins, as shown in (b) and (c). Those particles that belong to the selected

bins are highlighted in red, while other particles are displayed in green.

Boolean filter behaves similarly. Nevertheless, instead of brushing across the bins,

users need to click on multiple bins to specify the refining criteria. Considering the

selection status of each bin as a boolean, the selected bins in the same histogram are

connected by the or operator, while those in different histograms are connected by

the and operator. The constraints on different histograms are the same as cross filter.

The second row of Figure 6.6 demonstrates an example of boolean filter. Eight bins

of inlet are selected, which means only particles released from these eight positions

will be counted. In addition, a bin of age is selected to further constrain that only

the particles with small age are counted.

Note that using cross filter, users can select a portion a bin, and the corresponding

range will be interpolated. But they are not able to select two disjoint ranges for
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inlet

inlet

(a) (b) (c)

(d) (e) (f)

Figure 6.7: Visualization result using the VDS2. The first row shows the
query of particles with large age. The second row shows the query regarding
the aneurysm. (a) and (d) are histogram visualizations. (b) and (e) are
VesselMap representations. (c) shows the queried particles with large age in
the original 3D volume. (f) shows the inlet heat map associated with the
aneurysm.

query. Using boolean filter, users can select disjoint ranges. But for each selected

bin, the entire range of the bin is used.
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(a) (b) (c) (d)

Figure 6.8: Contributing particle distribution at a flow inlet. (a) shows the
user-selected region on VesselMap. (b) is the heat map that indicates the
number of contributing particles released from each position on the seeding
plane. In the first row, the region of interest is the aneurysm. In the second
row, the region of interest is a segment of a vessel branch highlighted in red.

6.4.2 Particle Inlet Visualization

Particle inlet visualization displays the number of contributing particles in a user-

specified region for each inlet position using a heat map. The heat map is a commonly

used graphical representation for a matrix, where each entry in the matrix is repre-

sented using color. In our case, each small color block on the heat map corresponds

to a position on the inlet plane. This plane is displayed as a blue bar in VesselMap,

as shown in Figure 6.7 (b). In flow visualization, the inlet plane is shown as a trans-

parent box with white boundaries, and the particles on the inlet plane is colored in

blue, as shown in Figure 6.7 (c). The color in the heat map indicates the number of

particles originated from that specific region on the seeding plane which are currently

in the region of interest. Users can interact with VesselMap to specify the region of

interest, as shown in Figure 6.8. Note that some blocks in the selected region are
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(a) (b) (c) (d)

Figure 6.9: The relationships among velocity distributions of groups of
blocks segmented according to their distances to the inlet. (a) the difference
matrix. (b) a zoom-in view focusing on the groups from G0 to G8. Cell
(G0, G8) is clicked, and row G0 and column G8 are highlighted. (c) and (d)
the segmentation result and particle visualization with groups G0 and G8
highlighted.

still colored in green because these blocks do not contain any particle. Figure 6.8

shows two heat maps with respect to the aneurysm and a segment of vessel branch,

respectively. This information might help medical experts identify the vessel branches

that feed the aneurysm and the locations to release drugs that will be delivered to

the desired location.

6.4.3 Group Comparison

In the segmentation, the vessel structure is divided into several groups of blocks

guided by some property. The group comparison interface is designed to investigate

into the differences of histograms among these groups. Note that the property for

histogram computation is specified by users, and could be different from the one that

guides the segmentation. In this way, the local behaviors and relationship between
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properties can be better studied. The differences are organized in an n × n matrix,

where each cell shows a difference value together with a Q-Q plot indicating how the

two distributions differ. All groups are sorted by decreasing numbers of particles in

them, and arranged left to right and top to bottom in the matrix. In Figure 6.9, (a)

shows an example of the difference matrix interface. Users can use this interface to

narrow down to some region of interest. By clicking a cell in the difference matrix, the

row and column containing that cell will be highlighted, as shown in (b). In addition,

the corresponding groups and particles will be highlighted in VesselMap and particle

visualization as well, as shown in (c) and (d), respectively.

6.5 Results

The current segmentation is based on the average values computed at a certain time

step. Otherwise, segmentation may change over time and the relationships among

groups can be difficult to perceive. Thus, we only present the results using steady

fields in this section, although our approach can be used on unsteady data. The two

data sets we used are vascular data set 1 (VDS1) and vascular data set 2 (VDS2),

with dimension of 108 × 60 × 84 and 45 × 63 × 78, respectively. The timing results

were collected on a PC with an Intel Core i7-3820 CPU running at 3.6GHz, 16GB

main memory, and an nVidia Geforce 670 graphics card with 2GB graphics memory.

Even leveraging the power of GPU, the generation of VesselMap dominates the timing

175



cost, as it requires to solve multiple linear systems. For the VDS1 with 1095 blocks,

the corresponding VesselMap took 55.8 seconds to compute. For the VDS2 with 1482

blocks, it took 137.6 seconds. We feel that this performance is still acceptable, since

it only needs to be computed once for each data set. The histograms are updated

using GPU, and can be performed in real time.

6.5.1 Case study: VDS1

We query for the particles with large pressure and small velocity values, as shown in

the first row of Figure 6.6 on page 168. VesselMap and particle visualization both

show that the queried particles mostly reside in the aneurysm and those regions where

vessel branches bifurcate. We observe from the inlet histogram that most of these

particles are released from the positions corresponding to four bins. In the first row

of Figure 6.8, we investigate the contribution of each position on the seeding plane to

the aneurysm. Note that some blocks in the selected region are still in green because

they do not contain any particle. Particle inlet visualization indicates that most

particles are released in a small region, which is consistent with the inlet histogram.

In the second row of Figure 6.8, a segment of a vessel branch is selected, and the

contribution of each position in the inlet plane is somewhat uniform. In the second

row of Figure 6.6, a bin with small age and eight bins of inlet are selected. We

observe the similar trend that the inlet positions corresponding to the particles with
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small age values are mostly evenly distributed. It is also obvious that the velocities of

these particles are more uniformly distributed and more particles with higher vorticity

values are selected, compared with the histograms in the first row of Figure 6.6. From

VesselMap, we also observe that most queried particles are in one vessel branch. This

indicates that particles in this branch spend less time in the aneurysm.

In Figure 6.4 (b) on page 6.4, the segmentation result of the VDS1 guided by the

vorticity shows that more groups are generated around the neck of the aneurysm and

around an outlet of a vessel branch. This indicates that the average vorticity values

of blocks in these regions vary more dramatically.

The segmentation guided by the distances to the inlet better preserves the shape of

the vessel structure, as shown in Figure 6.4 (a). We use the difference matrix to

analyze the differences of velocity distributions among groups. Note that the groups

that do not contain any particle will be considered as entirely different from other

groups, and the corresponding cells in the difference matrix will all be colored in

green. In Figure 6.9 (a), we observe that most green cells correspond to groups G0,

G8 and G21, except the empty groups. This indicates that the velocity in these three

groups might be different from other groups. Clicking at cell (G0, G8) highlights

row G0 and column G8, as shown in Figure 6.9 (b). In cells (G0, G0) and (G8, G8),

points in the Q-Q plot are denser in the smaller value range. Moreover, cells in row

G0 and G8 show that the Q-Q plot lines lean to horizontal when comparing these
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two groups with other groups. These facts imply that particles velocities in these two

groups are smaller than the other groups. The corresponding groups and particles

are highlighted accordingly when a cell in the difference matrix is selected. We can

find that G0 and G8 cover the aneurysm region.

