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BIG DATA VISUALIZATION USING GRAPH-BASED REPRESENTATIONS

Abstract

by

Yi Gu

Nowadays, with the extensive use of computers, huge amount of data are generated

everyday. The need to understand large, complex and information-rich data sets is very

important to many fields in business, science and engineering. However, due to the com-

plicated patterns, complex hidden relationships, and multidimensional and multimodal na-

tures of data, it is not easy for users to glean insights. These issues have become critical

with the exponential growth of data over the years. In this dissertation, I focus on graph-

based techniques to tackle those issues because graphs can be used to naturally encode

various kinds of relationships, reveal complicated patterns, and allow users to easily iden-

tify features of interest. I demonstrate the effectiveness of graph-based representations by

applying them to three kinds of data including time-varying volumetric data, image-text

collections, and eye-tracking data.

Time-varying volume visualization plays an essential role in many scientific, engineer-

ing and medical disciplines. Many works have presented novel algorithms and techniques

for processing, managing and rendering time-varying volume data. However, two critical

challenges still remain. The first challenge is addressing visual occlusion caused by pro-

jecting the 3D data to a 2D image during rendering. This problem is exacerbated when the

time and variable dimensions are considered. The second challenge is the lack of capa-

bility to help users analyze and track data change or evolution. As the size of data keeps

increasing, these challenges would only become more severe. This dissertation proposes
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three solutions that leverage the generalized, understandable and familiar form of graphs

to address a wider range of problems for visualizing time-varying scientific data. First, I

will present TransGraph that maps the evolution of a 4D space-time data set to a 2D graph

representation so that the transition relationships among data could be revealed in a sin-

gle graph. Through brushing and linking, users can track the evolution of spatiotemporal

data over time. Second, in many cases, users can only rely on low-level visual hints from

transition graphs, such as the sizes and densities of nodes and edges, to figure out interest-

ing features to explore. This entails a heavy burden on users to identify interesting graph

features and make connections to data features. I will therefore introduce graph analytics

techniques, such as graph simplification, community detection, and visual recommenda-

tion, to help users explore the transition graph and understand the time-varying volumetric

data. Third, I will present an indexable tree named iTree for time-varying data visualiza-

tion which integrates efficient data compacting, indexing, querying and classification into

a single framework.

Visualization of image-text collections is very practical in our daily lives. A significant

challenge is the lack of the ability to browse, navigate and explore the large heteroge-

neous collection in an adaptive manner. This dissertation presents a graph-based frame-

work called iGraph that shows the relationships among images and texts in a dynamic

fashion with progressive drawing capability. iGraph also supports node comparison and

visual recommendation for guided navigation and exploration.

Eye-tracking data visualization is important for understanding the patterns of eye-

movements. There are two major challenges that I aim to address. First, due to the revisit-

ing of the screen, the scanpath may overlap with each other which not only causes visual

occlusion, but also obscures the reading patterns. Second, as the number of participants

increases, classification and cross-comparison of the participants become increasingly dif-

ficult. I introduce ETGraph, a graph-based analytics framework that visualizes the reading

patterns, identifies saccade outliers, and classifies the participants.
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CHAPTER 1

INTRODUCTION

Nowadays, with the extensive use of computers, huge amount of data are generated

everyday in many different disciplines, including scientific and engineering fields, eco-

nomics, and social sciences, etc. The need to understand and develop insights from the big

data is urgent. However, the data are large, complex, and often unstructured, which makes

it difficult for us to discover the underlying patterns and reveal the hidden relationships.

Unlike the traditional analysis which aggregates the data into a few numbers, visualiza-

tion approaches couple human and machine analysis by leveraging the superior human

visual system to assist in knowledge discovery. It allows more aspects of the data to be

observed and provides interactions to enable more purposeful exploration. In this disser-

tation, I focus on developing graph-based visualization approaches to understand various

kinds of data. The use of graphs provides a general means to transform the data and their

relationships into an abstract view for exploring complex relationships and improving data

understanding. Meanwhile, graphs can also be adjusted flexibly to answer specific ques-

tions based on the distinctive characteristics of the data. I demonstrate the effectiveness of

graph-based representations by applying them to three different kinds of data: time-varying

volumetric data, image-text collections, and eye-tracking data.

Generating graph-based representations for different kinds of data is challenging due to

the following reasons. First of all, users are interested in distinctive relationships derived

from different types of data. For multivariate data sets, they may be interested in studying

the relationships among variables. For example, when the auto market is studied, they

may want to know the correlation between price and brand. For time-varying data sets,
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the interest may shift to time evolution. For example, when the stock market is studied,

it may be more interesting to predict the price of a stock based on its history. These

examples indicate that the basic elements and their relationships may vary significantly

for different data sets. Therefore, the definitions of nodes and edges in a graph should be

designed carefully in order to extract the relationships purposefully. Second, the increasing

data complexity requires more analysis effort in building connections among data points.

Today’s data may come from various of sources. Therefore, how to clean them, link them,

and find out their relationships poses a big challenge. For instance, for a typical webpage,

there could be four different kinds of objects: images, meta-tagged keywords, paragraphs

of explanations, and links to other webpages. As a result, we need to deal with these

four kinds of objects at least, and even more kinds of relationships among them, e.g.,

similarities between images, cooccurrences between keywords and between images and

keywords, links between webpages, etc. Each kind of relationships may need a specific

metric to measure, which significantly increases the difficulty of constructing the graphs.

Finally, the ever-growing data size not only amplifies the above two issues, but also brings

up other problems. The human cognition ability is limited, and therefore, a larger graph

does not always translate to richer insight. Sometimes, it could do the reverse by hindering

the most important relationships and patterns to be perceived by users. This calls for the

need to simplify the graphs, provide concise representations, and allow users to discover

the details on demand. In addition, the growing size of data also entails more computation

power and more sophisticated analysis to remove noise from the data, or reduce the size so

that existing approaches can be readily applied.

Besides the above challenges, there are other problems to solve for a specific kind of

data. Even for the same problem, the causes and solutions may be different for various

kinds of data. For example, visual occlusion is a common problem in data visualization.

However, the reasons that cause the occlusion are different for the three kinds of data

investigated in this dissertation. In volume rendering, visual occlusion is inevitable due to
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(a) (b) (c)

Figure 1.1. Volume rendering of the combustion data set at three different time
steps.

the projection of 3D volume data to 2D screen. It becomes more severe when the time and

variable dimensions are considered. For visualizing image-text collections, the occlusion is

caused by presenting a large number of images and texts simultaneously on the screen. For

the eye-tracking data, the occlusion is unavoidable due to the various revisiting behaviors of

the participants which result in the overlaps of fixations (i.e., gaze locations) and saccades

(i.e., eye movements). Therefore, we need to understand the nature of a particular kind of

data sets and provide specific solutions. In the following sections, I will discuss for each

of the three kinds of data, the backgrounds, challenges and my proposed solutions.

1.1 Visualization of Time-Varying Volumetric Data

Volumetric data are widely used in scientific research. Examples are CT data in medical

research, observed ocean current data in oceanography, and climate simulation data in

meteorology, etc. These data are typically physically based and normally structured as

regular 3D volume grids. Volumetric data are typically in the form of scalar field data, since

a scalar value is assigned to each voxel (i.e., volume element). If the values change over

time, this kind of data is called time-varying volumetric data. Figure 1.1 displays volume
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rendering of the combustion data set at three different time steps. Visualizing volumetric

data at a single time step allows scientists to observe the physical structure of the data,

while visualizing time-varying volumetric data allows them to observe the evolution of data

over time, verify their hypotheses, and improve computation models. Therefore, critical

tasks in volume visualization are how to present the physical structure clearly so that the

regions of interest can be observed and their relationships can be discovered, and how

to track the changes over time. In the following subsections, I will discuss the existing

approaches, the remaining challenges, and our solutions.

1.1.1 Existing Approaches

To help scientists meet their visual data analysis needs, scientific visualization emerged

around the late 1980s. One of the major tasks of scientific visualization was rendering the

volume data. There are two commonly used approaches for volume rendering. The first

approach is isosurface extraction (i.e., extracting surfaces with the same scalar value in the

volume), and using triangles or polygons to display the surfaces. The second approach is

direct volume rendering which utilizes transfer functions to assign colors and opacities to

voxels and renders the volume as an entire block of data. To render the time-varying data,

animation is a commonly used approach.

However, rendering the time-varying data is not enough for scientists to get sufficient

insight mainly because of the visual occlusion and complex underlying relationships. The

occlusion is inevitable due to the projection of 3D volume to 2D screen. Considering time

and variable dimensions even amplifies this problem. In addition, the underlying relation-

ships are too complex for scientists to track. To solve these issues, researchers presented

approaches for data transformation and visual representation. These representations are

usually 2D representations which naturally reduce the occlusion. Besides that, researchers

extracted the relationships of interest and revealed them in a graphical format so that sci-

entists can intuitively identify and understand the underlying relationships.
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For the approaches using isosurfaces, topological methods based on Morse theory were

introduced to illustrate the relationships shown by isosurfaces, which include several ab-

stract representations: contour trees, Reeb graphs, and Morse-Smale complexes. Morse

theory shows that topological changes in scalar field data defined on manifolds occur at

distinct isolated points, i.e., critical points. The Reeb graph shows the evolution of indi-

vidual contours using these critical points and their relationships. The contour tree is a

representation that records changes in the topology of the level sets (i.e., isocontours) of a

scalar field. It is a special case of the Reeb graph where the graph forms a tree structure

for simply connected domains. The Morse-Smale complex is a partition of the domain

into cells according to the gradient of the scalar field. To handle the time dimension, re-

searchers extended the above topological methods to time-varying versions. For example,

Soho and Bajaj [114] applied the contour tree for time-varying contour tracking. They first

constructed the contour tree at every time step and computed the correspondence informa-

tion among contour trees across time steps given an isovalue. The topology change graph

is constructed by creating a node for every intersection point and connecting each pair of

intersection points where their representative contours correspond to each other. Bremer et

al. [14] constructed a hierarchical merge tree for each time step with augmented attributes

using a streaming algorithm and then created tracking graphs to capture the temporal evo-

lution of features.

Besides representations of the relationships of isosurfaces, there are also plenty of rep-

resentations developed for direct volume rendering. For instance, image graphs [90] is

the first work that visualizes the visualization process. In this graph, each node represents

an image, and an edge represents the rendering parameter changes (e.g., color, opacity,

rotation, zoom, shading, etc.). Jankun-Kelly and Ma [68] introduced a spreadsheet-like

interface for visualization exploration that illustrates a clear correspondence between pa-

rameters and results through spreadsheet-like organization. Wang and Shen designed hier-

archical navigation interface [131] and LOD map [132] to provide an interface that helps
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users navigate through multiresolution volume visualization. To visualize the evolution of

the time-varying data, researchers have developed different solutions. Among them, sto-

rytelling treats the time evolution as a flow, identifies the most important time steps, and

renders the corresponding volumes in the flow as milestones. For instance, Lu and Shen

[87] presented an interactive storyboard for time-varying data visualization. They drew a

line to represent the time flow and embedded the rendered images of sampled time steps

to summarize complex data dynamics. While storytelling focuses on the most important

time steps, other works treat each time step equally and visualize the detail of changes over

time. Jänicke and Scheuermann [65] introduced a directed graph representation named ε-

machine. This ε-machine represents the possibility that a configuration of voxels transits

to another. Woodring and Shen [145] identified the features at each time using a clustering

algorithm and created a directed graph to connect the clusters over time.

1.1.2 Remaining Challenges

Several major issues remain for time-varying volume data visualization. First, the oc-

clusion cannot be completely eliminated due to the projection of 3D data to 2D images in

the viewing. For the approaches using isosurfaces, the isosurfaces of several scalar values

are selected for rendering, but the distribution of other scalar values is missing. For direct

volume rendering, it often depends on user input to design the transfer functions. However,

it may not be easy for users to select appropriate values corresponding to the features. Even

for the approaches that generate transfer functions automatically, they may not be able to

fulfill specific needs from different users. Second, when the data are visualized in an ani-

mated fashion, tracking data items or features over time could be very difficult. The data

items and features may be occluded during some time steps. It will be difficult for users to

make mental connections of the same feature when it reappears again. In addition, if there

are multiple features in the data set, it is almost impossible for users to manually track all

of them. Interactions are often required to track a particular feature, but they are usually
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unavailable during animation. Third, typical level-of-detail or hierarchical exploration of

time-varying data only allows users to navigate through the spatial and/or temporal domain

in a coarse-to-fine fashion. The benefit of finding a good tradeoff between processing speed

and visualization quality, however, may not actually help users in terms of gaining more

control in the analysis or leading to more insight from the data. Fourth, there are few visual

interfaces designed to explore complex relationships and improve data understanding for

scientific data. Furthermore, among these interfaces, most of them lack enough guidance

for user exploration and navigation. Usually trial and error is required to achieve a good

result which requires painstaking effort. Finally, all these issues are exacerbated by the

ever-growing size and complexity of time-varying data we need to deal with.

1.1.3 Our Contributions

In this dissertation, I focus on the development of graph-based representations that al-

low users to clearly observe volumetric data from different aspects and interact with them

to meet different needs. The use of graphs allows all data blocks and their relationships to

be observed without occlusion, and enables features to be easily selected through brush-

ing and linking. TransGraph [51] transfers the transition relationships of spatiotemporal

blocks into a static global graph view. Then, graph mining techniques are introduced to

reduce user efforts when exploring large transition graphs [55]. Finally, iTree [52] is de-

signed to integrate data compacting, indexing and querying into a single framework. In

the following, I will present high-level descriptions of these approaches, and discuss their

improvements over previous works.

In Chapter 3, I present TransGraph that maps transition relationships extracted from a

4D space-time data set to a 2D graph, and guides data exploration and tracking. Trans-

Graph first partitions the volume at each time step into data blocks, then it groups the

similar blocks along spatial and temporal directions. Transition relationships are intro-

duced to represent the time evolution between data groups. In TransGraph, each node

7



represents a group of blocks, and each edge represents the transition relationships between

two groups. To handle large-scale data sets, hierarchical graph structures are introduced.

TransGraph not only provides a visual mapping that abstracts data evolution over time in

different levels of detail, but also serves as a navigation tool that guides data exploration

and tracking. Users interact with TransGraph and make connections to the volumetric data

through brushing and linking. A set of intuitive queries is provided to enable knowledge

extraction from time-varying data. Compared to animation-based techniques, TransGraph

visualizes transitions of all time steps simultaneously in a single graph view. Therefore, it

does not rely on the user’s mental map to build connections among data groups.

In Chapter 4, I present a graph mining approach that automatically extracts features

from a transition graph for understanding time-varying data. Beyond straightforward graph

properties, users are given further guidance through a series of graph analysis techniques

including graph simplification, community detection, and visual recommendation. Graph

simplification condenses a large graph to a smaller one by abstracting known structures,

such as fan, connector, and clique, presenting a less cluttered view for quick compre-

hension of the overall graph structure. Community detection organizes nodes with close

relationships into groups, allowing visual comparison between groups of nodes instead

of individual nodes. Visual recommendation automatically highlights individual nodes or

node groups similar to user selected items, enabling users to spend more time on the actual

analysis instead of painstaking interaction. The similar node groups are identified accord-

ing to their structural relationships, regardless of their volume values, spatial regions, and

temporal ranges. Unlike previous works, where users can only rely on low-level visual

hints (such as the size and density of nodes and edges) to figure out the relationships with

the underlying data through brushing and linking, this graph analytics approach introduces

high-level functions, providing the intuitiveness, convenience and unprecedented capabili-

ties for graph exploration and data comprehension.

In Chapter 5, I present my approach to construct an indexable tree called iTree for time-
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(a) (b) (c)

Figure 1.2. (a) an example of tag cloud, (b) a screenshot of iMap [139], (c)
iGraph that visualizes the relationships among images and texts.

varying data visualization. iTree integrates efficient data compacting, indexing, querying

and classification into a single framework to support analysis and visualization of big time-

varying volumetric data. This is achieved by transforming the time-activity curves (TACs)

representation of a time-varying data set into a hierarchical representation called symbolic

aggregate approximation (SAX). An indexable version of the data hierarchy named iSAX

is further built, from which the iTree is created for visual representation of the time-varying

data. A hyperbolic layout algorithm is employed to draw the iTree with a large number of

nodes and provide focus+context visualization for interaction. Multiple coordinated views

are enabled, consisting of the iTree, symbolic view, and spatial view, to support effective

querying, searching and tracking of the time-varying data set.

1.2 Visualization of Image-Text Collections

With the booming of digital cameras and image archiving and photo sharing websites,

browsing and searching through large online image collections has become a notable trend.

In addition, these image collections often come with tags, such as names, keywords and

hyperlinks, which explain image contents. Providing the capability of collection overview

and detailed exploration is critical for understanding a large image-text collection. For
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example, exploring the image-text collection on Facebook may inform users about the

recently popular topics, and narrowing down to a particular user on Facebook may lead to

her hobbies and social life, etc. Existing approaches analyze text collections to discover

important topics (Figure 1.2 (a)), or analyze image collections to show similar images

based on a user-specified image (Figure 1.2 (b)). However, the connections among images

and texts are not fully utilized for users to navigate the large heterogeneous collection

in an adaptive manner. In the following subsections, I will briefly introduce the existing

approaches, discuss the remaining challenges, and describe an overview of my solutions

and contributions.

1.2.1 Existing Approaches

Traditional approaches for visualizing image-text collections mainly focus on visualiz-

ing images or texts separately, or consider images or texts as a document. Research in this

direction organizes images in various visual forms based on their similarities or other at-

tributes (e.g., time, content, and size), so that the relationships among images can be better

observed [8, 16, 118, 138]. Similar to image visualization, text visualization arranges the

texts on the screen to show their attributes, such as importance, frequencies, etc. Examples

include Wordle [125], ManiWordle [74], and context-preserving dynamic word cloud [29].

Other representations were developed to visualize the evolution of texts, such as the classic

ThemeRiver [56], SparkClouds [81], and TIARA [143]. Although most of the research ef-

forts were spent on visualizing images or texts separately, there are several techniques that

consider images and texts together to illustrate a document, such as paper-to-PDA [15],

SmartNails [9], and Document Card [115].

1.2.2 Remaining Challenges

Several challenges still remain for visualizing image-text collections. First, viewing

images separately as individuals is no longer enough. In many cases, we now need the
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capability to explore these images together as collections to enable effective understanding

of large image data. However, due to the large size of the collection, it is impossible to

clearly display all the images in the same screen. A common solution is “overview first and

details on demand”. In this case, how to select a subset from the image collection to provide

an overview, and how to guide users to explore details of interest are critical. Second,

the relationships among images and texts are not fully utilized. The existing approaches

usually consider the similarities among images and the importance of texts separately, and

display them in appropriate orders. In fact, the associated tags of an image can explain

the image content, and several images related to one tag can provide examples of that tag.

When exploring an image collection, it is desired to reveal different kinds of relationships

simultaneously, i.e., not only the relationships among images and images, or tags and tags,

but also those among images and tags. In addition, when two images are compared, the

associated texts can also be included to provide extra information. For example, a small

object may appear in both images, which is difficult to catch. But with the additional text

information, users can easily identify that object by comparing their tags. Similarly, when

two tags or a tag and an image are compared, their associated tags and images will be

considered as well. Third, the topics of an online image collection may change over time.

But it is impossible for users to discover the trend by just navigating through the images,

especially when the collection is huge. Therefore, detecting the popular topics over time,

and allowing users to observe the changes are of particular interest.

1.2.3 Our Contributions

All these challenges demand a flexible graph layout that dynamically and smoothly

displays relevant information content at various levels of detail. To fulfill this need, I

present iGraph [53, 54], a visual representation and interaction framework that utilizes a

compound graph to visualize the relationships among images and texts, as shown in Figure

1.2 (c). Initially, the graph consists of exemplar images selected by the affinity propagation
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Saccade

Transition

Figure 1.3. Gaze points are spatially and temporally grouped into fixations.
Fixations could be grouped into areas of interest (AOI). Fixations are connected

by saccades. A saccade from one AOI to the next is called a transition. A
complete sequence of fixations and saccades is called a scanpath.

clustering algorithm and keywords with highest appearance frequencies. Users can then

select one node (image/text), and associated nodes will be automatically recommended and

displayed in the visualization, so that users can explore the entire collection in a progressive

manner. They may also compare multiple nodes at the same time. The associated node

group of each selected node is highlighted using a bubble set, so that users can easily

identify the shared nodes and the differences among node groups. In addition, text outlier

detection automatically identifies the events of interest and their time of appearance in the

data. Following these events, users can discover the changes of popular topics. A parallel

implementation is developed to handle large data sizes and visualize the large collection on

a display wall. Finally, a user study is conducted to evaluate the effectiveness of iGraph.

The details will be described in Chapter 6.
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(a) (b)

Figure 1.4. (a) The scanpath of a participant’s reading of a page. (b) ETGraph
that shows the reading pattern using a graph representation.

1.3 Visualization of Eye-Tracking Data

With advances of the eye-tracking technology, eye-trackers are getting increasingly af-

fordable for use in research and education. Eye tracking devices record gaze points of

a participant as raw data. However, a tiny eye movement e.g., a blink, would generate

a number of gaze points, which convey little information. Therefore researchers usually

do not directly analyze gaze points. Rather, they would group the gaze points to produce

larger forms in order to preserve information and reduce noise. Figure 1.3 shows the dif-

ferent terms commonly used for eye-tracking data analysis, i.e., fixation, saccade, scanpth,

AOI, and transition. Fixations are the aggregations of gaze points based on their spatial

and temporal closeness which represent the small areas that participants focus on. Rapid

eye movements between fixations are defined as saccades. A scanpath is a sequence of

fixations and saccades which is usually displayed as a degenerated line graph where nodes

represents fixations and edges indicate saccades, as shown in Figure 1.4 (a). Since the loca-
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tions of fixations do not convey intuitive information, some researchers focused on areas

of interest (AOIs) that represent important regions on the screen, e.g., apples in a pic-

ture. Similar to saccades, the eye movements between AOIs are called transitions. Mind

wander(ing) (MW) or zoning out is a ubiquitous phenomenon where attention involuntary

shifts from task-related processing to task-unrelated thoughts [113].

Visualization can be used to display these eye movements to help scientists study the

human behaviors. The regular eye movement may illustrate the normal patterns while

the outliers may indicate abnormal phenomena, such as MWs, revisitings, and repeated

readings. It is demanding for visualization tools to differentiate the outliers from the regular

ones. For example, there are many limitations of measuring MW via self-report, which is

the most commonly used way. It is beneficial to obtain visual behavioral indicators of MW.

It is also helpful for visualization to classify the participants based on their behaviors, such

as fast readers or slow readers, etc. In the following subsections, I will discuss the existing

approaches along with their goals, the remaining challenges to tackle, and my solutions.

1.3.1 Existing Approaches

Heat map and scanpath are the most commonly used techniques to visualize eye-

tracking data. Heat map focuses on reducing visual occlusion and capturing overall be-

haviors. It counts the number of fixations in a small area and utilizes colors to represent

the number. Therefore, heat map nicely visualizes the densities of fixations indicating re-

gions of interest. In contrast, scanpath visualizes the time information in saccades. The

scanpath is a graph representation where each node represents a fixation and an edge rep-

resents a saccade. Therefore, it preserves the order of fixations and illustrates the overall

behaviors more precisely. Furthermore, animating the scanpath makes it possible for de-

tailed examination of eye movements and identification of moving patterns. However, due

to the revisiting behaviors, visual occlusion may appear in a scanpath, which makes the

patterns difficult to be perceived by human. To reduce visual clutter, some researchers
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shifted their interest to AOIs. Tory et al. [119] studied the relationships between AOIs

using a directed graph visualization. In such a graph, each node represents one AOI and an

edge represents transitions between two AOIs. The edge thickness depicts the number of

transitions. However, since many eye-tracking data do not contain AOIs, the graphs based

on AOIs could not be applied to all kinds of eye-tracking data sets.

1.3.2 Remaining Challenges

Visualizing eye-tracking data is still challenging for the following reasons. First, pre-

serving the detailed eye movement information and reducing visual occlusion are often

conflicting. Heat map aggregates the density of fixations over time, and does not suffer

from visual occlusion. But it loses all the saccade information, and fails to answer the

questions associated with eye movements. AOI graphs denote the relationships among

AOIs, which lose the precision of fixation locations. Therefore, they can only be used

to discover high-level patterns. The scanpath preserves the precise locations of fixations,

but visual occlusion could be severe. In addition, it normally depends on human effort to

identify different eye movement patterns. Second, few works focus on participant clas-

sification. Currently, the different categories of participants are identified manually by

researchers through observing their eye movement behaviors. There are few quantitative

metrics to measure the similarities among participants. Third, to the best of my knowl-

edge, few works have been done to visualize and identify MWs. The most commonly used

approach to identify MWs is via self-report. However, this can be inaccurate, since partic-

ipants may not notice the MWs and fail to report them. Therefore, automatically detecting

and identifying MWs through visual patterns is critical.

1.3.3 Our Contributions

In Chapter 7, I present ETGraph (i.e., eye-tracking graph) that transforms the eye-

tracking data gathered from a reading study into a graph view to tackle the above chal-
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lenges. As shown in Figure 1.4 (b), I first cluster fixations into clusters, so that fixations

within each clusters are spatially close. Each fixation cluster is represented by a node in

ETGraph, and a transition between two clusters is represented by an edge. Similar to AOI

graphs, ETGraph simplifies the scanpath, so that visual occlusion is reduced. Unlike AOI

graphs, the granularity of locations in ETGraph can be better controlled through tuning

clustering parameters. Furthermore, multiple coordinated views are utilized to dynami-

cally link the graph view with the standard page view during interaction, so that users can

switch between the simplified ETGraph and the original scanpath. In ETGraph, the nor-

mal reading patterns form a well-behaved graph structure while complex graph structures

indicate anomalous reading patterns. In addition, ETGraph automatically detects saccade

outliers and repeated scanpaths to identify the patterns of interest. ETGraph also considers

the scanpaths of all participants and constructs a supergraph to represent the reading be-

haviors of all participants. This supergraph not only reveals the common reading patterns

of all participants using edge bundling, but also allows users to study the detailed saccade

outliers. Besides showing the patterns of all participants, ETGraph can be used to com-

pare the graphs of two participants and to classify participants based on their similarities

between corresponding graphs. Finally, a user study is conducted and the results show that

ETGraph helps users identify the reading patterns, including MWs.

1.4 Organization

This dissertation is organized as follows. Chapter 2 introduces the related works and

discusses how my approaches relate to and differ from these approaches. Chapter 3 presents

TransGraph that maps extracted transition relationships from a 4D data set to a 2D graph

for guiding relationship exploration and feature tracking. Chapter 4 introduces graph an-

alytics techniques, such as graph simplification, community detection, and visual recom-

mendation, for exploring large transition graphs produced from big time-varying volumet-

ric data. Chapter 6 presents iGraph which visualizes the relationships among images and
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texts, provides recommendation to help users navigate through the collection, and supports

comparison to help users investigate the hidden relationships among images or texts of in-

terest. Chapter 7 introduces ETGraph that transforms the eye-tracking data gathered from

a reading study into a graph view for visual analytics. Finally, Chapter 8 summarizes the

works I have completed.

1.5 Publications

My publications are listed as follows. This dissertation is based on the following pub-

lications J1 to J5, C1 and C3.

Peer-reviewed journal articles:

• J1. Yi Gu, Chaoli Wang, Robert Bixler, and Sidney D’Mello. ETGraph: A Graph-
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• J2. Yi Gu, Chaoli Wang, Jun Ma, Robert J. Nemiroff, David L. Kao, and Denis
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cisco, CA, 15 pages, Feb 2015.

• C2. Yi Gu, Nilufer Onder, Ching-Kuang Shene, and Chaoli Wang. FPAvisual: A

Tool for Visualizing the Effects of Floating-Point Finite-Precision Arithmetic. In

Proceedings of American Society for Engineering Education Annual Conference,

Indianapolis, IN, 17 pages, Jun 2014.

• C3. Yi Gu and Chaoli Wang. iTree: Exploring Time-Varying Data Using Indexable

Tree. In Proceedings of IEEE Pacific Visualization Symposium, Sydney, Australia,

pages 137-144, Feb 2013.

• C4. Yi Gu and Chaoli Wang. A Study of Hierarchical Correlation Clustering for

Scientific Volume Data. In Proceedings of International Symposium on Visual Com-

puting, Las Vegas, NV, pages 437-446, Nov 2010.

18



CHAPTER 2

RELATED WORK

In this chapter, we will discuss previous efforts for the visualization of scientific data,

image and text collections, and eye tracking data in Section 2.1, Section 2.2, and Section

2.3, respectively. In each section, we give a general description of related works, followed

by discussion of each work. Finally, we make connections between previous works and

our approach, and point out the differences.

2.1 Visualization of Scientific Data

Wang and Tao [127, 133] classified the techniques using graph-based representations

in scientific visualization based on their applications into four categories: partition-wise,

relationship-wise, structure-wise, and provenance-wise. Works related to this dissertation

mainly fall into the categories of partition-wise and relationship-wise. We organize these

related works in four subsections based on the relationships they analyze, so that the con-

nections between previous works and our approaches can be better understood. Specifi-

cally, the four relationships we review here are: hierarchical relationships, data evolution,

variable relationships, and relationships among field lines.

2.1.1 Exploring Hierarchical Relationships

Tree is a special type of graph which does not contain cycles. It can be naturally used

to represent hierarchical relationships. In this subsection, we mainly focus on two types of

hierarchy constructions: data partitioning and data clustering.
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Data Partitioning. Data partitioning hierarchically partitions the spatiotemporal data

into smaller pieces which allows users to examine the data in an adaptive manner. Octree

is a widely used structure to partition a single volume. For example, Wang et al. [136]

introduced an application-driven approach to compress and render large-scale scientific

simulation data. During preprocessing, they first partitioned the data set into space-time

blocks using an octree for individual compression. Then, they packed data blocks into the

graphics memory, reconstructed and rendered the data in the GPU. For time-varying volu-

metric data sets, time-space partitioning (TSP) tree [41, 107] considers the space dimension

first and then the time dimension for time-varying data partition. Space-partitioning time

(SPT) tree [35] argues that the time dimension should be partitioned first before the space

dimension and compares its results with those derived from the TSP tree. Different from

octree, TSP tree, and SPT tree that focus on the partition of the space-time domain, the

wavelet tree [47, 134] focuses on data compression. Combining the wavelet tree with TSP

tree, the wavelet-based time-space partitioning (WTSP) tree [130, 135] gains the benefits

from both sides.