6.5.2 Case study: VDS2

The vessel structure of the VDS2 is shown in Figure 6.7 (b) and (c) on page 172.

The first row of Figure 6.7 demonstrates the query of particles with large age. The

inlet histogram shows that all particles with large age actually correspond to one bin,

which means that they are released at a very small region on the seeding plane. From

VesselMap and particle visualization, we observe that these particles go through the

aneurysm region, and their paths are close to the center of the vessel branch. In

addition, these particles mostly have small velocity values as expected. In the second

row of Figure 6.7, we select the aneurysm region for query. We find that most particles

in this region have moderate age values. This confirms that the particles with large

age are mostly those that have already left the aneurysm. The inlet histogram shows

that the particles that fill this region actually come from multiple inlet positions. This

is observed in Figure 6.7 (f). However, comparing Figure 6.7 (a) and (d), we observe

that the particles that stay in the aneurysm for a long time are mostly released from

a specific location. From the velocity histograms, we find that the aneurysm region
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even contains more particles with slightly higher velocity values than the particles

with large age. It is likely that for the path near the centerline of the branch that

leaves the aneurysm, the velocity is actually lower than other paths. The pressure

and especially the WSS values mostly concentrate in a few histogram bins.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.10: The segmentation result and group comparison using the
VDS2. First row: segmentation result guided by (a) distances to the inlet,
(b) age, (c) velocity, (d) vorticity, and (e) WSS. Second row: group compar-
ison of (f) age, (g) velocity, and (h) vorticity among groups segmented by
distance to the inlet; and of (i) age and (j) velocity among groups segmented
by age.

In the first row of Figure 6.10, we show the segmentation result guided by different

properties. In (a), using the distances to the inlet, we obtain the skeleton of the vessel

structure. In (b), we see four large groups segmented by age, which are arranged

similarly as the distances to the inlet. But there are also some small groups, where

the particles are probably stuck and stay for a long time. In (c), we see that three

large groups align along the main vessel branch. This indicates that there might be
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several major paths with different velocities along the vessel. Note that this finding

is consistent with our discussion of the histograms in Figure 6.7 on page 172. In (d),

we notice that the average vorticity value varies in most of the vessel structure, but

they are somewhat stable in the aneurysm and its neighborhood. In (e), we find that

the WSS varies in the region near the aneurysm. However, it is very stable inside the

aneurysm, since the aneurysm forms a single group. The histograms in Figure 6.7

also show the same results.

We then investigate the relationship among groups, as shown in the second row of

Figure 6.10. For the groups segmented by the distance to the inlet, we find that the

age distribution of groups G11 and G12 are different from other groups, as shown in

(f). The age for most groups cover a large range, with their maximum values much

larger than the other values. But the age in G11 is distributed somewhat uniformly

in a smaller range. Note that G11 corresponds to the top of aneurysm region. This

indicates that the particles in this region follow similar path before, and have similiar

age. (g) shows that the velocity in G2 and G12 differs from other groups. We

observe that G2 contains more particles with small velocity, which is common for an

aneurysm. (h) shows that the aneurysm region corresponding to G2 and G11 contains

more particles with small vorticity. For the groups segmented by age, we find that the

groups form basically two clusters, considering the age distributions or the velocity

distributions, as shown in (i) and (j), respectively. Groups G0 to G4 form one cluster,

and the other groups form the other. Two groups from the same cluster have similar
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age and velocity distributions, but two groups from different clusters are less similar.

Note that the first cluster that consists of groups with more particles contains the

four major groups in (b). It is likely that the isolated small groups have different

average age values from their neighbors due to velocity difference.

6.6 Empirical Evaluation

To evaluate the effectiveness and learning difficulty of our approach, we collaborate

with Dr. Jingfeng Jiang, a domain expert in biomechanics and biomedical imaging.

Dr. Jiang research interests include predicting and analyzing bio-flows for cardiovas-

cular diseases. This evaluation aimed at providing initial assessment on the usefulness

of the proposed system instead of quantitative results. The tasks were only designed

to guide the expert through the workflow of our approach. During the evaluation,

Professor Jiang was informed to freely interact with our interface to explore the VDS1.

After learning the features of our interface, Professor Jiang explored the VDS1 using

our interface and provided his comments. We organize and present his comments

as the following. Overall, this is a great application with potential to impact flow

visualization in a clinical setting. In addition, this application does not significantly

differ from typical web applications. Thus, for ordinary users who are comfortable

with web browsing, it should be easy to learn.
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In terms of effectiveness, VesselMap allows users to quickly select a region of interest

in 2D, because the flattening process will “evenly” space out the geometry. While

in original 3D volumes, a user may need to rotate the geometry to find a position

where only a small region on the projected plane is in the background or foreground.

A technical concern is that the flattening process of VesselMap may cause unrelated

3D points to look like spatial neighbors. In terms of building connection between the

2D VesselMap and 3D vessel structure, users can brush across several branches on

VesselMap, and observe the connection from highlighted region in the corresponding

3D particle visualization. However, since users may not be immediately aware of this,

they should be forced to perform this task in their learning stage. In addition, some

visual landmarks can be placed on both VesselMap and particle visualization, so that

the connection can be perceived more easily.

Cross and boolean filters are very useful. Currently, everyone looks at flow data

based on his or her own experience. Thus, there is a good chance to overlook some

important features or correlations. In this application, once the queries are set up,

users can use certain combinations to quickly identify areas of interest that meet all

criteria. This helps to examine the flow characteristics within and around a cerebral

aneurysm in a more comprehensive way.

The segmentation based on one criterion (e.g., distance, velocity, etc.) will enable the

user to quickly grasp spatial distributions of the flow characteristics. Based on that,
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it should help the user select some important regions of interest for further analysis.

Some work may be needed to better organize or cluster the segmented regions. The

difference matrix provides the overall correlation between different regions as well as

a Q-Q plot. With the color-coded matrix, it is easy to see the correlation between

two parameters such as age (particle residence time) and velocity. This along with

the respective Q-Q plot, it will potentially help users identify regions which contain

interesting flow features. For further development, it is possible that the combination

of segmentation and difference matrix could be used as thumbnails to show more

detailed flow features.
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Chapter 7

Pedagogical Visualization Tools for

Cryptographic Algorithms

7.1 Overview

Other than flow visualization, we also work on a variety of other visualization topics,

among them is a series of pedagogical visualization tools for cryptographic algo-

rithms1. Cryptography is fundamental to information security. Various aspects in

information security heavily depend on crytography, including data confidentiality,

1The material contained in this chapter was previously presented in Association for Computing

Machinery, Inc. Reprinted by permission. Technical Symposium on Computer Science Education

[100, 101] and Journal of Computing Science in Colleges [102].
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authentication and non-repudiation, etc. Many applications of cryptography are crit-

ically important nowadays, such as ATM cards, computer passwords, and electronic

commerce. Due to the increasing needs in network/data security, the computer sci-

ence (CS) education community started to add cryptography into CS curricula. How-

ever, modern cryptography resides at the intersection of multiple disciplines such as

mathematics and computer science. Sophisticated mathematical theories are usu-

ally involved in cryptographic algorithms, which are challenging for CS students to

understand.

To help students understand cryptographic algorithms in an intuitive way, we devel-

oped a suit of pedagogical visualization tools. These tools include DESvisual [102] for

Data Standard Encryption algorithm, ECvisual [100] for Elliptic Curve based ciphers,

RSAvisual [101] for the RSA algorithm, SHAvisual [69] for the Secure Hash Algorithm,

VIGvisual [58] for the Vigenére cipher, and AESvisual for the Advanced Encryption

Standard algorithm. All tools support Windows, MacOS and Linux. Each of them

provides a Demo mode and a Practice mode for the corresponding algorithm. The

Demo mode is useful for instructors to demonstrate important operations in the class-

room, and the Practice mode is designed for self-study, where students can fill in the

important intermediate results step by step.

In this chapter, we will discuss the designs and evaluations for DESvisual, ECvisual,

and RSAvisual, since they are developed and evaluated by the author. Among these
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three, ECvisual will be covered in more details, since the elliptic curve based ciphers

are considered to be the currently most advanced one and involve more advanced

mathematics. A brief introduction will be provided for the other projects.

7.1.1 SHAvisual, VIGvisual and AESvisual

7.1.1.1 SHA and SHAvisual

Secure Hash Algorithm (SHA) is a family of cryptographic hash functions published

by the National Institute of Standards and Technology. It was first introduced in 1993

and four series was developed over the past twenty years. SHAvisual was designed

to help students learn the SHA-512 algorithm. The Demo mode of SHAvisual only

provides a simplified SHA-512 visualization, which uses smaller size of data blocks

for clearer demonstration. In addition to the Demo mode and the Practice mode,

SHAvisual provides an additional Full mode, which shows the full version SHA-512

algorithm. A global view is displayed in a separate window to highlight the cur-

rent procedure in the algorithm pipeline. The pipeline is organized in five subpages:

Message Generation, Workflow Overview, Words Generation, Compression Function, and

Round Detail.
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7.1.1.2 Vigenére Cipher and VIGvisual

The Vigenére cipher was named after Blaise de Vigenére, who described this cipher in

1586. It encrypts the text by using a series of Caesar ciphers based on the letters of a

keyword agreed upon before communication. VIGvisual demonstrates the encryption

and decryption using the Vigenére cipher and the attacks against it. The tabula

recta, which is used to look up the ciphertext letter during encryption, is shown in

three intuitive manners: table, ruler and disk. Animation can be enabled by users

to go through the encryption or decryption letter by letter, with the current step

highlighted in the tabula recta. The attacks against the Vigenére cipher are performed

by keyword length estimation and recovery. VIGvisual uses Kasiski’s method and the

Index of Coincidence method for keyword length estimation, and the χ2 method for

keyword recovery.

7.1.1.3 AES and AESvisual

Advanced Encryption Standard (AES) is a specification for data encryption estab-

lished by the National Institute of Standards and Technology. AES is based on the

Rijndael cipher, a family of ciphers with different key and block sizes. The Demo

mode consists of four subpages: Overview, Encryption, Decryption and Key Expansion,

and the Practice mode is organized similarly. Each of the Encryption, Decryption and

187



Key Expansion is further divided into subpages for step-by-step computation results.

The critical operations, including GF(28) addition and multiplication, can be further

expanded and visualized in separate windows for more details.

7.2 ECvisual: A Visualization Tool for Elliptic

Curve Based Ciphers

Elliptic Curve Cryptography is built upon the algebraic structure of elliptic curves

over finite fields. ECvisual was developed to facilitate the intuitive understanding

of this cryptosystem, which involves many mathematical concepts related to elliptic

curve. It demonstrates the addition law and the associative law of an elliptic curve

over the real field and a finite field. Given any point in a finite field, it can show

the subgroup of that point with a step-by-step demonstration on how each point in

the subgroup is obtained. When an instructor introduces the elliptic curve version of

the ElGamal cryptosystem, ECvisual can also be used to demonstrate the procedure

to covert plaintext to a point on the elliptic curve. In addition to the benefits for

demonstration, ECvisual has practice components built in to allow students to work

with elliptic curves on their own. With ECvisual, students are able to practice adding

points on the curve, converting plaintext to a point on the curve, encrypting, and

decrypting points.
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7.2.1 Software Overview

ECvisual has two subsystems, one over the real field and the other over a finite field of

order p. Due to screen space limitation, p is restricted to no more than 17. ECvisual

has two operation modes: the demo mode and the practice mode. The demo mode

may be used by instructors for classroom demonstration and by students to visualize

the detail of computations. The practice mode is designed to help students go through

the computations step-by-step and perform self-study. Thus, a student may use the

practice mode to step through a computation procedure, fill in the answers, and check

for correctness.

ECvisual has three pages, the Table page, the Curves page, and the Finite Field page.

When ECvisual starts, the Table page is shown, and this is where the elliptic curve for-

mula is set. The user defines a particular curve to work with by choosing appropriate

parameters on this page (Section 7.2.3). The continuous elliptic curve is shown on the

Curves page (Section 7.2.2). The Finite Field page illustrates the finite field over which

an elliptic curve is defined (Section 7.2.3). This page also includes encryption and

decryption (Section 7.2.4) and plaintext to elliptic curve point conversion algorithms

(Section 7.2.5).

189



(a) (b)

Figure 7.1: The elliptic curve (a) group addition operator and (b) associa-
tive law (© 2012 Association for Computing Machinery, Inc. Reprinted by
permission.)

7.2.2 The Elliptic Curve Group over Reals

This component provides the user with an opportunity to practice and visualize the

elliptic curve group over the real number field. The user selects an elliptic curve by

supplying the a and b in y2 = x3+ ax+ b. Then, ECvisual draws the curve, allows the

user to zoom in and out, selects two points P and Q, computes the intersection point

of the line PQ and the curve (i.e., −(P+Q)), and shows P+Q (Figure 7.1 (a)).

To visualize the associative law, the user clicks on the Associative Law button, picks

three points P, Q and R, and ECvisual displays intermediate computations showing

P+Q+R = (P+Q)+R = P+(Q+R) (Figure 7.1 (b)). Thus, the user should be able to

easily learn the abstract idea via visualization.
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Figure 7.2: An elliptic curve over a finite field: y2 = x3 +3x+5 (mod 17)
(© 2012 Association for Computing Machinery, Inc. Reprinted by permis-
sion.)

7.2.3 The Elliptic Curve Group over a Finite Field

The elliptic curve group over finite field Zp of prime order p component helps students

visualize and practice elliptic curve computations over a finite field. The user supplies

a prime number p > 3 and the parameters a and b in y2 = x3 + ax+ b (mod p), where

4a3 +27b2 6= 0 (mod p) must hold. Then, the system displays a grid and all points on

the curve with the identity element marked as inf at the center of each edge of the

grid (Figure 7.2).

The user may click on the Table button to show the additive, multiplicative, and

additive and multiplicative inverse tables of order p (Figure 7.3).
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Figure 7.3: Addition, multiplication, and inverse tables over a finite field:
y2 = x3 + 3x+ 5 (mod 17) (© 2012 Association for Computing Machinery,
Inc. Reprinted by permission.)