Besides serving as internal structures for partition, trees also serve as interfaces that

guide users in their exploration. Wang and Shen [131] introduced hierarchical navigation

interface, an interface with multiple coordinated views for level-of-detail (LOD) selection

and rendering. There are three views, the volume rendering view, the tree view that dis-

plays the hierarchy cut, and a treemap that helps users pinpoint the target regions for explo-

ration. Wang and Shen [132] developed LOD map to help users navigate multiresolution

volume visualization. LOD map first measures LOD quality based on the formulation of

entropy from information theory. The quality measure takes into account the distortion

and contribution of multiresolution data blocks. Then they used a treemap representation

to indicate the quality of LODs in an intuitive way, and provide immediate suggestions for

possible LOD improvement through visually-striking features (such as the colors and sizes

of bounding rectangles that represent data blocks in the current LOD).
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Data Clustering. Besides partitioning the domain, other approaches apply clustering

techniques to group data pieces and form hierarchies which could be naturally represented

by trees. Lin et al. [86] utilized a cluster tree to represent the clustering of the surfaces in

a multifield volume data set. They first converted the multifield particle volume data to a

high-dimensional domain. After partitioning the domain into cells, they computed the cell

density as the number of particles within the cell. Then they clustered the cells and stored

the results in a high density cluster tree where each cluster corresponds to a surface in the

object space. Gu and Wang [50] applied three hierarchal clustering algorithms to group

the sample points based on their correlations and stored the hierarchy using trees. Parallel

coordinates are utilized to visualize the correlations between sample points for each level

of the tree. Ip et al. [64] introduced a tree-based representation to help users explore a

3D intensity field in a coarse-to-fine manner. They converted a 3D intensity field to a 2D

intensity-gradient histogram and utilized the normalized-cut image algorithm to partition

the histogram into segments. By iteratively partitioning the histogram, they created the

hierarchy and stored it in a tree structure. This tree serves as an interface for users to

explore the embedded structures clearly.

2.1.2 Understanding Data Evolution

Studying the evolution in a time-varying volumetric data is important in many scientific

and engineering fields. It allows scientists to observe the changes and verify their hypothe-

ses. Graph-based visualization aims at assisting scientists to capture the evolution in the

data through simplifying the underlying evolution relationships and visualizing them as

graphs. A major challenge is to identify features and extract the relationships. One com-

monly used solution is identifying user-defined features and match them in neighboring

time steps. However, this assumes that feature changes are small, which may not always

be the case. Another solution is to study the probability of changing from one feature to

another, which allows dramatic feature changes.
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Feature Matching. For the feature matching approaches in 3D volume tracking,

features are matched through their attributes or locations, under the assumption that the

changes in neighboring time steps are small. A commonly adopted strategy extracts thresh-

old bounded features from each time step and then associates them over time. This ap-

proach requires storing the feature information for all the time steps and even calculate

feature combinations for comparison.

Samtaney et al. [104] first extracted features which are the regions that fulfill certain

criteria, then they performed postprocessing to map the features in neighboring time steps.

Due to the memory restrictions, their program could not store the actual regions for each

feature. Therefore, they stored the attributes (centroid, volume, mass) of the features. By

matching the attributes, features are matched. For the neighboring two time steps, every

pair of the features is compared. If the features are matched, then they are considered to

be continuous. After removing all the continuous features, the combination of multiple

objects is compared to test whether they are bifurcation or amalgamation. Those features

without matching are considered to be disappearance or creation. Because all the feature

combinations need to be compared for the decision of bifurcation and amalgamation, the

computation cost is high. To reduce the cost, Silver and Wang [110] [112] utilized octrees

to store all the features, which allows them to easily find the spatial overlapping between

features. For a feature in one time step, they identified those features in the next time step

who have the spatial overlaps with the selected one. Finally, they utilized a normalized

volume difference test to match the features.

However, storing all the feature information for all time steps for comparison is very

costly. To get around this problem, researchers predicted the features in the current time

step based on their presence in a few previous time steps. This approach does not require

all information to be stored and compared, which leads to low computation and memory

cost. Reinders et al. [101] introduced a prediction verification tracking technique that

predicts the features in the next time step by linear extrapolation. If there is one feature
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matching the prediction, it is considered to be a feature following the previous trend. Using

linear behavioral rules, they predicted the attributes of each feature in the next time step

based on previous time steps. Then all the features in the next time step will be verified

for the matching. However, the prediction in this approach would not be always correct.

Muelder and Ma [92] presented a prediction-correction method that makes a best guess of

the feature in the next time step based on the previous time steps. Because there are always

differences between guesses and the actual features, they grew or shrunk the feature regions

in the subsequent time steps to correct the guessing results.

Another solution is to use parallel implementation for feature prediction. Then, how to

store the partial information of features and how to track them become the problems. Wang

et al. [140] partitioned the volume into blocks and allocated them to processors. Each pro-

cessor calculates the partial features within its block and creates a local connectivity tree

with six children which corresponds to its six spatial neighbors. Then it communicates

with the six neighbors to exchange the centroids and the minimal and maximal region

boundaries of the features. Such information is used to match the features with the neigh-

bors in the current time step. Then a global connectivity graph is created based on the local

connectivity tree which stores all the information of all the features in that time step. This

entire process is repeated in the next time step. Assuming that features change little in ad-

jacent time steps, the movements of the features could be identified through the movements

of features among processors in the global connectivity graph.

Transition Probability. Sometimes, it is quite difficult for users to match features ex-

actly in the neighboring time steps, since the matching can be inaccurate when the changes

are significant. In that case, using probability to connect features is a more practical solu-

tion. Woodring and Shen [145] identified the features at each time step using a k-means

clustering algorithm. They first generated k clusters for each time step and then created

a directed graph to connect the clusters over time. To identify the links between features,

they estimated the probability of transferring one feature to another by computing the time
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histogram distance between the two clusters. They simply filtered the edges to reduce

visual occlusion in the graph.

Jänicke and Scheuermann [65] introduced a directed graph representation named ε-

machine. They defined a causal state as all the required information in a given position

to predict its future. For simplicity, they utilized a light-cone structure which consists of

a spatiotemporal pattern of a given point. The light-cone is divided into two parts: a past

configuration and a future configuration. They put all the past and future configurations

into a high-dimensional space and utilized the Voronoi tessellation to partition the space

based on the density. The resulting clusters are called causal states. The transition prob-

ability is calculated if a state transfers to anther. In the ε-machine, a node represents a

causal state and an edge represents the transition probability between two nodes. Finally, a

force-directed graph layout algorithm is used to draw the ε-machine. Later on, Jänicke and

Scheuermann [66] enhanced the ε-machine with three other representations. They utilized

the cone window to show the past and future configurations for each selected position,

applied the matrix view to illustrate the transition probabilities, and leveraged the circular

graph layout to show the transitions among states.

2.1.3 Investigating Relationships among Variables

Graphs can also be used to represent the relationships between variables. In this kind of

graphs, a node usually represents a variable and an edge often represents the relationship

between the two variables.

Correlation relationships have been well studied for time-varying multivariate data

analysis and visualization [21, 116]. Qu et al. [99] utilized an undirected weighted graph

to visualize the correlation between variables. Wang and Shen [129] discussed the use of

information theory in scientific visualization. For example, mutual information in informa-

tion theory can be used to calculate the shared information between two variables. Biswas

et al. [10] constructed a graph where each node represents a variable, and an edge denotes
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the mutual information between two nodes. Wang et al. [137] studied information transfer

between variables. Since information transfer carries directional information, they utilized

a directed weighted circular graph to show the information transfer between variables.

Sauber et al. [106] used a node to represent a set of variables, so that users could

see the relationships between variable sets. They designed multifield-graphs to show the

correlations of multifield data sets where a graph-based representation was used to show

the hierarchy of variables. They computed the correlation fields between variables. These

fields are placed level by level. The first level is the field which considers all the variables.

The next level consists of the fields with one less variable. This process continues and the

leaf nodes are the fields that compare exactly two variables.

Instead of directly studying the relationships between variables, Jänicke et al. [67] pro-

posed a graph-based representation called attribute cloud to show the closeness of points

in a high-dimensional attribute space. They first projected all the points to the attribute

space, then utilized an Euclidean minimum spanning tree to connect the points based on

their closeness. A threshold is provided so that the nodes whose distances are less than the

threshold are also connected by edges. To visualize such a graph in the high-dimensional

attribute space with less visual occlusion, they utilized a force-directed layout algorithm to

draw the graph in a 2D screen.

2.1.4 Studying Field Lines

Other than volumetric data, graphs are also applied to analyze flow fields, which is

extensively studied in scientific visualization as well. Similar to the use of edges to indi-

cate transition relationships in volumetric data, the edges are used to capture relationships

among field lines and spatiotemporal blocks in flow fields.

Xu and Shen [147] presented Flow Web, a graph-based representation which provides

users an overview of the 3D flow field and helps users locate regions of interest. They first

partitioned the domain into subregions using an octree. They then dropped random seeds
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into each subregion and traced the corresponding streamlines. The edges between the

nodes indicate how the flow passes through the subregions and their edge weights reflect

the numbers of streamlines going through the subregions.

Ma et al. [88] designed FlowGraph, a compound graph representation for studying

streamline clusters, spatial blocks and their relationships in a hierarchical manner. They

defined two types of nodes (L-nodes and R-nodes) and three kinds of edges (L-L edges,

R-R edges, and L-R edges). An R-node represents a spatial region. An octree partition is

used to build the R-node hierarchy. A leaf L-node corresponds to a single streamline, and

a non-leaf L-node represents a cluster of streamlines. The similarities between streamlines

are calculated based on their shared leaf R-nodes (spatial blocks that the streamlines go

through) and their mean of closest region distances. With the similarities between stream-

lines, they constructed the L-node hierarchy. An R-R edge is formed between two R-nodes

at the same level of R-node hierarchy whose weight indicates the number of streamlines

shared by these two R-nodes. An L-L edge is formed between two L-nodes at the same

level of the L-node hierarchy, and the edge weight indicates the number of common leaf-

level blocks traversed in order by these two L-nodes. An L-R edge is formed between a

L-node and a R-node to show their interconnection whose weight indicates the number of

streamlines in the L-node passing through the R-node.

Later on, Ma et al. [89] extended FlowGraph to a 3D unsteady flow field. Now an

R-node represents a spatiotemporal regions. They achieved this using a 16 tree (4D tree).

Moreover, they treated the unsteady field as a static 4D field, so that a 3D pathline could be

treated as a 4D streamline. Finally, they used a similar approach to construct FlowGraph

as a compound hierarchical graph.

While the Flow Web and FlowGraph focus on designing an interface for users to ex-

plore the vector field, other researchers applied similar strategies to improve the perfor-

mance of streamline and pathline tracing. As the data size exceeds the memory size of a

machine, researchers have to partition the data into blocks and load the blocks into mem-
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ory when necessary. Therefore, how to organize the blocks to reduce the data fetch cost

becomes a popular research topic. Nouanesengsy et al. [95] designed flow graph, a graph-

based representation to estimate the computation cost of tracing particles in streamline

generation. First, the vector field is partitioned into blocks which are then assigned to

processors. Similar to Flow Web [147], each block is represented as a node. Then the

seeds are randomly placed in the whole domain. While Flow Web counts the number of

particles traveling through the boundaries of blocks, flow graph calculates the correspond-

ing probabilities and treats them as the edge weights. This graph is used as a guidance

for estimating particle movements. However, because this graph stores the information of

traveling through blocks, it misses the information of the tracing within each block, for

instance, the lengths of streamlines in the block. Therefore, during each round of tracing,

the system combines the flow graph with the average number of tracing steps per particle

to estimate the workload per block for workload balancing.

The access dependency graph (ADG) [24] was derived based on Flow Web [147] and

flow graph [95] to guide the reorganization of the data for the reduction of miss ratio.

ADG first partitions the data into blocks so that each block can be fetched into memory.

Each block is stored in a file and a linear ordering of these files is used so that when a file is

needed and uploaded to main memory, its neighboring files would also be fetched to reduce

the I/O cost. To reduce the miss ratio, they needed to reorder the files. Similar to the flow

graph, they constructed a graph and traced the streamlines to calculate the probabilities of

moving one particle to another block. When a particle moves from one block to another, it

is called one-hop. Since the one-hop ADG is not accurate enough to predict the next few

hops, they considered the n-hop graphs. By considering the graphs from one-hop to n-hop

together, they measured the miss ratio based on the order of all the blocks. As a result, by

minimizing this ratio, they could get an linear order of ordering the blocks.

Later on, Chen et al. [23] extended the ADG [24] to time-varying flow fields for path-

line tracing. Each node in the ADG is called a time block which consists of the blocks
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at the same location in a time period. A directed edge connects two time blocks if there

exists pathlines passing through them. Each edge is assigned a weight which equals the

probability of the seeds moving from one block to the other. The finite-time Lyapunov

exponent (FTLE) helps users study the existence of the Lagrangian coherence structures

by quantifying the separation of flows. However, in order to get a high-resolution FTLE

field, we need to trace the pathline from every point and for every time step. Because of the

large data size, an out-of-core approach is required. Therefore, Chen and Shen designed

flow map [22] to help users reduce the I/O cost and maximize the data reuse. They first

utilized the ADG to estimate the tracing probabilities between neighboring blocks. Then

the discrete-time Markov chains were applied on the ADG to predict the probabilities be-

tween all the blocks. Finally, a seed scheduling is applied to select and order the seeds for

tracing at each round to maximize the usage of data blocks.

2.1.5 Our Solution

Similar to these related works [60, 61, 65, 92], we define the spatiotemporal neighbor-

ing regions with similar attributes as a feature. We first partition the volume into blocks,

group similar spatiotemporal neighbors using a region growing algorithm, and treat each

group as a feature. While the related works [61, 92, 111] defined a transition between two

features if they share a voxel in the neighboring two time steps, we count the number of

blocks that transit from one feature to another in the subsequent time steps. These numbers

are used as the transition frequencies to calculate the corresponding probabilities. Finally,

we implement a force-directed graph layout algorithm [44] to visualize the transition graph

and provide several interactions to help users understand the evolution in an occlusion-

free way. In conjunction with the force-directed layout, we implemented a focus+context

method that is different from [69, 96] for showing details of particular nodes.

Different from the related works [35, 107, 144], we develop our approach based on

SAX [83] to compress time-varying volume data. Specifically, a voxel’s spatial neigh-
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bors over time is compacted into a succinct symbolic representation, which is less time

consuming than typical transform-based compression solutions. Meanwhile, we use iSAX

[109] to provide cost-effective data indexing and querying. In addition, based on iSAX, we

organize the compact data in the SAX form into a hierarchical structure to facilitate data

indexing and querying. Finally, we use a 2D hyperbolic tree for navigating the hierarchical

structure which provides a good means for focus+context visualization.

2.2 Visualization of Image and Text Collections

Visualizing image-text collections has received a great amount of attention recently.

Most of the existing works, however, only focus on the organization of one type of data,

i.e., either images or texts. Although some works visualize images and texts together,

they typically organize images and texts into a single document, where the relationships

among images and texts are not explicitly captured. Furthermore, these approaches do not

provide users with enough interaction to support detailed exploration. In this section, we

organize related work in the following subsections: image collections, text collections, and

image-text collections. Then we discuss our solution.

2.2.1 Image Collections

Organizing image collections into various visual forms has been a well-studied topic in

the graphics, imaging, and visualization community. Chen et al. [20] organized the images

using the Pathfinder networks based on image colors, textures and shapes. Bederson [8]

designed PhotoMesa which arranges images using quantum treemaps and bubblemaps for

zoomable image browsing. Platt et al. [98] developed PhotoTOC which uses a temporally

ordered list of all photographs from a user as the detailed view and utilizes an automatic

clustering algorithm to generate the overview for personal photograph browsing. Torres et

al. [118] introduced spiral and concentric rings for focus+context visualization in conjunc-

tion with content-based image retrieval. Jankun-Kelly and Ma [69] presented MoireGraphs
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which leverages a focus+context radial graph to layout nodes and their associated images.

MoireGraphs also provides several interaction techniques, such as focus strength changing,

radial rotation, level highlighting, secondary foci, and animated transition, to assist graph

exploration. Yang et al. [148] proposed the semantic image browser (SIB) that organizes

images using an image layout based on multidimensional scaling. SIB includes the value

and relationship display (which allows effective high-dimensional visualization without

dimension reduction) and several interaction tools (e.g., searching by sample images and

content relationship detection). Brivio et al. [16] presented dynamic image browsing which

partitions the screen with weighted Voronoi diagrams to visualize images of different sizes,

orientations, and aspect ratios. Wang et al. [138] designed iMap, a treemap based repre-

sentation for visualizing and navigating image clustering and search results. Their layout

places the query image at the center of the display area and arranges other images based

on image similarity along a spiral shape from inside out. Zhang et al. [149] studied the

effectiveness of animated transitions in a tiled image layout by comparing different anima-

tion schemes. They concluded that users completed the tasks faster and more accurately

using multi-step animated transition compared with no-animation and one-step animation

solutions.

2.2.2 Text Collections

Besides images, text analytics and visualization has received lots of attention recently.

Several survey papers [3, 46, 75, 123, 141] discuss text visualization and its related research

problems and challenges. There are notable text visualization examples. For instance,

Wattenberg and Viegas [142] designed the word tree, a graphical version of the traditional

“key word in context” method which allows users to explore the text body, find interesting

words, and view additional phrases. Clarkson et al. [26] presented ResultMaps which

utilizes the treemap representation to enhance query string-driven digital library search

engines. It maps each repository document into a treemap and highlights query results.
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ResultMaps avoids users from misled by the rank of the search results, provides better

preview, and makes useful connections between documents.

Word cloud, also known as tag cloud, is a widely used visual representation for text

visualization. Words are usually single words and their importance values are mapped to

font sizes or font colors. Straightforward word clouds organize words lines by lines. This

allows quick understanding of the poplar or important words. Since different font sizes

are used to arrange words lines by lines, there are gaps between the lines. In addition,

their typefaces are usually limited to the standard browser fonts. Wordle [125] was de-

signed to address these problems. The Wordle layout algorithm allows word rotation in

order to reduce gaps between words. Plenty of typefaces and color themes are included

to enrich the visual experience of Wordle. ManiWordle [74] further allows users to adjust

the typefaces, color themes, and word angles, not only for the layout as a whole, but also

individual words. Context preserving dynamic word cloud [29] utilizes a force model to

adjust word placement in order to reduce and even avoid overlap. Originated from word

cloud, tree cloud [45] utilizes a tree structure to show the semantic proximity of the words.

SparkClouds [81] combines sparklines with word cloud where a sparkline is shown right

beneath each word to show its trend. The classic ThemeRiver [56] utilizes a river metaphor

to convey the evolution of thematic contents. In the 2D plot, the horizontal direction repre-

sents the time and the vertical direction represents the strength of selected topics. Different

colors are used to represent different topics. Built on the ThemeRiver metaphor, TIARA

[143] is a text analytic system that shows the content evolution of multiple topics. Users

are allowed to expand each topic to study its underlying keywords and evolution over time.

2.2.3 Image and Text Collections

Despite the abundant research on visualizing images and on visualizing texts, consid-

ering both images and texts in the same visualization has not been thoroughly investigated.

Several techniques tried to reorganize texts and images of a document to fit into a small
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screen display, such as paper-to-PDA [15] and SmartNails [9]. Document Card [115], on

the other hand, visualizes a document with the extracted keywords and images. It adopts

the idea of trumps game cards to provide a combined overview of an object. Each card

consists of images and associated keywords which describe a document.

2.2.4 Our Solution

Most approaches for image-text collection visualization have fixed layouts for only one

type of objects (images or texts). They provide limited interactions to organize that type

of objects according to a selected one. Therefore, they are not able to capture the rela-

tionships among different types of objects. Even for the same type of objects, they cannot

reveal the relationships between any two objects. Instead, only the relationships between

the selected object and other displayed objects are illustrated. Although some works dis-

play both images and texts simultaneously, they focus on organizing them into a small

screen, where no relationships among objects can be inferred. Our solution, iGraph, uses a

force-directed graph layout algorithm [44] so that the positions of displayed objects are up-

dated dynamically to indicate their relationships. Initially, a backbone graph is presented,

where the representatives of images and texts are displayed. iGraph clusters the images

to pick the representative ones, and chooses those keywords with the highest frequencies

of appearance to be the representative texts. In this way, the backbone graph provides an

overview of the entire collection and serves as the starting point for navigation. iGraph

incorporates several functions to assist the navigation: a recommendation function to sug-

gest similar objects; a node comparison function to present the similarities and differences

of several objects in the context of their neighborhoods; a text outlier detection function to

identify events of interest. Finally, a parallel implementation is integrated to speed up the

computation and visualization performance.
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2.3 Visualization of Eye-Tracking Data

Eye-tracking has become a widely used technique to analyze user behaviors in many

disciplines. Rayner [100] synthesized over 100 years of eye-tracking research and con-

ducted an excellent survey of eye-tracking applications in reading and other information

processing tasks. Duchowski [36] presented a breadth-first survey of eye-tracking appli-

cations in the following domains: neuroscience, psychology, industrial engineering and

human factors, marketing or advertising, and computer science. Recently, Blascheck et al.

[11] presented a comprehensive state-of-the-art report on techniques for visualizing eye-

tracking data. They classified the visualization techniques into different categories based

on properties of eye-tracking data and properties of visualization techniques. Following

their classification, we organize related work into two subsections: studying static stimuli

and analyzing dynamic stimuli. In addition, several works that use eye-tracking analysis to

evaluate visualization tools are presented as well.

2.3.1 Studying Static Stimuli

To visualize the spatiotemporal behaviors of eye movement data, one can use heat maps

or gaze plots. But these visual representations suffer from high aggregation (heat maps)

and overplotting (gaze plots). New visual mappings and representations are needed to as-

sist with visual analytics of vast amounts of spatiotemporal eye gaze trajectories. Goldberg

and Helfman [48] proposed an interface to identify scanning strategies by automatically

aggregating groups of matching scanpaths. First, they converted each scanpath into a se-

quence of AOIs visited in order. Sequences of AOIs were concatenated into one sequence

and plotted with a dotplot. Then they used linear repeated scanpaths to find matching

sequences in the dotplot for clustering the scanpaths hierarchically. Tsang et al. [121] pre-

sented eSeeTrack, an eye-tracking visualization prototype to facilitate the exploration and

comparison of sequential gaze orderings in a static or dynamic scene. Their work inte-
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grates a timeline and a tree-structured representation to encode multiple aspects (duration,

frequency, and fixation ordering) of eye-tracking data. Burch et al. [18] transformed eye

movement data into a dynamic graph and achieved a fair tradeoff between aggregation and

details. Their dynamic graph is a sequence of static graphs where nodes represent AOIs

and directed edges show transitions between source and target AOIs. Burch et al. [17] de-

signed AOI Rivers for investigating time-varying fixation frequencies, transitions between

AOIs, and the sequential order of gaze visits to AOIs. Based on the ThemeRiver technique,

they showed the trajectory data as time-varying river-like structures enhanced by influents,

effluents, and AOIs transitions, similar to Sankey diagrams.

2.3.2 Analyzing Dynamic Stimuli

Compared with static stimuli, analyzing eye-tracking data from dynamic stimuli poses

additional challenges as the stimuli themselves are moving or changing over time. Kurzhals

and Weiskopf [77] presented a visual analytics approach for analyzing eye movement data

recorded for dynamic stimuli such as video or animated graphics. They utilized a space-

time cube visualization along with clustering to analyze the dynamic stimuli and associated

eye gaze in a static 3D representation. Kurzhals et al. [78] designed ISeeCube which com-

bines methods for the spatiotemporal analysis of gaze data recorded from unlabeled videos

and the possibility to annotate and investigate dynamic AOIs. Kurzhals and Weiskopf [76]

introduced AOI transition trees to investigate eye-tracking data of multiple participants

recorded from video stimuli. Their visualization employs icicle plots to represent AOI

sequences modeled as trees. This approach scales well to large numbers of participants

and allows easy detection of common transition patterns. Kurzhals et al. [79] designed

gaze stripes for displaying eye-tracking data from multiple participants. Similar to thumb-

nails for images, their technique directly uses the image data around the gaze points and

arranges a sequence of such gaze point images along a horizontal timeline to form gaze

stripes. The visualization shows the spatiotemporal data of the gaze points in the context
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of the underlying image or video stimulus without occlusion.

2.3.3 Evaluating Visualization Research

Beyond analyzing eye-tracking data, eye movement analysis has gained its popular-

ity as a tool for evaluating visualization research. Andrienko et al. [4] proposed a visual

analytics methodology originated from analysis of geographic data for analyzing large

amounts of eye-tracking data. They focused on deriving common task solution strategies

for a given static stimulus shown to participants. Their work presents a systematic evalua-

tion of movement analysis methods for the applicability of eye-tracking data and provides

the guidelines for choosing appropriate methods given the analysis goals. Blascheck et al.

[12] presented a visual analytics approach for an integrated analysis of multiple concurrent

evaluation procedures such as measures of task performance, think-aloud protocols, anal-

ysis of interaction logs, and eye-tracking. An efficient exploratory search and reasoning

process is supported through automatic pattern finding to derive common eye-interaction-

thinking patterns between participants.

2.3.4 Our Solution

Unlike the previous approaches, which deal with image and video data, our ETGraph

focuses on studying reading behaviors through analyzing the scanpaths of dozens of partic-

ipants reading a book. Due to the distinctive characteristics of this kind of data, ETGraph

differs from the previous approaches in two aspects. First, different images and videos

may have quite different structures in terms of their contents, but texts on different pages

share a similar pattern since they are usually read in similar orders (i.e., left to right and

top to bottom). This common pattern allows a more meaningful comparison between the

scanpaths of different participants and on different pages. ETGraph studies the reading be-

haviors in four different settings: single participant single page (SPSP), single participant

multiple pages (SPMP), multiple participants single page (MPSP), and multiple partici-
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pants multiple pages (MPMP). By comparing multiple participants, the different reading

styles can be extracted (e.g., fast readers and slow readers). By comparing the reading be-

haviors on different pages, we can learn whether or not a participant has consistent reading

patterns, and therefore, better recognize the outlier behaviors. Second, AOIs are often used

in studying eye-tracking data on images and videos to group the fixations and simplify the

eye movement patterns. In those data, AOIs are usually meaningful objects, such as an

apple. However, they are not available in texts. ETGraph utilizes the mean-shift algorithm

to group fixations into clusters and constructs a transition graph based on these clusters.

This simplifies the eye movement patterns to a controllable level, and produces a concise

graph representation.
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CHAPTER 3

TRANSGRAPH FOR VISUALIZING HIERARCHICAL TRANSITION

RELATIONSHIPS OF TIME-VARYING VOLUMETRIC DATA

3.1 Overview

In this chapter, we present TransGraph that encodes the transition relationships ex-

tracted from a 4D spatiotemporal data set to a 2D graph view. This is achieved by first

organizing a given time-varying data set into a hierarchy of states. By deriving transition

probabilities among states, we then construct a global map that captures the essential tran-

sition relationships in the time-varying data. The resulting TransGraph not only provides

a visual mapping that abstracts data evolution over time in different levels of detail, but

also serves as a navigation tool that guides data exploration and tracking. The users in-

teract with the TransGraph and make connection to the volumetric data through brushing

and linking. A set of intuitive queries is provided to enable knowledge extraction from the

underlying time-varying data.

3.2 Hierarchical State Transition

Figure 3.1 illustrates the input and output for each step of our approach to derive hier-

archical state transition relationships. We first partition the volume data at each time step

into blocks and identify representative blocks in a hierarchical manner. Representative

blocks are used to construct a distance matrix to expedite the subsequent clustering. Next,

we define states from data blocks and cluster states into a hierarchy. Finally, we derive
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Figure 3.1. The overview of our approach. We derive hierarchical state transition
relationships from a given time-varying data set. Such relationships are

visualized using a graph-based representation and integrated with volume view
for visual data exploration.

directional transition probabilities among states to construct a hierarchical state transition

graph. In the following, we describe each step in detail.

3.2.1 Data Blocks and Distance Measure

Given a time-varying volumetric data set, we perform uniform subdivision of each time

step separately into a list of data blocks with an equal size. We will use the histograms of

blocks to compute their distances, define states based on blocks, and cluster states hierar-

chically to extract their transition relationships. The size of block is chosen in a way so that

each block is large enough for meaningful histogram computation. For instance, assuming

a 256-level histogram, the block should contain at least a few thousands of voxels for sta-

ble computation. On the other hand, we should generate a sufficient number of blocks for

effective hierarchical state clustering. At least a few hundreds of blocks for each time step
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is appropriate. In practice, we set the block sizes around 163 to 323 for the time-varying

data sets we experiment with (see Table 3.1). For a data set with larger spatial and temporal

dimensions, the block size should increase proportionally.

Given two data blocks bi and b j, we can compute their distance in many different ways,

for example, using Kullback-Leibler divergence (KLD) for distribution distance computa-

tion [128], and defining features and extracting them explicitly for comparison. Instead,

we leverage the Jensen-Shannon divergence (JSD) to compute the distance between their

probability distributions Pi and Pj. In probability theory and statistics, the JSD is a popu-

lar method of measuring the similarity between two probability distributions. As a sym-

metrized and smoothed version of the KLD, the JSD has its minimum of 0.0 when the two

distributions are identical, and its maximum of 1.0 when they are least similar. All these

properties nicely fit our requirement for distance measuring. Specifically, we define

dJS(Pi,Pj) =
(

dKL(Pi||P̂)+dKL(Pj||P̂)
)

/2, (3.1)

where P̂ is the average of the two distributions, P̂ = (Pi +Pj)/2, and dKL is the KLD, i.e.,

dKL(Pi||Pj) =
m

∑
k=1

pi(k) log
pi(k)

p j(k)
. (3.2)

In the discrete sense, we use a histogram to approximate the underlying probability distri-

bution. Therefore, in Equation 3.2, m denotes the total number of bins in the histogram and

pi(k) and p j(k) are the probabilities (normalized frequencies) for bi and b j corresponding

to the kth bin. Given a data block, the histogram could be constructed simply as a one-

dimensional histogram which records the distribution of the original scalar values, or as a

multi-dimensional histogram which records the distribution of a combination of features.

Since typical scientific data imply a continuous model, continuous histograms proposed by

Bachthaler and Weiskopf [6, 7] can be used to build a better basis for the following com-

putation and analysis. Unlike discrete histograms, continuous histograms are structurally
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Algorithm 1 REPBLOCKSIDENTIFICATION(|w|: int; ε: float)

for each pass p do

for each sliding time window w do

if |w|= total # of time steps then

bw← # blocks remaining in w

bmax← bw

else

bw← # blocks remaining in w

bmax← # blocks in the first time step of w

end if

for bi← b0 to bmax−1 do

if bi has not been clustered then

for b j← bi to bw−1 do

if b j has not been clustered then

if dJS(bi,b j)≤ ε then

Cluster bi and b j into the same group
end if

end if

end for

end if

end for

end for

for each cluster c identified at pass p do

Identify the rep. block as the one that has the smallest average distance to the rest of blocks in c

end for

Increase the size of sliding time window |w|
Increase the distance threshold ε
Gather the rep. blocks identified at pass p as the input for the next pass

end for

Compute the distance matrix M for all rep. blocks identified in the last pass

independent of the resolution of a data set and could avoid misleading structures which are

not part of the data but due to the low sampling resolution.