The Detail button (Figure 7.2) on the left panel brings up the Detail Computation

window with which the user can practice computations on an elliptic curve. For

example, the user may click on two points, which are shown in red and whose values

are shown in the Detail Computation window as P and Q in the order of selection

(Figure 7.4). Initially, all fields other than P and Q are blank. The user may choose

Run, Step or Practice. The Run button asks the system to compute P + Q and displays

all intermediate results such as y2 − y1, x2 − x1, the multiplicative inverse of x2 − x1

(i.e., (x2−x1)
−1), the slope λ of the line PQ, the x-coordinate of the intersection point

of line PQ and the elliptic curve, and the corresponding y-coordinate. The point P +

Q is shown in yellow.

The user may select Step to step through the computation. In this case, the user fills
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Figure 7.4: Compute (2, 11) = (4, 9) + (9, 8) (© 2012 Association for
Computing Machinery, Inc. Reprinted by permission.)

in the result one-by-one with the help of the computation tables (Figure 7.3), and the

system verifies the input and displays Correct! if the answer is a correct one. The

user may also select Practice and fill in all answers. The system then verifies all input

and displays Correct! if all of them are correct. Incorrect answers are highlighted

and Wrong! is displayed.

With this environment, the user may try to find a subgroup of prime order by re-

peatedly computing P, 2P = P+P, etc until (n − 1)P is the identity. This can be

performed by clicking on the kP button on the left panel. ECvisual is also able to

find and display all subgroups of prime order by clicking on the Sub-Group button.

Each subsequent click on the Sub-Group button will cycle through the prime order

subgroups one-by-one. Thus, the user may step through these subgroups to choose an

appropriate one for encryption. The preferable subgroup is the one with maximum
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Figure 7.5: A subgroup of order 23 starting with (2, 11): y2 = x3 + 3x +
5 (mod 17) (© 2012 Association for Computing Machinery, Inc. Reprinted
by permission.)

prime order. Figure 7.5 shows a subgroup of order 23 with the edges showing the

generation order of this subgroup.

7.2.4 Encryption and Decryption

Once a maximum prime order subgroup is found, the p in Zp, the equation of the

chosen elliptic curve, and the point P and its order n are the public domain param-

eters. After this, the user may practice encryption and decryption easily by clicking

on the Encryption button. This brings up the Encryption & Decryption window.

For example, the user may select a private key d randomly in the interval [0, n − 1]

and compute the public key Q= dP. The sender represents the text by a point M
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Figure 7.6: Encryption practice: y2 = x3 + 3x + 5 (mod 17) (© 2012
Association for Computing Machinery, Inc. Reprinted by permission.)

on the elliptic curve, selects randomly a number k in [1, n − 1], computes C1 = kP

and C2 =M+kQ, and sends (C1, C2) to the recipient. The recipient uses her private

key d to compute dC1 = d(kP) = k(dP) = kQ, and, hence, recovers M= C2 − kQ.

In this way, elliptic curve encryption and decryption can be practiced easily with the

visualization/practice system.

Figure 7.6 shows an encryption practice session. The system selects point P and

a subgroup of maximum prime order, and allows the user to select a private key

and fill in intermediate results. Again, the system will tell the user whether his/her

computation is correct or wrong.
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Figure 7.7: Plaintext to elliptic curve point (© 2012 Association for Com-
puting Machinery, Inc. Reprinted by permission.)

7.2.5 Plaintext to Elliptic Curve Point

Converting a plaintext to a point on an elliptic curve is not very trivial and requires

a larger p to be “practical.” Hence, this component is independent of the remaining

components because large p is impractical for visualization. ECvisual uses the Koblitz

method [49]. Figure 7.7 shows a demonstration session of the Koblitz technique.

7.2.6 Evaluation

The ECvisual survey consists of two components, a set of nine questions and 13 write-in

comments. The nine questions are listed in Table 7.1. Choices available are 5:strongly

agree, 4:agree, 3:neutral, 2:disagree, and 1:strongly disagree. Because we intend to
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study the impact of ECvisual on multiple disciplines, students were asked to fill in

their disciplines. We collected 31 survey forms of which two were invalid. The dis-

tribution of majors is as follows: 3 in computer network and system administration

(CNSA), 5 in computer and electrical engineering (CpE), 13 in computer science (CS),

5 in mathematics (Math), 1 in materials engineering, 1 in biological science, and 1

undeclared. The last three are grouped into the Other category.

Table 7.1

Survey questions for ECvisual

Number Question

Q1 ECvisual’s demo mode helped me understand
what an elliptic curve is

Q2 ECvisual’s demo mode helped me understand
how to represent plaintext as a
point on an elliptic curve

Q3 ECvisual’s demo mode helped me understand how to
encrypt and decrypt using elliptic curve
version of the ElGamal cryptosystem

Q4 ECvisual’s demo mode was helpful for my self-study

Q5 ECvisual’s practice mode helped me understand
how to add points on an elliptic curve

Q6 ECvisual’s practice mode helped me understand how to
represent plaintext as a point on an elliptic curve

Q7 I understand the elliptic curve version of the ElGamal
cryptosystem more after I was able to use ECvisual

Q8 By using ECvisual I was able to identify the parts
of the elliptic curve version of the
ElGamal cryptosystem that I do not understand

Q9 ECvisual enhanced the course.
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7.2.6.1 General Discussion

Table 7.2 and Figure 7.8 shows the mean and standard deviation of each question.

In general, reactions to ECvisual are positive. The highest score of 4.2 with a small

standard deviation of 0.5 was given to Q1, indicating that students agreed highly that

ECvisual helped them understand what an elliptic curve is. Q4, Q5 and Q9 received

the same score of 3.9, suggesting that ECvisual enhanced self-study and the course,

and helped students understand the arithmetic on an elliptic curve. The remaining

five questions were rated approximately the same (i.e., 3.6 and 3.7) with slightly

larger standard deviation. Thus, student reactions are mixed although the general

trend is still in the positive side.

Table 7.2

Mean and standard deviation of survey questions for ECvisual

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Mean 4.2 3.6 3.6 3.9 3.9 3.6 3.7 3.6 3.9

S.Dev 0.5 0.9 0.7 0.7 0.8 0.9 0.8 0.7 0.7

Correlations among student responses are high. The highest correlation is between

Q2 and Q6 (0.87), which means students learned elliptic curve representations with

the demo mode and practice mode. The lowest correlations 0.61 are between Q1 and

Q8, and between Q1 and Q9. Overall, students answered questions in a rather similar

pattern.
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Figure 7.8: Mean and 95% confidence interval of survey questions for
ECvisual

Table 7.3 shows the effect sizes (i.e., Cohen’s d [3, 14]) among questions. We noted

that the mean of Q1 (4.2) is very different from those of Q2, Q3, Q6 and Q8 (3.6) with

effect sizes no less than 0.8. Additionally, effect sizes among Q2, Q3, Q6 and Q8 are

very small. Therefore, student responses to Q2, Q3, Q6 and Q8 are nearly identical,

and significantly different from responses to Q1. The effect sizes between Q1 and Q4

(0.44) and Q1 and Q5 (0.36) are moderate, indicating responses to Q1 and Q4, and

those to Q1 and Q5 are moderately different. Moreover, the effect size between Q4

and Q5 is zero, suggesting students answered these two questions nearly identically.

Consequently, students liked ECvisual for elliptic curve arithmetic and for self-study.

It is interesting to point out that, except for Q1, effect sizes of Q8 and other questions

are very small (0) to moderate (0.52). This indicates that except for Q1, students

ratings of Q8 and other questions are not very different. The effect sizes between Q9
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and Q1 and between Q9 and Q8 are moderate (0.5); but, effect sizes between Q9 and

other questions are very small (0.05) to moderate (0.4). Hence, except for Q1 and

Q8, students rated other questions similar to Q9.

Table 7.3

Effect sizes among questions for ECvisual

Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Q1 0.80 0.89 0.44 0.36 0.87 0.70 1.02 0.51

Q2 0.02 -0.30 -0.40 0.08 -0.10 0.09 -0.30

Q3 -0.40 -0.40 0.07 -0.20 0.08 -0.40

Q4 -0.00 0.44 0.24 0.50 0.05

Q5 0.46 0.27 0.52 0.09

Q6 -0.20 0.00 -0.40

Q7 0.24 -0.20

Q8 -0.50

In summary, we found students felt that ECvisual helped them understand elliptic

curves and their arithmetic, and also helped self-study.

7.2.6.2 Discipline Specific Discussion

Because the class has students from more than five disciplines, it is very helpful

to understand the differences among these groups, namely, CNSA, CpE, CS, Math,

and Other. For each question, we studied the differences among these groups using

ANOVA. Since the questions may be correlated, we also applied MANOVA (Multi-

variate ANOVA) to investigate the overall differences. For MANOVA, Wilk’s Lambda

test was used to consider all questions at the same time. The results are discussed
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Group 1 Group 2

Figure 7.9: Cluster analysis result for ECvisual

at significance level of 0.05 as the following. We did not find significant difference for

all questions using MANOVA, since the p-value was 0.79. No significant difference

was found for any questions using ANOVA either. The smallest p-values were 0.17

for Q9 and 0.22 for Q7. The p-value for the other questions were all larger than

0.32. This suggests that the rating of students from different disciplines did not vary

significantly.

To better understand the possible differences among students, we applied cluster

analysis to group the students. The Ward’s method was used for a hierarchical

agglomerative clustering based on Mahalanobis distance. Figure 7.9 shows two groups
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found by our cluster analysis, as highlighted in the two red rectangles. MANOVA

showed that the two groups of students rated very differently with p-value of 0.000007.

ANOVA for each individual question suggested significant differences for Q2 and Q4

with p-values of 0.027 and 0.020, respectively. The p-values for Q6 and Q9 were

also small, being 0.071 and 0.075, respectively. The mean values of rating indicated

that the students in Group 1 offered higher ratings than those in Group 2 for Q2

(3.86 against 3.00) and Q6 (3.72 against 3.00), but lower ratings for Q4 (3.72 against

4.50) and Q9 (3.72 against 4.33). Since Group 2 contained most of the students, we

further grouped the students in Group 2, as highlighted in the two blue rectangles.

No significant difference was found for all questions using MANOVA (p-value=0.31),

or for individual question using ANOVA (the smallest p-value was 0.21 for Q3). This

indicated that only the six students in Group 1 rated the questions differently from

others. However, no clear and significant evidence, such as disciplines, could be found

to explain the differences. It was more likely to be personal preference. This was also

consistent with our findings from the results where students were grouped by their

disciplines.

7.2.6.3 Student Comments

The set of 13 write-in questions is designed to allow students to make suggestions

which can be used for future development. We focus on the following issues: (1)
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whether elliptic curves modulo p for p ≤ 17 is good enough, (2) whether the represen-

tation of the identity element (infinity) is intuitive, (3) whether the representation of

subgroups of prime order is useful, (4) whether the elliptic curve version of the ElGa-

mal cipher needs improvement, (5) the evaluation of the demo and practice modes,

(6) frequency of using ECvisual for self-study, and (7) software installation problems.

Student comments showed that the p ≤ 17 restriction is sufficient for understanding

the concepts. Only a few mentioned p should be much larger to be “realistic”. How-

ever, this is impractical because screen asset is not enough for large p visualization.

One way to somewhat overcome this restriction would be adding a zooming capability

and allowing the user to mouse over to see the details such as coordinates of a point.

There were no very negative comments on the design of ECvisual. Typical comments

were “It is easy to use”, “Perfect, except for the p ≤ 17 thing”, “Good design, easy to

follow and very helpful in learning the system” and “Simple and to the point.” Some

issues were raised. Major ones were (1) should support p > 17 as mentioned earlier,

(2) should use symbols and notations exactly the same as in the textbook, (3) finite

field computation tables should always be visible and available rather than putting

them under a tab, and (4) providing comments and descriptions for each step would

be more user friendly and more convenient.

Students were very positive about the identity element and subgroups visualization.

Some indicated “the identity element helped me understand exactly how infinity was
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represented” while one student believed the identity element should only be above

the top edge. Comments for the subgroups of prime order were nearly all positive.

Students said “It was very clear and useful”, “I like that it lights up all the dots, a

very useful setup”, and “I like being able to cycle through subgroups and orders”.

Again, some students wished to have step-by-step comments and descriptions so that

they can follow the flow easier.

The practice mode was also very welcome with comments like “The practice mode is

also good. If an answer is wrong there will be a big warning sign to inform you”, “The

practice mode helped check that you are doing the work correctly, so that is useful”,

“The practice mode works well and allows for some user interaction”, and “Good to

check answers. It is useful to be able to switch between practice and demo”.

Because the students only had a week to play with ECvisual before taking this survey,

the frequency of using this tool is not very high. Most of them used the tool a few

times, and a few of them played with the tool “quite often”. In general, they used

ECvisual when they were solving problems, checking for some details, forgot the inner

working of the algorithm, and used it for practice and further understanding. Since

the encryption and decryption algorithms are simple once the concepts of finite fields

and elliptic curves are understood, we are not surprised by the fact that a few students

only used it once or twice, or did not use it at all. As a result, some students said

this component is useful or somewhat useful. Students did not report any installation
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issues, although three of them complained about system crashes.

In summary, with the statistics and student comments presented above, we believe

ECvisual has fulfilled its purpose, helping students learn and the instructor teach the

ElGamal cryptosystem based on elliptic curves over finite fields. With the comments

and suggestions, we should be able to improve ECvisual significantly in the near future.

7.3 DESvisual: A Visualization Tool for the DES

Cipher

The Data Encryption Standard (DES) is an encryption algorithm developed by IBM

and published in 1977. It was the official data encryption standard from 1977 to

2000 and has been an important part of the field of cryptography. DESvisual helps

students understand the building blocks of symmetric encryption. In particular, it

depicts the primitive operations required to perform the initial permutation and one

Feistel round of DES using an 8- or 16-bit input. A student can trace through

an encryption performed by the tool, or can be guided through an encryption or

decryption, computing the output of each operation herself. This helps students

understand the primitive operations, how these operations are composed into the DES

algorithm, and how functions and their composition are depicted and documented.

The opportunity for self-study provides an instructor greater flexibility in selecting a
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(a) (b)

Figure 7.10: DESvisual interface. (a) Main window - IP & Feistel Cipher.
(b) Overview window. (© 2011 CCSC. Reprinted by permission.)

lecture pace over this detail-filled material.