3.2.2 Representative Blocks and Distance Matrix

From partitioned blocks, we identify representative blocks and compute a distance ma-

trix recording the distance between any two of them. Later on, for any two blocks in the

volume, we will simply look up the distance between their representative blocks as the ap-

proximation instead of the actual distance computation. Since the number of representative

blocks derived will be substantially less than the number of initial blocks acquired from

volume partitioning, using such a small-size matrix for distance lookup will effectively re-

duce the cost of distance computation in the following hierarchical state classification. For
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a large input data set, computing the representatives from all blocks across all time steps

would be very time consuming due to the large number of blocks considered simultane-

ously. We instead take a multi-pass process to efficiently identify representative blocks.

Our solution adopts a moving time window technique that considers a subset of data

blocks at a time. Algorithm 1 summarizes our solution in pseudocode. In the first pass, the

size of the time window is relatively small. We start bi from the first block b0 in the first

time step of the initial window w0 and cluster bi with other blocks b j in w0 if their pairwise

distance dJS(bi,b j) (Equation 3.1) is less than a given distance threshold ε . Then, for the

remaining blocks that have not been clustered, we locate the first block in the first time

step of w0 as bi and perform the same clustering process again for these remaining blocks.

This process for w0 stops until we have attempted to cluster all its blocks where bi loops

through all the blocks in the first time step of w0. Note that at this moment, it is likely that

some blocks in w0 might not be clustered. Next, we slide the window w0 one time step

further to create the window w1 and perform the same clustering process for all blocks in

w1 that have not been previously clustered. This entire pass stops after the moving time

window has swiped through the last time step. For each of the cluster we identify in the

pass, we define its representative block as the one that has the smallest average distance to

the rest of blocks in the cluster.

In the following passes, we repeat the same process as described above. The main

differences are: (1) the size of time window will increase in each new pass, so does the

value for the distance threshold ε; and (2) the input to the current pass is all representative

blocks identified from the previous pass. In the last pass, the time window spans the entire

time sequence. Only the representative blocks identified in this final pass will be used to

build the distance matrix M. We point out that it could be very time-consuming to cluster

blocks and identify representatives even though a multi-pass (essentially hierarchical) pro-

cess is taken. In our work, we speed up the bottleneck computation (i.e., JSD calculation)

using GPU with a CUDA implementation. The performance and speedup we achieve are
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Algorithm 2 HIERARCHICALSTATECLUSTERING(|w|: int; ε: float)

for each level l do

for each sliding time window w do

if |w|= total # of time steps then

sw← # states remaining in w; smax← sw

else

sw← # states remaining in w; smax← # states corresponding to the first time step of w

end if

for si← s0 to smax−1 do

if si has not been clustered then

for s j← si to sw−1 do

if s j has not been clustered then

if si and s j are overlap or neighboring and are in the same or neighboring time steps then

if p is the first pass then

d← the average of the distances between their corresponding blocks in si and s j

else

d← the distance between their primitive states in si and s j

end if

if d ≤ ε then

Cluster si and s j into the same group
end if

end if

end if

end for

end if

end for

end for

for each cluster c identified at level l do

Identify the rep. state as the one that has the smallest average distance to the rest of states in c

end for

Increase the size of sliding time window |w|; Increase the distance threshold ε
Compute trans. probabilities psi→s j and ps j→si among all states at level l

Gather the rep. states identified at level l as the input for the next level
end for

reported in Section 3.4.1.

3.2.3 States and Transition Probabilities

In this work, we define states and their transitions as follows:

• A state is a configuration of neighboring spatiotemporal blocks characterized by

their value distributions. A primitive state is a configuration of neighboring spatial

blocks centered at each block at a single time step. In hierarchical state clustering,

we select a representative state from a group of states. The group is formed by
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merging similar states that are spatially overlapping or neighboring and are in the

same or neighboring time steps.

• A transition occurs between two states, from one state at time step t to another state

at time step t+1, if and only if their corresponding central blocks are the same in the

spatial domain. Given two states si and s j at the same clustering level, the directional

transition probability psi→s j is the ratio between the total number of transitions from

si to s j and the total number of transitions from si to all states (including itself). This

definition indicates how frequently a state is transferred to another state.

To create primitive states, we use an arrangement of 3×3×3 blocks for spatial configura-

tion. The number of primitive states is the same as the number of data blocks. As shown in

Algorithm 2, for all primitive states in the data set, we perform hierarchical clustering and

select a representative state from each cluster. We use a method similar to region growing

in our clustering mainly due to the efficiency concern. The spatial and temporal constraints

are to ensure that clustered states are space-time continuous which makes the subsequent

tracking process meaningful. For distance computation between two primitive states si and

s j, if any of them is along the volume boundary, special care is taken so that their par-

tial block correspondence is used to derive the distance. Unlike state clustering, we only

consider the central blocks in primitive states for transition probability computation. If

both states si and s j are clusters of states rather than primitive states, then the transition

probability is computed based on the total number of transitions from any primitive state

in si to any primitive state in s j. As needed, we may consider the transition probability for

all states either in each individual time step (local normalization) or across all time steps

(global normalization). In the first case, it would lead to a time-varying graph highlighting

the dynamics transitional relationship changes over time. In the second case, it would lead

to a static graph summarizing all transitions across all time steps.

43



x

y
va

vb
d

va

vb

(a) bidirectional repulsive force (b) unidirectional repulsive force

l

va

vb
t v

e

(c) spring force (d) attractive force

Figure 3.2. The four different forces we consider for the TransGraph layout
adjustment during the level-of-detail exploration. (a) the bidirectional repulsive

force pulls apart two nodes that overlap each other. (b) the unidirectional
repulsive force pushes a node away from an expanded node if it is inside the
expanded node. (c) the spring force is introduced to keep the balance with

respect to the two repulsive forces. (d) the attractive force handles the topology
change of the underlying triangle mesh, i.e., when a triangle is flipped.

3.3 TransGraph

We create a hierarchical state transition graph, i.e., TransGraph, to record the transi-

tion relationships among states at various levels of detail. In this way, we convert a 4D

space-time volume data set to a graph which can be visualized in 2D. In the TransGraph,

a node represents a state (leaf) or a cluster of states (non-leaf) and the edge between two

nodes represents their transition probabilities. For simplicity, we draw a single undirected

edge instead of double directed edges in the TransGraph. The edge weight is the summa-

tion of the two directional transition probabilities associated with the two incident nodes.

Note that the summed edge weight is used only for the purpose of graph drawing while

the underlying graph representation is still a directed graph. This allows the user to per-
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form separate transition queries on incoming or outgoing transition probabilities. In the

following, we describe how we draw the TransGraph to account for the level-of-detail ad-

justment, and how we brush, query, and track in the graph view in conjunction with the

volume view to enable visual data analysis and understanding.

3.3.1 TransGraph Drawing

The TransGraph has two places that introduce dynamics into graph drawing. First, the

nodes and edges in the TransGraph change for every time step. Second, the level-of-detail

exploration leads to graph changes during the interaction, which requires adjusting node

positions to reduce overlap or occlusion. A good layout for TransGraph drawing should

maintain a good balance between preserving the mental map (i.e., the abstract structural

information a user forms by looking at the graph layout) and revealing the dynamics.

In this work, we adopt the idea of the supergraph [31] by computing a global layout

which induces a layout for each time step. This allows us to observe all states and their

transitions in a single visualization. In the meanwhile, each graph in the time sequence

becomes a subset of the supergraph and is visualized sequentially. To support effective

graph viewing, we propose a constrained layout adjustment algorithm to maintain coherent

update and minimize node overlap during interactive level-of-detail exploration.

We employ the Fruchterman-Reingold algorithm [44], a popular force-directed layout

algorithm to all levels of TransGraph drawing. This algorithm ensures that topologically

near nodes are placed near to each other and topologically far nodes are placed far from

each other. Furthermore, unlike other algorithms such as the Kamada-Kawai algorithm

[70], nodes will not get too close to each other in the drawing. Therefore, the drawing area

is effectively utilized as overlap or occlusion among nodes is reduced.

During the graph exploration, the user selects one or multiple nodes for examining their

higher levels of detail. As such, selected nodes would be expanded which demands layout

adjustment. We generate the initial layout for the coarsest level of the TransGraph. To
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(a) initial layout (b) triangle mesh of (a)

Figure 3.3. (a) the initial layout at the coarsest level is produced using the
Fruchterman-Reingold algorithm. The size of each node in the graph is

proportional to the number of children within. (b) the triangle mesh produced
from the initial node positions.

preserve the relative positions of nodes in the initial layout for coherent update, we apply

the triangulation scheme proposed by Shewchuk [108] to the initial graph and use the result

of the triangulation to perform constrained layout adjustment when nodes are expanded for

further examination. When such a node is expanded, its initial size is proportional to the

number of children in its next level of detail. All nodes expanded are assigned the same

scaling factor. Similar to the work of dynamic word cloud visualization by Cui et al. [29],

we consider the following forces to reposition the nodes to reduce their overlap while

maintaining the topology of the coarsest level of the TransGraph.

• Bidirectional repulsive force: This force pushes away two nodes va and vb from

each other and is effective if and only if va and vb overlap each other. The bidirec-

tional repulsive force is defined as f1(va,vb) = k1×min(x,y), where k1 is a given

weight and x and y are the width and height of the overlapping region as shown in
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(a) final layout (b) triangle mesh of (a)

Figure 3.4. (a) the layout after four nodes are selected and expanded for detail
examination of Figure 3.3. Four different forces (Figure 3.2) are used in the

adjustment. (b) the underlying triangle mesh is used to maintain the topology of
the graph during layout adjustment.

Figure 3.2 (a). This force is applied to every pair of nodes in the TransGraph.

• Unidirectional repulsive force: This force pushes away a node vb without detail

shown from a node va with detail shown and is effective if and only if vb is inside

va. The unidirectional repulsive force is defined as f2(va,vb) = k2/d, where k2 is

a given weight and d is the distance between the centers of va and vb, as shown in

Figure 3.2 (b). If d is close to zero, then an upper-bound force f2max is used instead

which guarantees that vb will be moved outside of va.

• Spring force: This force is used to balance the graph by offsetting the two repul-

sive forces introduced. Given two nodes va and vb, the spring force is defined as

f3(va,vb) = wa×wb× l, where wa and wb are the weights of va and vb respectively,

and l is the length of the edge connecting the centers of va and vb that lies outside
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hurricane
center

hurricane
surrounding

Figure 3.5. Left: the TransGraph of the hurricane data set. Right: (a) to (d) are
the corresponding volume highlighting indicating the red nodes selected in the
TransGraph at time steps 13, 44, 7, and 31, respectively. The spatiotemporal

regions corresponding to the hurricane’s surrounding, i.e., (a) and (b), and center,
i.e., (c) and (d), lie on the two clear-cut parts of the TransGraph, respectively.

of their boundaries as shown in Figure 3.2 (c). We compute wa and wb based on the

number of children in va and vb, respectively. The larger the number, the higher the

weight. This force is applied to every pair of nodes in the TransGraph.

• Attractive force: This force is used to maintain the underlying triangle mesh we

construct for the coarsest level of the TransGraph. During the layout adjustment,

if a mesh triangle is flipped, as shown in Figure 3.2 (d), then the topology of the

triangle mesh changes. Our goal is to maintain a stable update of the graph by

introducing an attractive force to flip the triangle back. The attractive force is define

as f4(va) = k4×t, where k4 is a given weight and t is the distance from node v to edge

e. We also consider virtual triangle edges connecting extreme nodes in the graph to

the four corners of the drawing area. This is to ensure that all graph nodes do not go
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out of bound.

Figures 3.3 and 3.4 show an example of layout adjustment during the level-of-detail ex-

ploration. As we can see, the expanded nodes expel other nodes outside of their regions

while the global structure of the TransGraph is still preserved. In this example, we give a

fairly large size for drawing each of the higher levels-of-detail to show an extreme case.

In practice, the size for drawing a higher level-of-detail could be smaller as long as the

nodes within can be clearly seen without much clutter, as shown in Figure 3.5. Our lay-

out adjustment strategy is applied recursively to different hierarchical levels in the same

manner.

3.3.2 TransGraph Query

The TransGraph stores rich information about the nodes (states) and edges (transitions)

over time. To make the best use of the TransGraph, we propose a set of intuitive queries to

enable knowledge extraction from the underlying time-varying data.

• State query: We derive how active a state is by computing the number of time steps

the state remains active. By summarizing its connecting states and their probabilities,

we can tell how active a node is in terms of transferring to other states or how inac-

tive it is in terms of staying in the same state. From the hierarchy of the TransGraph,

we also derive the active volume extent a state corresponds to by summarizing the

information of its descendants. These queries would allow the user to automatically

locate important or dominant states with respect to the spatial extent, transition re-

lationship, or time span. Such queries shares some similarity with recognizing node

centrality in a graph, while our query provides quantified search that is unavailable

by simply observing the TransGraph.

• Transition query: From the edges of the TransGraph, we derive which transitions

are the most dominant ones over time and what are the corresponding states. We
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can tell which transitions are the most or least balanced ones by comparing the two

directional transition probabilities associated with each edge. From the hierarchy

of the TransGraph, we also perform transition queries recursively for finer-grained

examination as needed.

• Time step query: We identify important time steps in the time sequence by sum-

marizing and ranking time steps based on the number of states active, the number

of transitions active, or the number of states involved in self- or non-self transition

only. Such temporal queries can be used to automatically highlight important or in-

teresting time steps where state transitions are much more frequent or widespread

than other time steps.

3.3.3 Brushing and Tracking

We dynamically link together the two views of the time-varying data, namely, the vol-

ume view and the graph view. The user interacts with the data in one view and the result

is automatically reflected in the other view. This dual-domain interaction is quite standard

for the visualization of data from different perspectives. The brushing and linking between

the two views compliments each other. The volume view is intuitive for understanding

while data occlusion is inevitable and data selection could be tricky. On the contrary,

the graph view is an abstract representation while occlusion-free data selection is fairly

straightforward. Combining both views together allows easy interaction and comprehen-

sive understanding of the time-varying data.

The user selects data blocks either directly from the volume (by bounding the ranges in

the x, y, and z directions) or from the TransGraph (by direct clicking or range selecting the

states of interest). For block selection from the volume, the user can clip the volume or ad-

just the transfer function to better identify interesting 3D data blocks that are occluded. We

allow tracking of these data blocks over the space and time by highlighting the influenced

region in the volume and the corresponding states in the TransGraph.
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TABLE 3.1

THE TIME RESULTS AND PARAMETERS OF DATA SIZES AND BLOCK

SETTINGS USED IN HISTOGRAM AND JSD COMPUTATION

data volume block data hist # JSD JSD

set variable dimension size read comp bins (CPU) (GPU)

climate salinity 360×66×27×120 15×11×9 0.23 0.60 64 58 19.2

15×6×9 0.26 0.73 64 155 7.2

30×11×9 0.24 0.99 128 41 4.8

combustion YOH 480×720×120×122 30×30×30 167 78 256 12384 31

earthquake amplitude 256×256×96×599 16×16×16 125 53 256 64883 95

16×16×8 119 23 128 154212 233

32×32×16 119 41 512 3982 17.9

hurricane vapor 500×500×100×48 20×20×20 34 18.2 256 23058 16.3

ionization gas temp. 600×248×248×200 30×31×31 164 114 256 73156 156

5
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We present two different ways of tracking: static tracking and dynamic tracking. Static

tracking is to fix the spatial blocks while tracking their state changes over time. Track-

ing over the TransGraph only is straightforward as all transition information is recorded

beforehand. Unlike static tracking, dynamic tracking also conveys the impression of data

transition in the volume while tracking the corresponding state changes over time. To en-

able volumetric tracking, we modulate the color saturation of data blocks based on their

transition probabilities. For simplicity, we assume a constant propagation speed of the data.

The user has the flexibility to adjust the speed at runtime. Adding the propagation speed

enables us to fine tune data transition at the voxel-wise level, going beyond the block-wise

granularity for state transition computation. In addition, we consider the distances of a

voxel to the centers of initial blocks selected for tracking to further adjust the color satu-

ration of the voxel (refer to Section 3.4.4 for more detail). This allows us to differentiate

voxels within a block with different color saturations even though the transition probability

stays in the block-wise level. In practice, we perform all these color modulations in the

fragment program to ensure the interactivity and realtime tracking.

3.4 Results and Discussion

In this section, we first report the data sets we experimented with and their timing

performance. Then, we use different data sets to demonstrate how brushing and linking,

query and tracking are performed between the volume view and the graph view. We also

describe what are the knowledge and benefit gained from such a dual-domain interaction.

In addition, we show the TransGraph layouts with different parameter settings to study

their influence on the graph layout.
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TABLE 3.2

THE TIMING RESULTS AND PARAMETERS USED FOR HIERARCHICAL

CLUSTERING

two-pass two-pass clustering three-level three-level

data set (CPU) time win threshold ε time win threshold ε

climate 3, 120 0.05, 0.1 52 7, 120, 120 0.15, 0.3, 0.45

6, 120 0.1, 0.15 118 6, 120, 120 0.275, 0.425, 0.575

5, 120 0.1, 0.15 7.6 3, 120, 120 0.275, 0.375, 0.45

combustion 4, 122 0.05, 0.1 628 5, 122, 122 0.2, 0.35, 0.4

earthquake 3, 599 0.25, 0.3 1060 5, 599, 599 0.2, 0.4, 0.6

4, 599 0.075, 0.085 17059 2, 599, 599 0.2, 0.3, 0.4

4, 599 0.075, 0.09 222 3, 599, 599 0.2, 0.25, 0.4

hurricane 4, 48 0.05, 0.15 5069 7, 48, 48 0.175, 0.3, 0.45

ionization 4, 200 0.0135, 0.02 1027 5, 200, 200 0.2, 0.45, 0.7

3.4.1 Data Sets and Timing Performance

We experimented our approach with five time-varying volumetric data sets. All these

data sets are produced from scientific simulations. From top to bottom in Table 3.1, the

data sets are from a simulation of the equatorial upper-ocean, a simulation of turbulent

combustion, a simulation of Northridge earthquake in 1994, a simulation of Hurricane

Isabel in 2003, and a simulation of ionization front instabilities. We picked one variable

from each data set in our study.

The timing was collected on a PC with an Intel 2.4GHz CPU and an nVidia GeForce

GTX 465 GPU. There are three major tasks in our computation: histogram computation,
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Figure 3.6. Top: a spatial region at the first time step of the climate data set is
selected and highlighted in its original color saturation. Bottom: the

corresponding nodes are highlighted in red in the TransGraph with the
subsequent transitions (edges) of this region highlighted in black. The rest of

nodes are displayed with decreasing shading as the time step increases to indicate
the direction of time evolution in the graph. Three well-isolated spatial regions
marked with (a), (b), and (c) form three clear-cut clusters in the TransGraph.

JSD computation, and hierarchical clustering. Tables 3.1 and 3.2 show the timing results.

Histogram computation is to calculate the histograms for all blocks in the data. JSD com-

putation is to compute the distance among blocks to identify representative blocks, and to

compute the distance matrix for distance lookup in the subsequent clustering. Hierarchi-

cal clustering is to cluster states into a hierarchy for building the TransGraph. For JSD

computation, we opted for two passes for simplicity. For hierarchical clustering, we opted

for three levels (not including the leaf level consisting of all primitive states). After the

initial clustering, we did not impose the time window anymore so that more neighboring

states can be merged together into clusters. Among the three tasks, the bottleneck is JSD

computation because of the large numbers of log operations (Equation 3.2) involved. As
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Figure 3.7. Left: the TransGraph of the ionization data set. Right: (a) to (d) are
the corresponding volume highlighting indicating the respective red nodes

selected in the TransGraph at time step 118. Each spatial region corresponding
to the states in red is tracked over time and the state evolution is extracted from
the full graph. These separate spatial regions highlighted correspond to different

branches in the TransGraph.

such, we also implemented a GPU version to speed it up by calculating all pairs of JSDs

for a group of blocks in parallel. All other tasks were computed in the CPU.

For the TransGraph drawing, the initial graph layout and triangulation only needs to

be computed once for each data set, which can be completed within a few seconds. At

runtime, we allow the user to interactively explore the TransGraph at various levels of

detail and perform layout adjustment in real time with up to thousands of nodes. Beyond

that, the performance may not be interactive and the drawing area may not be sufficient.

Therefore, in our current implementation, we do not allow the user to explore too deep

down the TransGraph, such as the leaf level.
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Figure 3.8. The TransGraph of the combustion data set with state and time step
queries. (a) the query of the first-level states having their outgoing transition
frequency larger than 0.108. These nodes are in red, blue, and green. (b) the

volume highlighting corresponding to the red nodes brushed at time step 107.
The node that is not selected is in blue and the rest in other time steps are in

green.

3.4.2 Brushing and Linking

The brushing and linking between the volume view and the graph view provides the

user with an intuitive way to understand both data and make connections. For example,

Figure 3.6 shows an example where we brush a spatial region corresponding to the equato-

rial Indian Ocean of the climate data set. In the TransGraph, the edges (transitions) associ-

ated across all time steps are highlighted in black and the nodes (states) corresponding to

the first time step are highlighted in red. The rest of nodes are displayed with decreasing

shading as the time step increases. In this way, the direction of time evolution is easily

discernible from the graph. As we can see, the well-isolated spatial region we brush forms

a clear-cut cluster in the TransGraph. As a matter of fact, three distinct node clusters are
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(a) (b)

Figure 3.9. The TransGraph of the combustion data set with state and time step
queries. (a) the query of the second-level states having their incoming transition
frequency larger than 0.057. (b) the volume highlighting corresponding to the
red nodes brushed at time step 75. The time step query, displayed in the lower

part in (a), shows the trend of the increasing number of active nodes in the
second level over time.

fairly well separated in the TransGraph which correspond to the three ocean regions sepa-

rated by the continents (i.e., void regions in the volume view). Thanks to the hierarchical

state clustering which imposes that the clustered states must be spatiotemporal neighbors

in any level of clustering, we can preserve spatiotemporal data neighborhood relationships

in the TransGraph. The well-organized nodes in the TransGraph make it convenient for

the user to judge the direction of time evolution and the correspondence between volume

regions and graph nodes.

From Figure 3.5, we can observe that the TransGraph of the hurricane data set can be

separated into two parts as indicted by the dashed line. These two parts of nodes actu-

ally correspond to the spatiotemporal regions of the hurricane’s center and surrounding,

respectively. This is verified by the rendering of four time steps corresponding to the
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nodes (states) selected in the TransGraph. We highlight the volume regions in their orig-

inal color saturation to indicate their locations. As we can see, these two visually distinct

spatiotemporal regions in the hurricane data are well separated in the TransGraph. Since

our TransGraph organizes states in a hierarchical manner, the user can easily explore a finer

level-of-detail and make finer state selection to narrow down the spatial regions of interest.

Figure 3.5 (a), (c), and (d) are examples that demonstrate this capability of hierarchical

exploration.

In Figure 3.7, we can observe that multiple branches in the TransGraph of the ioniza-

tion data set spread out along different directions after a certain time step. To find out

where these branches correspond to in the volume, we select nodes (states) at time step

118 and highlight the volume regions in their original color saturation. We also extract

the corresponding state transition for each branch and overlay with the volume rendering

for better observation. As we can see, these four branches correspond to different spatial

regions and express their respective state evolutions.

3.4.3 TransGraph Query

Leveraging the TransGraph, we can perform state, transition, and time step queries to

further understand the underlying data. In Figures 3.8 and 3.9, we show two examples of

state and time step queries with the combustion data set. In Figure 3.8 (a), we query the

first-level nodes (states) with the outgoing transition frequency larger than 0.108 and the

query result is shown with colored nodes in the graph (nodes in the current time step are

shown in red and blue, others are in green). We can see three branches of colored nodes

along the direction of time evolution. They correspond to the upper, middle, and lower

regions in the volume, as shown in Figure 3.8 (b). In Figure 3.9 (a), we perform a similar

state query on the second-level nodes (states) and the brushed result is highlighted in Figure

3.9 (b). Comparing Figures 3.8 (a) and 3.9 (a) as well as the rendering results in Figures

3.8 (b) and 3.9 (b), we can infer that the middle part of the TransGraph (and the volume)

58



(a) (b)

Figure 3.10. (a) the query of the first-level states that are only involved in
self-transition at time step 121. These nodes are in red and the rest of states at

the same time step are in green. (b) the volume highlighting corresponding to the
red nodes shown in (a).

has more nodes with larger incoming transition frequency than the upper and lower parts

of the TransGraph (and the volume). In Figures 3.10 and 3.11, we show two examples of

transition query. The first query in Figure 3.10 (a) shows transitions with frequency larger

than 0.12. This is to bring out transitions that are frequently happening through the time

series. The volume highlighting in Figure 3.10 (b) indicates that at time step 16, these

transitions correspond to the middle region in the volume—the place where the two layers

interact with each other. The second query in Figure 3.11 (a) shows nodes that are only

involved in self-transition at time step 121. The volume highlighting in Figure 3.11 (b)

indicates that those regions are stable in the sense that they only transfer to the same states

in the next time step.

The TransGraphs in Figures 3.8, 3.9, 3.10, and 3.11 also tell us that in early time steps,

we have a less number of states available. The number of states increases as the time
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(a) (b)

Figure 3.11. Left: the TransGraph of the combustion data set with transition
query. (a) the query of the first-level transitions (either outgoing or incoming)

having their frequency larger than 0.12. These edges are in black and
corresponding nodes are in red and green. (b) the volume highlighting

corresponding to the red nodes brushed at time step 16. The rest of nodes in
other time steps are in green.

step increases. Meanwhile, an increasing number of edges (transitions) exist among the

upper, middle, and lower regions in the volume. This indicates the increasing turbulent

nature of the combustion data set as the time evolves. Furthermore, the time step query in

Figure 3.9 (a) which shows the number of active nodes in the second level also indicates

the increasing number of nodes as the time step increases. It is important to point out that

all these findings (except the correspondence between volume regions and graph nodes)

can be solely inferred from the TransGraph beforehand without the present of the volume

view. The volume view can help us put the graph in the context, make connection to the

spatiotemporal data, and confirm our findings derived from the TransGraph.
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Figure 3.12. Left: the TransGraph of the earthquake data set with dynamic
tracking. We select a volume region corresponding to the earthquake’s epicenter
at time step 34, which is highlighted in its original color saturation in (a). Right:
(a) to (f) are the dynamic tracking results in the volume at selected time steps 34,

49, 69, 94, 124, and 179, respectively. These images show the propagation of
data transition over time. The corresponding nodes (states) and edges

(transitions) at those time steps are highlighted in red and black, respectively, in
the TransGraph.

3.4.4 TransGraph Tracking

In Figure 3.12, we show an example of dynamic tracking with the earthquake data set.

A spiral pattern is formed for the TransGraph due to the large number of time steps (599)

involved. The TransGraph reveals that the earthquake data set consists of many more states

and transitions in the early time steps than later time steps. This complies with the fact

that the earthquake breakout is within the first 200 time steps. After that, the earthquake

diminishes gradually for the rest of 400 time steps. To perform dynamic tracking, we first

select a volume region at time step 34, which corresponds to the earthquake’s epicenter

and the region is highlighted in its original color saturation in (a). The tracking results on

the volume and graph are shown in the figure. Even though the underlying transitions are

computed on a block-wise manner, we allow the user to adjust the propagation speed to
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(a) (b)

Figure 3.13. The TransGraph layouts with different parameter settings (refer to
Tables 3.1 and 3.2). (a) and (b) are for the climate data set with block sizes of

15×6×9 and 30×11×9, respectively.

give the impression of voxel-wise data transition. Specifically, for each of the initial blocks

selected for tracking, we propagate its transitions along 27 neighboring blocks (including

itself, i.e., self-transition) with a constant speed. The transition probability for each pair

of blocks is precomputed and we use the average transition probabilities over a moving

time window to ensure smooth transition of color saturation over time. Moreover, we

consider the distances of a voxel to the centers of initial blocks selected to further adjust the

color saturation of the voxel. The result in Figure 3.12 (d) shows the effect of anisotropic

transition as the color saturations of purple voxels are not the same even though they are

equally close to the initial blocks’ centers.
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(a) (b)

Figure 3.14. The TransGraph layouts with different parameter settings (refer to
Tables 3.1 and 3.2). (a) and (b) are for the earthquake data set with block sizes of

16×16×8 and 32×32×16, respectively.

3.4.5 Parameter Choices

Figures 3.13 and 3.14 show the TransGraph layouts of two data sets under different

parameter settings. Tables 3.1 and 3.2 list the detail of parameter values used. In Figures

3.13 and 3.14, the nodes of the TransGraph are colored according to the number of children

in the next level of the hierarchy, modulated by the order of the time steps (early time steps

darker, later time steps brighter). Comparing Figures 3.6 with 3.13, and 3.12 with 3.14, we

can see that although different sets of parameters give different graph layouts, the topology

of the TransGraph remains almost the same and is insensitive to parameter changes and the

randomness of the Fruchterman-Reingold algorithm. Therefore, the TransGraph is largely

determined by the nature of the underlying time-varying data, while parameter changes

only introduce slight variations in the layout.
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CHAPTER 4

MINING TRANSITION GRAPHS FOR UNDERSTANDING TIME-VARYING

VOLUMETRIC DATA

4.1 Overview

In this chapter, we present a graph analytics approach that enables the gaining of deep

meanings from large transition graphs derived from time-varying volumetric data. This is

achieved through the utilization of a series of graph analysis techniques including graph

simplification, community detection, and visual recommendation. We demonstrate our so-

lution with several time-varying data sets of different sizes and characteristics, showing

that our approach represents a significant step forward in applying graph-based techniques

for scientific data analysis and visualization. For gaining insights from the data, we show

that our solution is more efficient and effective than simply asking users to extract rela-

tionships via standard interaction techniques, especially when the data set is large and the

relationships are complex.

4.2 Transition Graph Construction

Our work is based on the transition relationships in time-varying volumetric data sets

as defined in TransGraph [51]. The ideas and techniques presented are applicable to other

graph-based representations. They work most effectively when the graph is large. In the

following, we briefly review the construction of a transition graph. For details, please refer

to Chapter 3.
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We first partition the volume data at each time step into blocks. Each block is, for

example, N×N×N voxels. Given two blocks, we compute the Jensen-Shannon divergence

(JSD) of their histograms as the dissimilarity or distance between them. Then we group

these blocks based on their spatial and temporal adjacency within a small time window w.

Specifically, given a target block bt , we first check its spatial or temporal neighbor bn to

see whether it is similar to bt . If so, then bn is clustered to bt . We continue to compare the

neighbors of bn with bt . This process repeats until no similar blocks could be found in w.

Note that if bn is already clustered to another block, we will not check its neighbors when

bn is reached.