7.3.1 Software Overview

DES encryption consists of an initial permutation (IP), sixteen Feistel rounds, and a

final permutation. DESvisual visualizes an IP and one Feistel round. Figure 7.10 (a)

depicts the Main window containing the IP and Feistel computation. The Overview

window of Figure 7.10 (b) appears when the What’s This button is clicked from the

Main window; it shows the relationship between the tool computations and a full

DES encryption. Computations are performed on either 8 or 16 bit inputs and 6 or
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Figure 7.11: F function and S-box table (© 2011 CCSC. Reprinted by
permission.)

10 bit keys (Use 16 bits in the Main window). A user may either have the system

generate a random input and subkey (Random New) or enter their own input and

subkey (Enter one). DESvisual provides Demo and Practice modes for both encryption

and decryption procedure.

7.3.2 Demo

A user can trace an encryption (or decryption) by tracking a specific bit across each

operation in the Demo mode. In this mode, the tool performs all computations.

Clicking on a bit traces that bit across the operation from which it was derived. The
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Figure 7.12: Practice mode for decryption (© 2011 CCSC. Reprinted by
permission.)

dashed arrows and highlighted bits of Figure 7.10 (a) depict a bit trace. (These bits

and arrows are highlighted in red in the tool.) The f function is traced in a separate

window that appears by pressing the f(R0,K1) button from the Main window. The f

function window is shown in Figure 7.11. Pressing the Initial Permutation or Expand

buttons opens a window that contains the corresponding table. Depressing the S-

box button causes the corresponding table to be displayed and the output element is

highlighted. This is depicted in Figure 7.11.
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7.3.3 Practice

The Practice mode of DESvisual consists of two guided mode for encryption and de-

cryption. In each of these guided modes, the tool steps through each operation of

the cipher and asks the student to compute the output from the current operation.

A guided encryption begins when the Practice button is depressed from the Main

window. A decryption begins by selecting the Decryption tab from the Main window.

One step of a guided decryption is depicted in Figure 7.12. Input to the decryption

is the output from the encryption calculation.

7.4 RSAvisual: A Visualization Tool for the RSA

Cipher

RSA is a public-key cryptosystem that is widely used in data transmission. RSA is

named after Ron Rivest, Adi Shamir and Leonard Adleman, who first described this

algorithm in 1977. RSAvisual leverages visualization in order to meet this challenge

for the RSA algorithm. It is designed to help students understand how the RSA

algorithm operates, including encryption, decryption, use of the Extended Euclidean

algorithm to calculate the private key, and Fermat and Pollard p − 1 factorization.
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RSAvisual is flexible in that it can be used for in-class demonstrations or it can be

made available to students for self-study.

7.4.1 Software Overview

RSAvisual is designed to help students learn the RSA algorithm. It has four compo-

nents: RSA, E. Euclidean (Extended Euclidean algorithm), Factorization and Attacks,

each of which corresponds to a page in the system. The RSA component has a demo

mode and a practice mode. The demo mode shows the details of the computations

step by step and is useful in classroom demonstration. The practice mode allows the

user to step through the computations, fill in the answers for each step and check

for correctness. The two prime numbers p and q are restricted to 5-digit numbers

in the demo mode for the user to easily follow the computation steps. Moreover, p

and q are restricted to three digits in the practice mode so that the user can perform

the computations by hand. RSAvisual always starts from the RSA page and the user

can switch to other pages freely. The E. Euclidean page illustrates the use of the Ex-

tended Euclidean algorithm to calculate the inverse of a number. The Factorization

page demonstrates how to factorize a number with Fermat’s algorithm and Pollard’s

p− 1 algorithm, respectively. The Attacks page has three elementary attacks on the

RSA cryptosystem.
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(a) (b)

Figure 7.13: (a) Demo mode and (b) Practice mode of the RSA page (©
2014 Association for Computing Machinery, Inc. Reprinted by permission.)

7.4.2 The RSA algorithm

The demo mode of the RSA component provides the user with an overall procedure

of the RSA algorithm. Given two prime numbers p and q, a public key e, and the

plaintextM , it shows how n, φ(n) and the private key d are computed. Two equations

are displayed to show how a sender encrypts the plaintext with public key e and the

receiver decrypts that ciphertext with private key d (Figure 7.13 (a)). The user can

change the two prime numbers p and q, the public key e and the plaintext M , and the

computation will be updated automatically. The user can also click the New Instance

button to randomly generate a new set of p, q, e and M .

In the practice mode, the user can step through the computation (Figure 7.13 (b));

however, all equations are hidden. In each step, a correct result is required to advance
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Figure 7.14: Computing the inverse of e using the extended Euclidean
algorithm (© 2014 Association for Computing Machinery, Inc. Reprinted
by permission.)

to the next step. RSAvisual verifies the input and displays a green tick if the answer

is correct. Otherwise, a red cross is shown so that the user can either enter a new

value or skip a step by clicking the corresponding show button for the system to fill

in the correct answer.

7.4.3 The Extended Euclidean algorithm

The E. Euclidean page demonstrates how to compute the inverse of a number using

the Extended Euclidean algorithm. Given two integers a and b, it illustrates the

computation of x, y and gcd(a, b) in ax + by = gcd(a, b), where gcd(a, b) is the

greatest common divisor of a and b. The values of a and b are set to the public key
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Figure 7.15: Factorizing n using Fermat’s algorithm (© 2014 Association
for Computing Machinery, Inc. Reprinted by permission.)

e and φ(n), respectively, so that x gives the value of private key d. The computation

is shown as a table in which each row represents the intermediate results for each

step (Figure 7.14). Two cells of the same color in adjacent rows indicate that the

lower one inherits the value from the upper one. The user follows the color of cells

to trace the numbers across steps to learn how the values of a and b are exchanged

between steps. The values of x and y are not filled bottom-up from where gcd(a, b) is

calculated. Instead, they are filled top-down so that it is easier for the user to follow.

7.4.4 Factorization

The Factorization component consists of the visualization of two factorization algo-

rithms: Fermat’s algorithm and Pollard’s p− 1 algorithm. They are on two different

213



Figure 7.16: Factorizing n using Pollard’s algorithm (© 2014 Association
for Computing Machinery, Inc. Reprinted by permission.)

sub-pages. Fermat’s algorithm starts with k = ⌈√n⌉. At each step, it calculates

h =
√
k2 − n. The values of k and h are recorded and displayed in a table for each

step until h is an integer. Finally, the values of p and q are given by p = k + h and

q = k − h, respectively (Figure 7.15).

The Pollard algorithm page illustrates how to factorize n by computing gcd(b−1, n),

where b = aB! (mod n). When B is large enough, gcd(b − 1, n) yields a non-trivial

factor of n. The value of B is initialized to be the smallest B with such a property.

The value of B can be edited by the user, and RSAvisual will update the value of

gcd(b− 1, n). In this way, the user will be able to discover that if B is small we have

gcd(b − 1, n) = 1, and that only if B is large enough gcd(b − 1, n) is a non-trivial

factor. The values of B and b are listed in a table, so that the user can verify this

property easily (Figure 7.16). Note that gcd(b − 1, n) is a button for the system to
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Figure 7.17: Chosen plaintext attack to forge the signature of the sender
(© 2014 Association for Computing Machinery, Inc. Reprinted by permis-
sion.)

show the computation details.

7.4.5 Attacks

The Attacks component has three elementary attacks on the RSA cryptosystem: cho-

sen plaintext attack, chosen ciphertext attack and common modulus attack [82, 132].