Finally, we derive directional transition probabilities among blocks to construct the

transition graph. In the transition graph, a node denotes a state which represents a group

of spatiotemporally neighboring blocks, and a directed edge between two states indicates

their transition probability. In extreme cases, a state may represent a single block. A

transition i→ j occurs between two blocks i and j, from one block i at time step t to

another block j at time step t +1, if and only if their spatial locations are the same. Given

two groups gi and g j, the directional transition probability pgi→g j is the ratio between the

number of transitions from gi to g j and the total number of transitions from gi to all the

groups (including itself). As such, a transition indicates a chance for one group to transfer

to another group, and its probability measures how high the chance is.

To draw the transition graph, we apply a two-step process. First, we use the Fruchterman-

Reingold force-directed layout algorithm [44] to create the initial layout. Since we draw

nodes with certain sizes, visual occlusion becomes unavoidable for a large graph. We

therefore utilize four forces: bidirectional repulsive force, unidirectional repulsive force,

spring force, and attractive force, to reduce the overlap while preserving the overall graph

structure [51].
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(a)

(b)

(c)

vi

vj

vk
vi vj

Figure 4.1. Graph features for simplification. (a) to (c) show examples for fan,
connector, and clique, respectively. We use the included angle of fan, the size of
star, and the size of triangle to indicate the number of nodes simplified for the

three graph features, respectively. Regular (i.e., unsimplified) nodes are drawn as
squares. In (c), all other nodes connecting to the clique are connected to the

center of the triangle.

4.3 Graph Simplification

Visual clutter is common in a transition graph due to the presence of a large number

of nodes and edges. We can reduce the clutter through edge reduction or node reduction.

For edge reduction, edge simplification and compression techniques [30, 40, 94, 103, 124]

identify the relationships among nodes, group the nodes with similar edge configurations

together, and draw a single edge to the group instead of edges to group members. For node

reduction, TopoLayout [5] detects topological features such as trees, connected compo-
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(a) (b)

Figure 4.2. (a) and (b) are the original transition graph and the graph after
detecting fans, respectively.

nents and biconnected components, and motif simplification [37] detects fans, connectors

and cliques. Both techniques use a single node to replace a graph feature.

In our work, we focus on node reduction and replace certain graph features with sym-

bols in order to highlight important graph structures. Similar to motif simplification [37],

we select three graph features for simplification because they represent meaningful tran-

sition relationships and do not impose restrictions to the order of simplification. Figure

4.1 illustrates these three graph features and their corresponding symbols for simplifica-

tion. For graph simplification, we do not consider edge directions in the transition graph.

However, the three graph features themselves already imply directional edge information

as explained in the following.

• A fan is a configuration of a central node with multiple leaf nodes of degree one.

The fan is simplified with the fan symbol as shown in Figure 4.1 (a). The undirected

edge between nodes vi and v j has three kinds of relationships: vi→ v j, v j→ vi, and
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(a) (b)

Figure 4.3. (a) and (b) are the graphs after detecting connectors and cliques,
respectively. In (b), we show the graph after layout adjustment which pushes

nodes apart for clear observation. There are three branches of nodes in the graph
and the evolution of time in each branch is marked with a dashed line. The

histograms at the bottom-left and bottom-right corners depict the numbers of
volumetric blocks and nodes belonging to the four types of nodes, respectively.
Gray for regular nodes, pink for fans, green for connectors, and blue for cliques.

vi↔ v j. Each node encompasses data blocks grouped within a fixed time interval.

If a node has only outgoing (incoming) edges, it must be in the first (last) time

interval. Therefore, the fan with one directional edge v j→ vi at the first time interval

(vi→ v j at the last time interval) indicates the convergence (divergence) of states. In

other time intervals, the bidirectional edge vi ↔ v j indicates that vi derives v j and

v j will return to vi within certain time steps. Therefore, v j can be considered as an

interruption of vi.

• A connector is a configuration of two ending nodes with multiple intermediate nodes

of degree two. The connector is simplified with the star symbol as shown in Figure

4.1 (b). Assume that two ending nodes are vi and v j and an intermediate node is vk,
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(a) (b)

Figure 4.4. (a) five of the top eight largest communities detected for the
transition graph of the hurricane data set and highlighted using Bubble Sets. (b)

the user chooses a community with nodes highlighted in red and we
automatically recommend another community with nodes highlighted in yellow.

and without loss of generality, there is a directed edge vi → vk, then we have two

possible cases. First, vk derives v j and we have directed edges vi→ vk and vk→ v j.

Second, vk returns to vi (i.e., now we have vi↔ vk) and we have the directed edge

v j → vk. In both cases, vk can be considered as an intermediate state of vi and v j.

Similar to fans, connectors may also occur in the first and last time intervals. In these

cases, we have edges vi → vk and v j → vk (for the first time interval), and vk → vi

and vk → v j (for the last time interval). They correspond to the convergence and

divergence of states, respectively.

• A clique is a configuration of more than two nodes that are fully connected. As

shown in Figure 4.1 (c), cliques represent a set of nodes changing their states among

each other. We do not require all edges in a clique to be bidirectional.

Implication. According to the definition of fan, a node will transit to another node at
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(a) (b)

Figure 4.5. (a) and (b) are the rendering of the corresponding blocks of the
chosen and recommended communities in Figure 4.4 (b) at two different time

steps, respectively.

later time steps and transit back to itself eventually. As a result, a fan could represent a

volume region that has turbulence and eventually returns to the original state. In a con-

nector, the nodes in between can be considered as a set of intermediate states between the

two ending nodes. Therefore, a connector represents a transition from a state to another.

A clique is a simplification of several nodes that have strong connections between them.

These nodes therefore represent a locally stable region during that time period.

Order of Simplification. We note that the order of simplification does not affect the

final result. This is because they only apply to regular (i.e., unsimplified) nodes and these

three graph features are unique and independent of each other. However, to achieve the

best time performance in detecting these graph features, we first simplify fans, followed by

connectors and cliques. Fan simplification can reduce the number of nodes dramatically,

thus we take this simplification first. Clique simplification is placed last because the time

complexity to identify cliques is the highest. Figures 4.2 and 4.3 show an example of the
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(a) (b)

Figure 4.6. (a) the user chooses a fan shown in red and we automatically
recommend nodes shown in yellow. (b) is the rendering of the corresponding

blocks of the chosen node.

results of graph simplification. To further reduce visual clutter, we display nodes with small

numbers of data blocks only if they belong to query results for highlighting. Based on our

experience, those nodes that are not rendered are mainly regular nodes. Some connectors

are also omitted while fans and cliques are less likely to be. We report the number of

nodes originally created, after simplification, and finally displayed (see Table 4.2). In the

following, we describe our algorithms to detect these graph features.

Fan Detection. Our fan detection creates a data container called map that stores a set

of tuples. Each tuple represents a pair of nodes: a central node and a leaf node. A tuple

uses the central node as the key and the leaf node as the value. Thus, a set of tuples sharing

the same key represents a fan feature. The detection algorithm first goes through all the

nodes in the graph, finds the nodes with degree of one, and inserts them to the map. Then,

we find those keys with more than one tuple in the map as the central nodes and their

corresponding values as leaf nodes.
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(a) (b)

Figure 4.7. (a) and (b) are the rendering of the corresponding blocks of the
recommended nodes at two later time steps of Figure 4.6 (b).

Algorithm 3 EXPAND(G = (V,E))

Q← CANDIDATENODEDETECTION(G = (V,E))
for each node q in Q do

Build a subgraph G′ that consists of all the nodes connecting to q

if G′ does not contain more than one node then

The nodes expanded along the path, q and its adjacent nodes form a clique
else

EXPAND(G′ = (V ′,E ′))
end if

end for

Connector Detection. Similar to fan detection, our connector detection also creates a

map. To detect a connector, we use the two ending nodes as the key and an intermediate

node as the value. We first go through all the nodes in the graph, find all the nodes with

degree of two, and insert them to the map. If any key has more than two tuples in the map,

the keys are the ending nodes and their corresponding values are intermediate nodes.

Clique Detection. To detect cliques, we apply the algorithm introduced by Tomita et

al. [117]. This algorithm has a time complexity of 3|V |/3, where |V | is the number of nodes
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Algorithm 4 CANDIDATENODEDETECTION(G = (V,E))

Create a FIFO queue Q

Find the node q that has the largest degree in G

Insert q to Q

for each node u in V do

if u is not adjacent to q then

Insert u to Q

end if

end for

return Q

in the graph. Since this algorithm finds all the cliques, the cliques may share nodes. To

avoid this situation, we utilize a greedy algorithm to select cliques in an iterative manner.

In each iteration, we always select the largest clique and rule out all other cliques that

share node(s) with any previously selected clique. Algorithm 3 detects all the cliques in

the graph. Given a graph (subgraph), we always record the candidate nodes to expand as

described in Algorithm 4. We first create a FIFO queue Q, and insert the node q with the

highest degree to the queue. Then the nodes that are not adjacent to q are also inserted to

Q in order. The selection of the nonadjacent nodes is used to avoid duplication. Given a

node q in graph G, this algorithm generates a subgraph G′ that consists of all the nodes in

G that are adjacent to q. Then this algorithm treats G′ as a new input graph and repeats

the above process. If q does not have any adjacent nodes or has only one adjacent node

left, the nodes already expand in full. Thus, q and its adjacent nodes along the path form a

clique.

4.4 Community Detection

Generally speaking, techniques for graph partitioning and clustering aim to identify

node subsets called communities with many internal and few external edges. Unlike a

clique which is a subset of nodes inducing a complete subgraph, a community is less re-

strictive and more practical in many applications because it identifies a highly cohesive

structure as a cluster by the mere absence of a few edges. Detecting communities will help

us investigate community structures and their evolution. We leverage SLPA [146], an ex-
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(a) DCMIP cam-fv (b) DCMIP cam-se (c) DCMIP fim

Figure 4.8. (a) to (c) are the transition graphs of the three DCMIP climate
simulation data sets. The evolution of time is marked with the black dashed line.

tended version of the label propagation algorithm (LPA), for community detection. SLPA

can handle weighted directed graphs which fits our transition graph. It has an efficient time

complexity of d|V |, where d is the average degree of nodes and |V | is the number of nodes.

This algorithm also attempts to avoid producing a number of small communities.

SLPA is outlined in Algorithm 5. In SLPA, a label stands for a community identifica-

tion, and each node has a buffer to store the labels received from neighboring nodes (i.e.,

having edges pointing to the node). SLPA detects the communities in an iterative manner.

In each step, a node serves as a listener while its neighbors serve as the speakers. At the

first iteration, each node adds a unique label to its buffer, which means that every node

forms a community. In later iterations, SLPA goes through every node and sets it to be the

listener. Its neighbors become the speakers. Each speaker randomly selects a label from

its buffer and sends it to the listener. The listener selects the label with the highest rank

calculated from its neighbors and adds it to the buffer. The equation to calculate the rank

is as follows

Li = argmax
j∈Ni

p j→iL j, (4.1)
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Algorithm 5 COMMUNITYDETECTION(G = (V,E))

for each node u in V do

Create a buffer
end for

for each iteration k do

if k = 1 then

for each node u in V do

Insert label u to the buffer
end for

else

for each node u in V do

Set u as the listener
for each neighbor node v of u do

Randomly pick a label l from the buffer
Send l to node u

end for

Gather the labels from neighbors
Pick the label with the highest frequency and insert it to the buffer

end for

end if

end for

for each node u in V do

Find the label l with the highest frequency
Use it as the community identification

end for

Nodes with the same identification form a community

where Li is the label with the highest rank received by node i, L j is the label sent by node j,

Ni is the neighborhood of node i, and p j→i is the transition probability from j to i as defined

in our transition graph. After a certain number of iterations, each node uses the label with

the highest frequency in its buffer as its community identification. The nodes with the

same identification form a community. Figure 4.4 (a) shows an example of communities

detected. We implement and draw Bubble Sets [27] to distinguish different communities.

Bubble Sets use continuous, often concave, isocontours to delineate group memberships,

maintaining the spatial arrangement of the primary data relationship given by the layout

algorithm. Using Bubble Sets, we can produce tight capture of group members with less

ambiguity compared with using convex hulls. Although the Bubble Sets overlap each other,

notice that nodes in communities are disjoint, i.e., any two communities do not share any

node in common.
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(a) all fans (b) all cliques

Figure 4.9. (a) and (b) are the rendering of the corresponding blocks of all fans
and cliques from DCMIP cam-fv and DCMIP cam-se data sets of Figure 4.8.

4.5 Visual Recommendation

While the focus of this work is on graph interaction, the user can also interact with the

volume to highlight relevant aspects of the graph. Details on that are in the TransGraph

work [51]. Here we focus on the newly introduced node and community recommendation

functions.

4.5.1 Node Recommendation

To further guide the exploration of graph, we recommend similar nodes when a node

or multiple nodes are selected. Heer et al. [57] recommended similar nodes with a query

relaxation engine. The recommended nodes fulfill the same query requirements but in

different scenarios. Different from query relaxation, we recommend similar nodes based
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(a) (b)

Figure 4.10. One of the three communities detected from the DCMIP fim data
set shown in (a) and the rendering of its corresponding blocks in (b) respectively.

(b) corresponds to the lower branch.

on their similarities. We leverage the SimRank algorithm [38] to measure the similarities

between nodes. SimRank considers two nodes to be similar if they are related to similar

nodes. Given an unweighted directed graph G = (V,E), if the incoming nodes of two

nodes va and vb are similar, then va and vb are similar. The similarity between va and vb is

calculated as

s(va,vb) =
∑
|I(va)|
i=1 ∑

|I(vb)|
j=1 s(Ii(va), I j(vb))

|I(va)||I(vb)|
, (4.2)

where I(va) is the set of nodes pointing to node va, and Ii(va) is the i-th node in I(va).

If neither va nor vb has incoming nodes, s(va,vb) = 0 (least similar). SimRank stores a

|V |× |V | matrix S to record the similarities between nodes, where |V | is the number of

nodes in the graph. In the first iteration, all the similarity values along the diagonal of S

are set to 1 (most similar). In later iterations, we update the similarities between nodes
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Algorithm 6 NODERECOMMENDATION(G = (V,E))

Create a |V |× |V | similarity matrix S

Create a |V |× |V | temporary matrix St

for each iteration k do

if k = 1 then

for each element st(u,v) in St do

st(u,v)← 0
end for

for each node v in V do

st(v,v)← 1
end for

else

for each node va in V do

for each node vb in V do

if va = vb then

st(va,vb)← 1
else

st(va,vb)← 0
for each neighbor node Ii(va) of va do

for each neighbor node I j(vb) of vb do

st(va,vb)+ = s(Ii(va), I j(vb))× pi→va × p j→vb

end for

end for

st(va,vb)← 1
|I(va)||I(vb)|

st(va,vb)

end if

end for

end for

end if

S← St

end for

according to Equation 4.2. SimRank has the time complexity of kd|V |2, where k is the

number of iterations and d is the average degree of nodes.

In our graph, each edge carries a weight indicating the transition probability between

two incident nodes, thus the original SimRank cannot be immediately applied. As de-

scribed in Algorithm 6, our modified SimRank algorithm takes transition probabilities into

account. We modify Equation 4.2 to the following

s(va,vb) =
∑
|I(va)|
i=1 ∑

|I(vb)|
j=1 s(Ii(va), I j(vb))× pi→va× p j→vb

|I(va)||I(vb)|
, (4.3)

where pi→va is the transition probability from node Ii(va) to node va. We also extend

Equation 4.3 to outgoing edges
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(a) (b)

Figure 4.11. One of the three communities detected from the DCMIP fim data
set shown in (a) and the rendering of its corresponding blocks in (b) respectively.

(b) corresponds to the surrounding.

s(va,vb) =
∑
|O(va)|
i=1 ∑

|O(vb)|
j=1 s(Oi(va),O j(vb))× p′i→va

× p′j→vb

|O(va)||O(vb)|
, (4.4)

where O(va) is the set of nodes pointed from node va and p′i→va
is the transition probability

from node va to node Oi(va). Users can select either Equation 4.3, Equation 4.4, or a

combination of both as the final similarity measure. Figures 4.6 and 4.7 show an example

of node recommendation based on incoming transition probabilities. The recommended

nodes are highlighted with a Bubble Set. As we can see, similar nodes recommended

show up in the volume highlighting results, which allow the user to track the evolution of

selected node.
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(a) (b)

Figure 4.12. One of the three communities detected from the DCMIP fim data
set shown in (a) and the rendering of its corresponding blocks in (b) respectively.

(b) corresponds to the upper branch.

4.5.2 Community Recommendation

Besides node recommendation, we also recommend similar communities when a com-

munity is selected. For simplicity, we first convert each community to an unweighted,

undirected graph. Then we treat the similarity between two graphs as the similarity be-

tween the two corresponding communities.

To calculate the distance between two unweighted, undirected graphs, we apply the

algorithm introduced by Robles-Kelly and Hancock [102]. This algorithm finds a serial or-

dering of the nodes in a graph and converts graphs to strings. By comparing the difference

between the two strings, we compute the difference between the two graphs.

Algorithm 7 utilizes random walks to find the ordering. It first calculates a normalized

symmetric random walks probability matrix P′ and computes P′’s leading eigenvector φ .

Each value in φ is related to a node in V indicating its importance. In order to sort the
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Algorithm 7 GRAPHTOSTRING(A, V )

Create a degree matrix D

for each node i in V do

for each node j in V do

if i = j then

D(i, i)← 1

∑
|V |
k=1 A(i,k)

else

D(i, j)← 0
end if

end for

end for

Create a normalized symmetric random walks probability matrix P′

P′ ← D
1
2 AD

1
2

Find the leading eigenvector φ of P′ {A value in φ is related to a node in V}
Create an empty string s

Create a set s′ consisting of all the nodes in V

Find the node n in s′ with the largest value in φ
while s′ is not empty do

Insert n to s

Remove n from s′

if n’s neighbors are all in s then

n← the node which is the neighbor of a node in s and has the largest value in φ among those nodes
in s′

else

n← the neighbor in s′ which has the largest value in φ
end if

end while

return s

nodes based on their importance and still preserve edge relationships, the algorithm first

finds node n with the largest value in φ and puts n in the string s. Then, it looks for node n′

with the largest value from n’s neighbors and puts n′ in s. After that, the algorithm begins

to search n′’s neighbors. This process repeats until all the nodes are in s. However, if all

n’s neighbors are in s, the algorithm looks for n′ which is a neighbor of any node in s and

has the largest value in φ among those nodes not in s yet. Then it puts n′ in s and keeps

searching among n′’s neighbors. As a result, this algorithm converts a graph to a string and

orders its nodes based on their importance and edge relationships.

After ordering the nodes, Algorithm 8 computes the difference between two strings

s1 and s2 as the distance between the two corresponding graphs G1 = (V1,E1) and G2 =

(V2,E2). This algorithm creates a lattice L using s1 as rows and s2 as columns. The el-

ements in L are only linked to their neighbors along the increasing horizontal, vertical
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Figure 4.13. The rendering of blocks corresponding to the two branches of the
DCMIP cam-se data set, revealing their direct interaction.

Algorithm 8 GRAPHEDITDISTANCE(A1, A2, G1 = (V1,E1), G2 = (V2,E2))

s1← GRAPHTOSTRING(A1, V1)
s2← GRAPHTOSTRING(A2, V2)
P1← the normalized symmetric random walks probability matrix of A1

P2← the normalized symmetric random walks probability matrix of A2

Create a lattice L with size |V1|× |V2|
d(G1,G2)← DIST(L, A1, A2, V1, V2, P1, P2)
return d(G1,G2)

and diagonal directions. A diagonal movement from L(i, j) to L(i+ 1, j + 1) represents

a matching of E1(s1(i),s1(i+ 1)) and E2(s2( j),s2( j + 1)). A horizontal movement from

L(i, j) to L(i+ 1, j) represents a null matching of node s1(i). Similarly, a vertical move-

ment from L(i, j) to L(i, j + 1) represents a null matching of node s2( j). Therefore, the

difference between s1 and s2 is measured by the distance between the two elements L(0,0)

and L(|V1|− 1, |V2|− 1). In addition, the distance can be treated as finding the shortest

path from L(0,0) to L(|V1|− 1, |V2|− 1). Finally, we utilize Dijkstra’s algorithm [32] to

calculate the minimal distance between L(0,0) and L(|V1|− 1, |V2|− 1) and uses it as the

difference between s1 and s2 (i.e., the distance between G1 and G2). In Dijkstra’s algo-

rithm, the distance between two neighboring nodes is calculated as
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Algorithm 9 DIST(L, A1, A2, V1, V2, P1, P2)

Create the degree matrices D′1 and D′2
for each node i in V1 do

for each node j in V1 do

if i = j then

D′1(i, j)← ∑
|V1|
j=1 A1(i, j)

else

D′1(i, j)← 0
end if

end for

end for

for each node i in V2 do

for each node j in V2 do

if i = j then

D′2(i, j)← ∑
|V2|
j=1 A2(i, j)

else

D′2(i, j)← 0
end if

end for

end for

Use Dijkstra’s algorithm to calculate d(L(0,0),L(|V1|−1, |V2|−1))
return d(L(0,0),L(|V1|−1, |V2|−1))

d = β(a,b)×β(c,d)×R1(a,c)×R2(b,d), (4.5)

where a, b, c and d are the indices of L(a,b) and L(c,d). β(a,b) can be calculated as

β(a,b) =
max{D′1(a),D

′
2(b)}−min{D′1(a),D

′
2(b)}

max{D′1(a),D
′
2(b)}

, (4.6)

where D′ is the degree matrix calculated in Algorithm 9. β(c,d) can be calculated similarly.

R1 in Equation 4.5 can be calculated as

R1(a,c) =

⎧

⎪

⎨

⎪

⎩

P′1(a,c), if A1(a,c) = 1

2×|V1|×|V2|
|V1|+|V2| , otherwise

, (4.7)

where P′ is the normalized symmetric random walks probability matrix and A is the adja-

cency matrix. R2 can be calculated similarly.

Figure 4.4 (b) shows an example of community recommendation. The user chooses a

community with nodes highlighted in red. The most similar community recommended is
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TABLE 4.1

THE DATA SETS, PARAMETERS USED, AND TIMING RESULTS OF

CLUSTERING

state clustering

data set dimension block size time / w / δ

DCMIP cam-fv 360×180×30×31 20×10×5 99.62 / 10 / 0.6

DCMIP cam-se 512×256×30×31 32×16×5 123.32 / 10 / 0.5

DCMIP fim 360×180×30×31 20×10×5 137.83 / 10 / 0.45

earthquake 256×256×96×360 16×16×16 43.71 / 10 / 0.4

16×16×8 155.64 / 10 / 0.5

32×32×16 19.49 / 10 / 0.25

hurricane 500×500×100×48 20×20×20 187.67 / 12 / 0.25

ionization 600×248×248×200 30×31×31 98.28 / 10 / 0.3

NOAA climate 360×66×27×120 15×11×9 9.12 / 12 / 0.25

15×6×9 17.16 / 12 / 0.3

9×11×9 11.06 / 12 / 0.35

shown with nodes highlight in yellow. The correspondence of volume highlighting results

in Figure 4.5 show the effectiveness of community recommendation.

4.6 Case Study Results

Data Sets, Parameters, and Timing. We evaluated our approach with several time-

varying data sets listed in Tables 4.1 and 4.2. The timing results were collected using a

workstation with an Intel Core i7-960 3.5GHz CPU and 24GB memory. We used MPI to
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TABLE 4.2

THE DATA SETS AND TIMING RESULTS OF GRAPH SIMPLIFICATION

AND VISUAL RECOMMENDATIONS

layout # nodes community / node

create / adjust original / simplified / displayed recommendation

DCMIP cam-fv 62.07 / 1.43 1909 / 1037 / 247 7.72 / 0.99

DCMIP cam-se 62.25 / 1.5 1959 / 1063 / 223 7.03 / 0.99

DCMIP fim 61.07 / 0.88 1868 / 786 / 212 1.18 / 0.54

earthquake 86.74 / 0.94 2567 / 806 / 356 0.31 / 0.4

241.37 / 2.52 3783 / 1353 / 406 2.46 / 1.31

32.00 / 0.89 1390 / 780 / 558 0.48 / 0.37

hurricane 69.88 / 1.43 2051 / 1143 / 313 3.89 / 0.43

ionization 87.56 / 2.06 2320 / 1151 / 714 0.46 / 0.61

NOAA climate 62.67 / 2.56 1926 / 1373 / 685 0.57 / 1.26

126.57 / 1.90 2800 / 1947 / 909 2.44 / 3.1

57.24 / 2.43 1849 / 1308 / 632 0.89 / 1.43

accelerate the performance of state clustering using the quad-core CPU. State clustering

and layout computation are the two major tasks, which need to be computed only once

per data set. Graph simplification, community detection, and node recommendation were

calculated only once and each step took less than one second. Community recommendation

was normally completed within a few seconds. The iterations of layout creation, layout

adjustment, and node recommendation were set to 500, 150, and 30, respectively, at which

point the iterative solutions converge.
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4.6.1 DCMIP Climate

The DCMIP climate data sets were produced from the simulations of the Earth’s cli-

mate in the dynamical core model intercomparison project (DCMIP) [1]. We acquired

three simulation data sets generated by different models (cam-fv, cam-se, and fim). In

these three models, the volumes are fairly static in the early time steps and later on two

turbulent branches appear. We performed cross-comparison of these three data sets.

As expected, the graphs derived from these three data sets are similar, although not

entirely the same, as shown in Figure 4.8 (a), (b), and (c). We can see that fans and cliques

occupy the central locations in the graphs and they are surrounded by many connectors and

regular nodes. Furthermore, at the early time steps, there are two large fans surrounded by

many small nodes to form two groups. In the middle or later time steps, the nodes begin to

form three groups. The proximity between the three groups in the graph indicates the close

interaction among their corresponding volume regions. Since a fan represents the states

with interruption and a clique represents a set of nodes that transit among themselves, the

presence of a large number of fans and cliques implies that the data sets have a mix of

dynamic and static regions. In addition, a large number of connectors indicates that their

corresponding regions shift between different states frequently. Figure 4.9 (a) and (b) show

the corresponding data blocks of all the fans and cliques of DCMIP cam-fv and DCMIP

cam-se data sets, respectively. Fans correspond to the two fast-moving turbulent branches

while cliques correspond to the bottom layer with slow movement.

For DCMIP cam-fv and DCMIP cam-se, nodes in the early time steps are fairly clut-

tered. Although two fans are the centers of the two groups, there are many nodes and

edges connecting to them, showing no clear separation. They start to form groups in the

middle time steps and node groups get separated more in the later time steps. In addition, a

node group that lasts the longest corresponds to the bottom layer and the other two groups

corresponding to the two branches appear at different time steps. For DCMIP fim, nodes

can be clearly partitioned into two groups in the early time steps and three groups in the
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BLK # NODE #

(a) (b) (c)

Figure 4.14. (a) a rendering of the entire NOAA climate data set. (b) and (c):
recommending the community (yellow) that is the spatial neighbor of the

selected community (red) at the same time step.

middle time steps. Nodes become cluttered in the later time steps. Note that these three

node groups appear at the same time step. We first analyze the transition graphs of DCMIP

cam-fv and DCMIP cam-se. In Figure 4.8 (a) and (b), cluttered nodes in the early time

steps imply that these nodes form separate groups but their differences are not significant.

In addition, the nodes in Figure 4.8 (a) begin to form groups in the later time steps. In fact,

the lower branch highlighted in Figure 4.9 (a) begins to appear at time step 22. The upper

branch does not appear so late, with frequent interaction with the bottom layer. Therefore,

the separation between the upper branch and the bottom layer is not clear. In Figure 4.8

(b), the nodes in the early time steps are also cluttered. In the middle time steps, the nodes

form two groups. Similar to the graph of DCMIP cam-fv (Figure 4.8 (a)), the lower branch

has not appeared yet and the two groups correspond to the upper branch and the rest of

regions. In the later time steps, the nodes in the upper branch begin to diverge which leads
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(a) (b) (c)

Figure 4.15. (a) to (c): recommending the community (yellow) that is not the
spatial neighbor of the selected community (red) at a different time step.

to the nodes corresponding to the lower branch. Therefore, the connections between the

upper and lower branches can be noticed. Unlike DCMIP cam-fv, its lower layer becomes

distinguishable from the two branches. Therefore, the nodes in the later time steps can

form clear groups.

Next, we study the transition graph of DCMIP fim in order to figure out why it is

different from the graphs of the other two data sets. In Figure 4.8 (c), there are two fans

in the early time steps which naturally form the centers of the two groups. This indicates

that the corresponding blocks in early time steps are separated into two groups. One group

corresponds to the middle region, and the other group corresponds to the two boundary

regions. In the middle time steps, we can see three clear groups as shown in Figures 4.10,

4.11, and 4.12. They correspond to the two turbulent branches and their surrounding.

Different from DCMIP cam-fv and DCMIP cam-se, both branches appear at time step

7. That is why the clear separation appears so early in the graph. However, in the later
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Figure 4.16. four cliques are selected in the transition graph of the earthquake
data set. The evolution of time is marked with the dashed line.

time steps, the nodes become cluttered since the two branches are smeared into the rest of

regions.

For the DCMIP fim data set, we can differentiate the nodes by examining the commu-

nities as shown in Figures 4.10, 4.11, and 4.12. In addition, communities help us explain

unusual events. In Figures 4.10 (a), 4.11 (a), and 4.12(a), the communities in the graph

correspond to the lower branch, the surrounding, and the upper branch of the volume data,

respectively, as shown in Figures 4.10 (b), 4.11 (b), and 4.12 (b). This indicates that the two

branches only interact with the surrounding region. This is different in DCMIP cam-fv and

DCMIP cam-se data sets, where the two branches have direct interaction with each other.

By tracking the communities, we can observe that the two branches in the DCMIP cam-se

data set connect to each other. This is highlighted in Figure 4.13. The same conclusion can
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(a) (b)

Figure 4.17. (a) and (b) are the rendering of the corresponding data blocks of
Figure 4.16: red clique for (a), yellow clique for (b).

be drawn for the DCMIP cam-fv data set.

4.6.2 NOAA Climate

The NOAA climate data set was produced from the NOAA’s Geophysical Fluid Dy-

namics Laboratory (GFDL) CM2.1 global coupled general circulation model. We studied

the salinity variable for this data set. A rendering of the volume is shown in Figure 4.14

(a) where the empty regions correspond to the continents. In Figure 4.14 (b), we can see

clear separation among three node groups which are highlighted with the dashed bound-

aries. These three node groups correspond to the three highlighted separate ocean regions

in (a). Furthermore, the presence of a large number of cliques implies that data blocks only

interact with other blocks in their local neighborhood.

In Figure 4.14 (b), we select a community (shown in red) and the community shown in

yellow is recommended. Their corresponding blocks are highlighted in the top and bottom

images in Figure 4.14 (c), respectively. We can see that the recommended community
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(a) (b)

Figure 4.18. (a) and (b) are the rendering of the corresponding data blocks of
Figure 4.16: green clique for (a), and blue clique for (b)

corresponds to the spatial neighbors that are similar to the selected one at the same time

step. In Figure 4.15 (a), the selected and recommended communities are in different time

steps. Their corresponding blocks are highlighted in Figure 4.15 (b) and (c), respectively.