Each of these attacks occupies a sub-page on the Attacks page. The same values of e,

d, n and M are used and interfaces are similar. For each attack, RSAvisual gives the

initial conditions and then displays the attack operations in chronological order. The

role of each operation (i.e., sender, receiver and eavesdropper) is specified explicitly.

Figure 7.17 demonstrates the interface of chosen plaintext attack.

215



Chapter 8

Conclusions

This dissertation focuses on the visualization and exploration of 3D flow fields using

streamlines. A successful flow visualization should effectively assist users to obtain

the information contained in their data effectively. It helps users observe the flow

patterns, especially discover the feature patterns and locate them in flow fields. How-

ever, there are many challenges to overcome in order to achieve a clear observation of

the desired features. First, this usually involves projecting the streamlines from 3D

flow fields to a 2D plane. This projection may greatly reduce the information that

can be perceived from a streamline. Even worse it often causes serious occlusions

that hinder the flow pattern to be seen. Second, because the flow patterns of interest

are usually application specific, an effective approach in one application may fail in

another.
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Our approaches improve the existing techniques and tackle these challenges in the

following aspect. First, by considering the information of the 2D projection of a 3D

streamline, we leverage an information channel to simultaneously select those infor-

mative streamlines under appropriate viewpoints to observe them. Second, we provide

a finner level of control granularity that operates on streamline segments instead of

entire streamlines, so that the densities in different regions can be manipulated more

flexibly. Third, user interactions are highly involved to achieve visualization results

depending on users’ own needs.

8.1 Limitations and Future Extensions

While there are limitations in our current approaches, they also provide directions

for future research.

First, we develop solutions that tackle the problem in different aspects, but less effort

is spent on connecting these solutions. Each individual approach described in this

dissertation focuses on one stage in the flow visualization pipeline. More precisely,

the information channel is leveraged to select the most informative streamlines; Flow-

String queries the streamline segments of interest from a pool of streamlines; and the

focus+context flow visualization customizes the visualization results in the rendering
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stage. The current approaches are isolated and have different problems. The stream-

line selection provides a generally good pool for users to observe a flow field, but

lacks of flexibility for users to investigate certain flow patterns. The focus+context

approach requires users to specify a focus or automatically focuses on all features, but

it is likely that users are not interested in all features and they are not aware of the

locations of the features of interest. FlowString displays all the matched segments,

but the contextual information is lost. It will provide greater value to combine our

current approaches into a single visualization pipeline. The streamline selection can

provide a better data base for FlowString to query, and the focus+context flow visu-

alization can be used to enhance the query results and provide the missing contextual

information.

Second, there are more characteristics of flow features to be discovered other than their

shape. Our current approaches assist users to locate features based on the shape of

streamline segments. In a later development of FlowString, we further allow users to

filter the query results based on their scales. However, there are more ways to describe

what the features are. For example, users may be interested in turbulent flows, flows

that connect two critical points, flow with low velocity magnitudes, or flows related

to features in associated scalar properties, etc. In other words, users may look for

flows that share certain characteristics instead of flows of a certain shape. Therefore,

the characterization of features should be high dimensional. Extending our current

approaches to support the discovery of features with a more general description may
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be worth future research efforts.

Third, our approaches focus on observing flow patterns, and have limited power in

terms of revealing the relationship between a flow field and its associated scalar fields,

which is often practically important. Flow fields are usually studied to discover the

cause and formation of certain phenomenons/outcomes. For example, it is clinically

beneficial to learn whether a certain pattern of flows will cause the change of pressure

and wall shear stress and lead to the deformation of vessel wall, the formation and

rupture of aneurysms. Currently, our approaches only support the exploration of the

relationship among scalar fields and properties derived from flows (e.g., velocity and

vorticity magnitudes), as described in Chapter 6. It is worth further investigating

into developing the connection between a flow field and its possible outcome.

Finally, our current visualization style can be enriched. Through out this dissertation,

the streamlines are drawn as opaque tubes. This may be because the major research

interest is to facilitate effective exploration of flow patterns. However, we have to

admit that a rich rendering may not only provide more visually pleasing visualization

results, but also enhance knowledge discovery. For example, streamtapes with arrow

heads are able to represent more flow features other than flow directions [5]. In some

cases, we may find that using semi-transparent streamlines is helpful. The segments

that are not matched in FlowString queries may be displayed semi-transparently.

This allows the matched segments to be observed clearly and provides contextual
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information at the same time.

8.2 Future Directions

Visualization is a rather diversified field where innovation plays an important role.

There is no a single best way to visualize a flow field. In the future, we would like to

investigate into the following directions.

8.2.1 Structure Discovery Using Persistent Topology

Persistent topology may be used to discover the structure of a flow field. The simi-

larity measure of streamlines is extensively studied, as described in Section 2.3. How-

ever, little effort has been spent on utilizing the similarities among streamlines to

reveal their underlying structure. Persistent topology starts from defining the local

neighborhood relationship among data points based on their distances, i.e., two data

points are considered to be neighbors if the distance between them is smaller than a

threshold. By considering different distance thresholds simultaneously, the persistent

topology provides a robust feature analysis of the hidden structure. In our case, we

may sample a flow field using a number of streamlines. The similarity measure pro-

vides the distance between any two streamlines. The streamlines and the distances
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Figure 8.1: Streamline clustering based on persistence.

among them are then analyzed by the topological persistence algorithm [24] to dis-

cover the structures. Unlike the clustering algorithms, which only identify groups

of streamlines, persistent topology is able to provide high dimensional features (e.g.,

tunnels and voids).

Figure 8.1 shows preliminary results in this direction. In (a), we illustrate how the

0-dimensional features (i.e., connected components) are determined given a threshold.

We represent each streamline as a circle in a 2D plane. Assume that the distance be-

tween two circles represents the distance between the two corresponding streamlines,
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and the size of a circle is equal to the given threshold. Then, two streamlines are

considered to be connected if their corresponding circles overlap. To start with, each

streamline is considered to be one component at the threshold of 0, since the circles

do not overlap with each other with radius of 0. In this example, the streamlines form

seven connected components at the threshold of 1.0, as shown in (a). The life spans

of the components are shown by the barcode. At the threshold of 1.0, the life spans of

the seven remaining components continue, and the life spans of others are terminated.

The topological persistence algorithm provides an efficient way to compute the life

span of each component. In (b), we show the life spans of components with 3000

streamlines. Note that the number of living components reduces with the increasing

threshold. Figure (c), (d), (e) and (f) show the largest 20 components with decreas-

ing thresholds, where the colors of the image borders correspond to the dashed lines

representing the thresholds in (b). For a clearer observation, at most 100 streamlines

will be shown for one component. In (c), all streamlines form one component with

the largest threshold. The most prominent components (i.e., the ones with longer life

spans than the others) are captured and shown in (d), (e) and (f). These components

are mostly stable revealing similar structures, but also demonstrate the trend of being

finer when the threshold decreases. Overall, it provides a robust analysis to determine

persistent components using the life span barcode by considering all thresholds at the

same time.