Since the graph structures of two communities are similar, the corresponding data blocks

may behave similarly at their respective time step. This provides an interesting cue for

scientists to further examine their corresponding regions.

4.6.3 Earthquake

The earthquake data set was produced from a simulation of the 3D seismic wave prop-

agation of the 1994 Northridge earthquake. For this data set, we explored node recom-

mendation. The nodes in Figure 4.16 form a fairly long pattern due to the large number

of time steps in the data set. Even after graph simplification, the nodes in the early time

steps are denser than the nodes in the later time steps. This indicates more data variation

in early time steps, thus more states are created. Furthermore, many cliques occupy the
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(a) (b)

Figure 4.19. (a) Selecting nodes (highlighted in yellow) overlapping the time
range of [65, 70]. (b) a selected clique with the time range of [58, 74] is shown

in red and the recommended nodes are shown in yellow.

central locations in the graph. The four cliques highlighted in Figure 4.16 correspond to

different volumetric regions in Figures 4.17 and 4.18. Specifically, Figures 4.17 (b) and

4.18 (b) correspond to the inner layers of the earthquake’s center, and Figures 4.17 (a) and

4.18 (a) correspond to the outer layers of the earthquake’s center.

Since the later growing period is important, we first selected a time range of [65, 70]

using the time bar. As shown in Figure 4.19 (a), the nodes in that time span are highlighted

in yellow to help users narrow down to the nodes of interest. Then, among these nodes, we

select a clique which is highlighted in red, as shown in Figure 4.19 (b). This clique corre-

sponds to the earthquake’s center and its immediate surrounding. We considered outgoing

transition probabilities for node recommendation. The recommended nodes nearby the se-

lected clique correspond to data blocks at the same time step. These blocks are nearby the

data blocks corresponding to the selected clique. The recommended nodes in a later time

step still correspond well to the central region of the earthquake.
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(a) (b) (c)

Figure 4.20. The clique in Figure 4.19 (b) corresponds to the rendering in (a). (b)
shows the corresponding rendering of the recommended nodes at the same time
step as (a). (c) shows the corresponding rendering of the recommended nodes at

a later time step, essentially a tracking result for (b).

4.6.4 Ionization

The ionization data set was produced from a 3D radiation hydrodynamical simulation

of ionization front instabilities for studying a variety of phenomena in interstellar medium

such as the formation of stars. A small front appears at the beginning time steps. The front

moves and grows along the x direction, followed by a cuboid with similar values. Figure

4.21 (b) shows the transition graph. Starting from the clique highlighted at the center of the

graph, nodes expand along several directions, each corresponding to a layer of the volume

along the x direction. Since there is no interaction between neighboring layers, the nodes

in one layer do not have edges connecting to other nodes in another layer. That is why

the nodes corresponding to each layer form a single branch in the graph. Different layers

appear at different time steps, thus a branch may split into several smaller branches. In

addition, it is clear that connectors dominate the graph except one branch. This is quite

different from other data sets we explored. For the ionization data set, each layer may have

several groups of nodes and there are slight changes in each layer. Although a node in a
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(a) (b)

Figure 4.21. In order to better study the front area, the portion of the transition
graph marked with a red rectangle in (a) is selected to zoom in. (b) the transition

graph before layout adjustment reveals a large number of connectors lying on
different branches.

layer may diverge into several nodes, they will converge eventually. Therefore, each group

of diverged nodes forms a connector.

Among all the branches shown in Figure 4.21 (b), one of them has more nodes than any

other. Highlighted with the ellipse, this branch corresponds to the front of the ionization.

Since the front leads the evolution of ionization, it changes most dramatically. Thus the

branch of the front has a larger number of nodes than others. Meanwhile, the nodes cor-

responding to the front are cluttered even after layout adjustment, as shown in Figure 4.22

(a) to (d). This makes it difficult for us to find groups of similar nodes that correspond to

different regions of the front. Community detection helps us identify similar nodes through

node highlighting. For example, in Figure 4.22 (a) to (d), four communities are selected.

Their corresponding volume regions are highlighted in Figure 4.22 (e) to (h). (e) to (g)

correspond to three different layers of the front while (h) corresponds to the base.
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BLK # NODE # BLK # NODE # BLK # NODE # BLK # NODE #

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.22. (a) to (d) are four communities selected from the transition graph of
the ionization data set. In order to better study the front area, the portion of the

transition graph marked with a red rectangle in Figure 4.21 (a) is selected to
zoom in for (a) to (d). (e) to (h) are their corresponding volume highlighting

results.

4.6.5 Parameter Selection

Figures 4.23 and 4.24 show the graph layouts of two data sets under different parameter

settings. Comparing Figure 4.23 (a), (b), and (c), we can see that there are many connectors

in all three graphs. In addition, there are more cliques and less fans in the early time

steps than in the later time steps. Note that the number of fans in Figure 4.23 (c) is less

than that in (a) or (b). The large block size set for (c) reduces the differences among

blocks, and therefore, the turbulent events become less significant, leading to less fans

identified. In Figure 4.24 (a), (b), and (c), we can see clear separation of the nodes which

correspond to the three regions in Figure 4.14 (a). Therefore, although different sets of
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BLK # NODE # BLK # NODE # BLK # NODE #

(a) (b) (c)

Figure 4.23. The graph layouts with different parameter settings. (a), (b), and (c)
are for the earthquake data set with block sizes 16×16×16, 16×16×8, and

32×32×16, respectively. The evolution of time is marked with the dashed line.

parameter produce different graph layouts, the structure of the graphs after simplification

remains almost the same. In other words, the graph structure is insensitive to the change of

parameter values and the randomness of initial node placement. We conclude that the graph

is largely determined by the nature of the time-varying data, while parameter changes only

introduce slight layout variation.

4.7 Feedback from Domain Experts

We also conducted expert evaluation with two domain experts, Drs. Robert Jacob and

Seung Hyun Kim. Dr. Jacob’s research focuses on ocean and coupled climate models

and the computational, mathematical and theoretical issues involved in their construction.

Dr. Kim’s research focuses on modeling of multiscale and multiphysics problems in re-

lationship to energy science and technology. Dr. Jacob evaluated our work with DCMIP

and NOAA climate data sets and mainly focused on model comparison and graph sim-

plification. Dr. Kim evaluated our work with three other data sets and focused on graph

simplification, community detection, and visual recommendation. We utilized the think-
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(a) (b) (c)

Figure 4.24. The graph layouts with different parameter settings. (a), (b), and (c)
are for the NOAA climate data set with block sizes 15×11×9, 9×11×9, and

15×6×9, respectively.

aloud protocol during the evaluation. The experts described their seeing, doing, feelings

and comments, and we summarized their comments after the evaluation.

Dr. Jacob commented that our approach is novel and useful. In model comparison,

transition graphs abstract the original volumetric data sets and the differences between

them allow him to infer the differences between models. For example, he could notice the

natural node groups to identify the time steps corresponding to the branching. This is a

significant difference between the models being compared. In addition, through operations

such as brushing and linking, he could find out that the two branches are similar in one

model while they are very different in the other two models. He further pointed out that

our work is interesting and useful as it is able to detect the regions where the two branches

interact with each other. He also mentioned that graph simplification is beneficial and the

level of simplification is appropriate for users to understand the underlying graph structure.

Finally, Dr. Jacob commented that it would be helpful if we could provide brushing in the

volume view and link the results back to the graph view. Since one of his main interests is

studying the influence among oceans, this would allow him to investigate the behavior of
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a particular ocean of interest.

Dr. Kim stated that our tool is useful and easy to use. For graph simplification, he

mentioned that when the original graphs are complex, it is difficult to identify their struc-

tures. The simplification function not only simplifies the view of the graphs, but also helps

identify the underlying structures. However, in some cases, even after simplification, the

transition graphs are still complex and users could not recognize their structures. He sug-

gested us to leverage focus+context techniques to highlight nodes at the current time step

in a less cluttered view. This will make the nodes and their relationships more visible, and

thus easier to be selected. Dr. Kim also suggested two ways to further classify the simpli-

fied graph. First, we may want to relax cliques to dense subgraphs (quasi-cliques) so that

more simplification can be achieved. Second, we may also consider edge weights in the

simplification for generating stronger classification results. Dr. Kim studied the cliques in

the earthquake data set and the connectors in the ionization data set. He mentioned that a

clique represents a cluster of related nodes and it has a circular relationship. Therefore,

a clique corresponds to a stable state because we would see this structure for a period of

time. Unlike cliques, connectors represent a propagation of wave-like structures. To better

investigate the transition graph after simplification, he suggested us to provide a function

to expand fans, connectors and cliques so that users could see more detailed structures.

For community detection, Dr. Kim agreed that it is meaningful because it collects nodes

of similar characteristics, which simplifies graphs and helps users explore volume data. He

suggested us to consider a maximal time period for each community for better community

detection. Since different communities cover different time intervals, we should provide

feedback on the time spans of communities. For example, if users are interested in a

certain time step, we could highlight all the communities that overlap with this time step.

Furthermore, when users select a certain community, we should provide its time duration

information so that users can quickly narrow down to time steps of interest. We address

this problem by adding a time bar which can be used to filter not only communities, but
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also nodes. In addition, we could provide a community importance measure based on their

numbers of blocks or time periods to emphasize or deemphasize the communities that are

more or less important. Since communities with many blocks usually span large time

periods, we address this problem by assigning the importance of each community based

on its block number. Dr. Kim mentioned that node and community recommendations help

identify similar structures in the data. He suggested us to encode and display the similarity

information in nodes or communities when a node or community is selected.

Finally, Dr. Kim commented that our work may be helpful for investigating turbulent

combustion data sets. In turbulent combustion, large-scale coherent structures play an im-

portant role in determining overall flame characteristics. Such structures are large scale,

organized, and propagated downstream, with small-scale turbulent motions being superim-

posed. Layers of high reaction rates are often associated with these large-scale structures.

Cliques, connectors and fans can be used to quickly identify coherent structures. In ad-

dition, graphs for turbulent combustion data sets may be very complex due to the chaotic

nature of turbulence. Graph simplification is expected to help the exploration of such data

sets. Community detection and recommendation will also help explore the evolution of

coherent structures or identify similar structures.

Both domain experts suggested that we could support multivariate data sets. Dr. Jacob

pointed out that in ocean data sets, salinity and temperature values influence each other.

Therefore, it would be helpful if we could investigate these two variables simultaneously.

Dr. Kim mentioned that we could support both model comparison and variable compar-

ison. We could generate the transition graphs for different variables and enable users to

investigate the differences between graphs.

99



CHAPTER 5

ITREE: AN INDEXABLE TREE FOR EXPLORING TIME-VARYING DATA

5.1 Overview

In this chapter, we introduce iTree which integrates data compacting and indexing into

tree-based visual interface for time-varying data visualization and exploration. We first

transform the time-activity curves (TACs) representation of a time-varying data set into a

hierarchical representation named symbolic aggregate approximation (SAX). Then an in-

dexable version of the data hierarchy named iSAX is constructed, from which we create

the iTree for visual representation of the time-varying data. Finally, a hyperbolic layout

algorithm is employed to draw the iTree with a large number of nodes and provide fo-

cus+context visualization for interaction. We achieve effective querying, searching and

tracking of time-varying data sets by enabling multiple coordinated views consisting of the

iTree, symbolic view, and spatial view.

5.2 SAX and iSAX

The simplest way to construct SAX/iSAX representations from a time-varying data set

is to treat each voxel over time as a TAC. However, it may not be cost-effective for a large

time-varying data set with a large number of voxels and/or a large number of time steps.

Since we will visualize the iSAX hierarchy, it is important to effectively reduce the number

of SAX words constructed. One solution is to organize spatially neighboring voxels into a

group (such as 2× 2× 2) and rearrange their corresponding TACs time step by time step

(i.e., going through voxel by voxel for the first time step, then the second etc.), treating
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Figure 5.1. H ′ is the histogram after logarithm and normalization of the original
histogram of the earthquake data set. H is the new histogram which results from

multiplying H ′ by the opacity value. Blue and red arrows indicate the
breakpoints determined by the original histogram and H, respectively.

it as the TAC for the entire group. Furthermore, breaking the long time steps into time

intervals would allow us to cluster data with finer temporal granularity. Therefore, to strike

a good balance, we suggest to use group-wise voxels in conjunction with time intervals

for generating input TACs. SAX has been applied to detect frequent or outlier patterns for

time-varying data [63]. We modify the original algorithms [83, 109] to accommodate the

characteristics of time-varying volumetric data in order to better differentiate SAX words,

improve computation efficiency, and reduce the number of nodes shown in the iTree.

5.2.1 SAX

A SAX word is a symbolic aggregate approximation of a TAC, which reveals the trend

of the TAC and allows indexing in iSAX. A SAX word can be represented by symbols

(e.g., a, b, c and d etc.) or bits (e.g., 00, 01, 10 and 11 etc.). SAX achieves saving in

storage by dimension reduction of time steps and bit compression.

Before transforming a TAC to a SAX, the user first specifies the value dimension α

which indicates how many levels the entire value range will be partitioned into. It is es-
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(2)

(1)
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Figure 5.2. The iTree of the argon bubble data set generated using the original
algorithm [83, 109]. Three main clusters are highlighted in the volume at time

step 160.

sential to appropriately choose the “breakpoints” that determine the partitioning. Lin et

al. [83] normalized each TAC to have zero mean and unit variance. Assuming the value

distribution of a normalized TAC fulfills the Gaussian distribution, they determined a set of

breakpoints by evenly partitioning the area covered by the distribution. Normalizing a TAC

may better differentiate the value difference but the information of the original value range

is lost. Moreover, solely considering the values may lead us to distinguish the value ranges

not even showing up in the transfer function (i.e., the corresponding opacity is zero), which

is not desirable either.

To resolve these issues, we present our transfer function based strategy to choose the

breakpoints. Specifically, we first convert the TACs to the piecewise aggregate approx-

imation (PAA) representations, then construct a global histogram H ′ based on all PAA
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Figure 5.3. The iTree of the argon bubble data set generated using our algorithm
with new schemes for breakpoint identification and symbol splitting. Three main

clusters are highlighted in the volume at time step 160.

representations. After that, we combine H ′ with the transfer function to generate a new

histogram H. From H, we calculate a set of breakpoints and finally apply a further trans-

formation to obtain discrete symbolic representations.

PAA Conversion. Given a TAC T with length of n, we convert T into a PAA by

compressing n values into w dimensions. The ith element in the PAA representation C is

calculated as

C[i] =
w

n

n
w i

∑
j= n

w (i−1)+1

T [ j], (5.1)

In practice, n does not need to be an exact multiple of w and we modify the summation to

adopt fractional values when w does not evenly divide n.

Breakpoint Identification. From the PAA representations, we construct a fine-grained

global histogram H ′. Figure 5.1 illustrates such a histogram H ′ and the corresponding
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opacity transfer function. We treat the opacity as the weight for each bin and generate a

new histogram H. Given H and the value dimension α , we find a set of breakpoints to

mark those ranges with zero opacity and evenly partition the rest of H. We first identify

the continuous value ranges with zero opacity. For each of these ranges, we assign two

breakpoints to mark the beginning and ending data values. If the beginning (ending) value

is the minimum (maximum) value of the data set, we remove this breakpoint. Assuming

m and n are the numbers of value ranges with zero and non-zero opacity respectively, we

have three cases. If n+m = α , the algorithm stops. If n+m < α , we successively pick

the value range covering the largest area in H and split it into two ranges with equal area.

The value for splitting marks the new breakpoint. If n+m > α , we successively choose

the two neighboring non-zero opacity ranges with the smallest zero opacity value range in

between to merge. The beginning and ending values of the new range after merging are the

breakpoints left.

In Figure 5.1, the final breakpoints determined by H ′ and H are marked with blue and

red arrows, respectively. As we can see, our transfer function based solution not only

avoids focusing on the value ranges with zero opacity, but also better balances the frequen-

cies of all SAX symbols in the final representation. Figures 5.2 and 5.3 show a comparison

and it is clear that using our transfer function based solution leads to a more meaningful

layer-by-layer data classification as shown in Figure 5.3.

SAX Word Generation. Once the breakpoints are obtained, we construct an alphabet

Φ and transform C into an array of symbols Ĉ to form the SAX word. We assign the

symbol Ĉ[i] by comparing C[i] with the value ranges bounded by breakpoints β j−1 and β j

Ĉ[i] = Φ j, iff β j−1 ≤C[i]< β j. (5.2)

Given two symbols Ĉ[i] and Ĉ[ j] with the same value dimension α , the distance between

them is defined as
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C1C2
[0, 1] [1, 1.4]

C3C2 C4C2
[0, 0.7] [1, 1.4] [0.7, 1] [1, 1.4]

C5C2 C6C2
[0, 0.5] [1, 1.4] [0.5, 0.7] [1, 1.4]

C1C2
[0, 1] [1, 1.4]

C3C2 C4C2
[0, 0.7] [1, 1.4] [0.7, 1] [1, 1.4]

C3C7 C3C8
[0, 0.7] [1, 1.25] [0, 0.7] [1.25, 1.4]

(a) (b)

Figure 5.4. Comparing SAX symbol splitting using our algorithm (a) and the
original algorithm [83] (b). Red indicates which symbol to split and blue

indicates the largest value range.

d(Ĉ[i],Ĉ[ j]) =

⎧

⎪

⎨

⎪

⎩

0, if
∣

∣Ĉ[i]−Ĉ[ j]
∣

∣≤ 1

βmax(Ĉ[i],Ĉ[ j])−1−βmin(Ĉ[i],Ĉ[ j]), otherwise
(5.3)

where Ĉ[i] and Ĉ[ j] are the indices of the corresponding symbols that are between 0 and

α−1.

The distance between two SAX words Ĉ1 and Ĉ2 is defined as

d(Ĉ1,Ĉ2) =

√

1

w

w

∑
i=1

(

d(Ĉ1[i],Ĉ2[i])
)2
. (5.4)

Note that the distance measure defined based on two SAX words is the lower bound of

the Euclidean distance defined based on the PAA representation of the original time series.

This allows us to transform TACs into vectors of discrete symbols and work on these

symbols directly to speed up the performance.
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5.2.2 iSAX

After converting all TACs to SAX words, we build the iSAX hierarchy through clus-

tering. In the hierarchy, a node represents a set of TACs with the same or similar SAX

words. When the number of SAX words at a node exceeds a certain threshold δn, the node

is split into two children with bit promotion of a symbol. This is to keep the number of

SAX words corresponding to each terminal node small enough for efficient search.

The key of this process is to find the proper symbol to split. Shieh and Keogh [109]

always chose the symbol with the left-most smallest bit cardinality to split, which guar-

antees that the difference between the largest and smallest bit cardinalities in each SAX

word is less or equal to 1. We choose a symbol covering the largest value range to split in

order to maximize the difference between SAX words. Figure 5.4 illustrates a comparison

using our algorithm and the original algorithm. After two iterations, our algorithm has

three SAX words C5C2, C6C2 and C4C2 (i.e., leaf nodes of the hierarchy). The difference

between C5C2 and C4C2 is
√

((0.7−0.5)+0)/2 = 0.32. The other two differences are

both zero because the corresponding SAX symbols are either the same or have neighbor-

ing value ranges. The three SAX words generated by the original algorithm are C3C7, C3C8

and C4C2. The differences among them are all zero. Thus, we can see that our algorithm

maximizes the distances of the SAX words and minimizes the largest value range. Figures

5.2 and 5.3 show a comparison and we can see that our symbol splitting scheme leads to

a more balanced data classification result. It also produces a less number of nodes in the

iTree which we will create from the iSAX hierarchy.

Bit Promotion and Reduction. Let us assume all the symbols s in a SAX word range

from 0 to α − 1 where α is the value dimension and |α| = ⌈logα⌉ is the bit cardinality.

We write a SAX word with its symbol value and the corresponding bit cardinality in a

particular form. For example, 02.22.63.32 is a SAX word consisting of four symbols, 0,

2, 6 and 3, and the bit cardinalities are 2, 2, 3 and 2, respectively. We can also write the

symbol values in bits, i.e., 00, 10, 110 and 11 for 02, 22, 63 and 32, respectively.
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root

{0*,0*,1*} [0*,1*,1*] [0*,1*,0*]

{00,1*,1*} [01,1*,1*]

[01,10,1*] {01,11,1*}

{01,10,10} {01,10,11}

...

Figure 5.5. An illustration of an iSAX index. Internal nodes and terminal nodes
are denoted with [ ] and { }, respectively.

When comparing two SAX words, we actually compare their corresponding symbols in

order. If the bit cardinalities of the two symbols are different, we can promote the bits with

the smaller cardinality to the same as the larger one. Given two symbols s and t and the

bit cardinality of s is less than that of t, we treat s as s∗. There are three cases to consider.

First, if s is the prefix of t, ∗ are the same as the corresponding bits in t for all unknown

bits. Second, if s is lexicographically smaller than the corresponding bits in t, ∗ are all

1s for the rest unknown bits. Third, if s is lexicographically larger than the corresponding

bits in t, ∗ are all 0s for the rest unknown bits. The guiding principle for these cases is to

promote the bits in s so that s and t are closest in the SAX space. After bit promotion, we

apply Equation 5.4 to compute the distance between these two SAX words.

Besides bit promotion, we can also reduce the bits of the symbol with the larger car-

dinality to the same as the smaller one. If the reduced SAX word is the same as the SAX

word of the lower one, we consider these two SAX words as a match. In practice, bit pro-

motion is used for SAX word comparison in search, while bit reduction is used for building

the iSAX hierarchy.

iSAX Construction. To construct the iSAX hierarchy, iSAX 2.0 [19] uses the raw

TACs as input and loads the TACs into main memory till almost full. In main memory it

converts each TAC into a SAX word, then places the SAX words into terminal nodes. At
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last it flushes them into disk and clears main memory. After each iteration, it continues

to load the rest of TACs. Thus the benefits of iSAX 2.0 are that it reduces disk access,

eliminates a second loading for each TAC, and provides the ability of handling large data

sets. In our algorithm, we partition this process into two parts. First, we convert all the

TACs to SAX words, then insert all SAX words one by one into the hierarchy. Our method

not only offers the benefits of iSAX 2.0, but also increases the performance with GPU

calculation and prevents system crashes by storing intermediate data into files.

As sketched in Figure 5.5, starting from the root whose children have the same prop-

erty that the cardinality of each symbol is 1, we compare the input SAX word with these

children. If the input SAX word matches one child c that is an internal node, we continue

to check c’s children in the next level of the hierarchy. Otherwise, we place the SAX word

as a member of c. When the member of SAX words placed in a node c is larger than δn, we

split c into two child nodes. In practice, we choose the symbol that covers the largest value

range. For example, given a SAX word 22.32.32.12, let us assume 22 covers a range of 0.5

while both 32 and 12 cover a range of 0.1. We split the SAX word into two: 43.32.32.12

and 53.32.32.12. Let us further assume 43 covers a range of 0.3 and 53 covers a range of

0.2. If we need to further split 43.32.32.22, the two new SAX words will be 84.32.32.22

and 94.32.32.22. Finally, for each terminal node, we store all its corresponding voxel IDs

into a file, using the SAX word itself as the file name to facilitate the subsequent search.

Acceleration Strategy. The above iSAX hierarchy construction algorithm has two

limitations. First, each SAX word is inserted into the hierarchy in a sequential order,

making it not amenable for parallel processing. Second, the entire iSAX hierarchy along

with all voxel IDs needs to be stored in memory, making it not well scalable for handling

large-scale data sets. We therefore propose an out-of-core algorithm for iSAX hierarchy

construction to address these limitations. Our main idea is to first partition all voxels or

groups into at most 2w buckets, where w is the word length of their SAX words. We

save each non-empty bucket into a file, corresponding to all the non-empty nodes in the
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first level from the root of the hierarchy. After that, we choose the file with the largest

voxel/group count. If the voxel/group count is larger than δn, then we split it into two

files following our symbol splitting scheme. We continue this process until there is no file

which has its voxel/group count larger than δn. This algorithm performs file splitting in an

out-of-core fashion, thus is more memory efficient. In practice, for each SAX word, we

only need to load one symbol involved for splitting. In addition, this improved solution is

flexible with the change of δn as only the splitting step need to be recomputed, which is

not available with the previous solution.

5.2.3 Approximate Search and Exact Search

With the iSAX hierarchy built, we are able to perform approximate search and exact

search. Both searches take the PAA representation of a voxel or voxel group and a threshold

δ as the input. We find similar voxels or voxel groups with their distance to the input within

δ . The approximate search converts the input PAA to a SAX word and compares each of

the file names corresponding to the terminal nodes in the hierarchy with this SAX word. If

the distance between the file name and the SAX word is larger than δ , we discard that file

because the distance between two SAX words is the lower bound of their PAA’s Euclidean

distance. That is, if the SAX distance is larger than δ , then the Euclidean PAA distance

must be larger than δ . Otherwise, we open the corresponding file and return all voxels or

voxel groups in the file. The search result is the union of all voxels for all the files opened.

The exact search needs an additional step. Instead of simply returning all voxels in the file

which has a SAX distance within δ , we actually compute their PAA-based distances to the

input PAA and only return those voxels that have a smaller distance less than or equal to δ .

5.3 iTree

The iSAX hierarchy is an internal representation of the time-varying data. We construct

its corresponding external version of iTree for visual presentation and navigation. Unlike
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the VizTree [84] which draws the hierarchy as a regular tree, we utilize a hyperbolic graph

drawing algorithm to draw the iTree and support interactive F+C visualization. Such a

solution nicely organizes a large number of nodes in the iTree within a limited display

area and allows the users to query the data in an adaptive manner. In conjunction with the

intuitive SAX view, we enable coordinated multiple views to facilitate versatile exploration

of time-varying data.

5.3.1 From iSAX Hierarchy to iTree

The original iSAX hierarchy we create is not readily suitable for visualization due to

the following reasons. First, the number of non-empty children of the root is fairly large

which easily leads to occlusion and clutter when drawing the hierarchy. Second, except

for the first level from the root which has a very large fanout, all the internal nodes have

exactly two children, which is a fairly small fanout. As a result, the iSAX hierarchy may

have a very large number of levels which also makes the drawing of the hierarchy less

effective for viewing and exploring. Third, sibling nodes are not arranged in the iSAX

hierarchy according to their similarity. Therefore, we propose the following steps: level

promoting, sibling grouping and sibling reordering to transform the iSAX hierarchy to the

iTree suitable for drawing, navigation and query.

Level Promoting. We first promote each node in the iSAX hierarchy such that its

new level in the hierarchy equals the maximal bit cardinality used for any symbol of its

SAX word. For example, in Figure 5.5, nodes at the first level under the root remains

the same. For the second level, we promote terminal nodes {01,10,10}, {01,10,11} and

{01,11,1∗} to become the immediate children of node [0∗,1∗,1∗]. Accordingly, internal

nodes [01,1∗,1∗] and [01,10,1∗] are removed. For this example, since the maximal bit

cardinality used for any symbol in a SAX word is two, the height of the iSAX hierarchy

after level promoting is three (i.e., three levels corresponding to 0 bit, 1 bit and 2 bits,

respectively).
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Sibling Grouping. After level promoting, for each non-leaf node, we use a hybrid k-

means clustering algorithm [71] to group its children if the number of children n is larger

than a certain threshold δn. The number of clusters is chosen as ⌊
√

n⌋. We calculate the

representative value for each SAX symbol with cardinality |α| as

vi =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(vmin +βi)/2, if |i|= 0

(vmax +βi−1)/2, if |i|= α

(βi +βi−1)/2, otherwise

(5.5)

where vmin and vmax are the minimum and maximum values of the data set. βi is the

ith breakpoint. For a SAX symbol Ci.a with value i and cardinality a where a < |α|, we

calculate its representative value v(Ci.a) as follows

v(Ci.a) = (vi≪(|α |−a) + v(i+1)≪(|α |−a)−1)/2, (5.6)

where ≪ is the left shift operation, |α|− a is the difference between the maximum bit

cardinality |α| and the current cardinality a. i≪ (|α|− a) and (i+ 1)≪ (|α|− a)− 1

indicate the smallest and largest value ranges that Ci.a covers. For example, value 0 with

cardinality 1 actually covers 0 (000) to 3 (011) with cardinality 3. Replace i as 0, |α| as 3,

a as 1, we get 0≪ (3−1) = 0 and (0+1)≪ (3−1)−1 = 3 which are the smallest and

largest value ranges that C0.1 covers.

We define the distance between two SAX symbols as the distance between their repre-

sentative values, and the distance between two SAX words as the average distance of their

corresponding SAX symbols. For each cluster created, we identify a node that is closest

to the centroid of the cluster as its representative. This process is performed in a top-down

manner and we replace nodes in each non-root level with their representatives in the actual

iTree drawing.
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Figure 5.6. Level-of-detail exploration of the iTree of the combustion data set.
We mark four nodes (1) to (4) at four different levels of detail in the iTree. The

four images to the right show the corresponding clusters highlighted in the
volume at the first time step.

After level promoting and sibling grouping, the resulting iTree has the following two

nice properties for drawing and querying. First, the height of the iTree is determined by the

maximal bit cardinality for representing any symbol in the SAX words. Second, the iTree

is balanced in the sense that any node does not have a large fanout. By transforming the

iSAX hierarchy to the iTree, we maintain the connection between the internal and external

representations (such as node correspondence) so that any further query of the iTree will

still follow the underlying iSAX hierarchy correctly.

Sibling Reordering. Finally, we reorder sibling nodes under the same parent in the

iTree based on the similarity of their SAX words. When neighboring sibling nodes are

selected together, they will form a meaningful group because their corresponding voxels

in the volume have a high degree of similarity in terms of spatial closeness and temporal

trend. To get the optimal reordering, we need to compute the sum of distances for neigh-

boring sibling nodes and identify the permutation with the smallest sum for every possible
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Figure 5.7. Exploring the supernova (entropy) data set using the SAX view. This
figure shows the overall density pattern of SAX words with a particular SAX

word highlighted.

permutation of sibling nodes.

Since the complexity of optimal reordering follows a factorial growth, we opt for an

approximate random swap solution for efficient handling a large number of sibling nodes.

Random swap starts with an initial sibling ordering and randomly chooses two nodes to

swap their positions. If the new ordering has a smaller sum of distances, then we replace

this ordering with the new one; otherwise we keep the old ordering. Then, we randomly

select another pair of nodes to swap. We continue this process for at most 2m2 iterations or

until we have m consecutive random swaps without decreasing the sum of distances, where

m is the number of sibling nodes.

5.3.2 iTree Drawing and Focus+Context Visualization

We leverage the hyperbolic layout algorithm introduced by Lamping and Rao [80] to vi-

sualize the iTree. The hyperbolic layout organizes a given tree hierarchy within a 2D circle.
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(a) zoom into the first time interval (b) SAX filtering result

Figure 5.8. Exploring the supernova (entropy) data set using the SAX view. (a)
shows the zoom-in into the first time interval where user selections are

highlighted in green. (b) SAX filtering shows the SAX words that are within a
distance of 1.0 to the selected green regions.

Since a tree hierarchy tends to expand exponentially with depth, using a circular display

provides exponentially more space along its radius to nicely accommodate the increasing

number of nodes in successive levels of the hierarchy. To achieve this, the algorithm lays

out the tree on the hyperbolic plane and then maps the structure to the Euclidean plane

during the display. Compared to the conventional tree layout, the hyperbolic layout can

display up to ten times more nodes within the same display region while providing more

effective navigation, such as F+C visualization, around the hierarchy. Change of focus is

achieved by changing the mapping from the hyperbolic plane to the Euclidean plane, which

can be efficiently performed as node positions in the hyperbolic plane remain unchanged.

It also allows for smooth blending of focus and context and continuous repositioning of the

focus. There are two best known models to map the tree laid out on the hyperbolic plane

to the Euclidean plane: the Klein model and the Poincaré model. The former preserves

straightness of lines while the later preserves angles but maps lines in the hyperbolic space

into arcs in the Euclidean space. We choose to draw arcs for a more pleasing visualization.

Details about implementing the hyperbolic layout and F+C visualization can be found in

[80].
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TABLE 5.1

PARAMETER VALUES AND TIMING RESULTS FOR GENERATING SAX

WORDS

time word quant. PAA BP SAX

data set volume dimension group size interval length level I/O GPU CPU GPU

argon bubble 640×256×256×165 2×2×2 33 10 16 28.27 0.10 9.82 2.09

combustion 800×686×215×53 2×2×5 18 12 16 23.11 0.35 7.98 1.73

earthquake 256×256×96×599 4×4×3 50 12 16 8.85 7.25 0.01 0.14

2×2×2 60 10 16 11.00 7.05 8.07 0.67

1×1×1 25 8 16 15.29 7.04 4.05 1.54

hurricane 500×500×100×48 2×2×2 12 8 16 4.1 2.52 1.99 0.48

supernova (entropy) 432×432×432×60 2×2×2 12 10 16 25.98 9.50 6.84 1.50

supernova (vel. mag.) 864×864×864×105 2×2×2 7 10 32 1038.03 407.83 17.78 7.16

1
1
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TABLE 5.2

PARAMETER VALUES AND TIMING RESULTS FOR CONSTRUCTING

ISAX HIERARCHY AND ITREE

bucketing file splitting # nodes # nodes promoting grouping

data set δn I/O GPU GPU for iSAX for iTree CPU CPU

argon bubble 7500 242.55 1.19 0.20 1499 101 0.09 0.07

combustion 50000 596.66 0.98 6.05 4869 357 0.33 0.34

earthquake 5000 1.17 0.14 1.89 441 38 0.03 0.04

1000 15.49 0.26 0.86 513 46 0.01 0.03

50000 58.90 1.00 52.23 465 36 0.03 0.04

hurricane 100000 9.42 0.37 0.33 416 76 0.01 0.03

supernova (entropy) 50000 327.54 1.00 4.26 2048 387 0.11 0.08

supernova (vel. mag.) 500000 1381.17 3.92 21.54 1927 600 0.14 0.39

1
1
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5.3.3 Query in Multiple Coordinated Views

We dynamically link together the three views of the time-varying data, i.e., the volume

view, the iTree view and the SAX view. The user interacts with the data in one view and

the result is automatically reflected in the other view. To support effective exploration of

time-varying data sets, we provide the following queries.

iTree Query. We allow the user to filter out nodes based on their levels in the hierar-

chy, or the number of voxels they contain. This helps reduce the clutter and facilitates the

observation and exploration. Nodes on different levels in the iTree are distinguished using

different colors. We map the size of a node to the number of descendants its contains, thus

attracting the user’s attention to those interesting nodes that are worth exploring. The user

can select such a node and press keyboard shortcuts to explore its siblings or ancestors

and descendants conveniently. Multiple nodes can be selected for a joint view. The corre-

sponding selected voxels or data regions are highlighted in the spatial volume view. If the

TACs are built based on time intervals instead of all time steps, animating over time will

reveal how the selected data clusters vary over space and time. In addition, when the user

select a node, we draw a time ring to indicate the time intervals it covers.

SAX Query. Complementing the abstract iTree view, the SAX view allows the user to

operate in an intuitive manner. We enable F+C visualization so that the user can closely

exam the details in a particular value range or time interval. To combat the dense drawing

of a large number of SAX curves, we draw quads with the binning of SAX value and time

interval combination to show an overview of SAX curve distribution. The density (i.e.,

color saturation) show the number of curves falling into a bin. The user can brush bins to

select SAX curves of interest and make connection to the volume view and the iTree view.

We also show SAX curve clustering results so that the user can easily identify the different

temporal trends exhibited in the time-varying data.

Volume Query. We allow the user to select a voxel or a group of voxels of interest

from the volume at a certain time step (by bounding the ranges in the x, y and z directions)
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Figure 5.9. Exploring the supernova (entropy) data set using the iTree and
volume views. We show the iTree with the corresponding nodes highlighted
according to SAX filtering. (1) shows the full volume rendering at time step
1295. (2) to (4) show the corresponding volumetric region and the tracking

results at three selected time steps: 1295, 1323 and 1353.

and search for similar voxels in the time-varying data. Two kinds of search using the iSAX

hierarchy are supported: approximate search and exact search (Section 5.2.3). The search

results can be highlighted in the iTree and in the volume. Again, the user can animate over

time to reveal how the similar data distribute over space and time. Leveraging the iSAX

hierarchy, indexing and searching the time-varying data is much faster than the brute-force

solution without indexing.
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(a) time step 90, group selection (b) initial SAX view of the selected voxel group

Figure 5.10. Querying the earthquake data set. (a) a group of blocks at time step
90 are selected by bounding two slices along each of the x, y and z axes,

respectively. (b) the initial SAX view of the group of blocks.

(a) SAX cluster selection with F+C visualization (b) time step 90

Figure 5.11. Querying the earthquake data set. (a) the F+C visualization with
three clusters highlighted and the orange cluster selected. (b) is the query result
where the SAX words are within a distance of 4.0 to the selected cluster at every

SAX symbol.
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(a) time step 68 (c) time step 160

(b) time step 106 (d) time step 237

Figure 5.12. Querying the earthquake data set. (a) to (d) are the query results
where the SAX words are within a distance of 4.0 to the selected cluster at every

SAX symbol.
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TABLE 5.3

TIMING PERFORMANCE COMPARISON AMONG BRUTE-FORCE (BF)

SEARCH, EXACT SEARCH AND APPROXIMATE SEARCH

query location BF exact approx. BF exact approx.

data set (x,y,z, t) δ time time time time time time

current interval all time steps

argon bubble (99, 59, 59, 138) 0.103 0.44 0.23 0.14 12.10 6.81 0.13

combustion (286, 152, 37, 10) 0.000002 1.14 0.34 0.18 45.77 8.22 0.18

earthquake, 4×4×3 group size (26, 52, 29, 66) 0.103 0.13 0.01 0.00 8.40 0.30 0.00

earthquake, 2×2×2 group size (51, 104, 45, 70) 0.094 1.92 0.04 0.01 76.54 6.20 0.50

earthquake, 1×1×1 group size (113, 204, 86, 68) 0.018 0.27 0.14 0.13 8.06 1.46 0.14

hurricane (91, 31, 20, 48) 0.00071 0.41 0.29 0.07 13.53 11.01 0.06

supernova (entropy) (108, 120, 97, 1312) 0.001 1.42 0.41 0.25 44.96 6.68 0.25

supernova (vel. mag.) (191, 282, 153, 22) 0.015 3.20 2.42 2.08 49.27 22.83 2.23

1
2
1



5.4 Results and Discussion

Data Sets, Parameter Setting and Timing Performance. We experimented our ap-

proach with several time-varying data sets, as listed in Tables 5.1 and 5.2. These data sets

range from small (1283) to large (8643) in spatial extent and tens of time steps to hundreds

of time steps in temporal extent. For SAX word generation, we allowed either a voxel-wise

or group-wise setting. Splitting the entire time sequence into intervals was useful, leading

to time-dependent clustering results. Choosing different word lengths and quantization

levels affected the speed performance. A longer word length has a finer representation of

temporal trend and a larger quantization levels has a finer representation of value range.

This leads to a better discriminating power in the subsequent data clustering, indexing and

searching while increasing the cost to process, store and search the reduced SAX/iSAX

representations. Our experience shows that choosing 8 to 12 for word length and 16 or 32

for quantization level are appropriate for quality and speed tradeoff. For SAX hierarchy

construction, the key parameter is the threshold for voxel/group count as it determines the

time cost for file splitting. Normally, we chose tens of thousands as the threshold. A larger

threshold leads to a smaller number of nodes produced for the iSAX hierarchy. For iTree

construction, we were able to reduce the number of nodes to at least an order of magnitude

smaller for the iTree. This process not only groups clusters together but also prepares for

a more effective drawing, viewing and interacting with the iTree.

The timing was collected on a PC with an Intel Core i7-960 3.2GHz CPU, 24GB main

memory, and an nVidia GeForce GTX 580 GPU with 1.5 GB graphics memory. For SAX

word creation, breakpoint identification was performed in the CPU while PAA conversion

and SAX word generation were performed in the GPU using CUDA. For SAX hierarchy

construction, both bucketing and splitting were conducted in the GPU. Nevertheless, ex-

cluding I/O time, SAX hierarchy construction can be completed in less than 10 minutes

for all data sets. For iTree construction, all tasks were performed in the CPU. Data I/O

and sibling reordering tasks were negligible in terms of timing. The rest of two tasks can
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be completed within a second. All these three stages were done during preprocessing. At

runtime, the drawing of and interaction with the iTree and the volume are interactive.

Data Classification and Tracking. The iSAX hierarchy essentially classifies a time-

varying data into multiple levels of detail based on the similarity of their trends. By ex-

ploring the iTree, we select nodes of interest and visualize the classification results in the

volume view. Figure 5.3 shows an example with the argon bubble data set. After exploring

the child nodes of the root, we identify three nodes that correspond to three distinct regions

in the volume. As we can see, these three regions are the outer, middle and inner layers

of the bubble, respectively. We used one-dimensional transfer function where the scalar

data value was mapped to color. The three regions classified have overlap in their data

value ranges. Therefore, our iSAX-based classification actually goes beyond straightfor-

ward value-based segmentation. This result shows the nice capability of iTree in terms of

classifying spatiotemporal data into meaningful groups for interpretation.

Figure 5.6 shows the level-of-detail exploration of the iTree. In the actual interaction,

as we move from the root to the leaf node, the selected node at higher levels of detail

is displayed with a larger screen space in a F+C manner. The corresponding volumetric

region highlighting shows the coarse-to-fine exploration of the combustion data set, starting

from the main flame structure and narrowing down to a feature region at the boundary.

Since our iSAX hierarchy is created from a time-varying data organized into multiple

time intervals, a node in the iTree corresponds to spatiotemporal regions that exhibit similar

patterns or trends. Therefore, the iTree also enables us to track spatiotemporal regions over

time. Figures 5.7 and 5.8 show such an example with the supernova data set. In the SAX

view shown in Figure 5.7, we can see two dark value ranges with higher density values

which indicates that these two ranges may contain interesting large-scale features. The

vertical value ranges with non-zero opacity transfer function content are highlighted in

pink in the first time interval. In Figure 5.8 (a), we zoom into the first time interval and

brush some regions of interest. The corresponding SAX words that have a distance within

123



Figure 5.13. Searching the iTree of the hurricane data set. A block at
(x,y,z, t) = (91,31,20,48) is selected using three slices along the x, y and z axes,

respectively.

1.0 to the selected regions are displayed in Figure 5.8 (b). In Figure 5.9, the corresponding

iTree nodes are highlighted with halos. The time ring is also displayed. In the time ring,

the first time step starts from the 12 o’clock direction and subsequent time steps follow the

clockwise direction. Time intervals are marked in black and the current time interval is

highlighted in blue. The corresponding volumetric regions satisfying the query are shown

in (2) to (4) at three selected time steps. Compared to (1), we can see that the selected

region actually corresponds to the main internal large-scale features of the supernova data

set. The highlight results are consistent across different time steps to support meaningful

tracking.

Data Indexing and Search. We conducted our data indexing and search by comparing

brute-force search, exact search and approximate search. Brute-force search does not use

any indexing scheme but simply goes over the PAA representation of data for identifying

similar voxels or groups of voxel. We compared the performance for searching the current

time interval and searching all time steps. The searching performance results with different
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(a) iTree highlighting (b) time step 48

Figure 5.14. Searching the iTree of the hurricane data set. (a) and (b) show the
exact search results of Figure 5.13 with δ = 0.000711.

data sets are shown in Table 5.3. The threshold δ selected for each data set is proportional

to its value range. We can see that, in most cases, the time for brute-force search is much

larger than that of exact search under the same threshold, and the time for exact search

is much larger than that of approximate search. Comparing searching the current time

interval with searching all time steps, we find that usually the time cost does not increase

much for approximate search, but does increase substantially for both brute-force and exact

searches. This is because approximate search only involves using the names of index files

for distance computation, while the other two searches need to examine the content in these

index files.

In Figures 5.10, 5.11, and 5.12, we show the querying of the earthquake data set using

the SAX view. As shown in Figure 5.10 (a), a group of blocks are selected at time step 90

and their SAX words are displayed in the SAX view in (b). As shown in Figure 5.11 (a),

using automatic F+C visualization based on the relative importance of each time interval

(along the horizontal direction) and each value range (along the vertical direction), we are
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(a) time setp 29 (b) time step 12

Figure 5.15. Searching the iTree of the hurricane data set. (a) and (b) are the
results at other two selective time steps for the exact search of Figure 5.14 with

the same threshold.

able to see more clearly the pattern of the corresponding SAX words. Next, we classify

the SAX words using a k-mean clustering algorithm. Three clusters are displayed while

we select one cluster of interest for further querying. The results of all SAX words that

are within a distance of 4.0 to the selected cluster at every SAX symbol are highlighted in

Figures 5.11 (b) and 5.12 (a) to (d).

Figures 5.13, 5.14, and 5.15 show an example of the exact search with the hurricane

data set. A block at a certain spatial position at time step 48 is selected in Figure 5.13.

We perform the exact search with the threshold δ = 0.000711. The result captures the

main hurricane structure that is similar to the selected voxel. Our experience shows that

compared to approximate search, exact search gives a finer result since after finding all

indexed files that match the query criteria, it also requires all voxels in the matched files to

be compared with the PAA representation of the query voxel.
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CHAPTER 6

IGRAPH FOR SCALABLE VISUAL ANALYTICS OF IMAGE AND TEXT

COLLECTIONS

6.1 Overview

In this chapter, we present iGraph, a scalable approach to visual analytics of large im-

age and text collections. Given such a collection, we computed the similarity between

images, the distances between texts, and the connections between images and texts to

construct iGraph, a compound graph representation which encodes the underlying rela-

tionships among these images and texts. To enable effective visual navigation and compre-

hension of iGraph, we present a progressive solution that offers collection overview, node

comparison, and visual recommendation. Our solution not only allows users to explore the

entire collection with representative images and keywords, but also supports detail com-

parison for understanding and intuitive guidance for navigation.

We experiment with two well-known collections: the APOD collection and the MIR

Flickr collection. The Astronomy Picture of the Day (APOD) [93] is an online astronomy

image collection maintained by NASA and Michigan Technological University. Every-

day APOD features a picture of our universe, along with a brief explanation written by a

professional astronomer. Since its debut in June 1995, APOD has archived thousands of

handpicked pictures, which makes it the largest collection of annotated astronomy images

on the Internet. The MIR Flickr collection [62] is offered by the LIACS Medialab at Lei-

den University. The collection was introduced by the ACM MIR Committee in 2008 as

an ACM sponsored image retrieval evaluation. We use the MIRFLICKR-25000 collection
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which consists of 25,000 annotated images downloaded from the social photography site

Flickr through its public API.

6.2 iGraph Definition and Construction

We define iGraph as a compound graph that consists of two kinds of nodes, i.e., I-node

and K-node, and three kinds of edges, i.e., I-I edge, I-K edge, and K-K edge, where “I”

stands for image and “K” stands for keyword. An I-node (K-node) represents an image

(keyword) extracted from the collection. An I-I edge (K-K edge) is formed between two

I-nodes (K-nodes) and the edge weight indicates the similarity between these two I-nodes

(K-nodes). Finally, an I-K edge is formed between an I-node and an K-node only if there

is a connection between them.

6.2.1 I-node and K-node

In iGraph, each I-node corresponds to an image. Each K-node corresponds to a key-

word related to more than one image (otherwise, we treat it as a rare keyword and exclude

it from iGraph). Keywords are given as tags in the MIR Flickr collection. For the APOD

collection, we extract meta-tagged keywords from the HTML header and other keywords

from the paragraph of explanation accompanying each image.

In the explanation sections, we first extract the nouns using a tag extraction tool named

“Stanford Log-linear Part-Of-Speech Tagger” [120]. Then we combine the keywords ex-

tracted from the HTML header and explanation sections. Finally, we manually check the

keywords to eliminate the low-frequent or meaningless keywords. We use frequencies of

the keywords as their importance instead of “term frequency-inverse document frequency”

(TF-IDF) because of the low reappearance of the keywords in the same webpage. TF-IDF

considers the overall frequencies and the number of appearing webpages of each keyword.

In the APOD collection, since the explanation sections are short, the keywords barely ap-

pear twice. Therefore, the frequencies of the keywords are approximately the same as the
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number of webpages which they appear in. We thus use the frequencies as their impor-

tance.

6.2.2 I-I edge, K-K edge, and I-K edge

An I-I edge exists between any two I-nodes and the edge weight is the similarity be-

tween the two images. Different images in the collection come with different dimensions,

types, and formats. For simplicity, we convert all images to the same type and format (i.e.,

portable pixmap format, PPM), and scale them down to a fixed resolution (256×256) for

similarity analysis. Such a resolution strikes a good balance between maintaining image

content and achieving comparison efficiency. We consider three aspects of images, namely,

grayscale content, power spectrum, and color histogram, to calculate the distance between

two images [138]. The overall distance between two images is a weighted sum of the three

partial distances.

An K-K edge exists between any two K-nodes and the edge weight is the similarity

between the two keywords. To analyze the similarity between two keywords, Gomaa and

Fahmy [49] categorized the approaches into string-based, corpus-based, knowledge-based,

and hybrid similarity measures. A corpus-based similarity measure is a semantic similarity

measure. It determines the similarities between keywords according to information gained

from large corpora. This kind of measures usually provides better similarity measurement

than string-based measures. A knowledge-based similarity measure is also a semantic sim-

ilarity measure, but it uses information derived from semantic networks. Among corpus-

based similarity measures, we choose Google similarity distance (GSD) [25] due to its

simplicity.

Given that a keyword Ka appears in a webpage, its GSD to another keyword Kb is

computed as

GSD(Ka,Kb) =
logmax{ fa, fb}− logcab

logMAX− logmin{ fa, fb}
, (6.1)
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where fa and fb are the frequencies of Ka and Kb, respectively, cab is their co-occurrence

frequency, and MAX is the multiplication of the largest two frequencies in all keywords.

As we can see, if Ka and Kb always appear simultaneously, their distance is zero. When

the frequencies of Ka and Kb are constant, their distance gets smaller if they share more

webpages. When the number of sharing webpages is constant, their distance gets larger if

the number of non-sharing webpages increases.

An I-K edge exists between an I-node and an K-node if and only if the image has the

keyword in its tags in the MIR Flickr collection or the image and keyword exist in the same

webpage of the APOD collection.

6.3 Progressive Drawing

6.3.1 Initial Backbone iGraph

Direct drawing the entire iGraph consisting of over tens of thousands of nodes in-

curs a heavy computational cost and usually produces a poor visualization, making the

subsequent exploration very difficult. We therefore advocate the visual analytics mantra:

“analyze first, show the important, zoom, filter and analyze further, details on demand”

[73] in the drawing. Specifically, we first extract the backbone of iGraph by identify-

ing representative I-nodes and important K-nodes from the graph for overview. We apply

affinity propagation [42] to the image collection to identify representative I-nodes. Unlike

k-means and k-medoids clustering algorithms, affinity propagation simultaneously con-

siders all data points as potential exemplars and automatically determines the number of

clusters. For K-nodes, we rank their corresponding keywords based on the frequency to

determine their importance.

For an I-I edge (K-K edge), the edge weight is defined as the similarity of the two

incident I-nodes (K-nodes). For any I-K edge, we define the edge weight as 1 (0) if there

is a (no) connection between the I-node and the K-node. We modify a classical force-
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Figure 6.1. The result of the modified FR algorithm.

directed graph layout algorithm, the Fruchterman-Reingold (FR) algorithm [44], to draw

the initial iGraph. Specifically, we design two forces, the repulsive force Fr and attractive

force Fa. Given two nodes with their graph distance d and similarity σ , the two forces are

calculated as Fr = kr/d and Fa = ka×d2×σ2, where kr and ka are the constant factors for

the repulsive and attractive forces, respectively. We add σ2 in the attractive force to ensure

that more similar nodes are closer to each other. This is not included in the repulsive force,

because we want to ensure that there is always a distance between any two nodes.

6.3.2 Dynamic Layout Adjustment

As a user explores iGraph, we dynamically adjust it around areas of interest to allow

navigation through the graph in a progressive manner. The graph keeps updating as the

new images or keywords of focus are selected. Note that each I-node or K-node displayed

in the graph occupies a certain rectangular area. We map the size of an I-node to the
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Figure 6.2. Four forces for constrained layout adjustment: (a) bidirectional
repulsive force, (b) unidirectional repulsive force, (c) spring force, and (d)

attractive force. Two forces for density adjustment: (e) density force and (f)
bounding force.

importance of the corresponding image. For K-nodes, we use the same font size, while

their frequency is mapped to color saturation (bright red to dark red). The most challenging

issue for dynamic layout adjustment is to reduce their overlap or occlusion. In particular,

we do not allow an K-node to have any overlap with other nodes, while two I-nodes could

overlap each other but we want to reduce such an overlap as much as possible. A good

layout adjustment algorithm should also maintain a good balance between preserving the

structural information of the graph and revealing the dynamics.

To this end, we generate an initial layout for the backbone iGraph. To achieve stable

graph update, good screen utilization, and node overlapping reduction, we introduce four

adjustment steps: constrained layout adjustment, density adjustment, K-node overlapping

adjustment, and occluded I-node removal. For constrained layout adjustment, we apply

a triangulation scheme [108] to all the nodes in the initial graph as shown in Figure 6.1

and use the resulting mesh to perform the adjustment. Similar to the algorithm described
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Figure 6.3. The triangle mesh based on K-nodes after constrained layout
adjustment of Figure 6.1. The colors of the triangles indicate their density values
(higher saturation, higher density). Eight bounding nodes are marked in green.

by Cui et al. [29], we consider four kinds of forces to reposition the nodes to reduce their

overlap while maintaining the topology of iGraph. These forces are:

• Bidirectional repulsive force: This force pushes away two nodes va and vb from

each other and is effective only if va and vb overlap each other. It is defined as

F1(va,vb) = k1×min(x,y), where k1 is a given weight and x and y are the width and

height of the overlapping (see Figure 6.2 (a)).

• Unidirectional repulsive force: This force pushes away a node vb from a node va and

is effective only if vb is inside va. It is defined as F2(va,vb) = k2×min(x,y), where

k2 is a given weight and x and y are the width and height of the gap region (see Figure

6.2 (b)).

• Spring force: This force balances the graph by offsetting the two repulsive forces
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Figure 6.4. The layouts after K-node overlapping adjustment and occluded
I-node removal based on Figure 6.3.

introduced. Given two nodes va and vb, the spring force is defined as F3(va,vb) =

k3× l, where k3 is a given weight and l is the length of the line segment connecting

the centers of va and vb that lies outside of their boundaries (see Figure 6.2 (c)).

• Attractive force: This force maintains the topology of the triangle mesh we construct

for the graph. During layout adjustment, a triangle may be flipped (see Figure 6.2

(d)). Our goal is to maintain stable update of the graph by introducing an attractive

force to flip the triangle back. The attractive force is define as F4(v) = k4× t, where

k4 is a given weight and t is the distance from node v to edge e. We also consider

virtual triangle edges connecting extreme nodes in the graph to the bounding nodes

(i.e., four corners and the midpoints of four sides of the drawing area, see Figure

6.3). This is to ensure that all graph nodes do not go out of bound.

For density adjustment, we apply the same triangulation scheme to the K-nodes only.
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For each triangle in the resulting mesh, we calculate its density value ρ as ρ = ∑i Ai/T ,

where Ai is the size of the image whose center is in the triangle and T is the size of the

triangle. Then we introduce the following two forces:

• Density force: The density force Fd keeps the triangle area proportional to its density.

As shown in Figure 6.2 (e), for each node, Fd pulls it to the center of the triangle.

The force is calculate as Fd = kd×ρ , where kd is a given constant.

• Bounding force: If we only apply the density force, the eight bounding nodes will be

pulled toward to the drawing center. However, since the bounding nodes are fixed,

all the rest of points will be pulled to the drawing center. To balance the effect that

Fd works on the bounding nodes, we introduce the bounding force Fb. In Figure 6.2

(f), assume vc is the bounding node and va and vb are not. Fd on vc is the density

force, Fb on va and vb is the bounding force which has the same magnitude as Fd but

in the opposite direction.

For K-node overlapping adjustment, we reduce the overlapping with any K-node by ad-

justing the positions of the nodes which overlap with an K-node. Figures 6.1, 6.3, and 6.4

show an example of our dynamic layout adjustment results. As we can see, constrained lay-

out adjustment nicely reduces node overlap while maintaining the graph topology. Density

adjustment is able to pull nodes further apart and further reduces their overlap. Finally, K-

node overlapping adjustment dictates that no K-node should overlap any other node. This

is to make sure that all keywords are easily readable.

For occluded I-node removal, we calculate for each I-node, the percentage of its pixels

overlapped with any other I-node. When the largest percentage of all I-nodes is larger than

a given threshold, we simply remove the corresponding I-node from the graph and update

the percentages for the remaining I-nodes. We repeat this removal process until the largest

percentage is smaller than the threshold.

We did not apply IPSEP-COLA [39] because the FR algorithm usually works faster
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than the algorithms using quadratic solvers. IPSEP-COLA even allows users to predefine

the minimal distances between nodes. In iGraph, although we do not want nodes over-

lapping with each other, due to the sizes of images and texts as well as the number of

image and text items displayed, overlapping within the given display area often becomes

inevitable. Therefore, the predefined minimal distance does not fit our purpose. On the

other hand, our force model can reduce the overlaps and better utilize the screen space.

In addition, different from the algorithms using quadratic solvers, the placement of each

node in iGraph can be calculated individually. Therefore, our algorithm can be further

accelerated using the parallel algorithm as described in Section 6.7.

6.3.3 Graph Transition

To preserve the mental map (i.e., the abstract structural information a user forms by

looking at the graph layout) during graph exploration, we provide animated transition from

one layout to another by linearly interpolating node positions over the duration of anima-

tion. Besides the compound graph, we also provide users with the option to observe the

image or keyword subgraph only in a less cluttered view through animated transition.

6.4 Filtering, Comparison and Recommendation

6.4.1 Interactive Filtering

We provide interactive filtering to users for sifting through the graph to quickly narrow

down to images or keywords of interest. For images, users can scan through the entire list

of images to identify the ones they would like to add into iGraph. They can also type a

keyword to retrieve related images for selection. For keywords, users can scan through the

entire list of keywords to identify the ones or type a keyword prefix to find matched ones

for selection. Users can also sift through the graph according to the time information. They

can not only retrieve the images and keywords in a particular time period, but also click a
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keyword to retrieve its related images in the time period for selection. For keywords that

are already in the graph, we highlight them in red while the rest in the list are in black. For

images, we draw them with lower opacity in the list if they are already in the graph. In

addition, users can also dynamically adjust the number of images or keywords they would

like to display in the current view.

6.4.2 Node Comparison

Our node comparison allows users to compare nodes of interest for detail comprehen-

sion. Similar to the work of PivotPaths [34], we allow users to select or input two to four

nodes for comparison. These nodes will be moved to fixed positions around the drawing

center. For each selected I-node (K-node), we retrieve n most similar I-nodes (K-nodes)

and m related K-nodes (I-nodes) as its group, where n and m are user-defined parameters.

Then, we remove the nodes from the previous layout which are not in any group being

compared. After that, we apply the modified FR algorithm while fixing the positions of

selected nodes, fade in the nodes that are not in the previous layout, and dynamically adjust

the layout while the selected nodes are given the freedom to move. The reason is that the

layout will be very cluttered in most cases if we always fix the positions for the selected

nodes. Meanwhile, the mental map would still be preserved since the selected nodes will

not change their positions dramatically compared to their previously fixed positions during

the last step of the adjustment. We assign different colors to the selected nodes to indicate

their group memberships.

6.4.3 Visual Recommendation

To allow exploring iGraph with no prior knowledge, it would be desirable for our sys-

tem to show only the most relevant portions of the graph to users, while suggesting direc-

tions for potential exploration. When a node is selected, we apply collaborative filtering

to recommend related nodes. These recommendations are highlighted in a focus+context
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manner. User interaction history is saved as the input to collaborative filtering.

Used by Amazon.com, the collaborative filtering [85] recommends items to customers

based on the item they are currently viewing. We keep an item-user matrix N where the

rows are the items (images and keywords in our scenario) and the columns are the users.

This item-user matrix records how many times an item has been selected by a user. Unlike

the collaborative filtering which recommends the items based on all the items that the

current user has selected, we only recommend based on item I j that the user just selected.

An array A is created, where each entry Ai records the number of users that selected both

items Ii and I j (i ̸= j). Then we sort A in the decreasing order and recommend the first

n items while n is a user-defined number. We refer to this solution as the user-centric

approach.

Another solution is the item-centric approach. Initially, when we either do not have

many users or do not have much user exploration history, we mostly make recommenda-

tions based on the similarity between items. That is, we recommend nodes that are most

similar to the node selected. We provide three similarity metrics for users to select. The

first metric is the direct use of the similarity matrix defined in iGraph, which we call the

primitive approach. The second and third ones are derived using the rooted PageRank [82]

and Katz [72] algorithms, respectively. With an increasing number of users using iGraph

leading to richer user exploration history, we are able to gradually shift from the item-

centric approach to the user-centric approach and effectively increase the number of items

recommended. In the following, we discuss the rooted PageRank and Katz algorithms in

detail.

Given a graph, the hitting time H(ni,n j) measures the estimated number of steps from

one node ni to another node n j using random walks. There are two issues with this measure.