However, we also notice drawbacks of our current solution. Although it provides a
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robust analysis over a given streamline pool, it is vulnerable to the samples (i.e., the

streamlines in the pool). Adding a streamline may cause two components to be con-

nected with a smaller threshold, while removing one streamline may delays the merge

of two components. In the future, we plan to investigate two possible solutions. First,

we may perform the persistent algorithm of several pools of streamlines and combine

the resulting estimates, inspired by [9]. Second, we may define the neighborhood

relationship on inter-connected streamline groups instead of individual streamlines,

so that two streamline groups are connected if many of their members are connected.

This works similarly as “averaging” the connections, which may reduce the sensitivity

of sampled streamlines. In addition, we would like to take a further step to discover

the higher dimensional structure using the persistent topology.

8.2.2 Graph-based Flow Visualization

Graph-based approaches may be applied to provide an abstract view to summarize

the flow field and an effective interface to interact with. Graphs provide a proper

solution to visual exploration of data sets in two aspects. For one thing, a graph

can be used as the underlying data structure to capture the neighborhood relation-

ships of elements, which is essential to data analysis. For another, a graph can be

naturally visualized by drawing the nodes and edges. Graphs are not only concise

representations of the data but also serve as convenient interfaces, as demonstrated
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by our VesselMap approach (Chapter 6). In fact, graph-based approaches were pre-

viously developed for flow visualization [71, 72, 119, 131]. However, these approaches

only represent streamline clusters and spatial regions as nodes, and use the edges

to capture the spatial relationship among the nodes. As described in the previous

section, because the description of features in flow fields is usually high dimensional,

the spatial relationship is not enough to describe complicated data sets. We pro-

pose to use additional properties to construct the graph. The additional properties

include the critical points in flow fields, features detected in the associated scalar

fields, and other properties derived from flow fields. These properties may be used

to generate new types of nodes, assign attributes to the existing nodes (e.g., nodes

that represent streamlines), or redefine the relationship (i.e., edges). In this way, the

more sophisticated relationship can be discovered on the graph and linked back to

the original flow visualization for details. For example, a medical expert may find the

connection between spiral flow patterns and low wall shear stress regions by observ-

ing the adjacency of corresponding nodes on the graph. By clicking those nodes, the

corresponding regions and streamlines will be visualized for further analysis.

8.3 Conclusions

In this dissertation, we describe a series of visualization approaches toward the ex-

pressive exploration of flow fields. These approaches provide a fine level of control
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over the streamlines, so that the visualization results are highly customizable. They

focus on different aspects of flow visualization with high flexibility to fulfill different

needs. Due to the relative independence of each approach, they can be incorporated

into other approaches to provide a richer set of functionality. This suggests that

these approaches not only provide useful tools, but also build up a solid foundation

for future research.

225





References

[1] A. Arbel and F. P. Ferrie. Viewpoint selection by navigation through entropy

maps. In Proceedings of International Conference on Computer Vision, pages

248–254, 1999.

[2] U. D. Bordoloi and H.-W. Shen. View selection for volume rendering. In

Proceedings of IEEE Visualization Conference, pages 487–494, 2005.

[3] M. Borenstein, L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein. Introduction

to Meta-Analysis. Wiley, 2009.

[4] M. Borkin, K. Gajos, A. Peters, D. Mitsouras, S. Melchionna, F. Rybicki,

C. Feldman, and H. Pfister. Evaluation of artery visualizations for heart dis-

ease diagnosis. IEEE Transactions on Visualization and Computer Graphics,

17(12):2479–2488, 2011.

[5] S. Born, M. Markl, M. Gutberlet, and G. Scheuermann. Illustrative visualiza-

tion of cardiac and aortic blood flow from 4D MRI data. In Proceedings of IEEE

227



Pacific Visualization Symposium, pages 129–136, 2013.

[6] A. Brun, H. Knutsson, H.-J. Park, M. E. Shenton, and C.-F. Westin. Clustering

fiber traces using normalized cuts. In Proceedings of International Conference

on Medical Image Computing and Computer Assisted Intervention, pages 368–

375, 2004.
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and M. E. Gröller. The VesselGlyph: Focus & context visualization in CT-

angiography. In Proceedings of IEEE Visualization Conference, pages 385–392,

2004.

[99] S. Takahashi, I. Fujishiro, Y. Takeshima, and T. Nishita. A feature-driven

approach to locating optimal viewpoints for volume visualization. In Proceedings

of IEEE Visualization Conference, pages 495–502, 2005.

241



[100] J. Tao, J. Ma, M. Keranen, J. Mayo, and C.-K. Shene. ECvisual: a visu-

alization tool for elliptic curve based ciphers. In Proceedings of the ACM

Technical Symposium on Computer Science Education, pages 571–576, 2012.

http://doi.acm.org/10.1145/2157136.2157298.

[101] J. Tao, J. Ma, M. Keranen, J. Mayo, C.-K. Shene, and C. Wang. RSAvisual:

A visualization tool for the RSA cipher. In Proceedings of ACM Technical

Symposium on Computer Science Education, pages 635–640, Atlanta, GA, 2014.

http://doi.acm.org/10.1145/2538862.2538891.

[102] J. Tao, J. Ma, J. Mayo, C.-K. Shene, and M. Keranen. DESvisual: a visual-

ization tool for the DES cipher. Journal of Computing Sciences in Colleges,

27(1):81–89, 2011.

[103] J. Tao, J. Ma, C. Wang, and C.-K. Shene. A unified approach to streamline

selection and viewpoint selection for 3D flow visualization. IEEE Transactions

on Visualization and Computer Graphics, 19(3):393–406, 2013.

[104] J. Tao, C. Wang, and C.-K. Shene. Flowstring: Partial streamline matching

using shape invariant similarity measure for exploratory flow visualization. In

Proceedings of IEEE Pacific Visualization Symposium, pages 9–16, Yokohama,

Japan, 2014.

[105] J. Tao, C. Wang, C.-K. Shene, and S. H. Kim. A deformation framework

242



for focus+context flow visualization. IEEE Transactions on Visualization and

Computer Graphics, 20(1):42–55, 2014.

[106] J. Tao, C. Wang, C.-K. Shene, and R. A. Shaw. A vocabulary approach to par-

tial streamline matching and exploratory flow visualization. IEEE Transactions

on Visualization and Computer Graphics, 2015. Accepted.

[107] C. Teitzel, R. Grosso, and T. Ertl. Efficient and reliable integration methods

for particle tracing in unsteady flows on discrete meshes. In Proceedings of

Eurographics Workshop on Visualization in Scientific Computing, pages 31–41,

1997.

[108] A. Telea and J. J. van Wijk. Simplified representation of vector fields. In

Proceedings of IEEE Visualization Conference, pages 35–42, 1999.

[109] G. Turk and D. Banks. Image-guided streamline placement. In Proceedings of

ACM SIGGRAPH Conference, pages 453–460, 1996.

[110] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,

1995.

[111] A. Valencia, H. Morales, R. Rivera, E. Bravo, and M. Galvez. Blood flow dy-

namics in patient-specific cerebral aneurysm models: the relationship between

wall shear stress and aneurysm area index. Medical Engineering & Physics,

30(3):329–340, 2008.

243



[112] M. van der Zwan, A. Telea, and T. Isenberg. Continuous navigation of nested

abstraction levels. In Proceedings of Eurographics Conference on Visualization

(Short Papers), pages 13–17, 2012.

[113] R. van Pelt, J. O. Bescós, M. Breeuwer, R. E. Clough, M. E. Gröller, B. ter
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