First, if n j has a large stationary probability, the hitting time H(ni,n j) is very small from any

given node ni. Second, this measure is sensitive to the subgraph far away from ni and n j

even if they are very close to each other. This is because the random walks may walk to
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(a) (b)

Figure 6.5. Node comparison of (a) the APOD data set and (b) the MIR Flickr
data set. (a) Three K-nodes “emission nebula”, “planetary nebula”, and

“reflection nebula” are chosen for comparison. The nodes with green bottom-left
corners, red upper-left corners, and blue upper-right corners are related to

“emission nebula”, “planetary nebula” and “reflection nebula”, respectively. (b)
One K-node and two I-nodes are chosen for comparison. The K-node is

“self-portrait” and the two I-nodes are images of people. One is a picture of a
girl wearing a T-shirt and the other is a picture of a pair of feet.

a subgraph far away from them and cannot return to ni and n j within a few steps, which

increases the hitting time. The rooted PageRank [82] was designed to solve these two

issues. To solve the first issue, it considers the stationary probability along with the hitting

time in the measurement. To solve the second one, it allows the random walks from ni to

n j to periodically return to ni with a probability a.

Assuming a graph is represented using an adjacency matrix A, we compute the degree

matrix D as

Di, j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

∑N
k=1 Ai,k

, i = j

0, i ̸= j

(6.2)

where N is the number of nodes in the graph. The probability matrix P measures the
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(a) (b)

Figure 6.6. Visual recommendation of the APOD data set. (a) and (b) iGraphs
before and after the recommendation (based on K-node “saturn”), respectively.

The recommended nodes are highlighted with the bubble set in (b).

probability of walking from any node to its neighbors in a single step with a uniform

probability, where

P = DA. (6.3)

Then we compute the similarity matrix S as

S = (1−a)(I−aP)−1, (6.4)

where a is the probability of returning to the starting node and I is the identity matrix.

Katz [72] argued that the similarity between two nodes is not only related to how similar

they are, but also related to how many others are similar to them. The similarity Si, j

between two nodes ni and n j is computed as

Si, j =
∞

∑
l=1

al× |P(ni,n j)
l|, (6.5)
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(a) (b)

(c) (d)

Figure 6.7. Node comparison of Figure 6.5 (a) using the bubble set visualization
to highlight the belonging relationships.

where P(ni,n j)l is the set of paths from ni to n j with path length l, and a is a weight

between 0 and 1. Assuming a graph is represented as an adjacent matrix A, the similarity

matrix S is computed as

S = aA+a2A2 + ...+akAk + ...

= (I−aA)−1− I.
(6.6)

In terms of visualization, rather than visualizing recommended items in a separate view
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Figure 6.8. (a) A backbone edge vavb in Sb overlaps with nodes vm and vn in Sr.
(b) The route tries to find an intermediate point a to avoid crossing vm, but a is
still in vn. (c) The route tries the opposite corner of vm and finds a so that vaa

does not overlap with vm. However, avb still overlaps with vm. (d) By adding a
new point b, the final route avoids overlapping with vm and vn. The green region

indicate the corresponding bubble set. (e) In another example, a is still in
vo ∈ Sr. Therefore, this algorithm could not always avoid the overlapping. In this

case, we simply use the original backbone edge vavb as the route.

[28], we add recommended nodes to the current node being explored and rearrange the

iGraph layout. The end result is that more nodes will show up in the surrounding in a fo-

cus+context fashion, and in the meanwhile, we selectively remove some nodes that are less

relevant from the layout so that the total number of nodes displayed is kept as a constant.

The criteria to remove less relevant nodes could be nodes which have longest paths from

the current node being explored, or nodes which are least recently explored, etc.

We also utilize the image popularity and keyword frequency gathered from our data

analysis stage for initial suggestions. The display sizes of the popular images are propor-

tional to the logarithmic scale of their popularities. We also set the minimum and maximum

display sizes and aspect ratios to avoid very large or small images. The frequent keywords

will be highlighted with more saturated colors. The larger display sizes and more saturated

colors direct the user’s attention for more purposeful exploration.
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Figure 6.9. A backbone edge vavb in Sb overlaps with node vm. The routing
points can be identified using Algorithm 10.

6.5 Bubble Set Visualization

For node comparison and visual recommendation, we assigned different colors to the

boundaries of the nodes to indicate their group memberships [53]. However, the force-

directed layout algorithm attracts similar nodes together while pushing dissimilar nodes

away. As a result, the nodes belonging to the same group may not be necessarily close

to each other. Therefore, users have to go through each individual node to identify its

membership. This is very inefficient with a large number of nodes in the graph. It is even

more difficult if some nodes have multiple group memberships (Figure 6.5). To solve these

problems, we utilize the bubble set visualization [27] to highlight the group membership

of nodes. Bubble sets use implicit surfaces to create continuous and dynamic hulls. These

hulls can be treated as visual containers that highlight group relationships without requiring

layout adjustments to existing visualizations. Using bubble sets, we can produce tight

capture of group members with less ambiguity compared with using convex hulls (e.g.,

Figures 6.6 and 6.7).

Kelp diagram [33] and KelpFusion [91] can also highlight group memberships. These

algorithms first allocate the space of each node using the Voronoi diagram. Then they both
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Algorithm 10 POINT v = FINDROUTEPOINT(va, vb, vm, Sr, distbuff ) (Refer to Figure 6.9.)

The line connecting node va and vb overlaps with node vm

swap← false
v← null
while distbuff > 0 and v overlaps with nodes in Sr do

if vavb intersects with a corner c of vm then

v← c

else

if Area(P)≤ Area(Q) then

if i > j then

v← (swap ? C1 : C3) + distbuff

else

v← (swap ? C2 : C4) + distbuff

end if

else

if i > j then

v← (swap ? C3 : C1) + distbuff

else

v← (swap ? C4 : C2) + distbuff

end if

end if

end if

if swap then

reduce distbuff

end if

swap = ¬swap

end while

return v

utilize the shortest paths to determine the linkage between nodes in the same group. Kelp

diagram simply draws the edges while KelpFusion draws an area instead. We choose to

use bubble set because nodes in iGraph have large space occupation while nodes in Kelp

diagram and KelpFusion are rather small. In addition, bubble set visualization allows node

overlapping, while node overlapping and space allocation are difficult to handle in Kelp

diagram and KelpFusion.

In a graph G, assume that the nodes to be highlighted in a bubble set are in the set

Sb, and the remaining nodes are in the set Sr. The bubble set should consist of all the

nodes in Sb and try to avoid containing or overlapping the nodes in Sr. There are four

steps to extract the bubble set. First, we extract a backbone of Sb to connect the nodes.

This backbone forms an approximate shape of the final bubble set. Second, for each edge

of the backbone that overlaps with the nodes in Sr, we use a routing algorithm to avoid
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the overlapping. Third, we calculate an energy field to illustrate the display space of the

bubble set. A positive value is given to a location near the backbone while a negative value

is added if the location is close to the nodes in Sr. Finally, we utilize the marching squares

algorithm to identify the contour of the energy field. The contour should contain all the

nodes in Sb and thus becomes the boundary of the bubble set.

6.5.1 Backbone

The backbone that connects all the nodes in Sb should not only consider the length of

the straight line connecting the centers of two nodes but also try to avoid crossing the nodes

in Sr. We define the cost of connecting two nodes va and vb in Sb as

C(va,vb) = δ (va,vb)× (N(va,vb)+1), (6.7)

where δ (va,vb) is the length of line segment vavb, and N(va,vb) is the number of nodes

in Sr that are crossed by vavb. We use (N(va,vb)+ 1) to make sure that the cost always

considers the length of vavb. By minimizing the total cost of connecting the nodes in Sb,

we generate the backbone. To minimize the cost, Collins et al. [27] started with the node

near the center of Sb and then iteratively added the node with the minimal cost with respect

to the selected nodes. The disadvantages of their solution are that it is difficult to define

where the center of Sb is and it does not always yield the optimal solution. In contrast, we

leverage the minimum spanning tree (MST) to extract the backbone. This eliminates the

needs to find the center of Sb and optimizes the solution.

6.5.2 Routing

Although the backbone extraction tries to choose the edges that overlap with few nodes

in Sr, some edges may still cross the nodes in Sr. Routing is then applied to solve this

problem. In Figure 6.8 (a), the backbone edge vavb intersects with nodes vm and vn in
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Sr. We would add new points to avoid the crossing. In Figure 6.8 (b), a new point a is

added. This point has a distance distbuff to the corner of vm because we would like to

reserve some space for the bubble set. However, a is in node vn, the new edges vaa and avb

still overlap with node vn in Sr. Therefore, we place a near the opposite corner of vm as

shown in Figure 6.8 (c). The new edge vaa does not overlap with nodes vm and vn, but avb

does. This prompts us to add a new point b as shown in Figure 6.8 (d). The green region

illustrates the resulting bubble set. However, if the nodes in Sr are very cluttered, a may

still overlap with another node, e.g., vo as shown in Figure 6.8 (e). In this case, we will not

add new points. The detail routing algorithm is described in Algorithm 10.

6.5.3 Energy Field and Contour

The energy field illustrates the coverage of the backbone. If a location is close to the

backbone, it has a high energy value, otherwise it has a low energy value. If this location is

close to the nodes in Sr, the energy value would be reduced or could even be negative. The

bubble set is a contour with energy E(x,y) = c, where c is a given positive isovalue. This

value is selected so that the bubble set will contain all the nodes in Sb and tries to avoid the

nodes in Sr. To ensure the performance, we first uniformly partition the display screen into

grid points and calculate the energy value for each grid point instead of each pixel. For

each grid point Pi, an energy is calculated with respect to an item I j (i.e., a node or edge)

as

E(Pi, I j) = w j
(D1−δ (Pi, I j))2

(D1−D0)2
, (6.8)

where D0 is the distance where the energy is 0, and D1 is the distance where the energy

is the maximum, δ (Pi, I j) is the distance between grid point Pi and item I j, and w j is the

weight assigned to item I j. The nodes and edges in the backbone have positive weights

while the nodes in Sr have negative ones.
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Initially, we only calculate the energy of the grid points with respect to the nodes and

edges in the backbone. The higher the absolute values of the item weights, the larger the

item coverage areas are. Since edges are difficult to observe if they are too thin, in our

implementation, we assign a larger value (2) to their weights. The weights of nodes in the

backbone are assigned a smaller value 1. If the energy of a grid point is positive, the grid

point is close to the backbone. However, the grid points may be close to the nodes in Sr.

To avoid the overlapping, we go through the nodes in Sr and add their negative energies to

the grid points. The weights of the nodes are assigned the value of −1. Finally, a positive

isovalue c is specified to extract the corresponding contour. A larger value of c may lead

to separated components but the contour will get tighter. We will adjust the value of c

accordingly so that the contour will form a single connected component.

6.6 Text Outlier Detection

For an image collection that evolves over time, keywords with high frequencies nor-

mally are of interest. However, user interests may shift. Sometimes, an unpopular keyword

may appear frequently in a limited time period while a popular keyword may seldom ap-

pear or even disappear. Such a phenomenon indicates that an anomalous event happens

during that time period. Detecting text outliers can therefore help us gain a deep un-

derstanding of the collection by separating them out for further exploration. We exclude

K-nodes with low frequencies from this analysis since they already belong to outliers. To

detect text outliers with high frequencies, we utilize the algorithm introduced by Akoglu

and Faloutsos [2]. Their algorithm allows us to detect anomalous time periods and nodes.

In order to detect the anomaly, we first evaluate the importance of each node in each time

period. The importance of a node can be treated as its current behavior in time period t.

Then, a time window w is selected which covers a larger number of time steps than time

period t. The importance of each node in w before t can be treated as its recent behavior.

By comparing the current and recent behaviors of a node, we can tell how abnormal this
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node behaves. In addition, by summarizing the abnormality of all the nodes, we know how

abnormal this time period is. If the nodes behave similarly to their recent behaviors, then

the current time period is normal. Otherwise, it is abnormal.

6.6.1 Node Importance

Given a time period t, we construct a co-occurrence matrix Ct to store co-occurrence

frequencies of all the K-nodes. According to the Perron-Frobenius theorem [43, 97], the

largest eigenvalue of Ct is positive and the value for each node in the corresponding eigen-

vector et indicates the importance of that node.

6.6.2 Time Period and Keyword Outlier Detection

By measuring the changes of node importance, we can identify anomalous time periods

and nodes. We acquire the largest eigenvector of each time period in the time window w

before t. Akoglu and Faloutsos [2] suggested that the average of these largest eigenvectors

(denoted as ew) is good enough to evaluate node behaviors. By taking the dot product of

the two unit vectors ew and et , we get the difference between time period t and its previous

time periods in w. This difference value Z is calculated as follows

Z = 1− ew
T et . (6.9)

If these two unit vectors are perpendicular to each other, Z is 1 and if they are exactly the

same, then Z is 0. The larger the value of Z, the more anomalous time period t is. Given

a node, we subtract its corresponding values in ew and et to detect how abnormally this

node behaves at time period t. After identifying anomalous time periods, users can extract

related I-nodes and K-nodes for further exploration. If they are interested in an anomalous

K-node at a certain time period, they can also use interactive filtering to extract related

I-nodes.

148



!"

#"

$"

%"

&"

'" ("

)"

!"

!" #"

!" !" %"

#" #" #" $"

%" %" %" $" &"

$" $" &" &" &" '"

&" '" '" '" '" (" ("

(" (" (" )" )" )" )" )"

(a) (b)

Figure 6.10. Two different approaches to partition an half matrix, assuming eight
GPUs (0 to 7) are used. (a) The first approach partitions the matrix into halves

recursively. (b) The second approach works with any number of partitions.

6.7 Parallel Acceleration and Display Wall

To improve the performance of our approach, we leverage a nine-node GPU cluster

along with a display wall employed in the Immersive Visualization Studio (IVS) at Michi-

gan Technological University. The GPU cluster consists of one front-end node and eight

computing nodes. The display wall consists of 6×4 thin-bezel 46-inch Samsung monitors,

each with 1920×1080 pixels. In total, the display wall can display nearly 50 million pixels

simultaneously. These 24 monitors are driven by eight computing nodes for computation

and visualization. Each node comes with a quad-core CPU, two NVIDIA GeForce GTX

680 graphics cards, and 32GB of main memory. The aggregated disk storage space is over

tens of terabytes for the GPU cluster. We use this cluster not only for visualization, but

also for performance improvement of preprocessing and layout generation.
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(a) (b)

Figure 6.11. iGraphs with different numbers of I-nodes and K-nodes. For (a) and
(b), the numbers of I-nodes and K-nodes are 110 and 25, 190 and 25,

respectively.

6.7.1 GPU Parallel Preprocessing

For the computation of grayscale and spectrum image distance matrices, it could still

take hours to complete when running on a single GPU. To further improve the perfor-

mance, we use Open MPI and distribute the workload to several GPUs and perform the

computation simultaneously.

There are two ways to evenly partition the symmetric distance matrix. As shown in

Figure 6.10 (a), the first approach iteratively partitions the matrix into halves as indicated

by blue lines, and the partition results are indicated with yellow rectangles. This approach

achieves a perfectly balanced workload while the number of GPUs must be a power of

two. Furthermore, since the triangle of each partition is stored as an array in CUDA and

the number of images in a collection is an arbitrary number, it is challenging to combine

the resulting triangles to the original half matrix in an efficient way.

Figure 6.10 (b) illustrates the second approach. Assuming that we need to partition the

half matrix into p partitions, we first divide the matrix into p rows and p columns. Then
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(a) (b)

Figure 6.12. iGraphs with different numbers of I-nodes and K-nodes. (a) and (b)
show the single graphs with 270 I-nodes and 50 K-nodes, respectively.

for the p rectangles along the diagonal, each partition gets one. The number of remaining

rectangles is p× (p−1)/2, which means that each partition gets (p−1)/2 rectangles. If p

is an odd number, then each partition gets the same number of rectangles. Otherwise, half

of the partitions get one more rectangle than the rest. Although the number of images for

each partition to load is not perfectly balanced, this approach still achieves a very balanced

workload for a large p and it works well with any number of GPUs. In practice, p could be a

large number (e.g., a multiple of the number of GPUs) and we can distribute the partitions

to each GPU in a round robin manner. Meanwhile, because we store the computation

results for each partitioned rectangle, it is easy to index and retrieve the similarity value for

any pair of images. Therefore, we implement the second approach.

6.7.2 CPU Parallel Graph Layout

We use MPI for the parallel iGraph layout generation using multiple CPUs. The most

time-consuming computations are initial backbone iGraph, constrained layout adjustment,

and density adjustment. Thus we parallelize these three steps to achieve good perfor-
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(a) (b)

Figure 6.13. The nodes recommended by the user-centric and primitive
item-centric approaches in Figure 6.6 are highlighted in (a) and (b). Those nodes

highlighted with dark red boundaries in (a) and (b) do not show up in the
previous iGraph.

mances. The input is the information of all I-nodes and K-nodes (i.e., their initial locations,

widths, and heights) while the output is the iGraph layout after applying these steps.

For initial backbone iGraph, each node needs to calculate the repulsive force with any

other node. After we distribute the graph nodes evenly to the processors, they need to

exchange position information in each iteration of the FR algorithm. The initial layout

changes dramatically in early iterations and gets more and more stable in later iterations.

To reduce the communication cost, we allow the processors to have more frequent com-

munications in early iterations than later ones. For constrained layout adjustment, there

are four forces. The bidirectional and unidirectional repulsive forces may occur between

any two nodes. Therefore, after we distribute the graph nodes to different processors, they

also need to exchange position information in each iteration. Our experience shows that

the attractive and spring forces take much more time to compute than the two repulsive

forces. As such, when the processors have similar numbers of attractive and spring forces,

we consider that the workload balancing is achieved. Since the numbers of attractive and
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(a) (b)

(c) (d)

Figure 6.14. Visual recommendation of the MIR-flicker data set. (a) and (b)
iGraphs before and after the recommendation based on an I-node showing the

picture of a fox, respectively. The recommended nodes are highlighted with the
bubble set in (b). The nodes recommended by the user-centric and primitive

item-centric approaches are highlighted in (c) and (d). Those nodes highlighted
with dark red boundaries in (c) and (d) do not show up in the previous iGraph.
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TABLE 6.1

THE SIZES OF APOD AND MIR FLICKR DATA SETS

data set # images # keywords # I-I edges # K-K edges # I-K edges

APOD 4,560 5,831 10M 17M 137K

MIR Flickr 25,000 19,558 312M 191M 173K

repulsive forces are related to the degrees of nodes, we sort node degrees in the decreas-

ing order and allocate those graph nodes to different processors in a round robin manner.

A processor would not receive any more nodes if the accumulated node degrees reaches

the average total node degrees it should have. In this way, all the processors shall have a

similar amount of accumulated node degrees. Similar to constrained layout adjustment, in

density adjustment, we distribute K-nodes based on their degrees. In each iteration, after

calculating the new positions of the K-nodes, the processors exchange position informa-

tion, update the densities of the triangles, and repeat the process until certain criteria are

met.
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TABLE 6.2

THE PARAMETER AND TIMING RESULTS OF SIMILARITY

COMPUTATION AND LAYOUT GENERATION

data similarity block thread loading computing speedup saving # graph layout speedup

set # images type config. config. GPU GPU factor GPU nodes CPU factor

APOD 4,560

grayscale 16,384 512 0.214s 762.312s - 0.008s 125 0.38s -

spectrum 16,384 1,024 0.213s 515.042s - 0.007s 225 1.29s -

histogram 16,384 1,024 0.002s 3.259s - 0.008s 525 6.96s -

MIR Flickr 25,000

grayscale 512 512 12.715s 25,722s - 0.312s 550 10.24s -

768 768 3.179s∗ 3,127s∗ 8.22 0.088s∗ 0.90s∗ 11.37

spectrum 512 512 12.623s 13,380s - 0.272s 1050 47.60s -

768 768 3.163s∗ 2,151s∗ 6.22 0.089s∗ 2.07s∗ 22.99

histogram 1,024 1,024 0.0296s 0.117s - 0.274s 2050 5.61s∗ -

1
5
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6.7.3 Display Wall Visualization

To render iGraph on the display wall, we design four program components: the master,

computation, relay and slave programs. The master program not only has a user interface to

accept all the user interactions but also displays iGraph. It runs on a local computer which

is located in the same room as the display wall. This computer captures user interactions,

sends instructions to the computation program for generating the graph layout in parallel.

After receiving the layout result from the computation program, the master program sends

data to the cluster’s front-end node. The data contain all the information for rendering, e.g.,

all the I-nodes and K-node positions, widths and heights. Meanwhile, this front-end node

running the relay program receives the data and broadcasts it to the eight computing nodes

of the cluster. The slave program is an OpenGL application running on these eight nodes.

Each node receives the data sent from the relay program, decodes the data, and renders the

visualization results to the three tiles which it is responsible for.

For the slave program, there are two problems that we need to address. The first is

that the time gap between neighboring receiving actions is less than that of decoding so

that the data may change undesirably during decoding. The second is the synchronization

of receiving, decoding and displaying because the data may change if two of these three

actions happen simultaneously. To address the first problem, we create a large buffer, use

one thread to receive the data and save it to the buffer so that the new incoming data will

not override the previous data. This also prevents receiving from interrupting decoding

and rendering. Furthermore, to solve the synchronization of decoding and rendering, we

create another thread to iteratively decode the data and invoke OpenGL to display. In

our experiment, we did not encounter inconsistency among the eight computing nodes.

Therefore, we do not synchronize the tasks among them.
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6.8 Results

6.8.1 Data Sets and Performance

In our experiments, we used two data sets, APOD and MIR Flickr. Their data sizes

are shown in Table 6.1. We can see that the connections between I-nodes and K-nodes

are less in MIR Flickr than in APOD. On average there are only 6.9 K-nodes connected to

each I-node in MIR Flickr while 31.1 in APOD. This results in two distinguished groups of

I-nodes and K-nodes in the initial iGraph for the MIR Flickr data set. The configurations

and timing results for computing image distance matrices are shown in Table 6.2. The

single GPU computation time was reported using a desktop PC (not a cluster node) with

an nVIDIA GeForce GTX 580 graphics card, while multiple GPUs computation time was

reported using the GPU cluster (Section 6.7). At run time, all the tasks and interactions are

interactive.

6.8.2 Initial Backbone iGraph and Single Graph

The initial backbone iGraph chooses representative I-nodes and K-nodes to show the

overall structure. The representative I-nodes are preselected using affinity propagation,

and the representative K-nodes are those with the highest frequencies. Meanwhile, users

can choose the number of nodes as shown in Figures 6.11 and 6.12, where the number of

I-nodes increases from 110 to 270 and the number of K-nodes increases from 25 to 50.

When the number of nodes increases, to maintain the screen occupancy, the sizes of nodes

decrease. However, we set the minimal sizes for I-nodes and K-nodes respectively in order

to make the images and keywords readable. Figure 6.12 (a) and (b) are the single graphs

with only I-nodes and K-nodes, respectively. Single graphs are displayed when users want

to observe only I-I edge or K-K edge relationships.
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6.8.3 Visual Recommendation

The initial backbone iGraph only gives an overview while our recommendation system

serves as a navigation tool to help users in their exploration. The example with the APOD

data set is shown in Figures 6.6 and 6.13. From Figure 6.13 (a) we know that users who

are interested in “saturn” are also interested in “mars”, “moons”, and “satellite”. In Figure

6.13 (b), for the keywords in the bubble set, “cassini” and “cassini spacecraft” correspond

to the Cassini orbiter which reached Saturn and its moons in 2004. “ring” means the outer

ring of Saturn.

Another example with the MIR Flickr data set is shown in Figure 6.14. In (b), we show

iGraph after recommendation based on an image of a fox. From (c) we know that the users

who are interested in the fox are also interested in “furry” animals such as squirrel and

otter. In (d), “red”, “green”, “garden”, and “fox” are related to the image of the fox.

The user-centric approach and the primitive approach have their own limitations. When

we either do not have many users or do not have much use exploration history, the user-

centric approach sometimes could not recommend any node since the selected node was

not explored by any user previously. If an I-node (K-node) does not have many related

K-nodes (I-nodes), the primitive approach also could not recommend enough nodes. To

overcome the limitations, we implement the rooted PageRank and Katz algorithms. These

two algorithms connect all the I-nodes and K-nodes together as a graph. The similarity be-

tween two nodes depends on their closeness in the graph. Therefore, two nodes that share

a large number of related nodes will be similar. This is not the case for the primitive ap-

proach. In addition, since all the nodes are connected together, we can always recommend

enough nodes for any selected node.
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TABLE 6.3

COMPARING FOUR RECOMMENDATION APPROACHES OF APOD AND

MIR FLICKR DATA SETS

APOD MIR Flicker

# of recommended nodes 12 25 50 100 200 12 25 50 100 200

user-centric 7 7 9 5 0 1 5 4 0 0

primitive item-centric 6,457 6,012 4,670 1,528 49 33,572 29,152 22,728 17,524 8,015

rooted PageRank 6,942 6,515 6,192 4,769 1,227 36,580 38,130 39,797 37,083 29,422

Katz algorithm 638 1,266 2,855 6,989 9,672 1,105 3,070 6,050 8,325 14,843

1
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To compare the performances of these four approaches, we go through each node in

iGraph and make recommendation based on that node. For any given node va used for

recommendation, if a node vb recommended by an approach is also recommended by any

other approach, we consider vb as a valid recommendation. The approach that has the

largest number of valid recommendations is the best for va. Table 6.3 lists the frequencies

of the best approaches for the APOD and MIR Flicker data sets. From the table, we can

observe the following four facts. First, the user-centric approach performs the worst simply

because we do not have large user histories. Second, among the ten test cases, the rooted

PageRank performs the best except for two cases with the APOD data set, for which the

Katz algorithm performs the best. Third, the Katz algorithm performs better as the number

of recommended nodes increases. This is due to the fact that this approach has very strict

requirements. To measure the similarity of two nodes, it considers not only their closeness,

but also the number of nodes which are close to both nodes. Since the requirement is so

strong, the most similar nodes based on the Katz algorithm are not recommended by the

other approaches. On the other hand, since the Katz algorithm considers so much infor-

mation, the similarity measurement gets more accurate as the number of recommended

nodes increases. Fourth, the primitive approach and rooted PageRank algorithm perform

similarly. However, the performance of the primitive approach drops dramatically with the

increasing number of nodes recommended. That is because as the number of recommended

nodes increases, the primitive approach could not recommend enough nodes. Therefore,

the number of valid recommendations decreases. Since none of the approaches work the

best for all the cases, we suggest to use the most valid recommendations (i.e., nodes that

recommended by the most number of approaches) as the recommendation results.

6.8.4 Node Comparison

While visual recommendation helps users explore similar nodes or nodes clicked by

others, node comparison allows users to choose multiple nodes for detailed comparison.
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(a) (b)

(c) (d)

Figure 6.15. Node comparison of Figure 6.5 (b) using the bubble set
visualization to highlight the belonging relationships.

For example, a user interested in the three types of nebulas would choose keywords “emis-

sion nebula”, “reflection nebula”, and “planetary nebula”. The comparison result is shown

in Figure 6.5 (a). The images provide the user with a brief impression of what these nebu-

las look like. The images of nebulas with green bottom-left corners are “emission nebula”.

Most of them are reddish because they are clouds in high temperature and emit radiation.

The images of nebulas with blue upper-right corners are “reflection nebula”. They are

bluish and darker because they are efficient to scatter the blue light. The images of nebula

that look like planes and have red upper-left corners are “planetary nebula”. Meanwhile,
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(a) (b)

Figure 6.16. Co-occurrence matrices and their corresponding eigenvectors of the
APOD data set in (a) March 2001 and (b) April 2001. The 40 most frequent

keywords from the entire data set are used to construct each matrix. Gray
rectangles represent non-zero values with darker colors indicating higher

frequencies. The corresponding eigenvector is below the co-occurrence matrix
where darker red indicates higher values.

the user could also get knowledge from the other keywords. For example, “white dwarf”

and “layer” are linked with “planetary nebula” because when an aged red supergiant col-

lapses, the outer layer is the “planetary nebula” while the inside core is the “white dwarf”.

However, the nodes in the same group may not always be close to each other. As a result,

users need to go through all the nodes to figure out their belonging relationships. Figure 6.7

(a) highlights the belonging relationships with the bubble sets. When users prefer to study

the nodes related to a selected node, they will be further highlighted with dark boundaries

as shown in Figure 6.7 (b), (c), and (d).

In another example, we choose one keyword “self-portrait” and two images of people.

The comparison result is shown in Figure 6.5 (b). The keyword “365 days” is marked

by three different colors, which means that it is related to the K-node and two I-nodes

chosen. “me”, “ofme”, and “self” are highlighted with both red and blue boundaries which
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Figure 6.17. The eigenvectors of the 40 most frequent keywords from November
2000 to April 2001. The significant difference is the dramatic jump of

importance value for keywords “space shuttle” (index 28) and “iss” (index 31).
The interest shift to the international space station and space shuttle is due to the

launching of the space shuttle on April 23, 2001.

means that they are related to the keyword “self-portrait” and the image showing a pair

of feet. Keywords “red shoes” and “square” with blue boundaries indicate that there is a

pair of shoes in the picture and the photo was taken at a square. Figure 6.15 (a) shows the

same result using the bubble set visualization. The K-nodes “365 days”, “me”, “ofme”,

and “self” are highlighted with blended colors to indicate that they are related to multiple

selected nodes. Figure 6.15 (b), (c), and (d) are the results of highlighting the related nodes

of a selected node.

6.8.5 Text Outlier Detection

Figures 6.16 and 6.17 demonstrate an anomalous time period and its anomalous K-

nodes. Figure 6.16 (a) and (b) show the co-occurrence matrices and their corresponding

eigenvectors of the APOD data set in March and April of 2001, respectively. The 40 most

frequent keywords in the meta-tagged keywords are used to construct each matrix. These

keywords are selected because they appear at least 50 times in the entire data set. The gray

rectangles in Figure 6.16 represent the non-zero values in the co-occurrence matrix. Darker

colors indicate higher frequencies. The corresponding eigenvector is shown below the co-

occurrence matrix, where darker red indicates higher values. Many gray rectangles spread
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Figure 6.18. Photos showing iGraph of the MIR Flickr data set running on the
24-tile display wall (1000 images and 50 keywords are displayed).

in Figure 6.16 (a), which indicates no distinct interest in March 2001. The four darker red

rectangles in the eigenvector indicate four important K-nodes: “saturn”, “jupiter”, “space-

craft”, and “rings”. The co-occurrence matrix and its corresponding eigenvector in Figure

6.16 (b) allow us identify the most important keywords in April 2001: “space shuttle”

and “iss” (international space station). Figure 6.17 lists the eigenvectors of the APOD

data set within the five months before April 2001. The outlier detection function indicates

that the APOD collection behaved differently in April 2001 compared with its previous

five months. The abnormal K-nodes indicate the interest shifted to “space shuttle” and

“international space station” since the two keywords were not important in the previous

months but became very important in April 2001. This interest shifting may be caused by

the launching of the space shuttle on April 23, 2001. Closer examination shows that the

APOD creators not only posted figures related to the space shuttle, but also posted some

related topics, such as the first man entering the space, the first space quidditch match

between the United States and Russia, and STS-1 (the first shuttle launch).

6.8.6 Running on Display Wall

Figure 6.18 shows three iGraph photos of the MIR Flickr data set rendered on the

display wall. With the display wall, we are able to display thousands of images and key-
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words simultaneously for comfortable viewing. Currently, we are using this display wall

for showing iGraph demos to visitors, including university alumni, visitors, and summer

students. Initial feedback from several groups of visitors is fairly positive as they com-

mented that running iGraph on this life-size tiled display is much more expressive and fun

to watch compared with running on a regular desktop display. The advantage of using the

display wall is that it allows more than a dozen of people to comfortably view and discuss

the results together in such a collaborative environment. Nevertheless, with the dramatic

expanding of display area, it takes more effort for a viewer to correlate and compare im-

ages that are on the opposite sides of the display wall, especially for those images close to

the wall’s boundary.

6.9 User Evaluation

We recruited five unpaid researchers in astronomy for a user study of iGraph on a PC:

one professor, three PhD students, and one master student. Four of them are researchers

in physics studying astronomy and the remaining one is a computer science PhD student

with a master in physics focusing on astronomy. The user study was conducted in a lab

using the same PC. The PC has a 27-inch monitor with 1920× 1080 resolution, where

the visualization result occupied an area of 1600× 900. Users were first introduced to

iGraph about its goal and main functions. Then they were given the APOD data set for

free exploration to get familiar with the system.

The iGraph survey includes seven tasks and five general questions. The seven tasks (T1

to T7) were designed to evaluate the effectiveness of iGraph. T1 and T2 asked the user to

compare the compound graph with the single graphs and select the numbers of images and

keywords that she was satisfied with for the initial backbone graph. T3 asked the user to

go over all the images and keywords to get an impression of the APOD data set. T4 and T5
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TABLE 6.4

THE DESCRIPTION OF THE SEVEN TASKS IN THE USER STUDY

task description

T1 Compare the compound graph with the single graphs

T2 Select the numbers of images and keywords that

the user is satisfied for the initial backbone graph

T3 Go over all the images and keywords to get

an impression of the APOD data set

T4 Evaluate the visual recommendation function

with a given example

T5 Evaluate the visual recommendation function

based on user preferences

T6 Evaluate the node comparison function

with a given example

T7 Evaluate the node comparison function

based on user preferences
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TABLE 6.5

SEVEN TASKS IN THE USER STUDY AND USERS’ RESPONSE TO

SUMMARIZED QUESTIONS

task summarized question(s) average rating

T1 Was iGraph helpful in showing the relationship 5.0

among images and keywords?

T2 Were the images more useful than the keywords? 4.0

T3 Were the functions that allow the user to 4.0

go through all images (keywords) helpful? (5.0)

T4 Was the visual recommendation function helpful 5.0

with respect to the given example?

T5 Was the visual recommendation function helpful 5.0

with respect to user preferences?

T6 Was the node comparison function helpful 5.0

with respect to the given example?

T7 Was the node comparison function helpful 5.0

with respect to user preferences?
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asked the user to evaluate the recommendation function (user- and primitive item-centric

approaches) with a given example and based on her preference, respectively. T6 and T7

asked the user to evaluate the comparison function with a given example and based on her

preference, respectively. Every task has several survey questions and write-in questions

except T2 which consists of only write-in questions. All the survey questions have the

same set of choices on a 5-point Likert scale: 1: strongly disagree, 2: disagree, 3: neutral,

4: agree, and 5: strongly agree.

We summarized the questions of the seven tasks as shown in Tables 6.4 and 6.5. For

simplicity, if the user rated the question as 4 or 5, we consider that she agreed; if she rated

it as 1 or 2, she disagreed; otherwise, she was neutral. We used the number of users that

agreed to measure the effectiveness of iGraph functions.

Users could perform the tasks whenever they felt comfortable. Each study took about

one hour to complete. Although each task could be performed within a few minutes, users

frequently returned to the interface for further verification when writing their comments,

which took most of the time. Users were informed that the tasks were not timed and their

comments were of crucial importance. Among these tasks, two of them are related to the

free explorations of the data set with recommendation and comparison functions. Each of

these two tasks took them a little more time till they were ready to write comments. The

outcome of the user study is summarized in Table 6.5.

Next we provide further explanation on these outcomes. For T1 and T2, we asked users

to shift freely between the single graphs and compound graph. In addition, they were asked

to change the numbers of images and keywords displayed on the screen in order to get an

impression of the best ratio between images and keywords. In terms of T1, the feedback

was positive. All users stated that iGraph was helpful to show the relationships among

images and keywords in both compound and single graphs. Furthermore, a compound

graph was considered better than a single graph. The animation of changing between

compound and single graphs was helpful to gain an impression of node changes. In terms
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of T2, one PhD student preferred more keywords than images because the keywords were

easier to understand and intuitive to query. The rest of users indicated that since images

were more attractive, the ratio between the numbers of images and keywords should be

within the range of 3 : 1 to 10 : 1.

For T3, we asked users to go through all the images and keywords to gain an impres-

sion of the APOD collection. All the images were shown in the order of their published

dates and all the keywords were sorted based on their frequencies. Four users considered

the functions that allow the user to go through all images were helpful to gain an overall

impression of the data set and to select images of interest. The remaining user was neutral

on this since she was not familiar with all images and viewing individual images did not

make much sense to her. For better browsing of the collection, we can group images based

on their similarities and show them one group at a time. Moreover, all users indicated

that going through all keywords was helpful. Three agreed that iGraph could be helpful to

identify popular and rare keywords while two were neutral on it. This was probably due to

the equal weights of the keywords extracted from the explanation and keyword sections.

Since the number of keywords extracted from the explanation section is larger than that

from the keyword section, equal weights lead to the reduced importance of the keywords

from the keyword section. Finally, all users agreed that color and opacity encoding was

helpful to identify I-nodes and K-nodes already in iGraph so that they could select new

nodes into iGraph for recommendation and comparison.

For T4, users were asked to type keyword “earth” for recommendation and see the im-

ages and keywords recommended using different approaches. For T5, users could select

any I-node or K-node from iGraph for recommendation and repeat this process as long as

they wanted to. All users agreed that the recommendation function was useful, especially

for the primitive item-centric approach because it recommended more relevant nodes than

the user-centric approach. However, we believe that the user-centric approach will rec-

ommend more relevant nodes when the number of users increases to a certain level. The
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functions that allow the user to add any image and keyword made the recommendation

function more effective. They also believed that the highlighted boundaries were helpful

to identify the recommended nodes.

For T6, users were asked to select an image related to “jupiter” and the keyword

“moon” for comparison. For T7, users could select up to four nodes to compare, and

then select any image or keyword in the collection for further exploration. All users agreed

that the comparison function helped them find the nodes related to one or multiple selected

nodes. Three of them could further dig out the underlying relationships of the selected

nodes while two could not. This was because we linked both images and keywords to the

selected nodes to show their relationships, which was not a direct approach. All of them

agreed that the highlighted boundaries could help identify the belonging relationships of

the nodes. Two of them thought that the animation could not demonstrate node changes.

This was because when users selected multiple nodes for comparison, most of the nodes

after comparison did not appear before. Thus, the animation only gave them the impression

of layout change.

For the general questions, two users mentioned that iGraph could not only support re-

searchers to find the underlying relationships of the APOD data set but also help teachers

teach in class. Besides that, they stated that iGraph could be extended to handle other im-

age or image and text collections (such as movie collections) and to assist in image search.

Users also pointed out some possible improvements for iGraph. First, the techniques re-

lated to object identification could be helpful for measuring image similarity. Second, they

suggested us to provide more sorting options while going through the APOD collections,

e.g., sorting according to the image colors, alphabetical order of keywords, or user pref-

erence. Third, they also mentioned that we could provide more flexible query functions.

Therefore, we provided text outlier detection to identify the outliers in a certain time period

to help users narrow down to certain keywords of interest during the query. Finally, one

suggested that we should show the detailed information of a selected image.
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CHAPTER 7

ETGRAPH FOR VISUAL ANALYTICS OF EYE-TRACKING DATA

7.1 Overview

In this chapter, we transform the eye-tracking data gathered from a reading study into

a graph view named ETGraph (i.e., eye-tracking graph) for visual analytics. To ana-

lyze and visualize the eye-tracking data at four different levels: single participant single

page (SPSP), single participant multiple pages (SPMP), multiple participants single page

(MPSP), and multiple participants multiple pages (MPMP). For single participant, we first

cluster the fixations into clusters and build a transition graph to support interactive exam-

ination of the underlying structure in the eye-tracking data. For multiple participants, we

treat the fixations of all the participants as input. Multiple coordinated views are utilized

to dynamically link the graph view with the standard page view during the interaction. ET-

Graph helps users analyze the reading patterns of a single participant of a single page or

among multiple pages, the common patterns of all the participants, and possible patterns

around mind wanderings (MWs).

The eye-tracking data set was generated from eye gaze data collected while participants

read an excerpt from a book entitled “Soap-bubble and the Forces which Mould Them”

[13]. This text was chosen as it was on a novel topic which would be relatively unfamiliar

to a majority of readers. The eye gaze data was collected with a Tobii TX300 remote

eye tracker affixed below a monitor set to a resolution of 1920× 1080, which displayed

the text. The excerpt consisted of text from the first 35 pages of the book and contained

around 5700 words across 10 pages. Each participant read the text for 20 minutes. The
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eye gaze data were collected from both eyes and the data from each eye were filtered and

averaged together prior to eye movement detection. The data were then converted into

a series of fixations using a dispersion based filter. Using the Open Gaze And Mouse

Analyzer (OGAMA) [126], the filter was set to detect fixations if there were consecutive

gaze points within a range of 57 pixels (approximately 1 degree of visual angle) for longer

than 100 ms, which is the shortest duration for naturalistic eye movements during reading

[58, 100]. Saccades were then calculated from the fixations.

7.2 Research Questions

Blascheck et al. [11] defined the basic terminology related to eye-tracking data. We

briefly introduce several of them that are used in this work. First of all, gaze points are

aggregated based on a specified area and timespan, and a fixation is an aggregation of gaze

points. Furthermore, saccades describe a rapid eye movement from one fixation to another,

and a scanpath is a sequence of alternating fixations and saccades. Since our eye-tracking

data are gathered from multiple participants reading multiple pages of a book, we propose

the following research questions categorized into four different levels of detail:

• SPSP (Single Participant Single Page):

Q1. What is the scanpath structure of each participant when reading a single page?

Q2. Does the participant exert a different amount of effort reading different parts of

the page?

Q3. Does the scanpath involve forward and/or backward saccade outliers? (i.e.,

saccades with amplitudes larger than a given threshold)? If yes, when and where

do these saccade outliers occur and how frequent are they? Does the same saccade

outlier occur multiple times?

Q4. Does the scanpath involve repeated scanpaths (i.e., a scanpath that represents

rereading previously read text along the same path)? If yes, when and where do
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these repeated scanpaths occur and how frequent are they? Does the appearance of

saccade outlier have any correlation with the appearance of repeated scanpaths?

Q5. Does the participant MW on a page? If yes, when and where does MW occur?

• SPMP (Single Participant Multiple Pages):

Q6. Is the reading pattern of a participant consistent across all pages?

Q7. What are the temporal dynamics of reading behavior across consecutive pages?

For example, do the saccade outliers on the current page have a relationship with the

saccade outliers on the next page?

• MPSP (Multiple Participants Single Page):

Q8. What are the common patterns of multiple participants when reading the same

page?

Q9. Do they spend a different amount of time reading different parts of the page?

Q10. Do they encounter different reading difficulties on different parts of the page?

Q11. What are the outliers (who, when and where)? Can we cluster participants

based on different reading patterns exhibited on the same page?

• MPMP (Multiple Participants Multiple Pages):

Q12. How can the reading patterns of different participants across all pages be sum-

marized and compared? Do they have similar or different reading strategies?

Q13. Could we cluster participants based on commonalities in their reading behav-

iors across all pages? Who are the outliers?

Our goal is to design a visual analytics framework that can help users understand read-

ing patterns of the participants, identify the anomalous behaviors, and group participants.

Specifically, how can we apply the above four levels of analysis to obtain new insights
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on reading patterns? Can we visually discriminate reading patterns from the graph rep-

resentations? Can we find out the relationships between saccade outliers and repeated

scanpaths? Furthermore, can we visually figure out the similarities and/or differences be-

tween the reading patterns on different pages or between different participants? Finally,

can we embed the visualization of MWs to help scientists analyze them?

7.3 Our Approach and Employed Techniques

7.3.1 Overall Considerations

Our strategy to analyze the given eye-tracking data is to first cluster fixations into fix-

ation clusters to produce a coarse-level representation of the data. There are two benefits

to doing this. First, our fixation clustering provides spatial closeness. Fixation clusters

are spatially close fixations which are similar to gazes as defined in Blascheck et al. [11].

However, unlike gazes, we do not consider the temporal ordering of fixations when we

perform clustering. Second, fixation clusters are not as coarse as AOIs which represent re-

gions of specific interest on the stimulus. Fixation clusters can be created for a single page

using fixations from a single participant or by combining all the fixations from multiple

participants. Combining all fixations would allow us to visualize the reading patterns of

different participants with a common ground of the same fixation clusters.

We propose a graph-based representation for analyzing eye movements using fixation

clusters as nodes and a set of saccades as a directed edge between nodes. We call this

visual representation the ETGraph, i.e., the eye-tracking graph. Visualizing such a graph

can be achieved using force-directed graph layout algorithms or projection-based methods

such as multidimensional scaling. In the original page view, fixations and saccades can

be plotted to produce scanpaths. However, nodes are solely constrained by their spatial

locations on the page. With this stringent constraint, large saccadic amplitudes may not

always be of interest (e.g., a saccade moves from the end of one line to the beginning of
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the next line). Unlike the page view, nodes in the graph view are not constrained by their

corresponding spatial locations of fixation clusters and the graph structure will be dictated

by the underlying connectivity of nodes (i.e., the actual reading). Therefore, the graph

view can reveal the underlying nature of the reading pattern.

The research questions outlined in Section 7.2 can be classified into six categories:

C1 scanpath structures (Q1, Q6, Q8, and Q10); C2 saccade outliers (Q3); C3 repeated

scanpaths (Q4); C4 MW(Q5); C5 participant clustering (Q11 and Q13); and C6 reading

efforts (Q2, Q7, Q9, and Q12). To better answer these questions, we introduce four views

as shown in Figure 7.1: page view, graph view, time view, and statistics view. Categories

1 to 4 can be answered using the graph, page, and time views. Categories 5 and 6 can

be answered using the statistics view. In addition, these four views could be combined

together to help users better explore and understand the data.

Finally, we design ETGraph so that users can smoothly switch between SPSP and

SPMP, and between MPSP and MPMP. This will facilitate the examination of reading pat-

terns across both global and local perspectives while making connections between them.

We do not aim to create a transition between single participant levels (SPSP and SPMP)

and multiple participant levels (MPSP and MPMP) for two reasons. First, the transition

between single participant levels and multiple participant levels is less effective because

the fixation clusters generated at each level do not match due to different inputs for cluster-

ing. Second, the transition is unnecessary because participants may exhibit very different

reading patterns.

7.3.2 Mean-Shift Algorithm

We use the mean-shift algorithm for fixation clustering. The mean-shift algorithm is a

density-based clustering algorithm with three benefits. First, it is deterministic. Second, it

does not require users to input the number of clusters. Third, it is robust to outliers. Santella

and DeCarlo [105] also demonstrated better quality of clusters produced by the mean-shift
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(a) Page (b) Graph
(c) Time (d) Statistics

2 3 4 5 6 7 8 9

Figure 7.1. The four views of ETGraph. (a) page view, (b) graph view, (c) time
view, and (d) statistics views show saccade outliers and MWs of SPSP. In (a) and
(b), fixation clusters and nodes corresponding to saccade outliers are highlighted

in yellow. The selected clusters and nodes are in green. Red and blue edges
indicate backward and forward saccade outliers, respectively. The fixations and
nodes around MW are highlighted in pink using diamond shapes. The arrows
between the diamond fixations in the page view shows the scanpaths around
MW. In (b), the shading of nodes (from dark to light) indicates the presumed

reading order. In (c), the vertical lines indicates the time points that the saccade
outliers occurred. Red and blue arrows are corresponding to the selected saccade

outliers. The pink rectangles and the numbers below show the time ranges
around MW. (d) shows the distribution of the numbers of saccade outliers in

page sections (each page is partitioned into three equal sections: top, middle and
bottom).
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Algorithm 11 CLUSTER INDICES Idx = FINDCLUSTERS(V )

Create a temporary point set P to store the locations of input points V after each movement
for each point pi in P do

pi = vi

end for

for each iteration j do

for each point pi in P do

p
j
i = S(p

j−1
i )

end for

end for

Create an empty point set C to store the centroids of clusters
for each point pi in P do

if the location of pi is not identical to any point in C then

Add pi to C

end if

end for

Create a set Idx to store the cluster indices
for each point pi in P do

for each point c j in C do

if the location of pi is identical to c j then

idxi = j

end if

end for

end for

return Idx

method compared to the k-means clustering or expectation-maximization (EM) algorithms.

In the mean-shift algorithm, the input points are moved to a denser configuration so that

they are naturally grouped into clusters. Moving each point p to a new location is based on

the locations of its neighbors

S(p) =
∑ j ker(p− p j)p j

∑ j ker(p− p j)
, (7.1)

where the kernel function estimates the contribution of each neighbor p j, i.e.,

ker(d) = exp

(

−dx
2−dy

2

ε2

)

, (7.2)

where d is the Euclidean distance between p and p j, and dx and dy are the projections

of d along the x and y directions, respectively. ε is a given threshold and the points with

a distance to p larger than ε will not be considered. Since our data are from text reading

experiments, the x and y directions are related to word length and line spacing, respectively,
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we revise the kernel function to

ker(d) = exp

(

−dx
2

ε2
x

)

× exp

(

−dy
2

ε2
y

)

, (7.3)

where εx is the average word length and εy is the line spacing.

Algorithm 11 first moves the input points V to a denser configuration P. This process

stops when the number of iterations reaches a user-defined threshold or the locations of

points in P do not change. The points in P that move to the same location become a cluster.

The locations are treated as the centroids of clusters. We assign the points to clusters by

measuring the distances between the points and the centroids.

7.3.3 Transition Graph

After clustering all fixations of each page using the mean-shift algorithm, we construct

a transition graph. Each node in the graph denotes a fixation cluster. A directed edge be-

tween two nodes represents a transition. A transition i→ j occurs between two clusters

i and j if there is a saccade from a fixation in i to another fixation in j. The transition

frequency fi→ j is the number of transitions from i to j. The directional transition prob-

ability pi→ j is the proportion between fi→ j and the total number of transitions from i to

all the clusters (including itself). As such, a transition indicates a chance for one cluster

to transfer to another, and its probability measures how high the chance is. To draw the

transition graph, we modify the Fruchterman-Reingold algorithm [44] to create the graph

layout. In our modification, we consider the transition probability when computing the

attractive forces, therefore, two nodes with strong transitions will be placed closely. How-

ever, the nodes may overlap with one another due to their sizes in the drawing. To reduce

the overlap while preserving the overall graph structure, we follow the layout adjustment

solution given by Gu and Wang [51] by first triangulating the graph and then applying four

additional forces (bidirectional, unidirectional, spring, and attractive forces).
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Figure 7.2. An example of the scanpath in the transition graph. The scanpath is
ABABBC, the corresponding string is ABABC, and the repeated scanpath is AB.

Algorithm 12 SUFFIX TREE T = CONSTRUCTSUFFIXTREE(S, n)

Create a temporary string S′ where a unique symbol is added at the end of S

Create a tree T with an empty root
for i from 0 to n do

substring s = S′[0, i]
for j from 0 to i+1 do

if s[ j, i] starts from root to a leaf edge then

Add s[i+1] to the leaf edge
else if s[ j, i] starts from root and ends at a non-leaf edge, but s[i+1] is not the next character of the
edge then

A new leaf edge is created for s[i+1] from the separation
end if

end for

end for

return T

7.3.4 Repeated Scanpath Detection

The constructed transition graph is an abstraction of the whole scanpath. The transi-

tion graph could not be used to visualize consecutive transitions between fixations of the

whole scanpath because each edge in this graph is a group of saccades that exist between

a pair of fixation clusters. To solve this problem, we convert the scanpath into a string,

and this string stores all the transitions between graph nodes. Since we are more interested

in transitions between nodes, we ignore all the transitions within the same node. Figure

7.2 shows an example of the scanpath in the transition graph. We first assign IDs to the

nodes, therefore, the scanpath is ABABBC. Since we ignore all the self-transitions, the
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corresponding string becomes ABABC. By analyzing this string, we can detect interesting

phenomenas, such as area-revisitings (repeated characters, A and B), repeated scanpaths

(repeated substrings, AB), and similar behaviors between two participants (common sub-

strings of two given strings). To detect these phenomena, we utilize the suffix tree [122]

to identify the repeated substrings in a given string. This suffix tree is a tree structure that

stores all the suffixes of a given string. Each edge represents a substring. Therefore, all the

non-leaf edges in the suffix tree represents repeated substrings. Constructing and search-

ing this suffix tree occurs in linear time which allows for efficient queries. We first add a

unique symbol at the ending of the given string to become a new string. This symbol is

used to indicate the ending of the given string. At each iteration, we consider a substring

from string indices 0 to i, where i increases from 0 to n−1, and n is the new string length.

Then, within each iteration, all the suffixes of the substring are inserted into the suffix tree

as shown in Algorithm 12. To identify the common substrings of two given strings, we

further add another special symbol between the two given strings and use the whole string

as an input for the suffix tree. To allow users to focus on prominent substrings, we removed

the substrings which are substrings of others, or less than a given length.

7.3.5 Edge Bundling

To show the overall trend of a given graph, we apply the force-directed edge bundling

algorithm [59] proposed by Holten and van Wijk [59] to bundle the edges. Their algorithm

first partitions all the edges into the same number of segments. Each segment point is

assigned an index to indicate its position in the edge. In addition, each segment point is

attracted by two kinds of forces: Fe and Fs as shown in Figure 7.3 (a). Fe occurs between

two points of the same index at different edges. This force is used to bend the edges. Fs

occurs between two adjacent point pairs on the same edge. This force is used to balance

Fe. The force on point pi is calculated as follows
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Figure 7.3. (a) Lines P0P1 and Q0Q1 are partitioned into four segments. Each
segment point pi are attracted by its adjacent segment points pi−1 and pi+1 by Fs

and its corresponding segment point qi by Fe. (b) Angle compatibility. (c) Scale
compatibility. (d) Position compatibility. (e) Visibility compatibility.

Fpi = kp× (||pi−1− pi||+ ||pi− pi+1||)+ ∑
Q∈E\P

C(P,Q)

||pi−qi||
, (7.4)

where kp is a local constant that denotes the stiffness of edge P, Ce(P,Q) measures the

compatibility between edges P and Q, and E is the set of all the edges. kp = K/(||P||×n),

where K is a global constant, ||P|| is the initial length of edge P, and n is the number of

segments. The compatibility C(P,Q) is used to control the amount of interactions between

edges. As shown in Figure 7.3, we consider the following four kinds of compatibility:

• The edges that are almost perpendicular should not be bundled. Therefore the angle

compatibility

Ca(P,Q) = |cos(α)| (7.5)

is introduced, where
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α = arccos

(

P ·Q
||P|| · ||Q||

)

, (7.6)

as shown in Figure 7.3 (b).

• The edges whose lengths are considerably different should not be bundled. Therefore

the scale compatibility

Cs(P,Q) =
2

lavg ·min(||P||, ||Q||)+max(||P||, ||Q||)/lavg
(7.7)

is introduced, where

lavg =
||P||+ ||Q||

2
(7.8)

as shown in Figure 7.3 (c).

• The edges that are distant away should not be bundled. Therefore the position com-

patibility

Cp(P,Q) =
lavg

lavg + ||Pm−Qm||
(7.9)

is introduced, where Pm and Qm are the midpoints of P and Q respectively, as shown

in Figure 7.3 (d).

• In Figure 7.3 (e), P and Q should not be bundled although they are parallel, equal in

length, and close together. That is because bundling them would stretch edges too

much. As a result, the visibility compatibility

Cv(P,Q) = min(V (P,Q),V (Q,P)) (7.10)
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is introduced, where

V (P,Q) = max

(

1−
2||Pm− Im||
||I0− I1||

,0

)

, (7.11)

and Im is the midpoint of I0I1.

The compatibility C(P,Q) is the multiplication of the above four compatibility values, i.e.,

C(P,Q) =Ca(P,Q)Cs(P,Q)Cp(P,Q)Cv(P,Q). (7.12)

At the beginning of computation, we treat each edge as one segment. Then we divide

each segment evenly into two segments and run a few iterations of bundling. This process

terminates until a certain requirement is met. Finally, a smoothing strategy is used to

smooth the edge bundles. The force-directed edge bundling algorithm [59] terminates the

process when the number of segments reaches 32. In our implementation, we terminate

when the number reaches 64 because it would generate a finer results.

7.4 SPSP and SPMP

To help users better understand detailed reading behaviors for SPSP, we provide sev-

eral query functions, e.g., saccade outlier detection, MW highlighting, repeated scanpath

detection, graph filtering, and path animation.

Saccade outlier detection automatically identifies the saccade outliers that traverse a

large distance (larger than a given threshold) along the x or y direction. These saccade out-

liers indicate long eye movements which may indicate abnormal reading patterns and pos-

sible MW. We further differentiate backward- and forward-reading saccades. Backward-

reading saccades indicate revisiting earlier portions of the text while forward-reading sac-

cades may indicate foreshadowing. Figure 7.1 shows an example of saccade outlier detec-

tion. Specifically, we show the information of saccade outliers in each of the four views.
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8 9

Figure 7.4. The supergraph for SPMP. Each subgraph corresponds to the
transition graph of each page. The subgraphs are marked with their page

numbers and are placed in a spiral along the clockwise order. In addition, we
rotate each subgraph to reduce the length of the edge that connects two adjacent
pages. The shading of nodes (from dark to light) indicates the presumed reading

order.
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MW highlighting visualizes the scanpath immediately before and after instances of

MW. As shown in Figure 7.1 (a) and (b), the scanpath and its corresponding subgraph are

highlighted in pink. This function provides a way for users to study MW in the page, graph,

and time views.

Repeated scanpath detection automatically detects repeated scanpaths. We allow users

to visualize them and find out their corresponding locations and time periods from the

graph, page, and time views. In addition, we allow users to play back the scanpaths to

compare similarities and differences in scanpaths between different pages and different

participants.

Graph filtering allows users to hide nodes (fixations) and edges (saccades) that are not

of interest. As users select one or a group of nodes, we automatically hide the nodes that

are beyond a given distance to the selected node(s). The graph distance between two nodes

is calculated using Dijkstra’s algorithm. If two nodes that are not supposed to be connected

in the presumed reading order are linked in the graph view, this indicates that at least one

saccade outlier is present. Graph filtering also allows users to filter the graph based on time

information to analyze the corresponding subgraph.

Path animation provides users the convenience of reviewing scanpath animation. We

identify the starting and ending fixations fs and fe for the animation. By default, they are

the first and last fixations in the page. However, users are allowed to select fixations from

the page view or nodes from the graph view for fs and fe. If the user selects two nodes

from the graph view, we identify the first fixation in the first node as fs and the last fixation

in the second node as fe. If the two fixations selected do not follow the actual reading

order, we swap fs and fe. If the user selects a node from the graph view and a fixation from

the page view, we ensure that fs occurs before fe in the actual reading order.

To understand and compare different behaviors on different pages (SPMP), we generate

a supergraph that displays the transition graphs of all pages. An example is shown in Figure

7.4. The transition graphs are arranged clockwise in a spiral shape. To reduce edge crossing
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(a) (b)

Figure 7.5. Edge bundling for MPSP. (a) The saccades of the selected bundles
illustrate a close relationship between the two green areas in the page view. (b)
The bundled edges are highlighted in blue while user-selected edge bundles are
shown in orange. The regular (non-outlier) edges are shown in gray with higher

frequency edges shown in darker gray.

between pages, we first fix the positions of the first and last nodes at the middle-left and

middle-right part of each subgraph. Then we rotate each subgraph one by one to reduce

the length of the edge connecting the adjacent pages.

7.5 MPSP and MPMP

For MPSP, we cluster fixations on each page with all the fixations of all participants on

that page. After clustering, we construct a supergraph consisting of all the clusters of all

participants of that page. As a result, edges with high frequencies form the major reading

trend of all participants. ETGraph encodes higher frequency edges with darker gray colors

so that users can easily understand the overall reading patterns. However, it is difficult to

notice the trend of saccade outliers since those edges are usually drawn with lighter gray
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(c) (d)

Figure 7.6. Comparison of two participants with similar fixation distributions.
(a) The fixation distributions of the two participants. Note that both participants
have few fixations in the middle area (highlighted in yellow). (b) Blue and red

nodes belong to a single participant only and gray nodes belong to both
participants. Dark edges belong to both participants. (c) Saccade outliers for the

two participants are shown in the upper and bottom time views, while their
shared repeated scanpaths are shown in the middle view. (d) A comparison of the
statistics of fixations of the three sections of each page for the two participants.
The participant shown in red nodes is at the top while the participant shown in

blue nodes is at the bottom.
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(a) (b)

2 3 4 5 6 7 8 9

(c) (d)

Figure 7.7. Comparison of two participants with different fixation distributions.
(a) The fixation distributions of the two participants. Notice that the participant
in red have no fixations in the middle area. (b) Blue and red nodes belong to a
single participant only and gray nodes belong to both participants. Dark edges

belong to both participants. (c) Saccade outliers for the two participants are
shown in the upper and bottom time views, while their shared repeated scanpaths
are shown in the middle view. (d) A comparison of the statistics of fixations of

the three sections of each page for the two participants. The participant shown in
red nodes is at the top while the participant shown in blue nodes is at the bottom.
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colors due to their low frequencies. To highlight saccade outliers and identify their trend,

we apply the edge bundling technique to bundle saccade outliers as shown in Figure 7.5.

It is also important to cluster and compare participants in order to analyze their simi-

larities and differences. We provide two approaches. First, we utilize stacked bar charts

and histograms in the time and statistics views to show explicit information (e.g., section

length in milliseconds, saccade outlier distribution) for comparison. Second, we calcu-

late the similarities between participants based on the graph information. For MPSP, the

transition graph of a participant for a page is a subgraph of the supergraph. Therefore,

by comparing the similarities between two subgraphs, we could calculate the similarities

between these two participants. The difference between two participants can also be cal-

culated based on their fixation distributions, repeated scanpaths, etc. For each type of

difference, we construct a distance matrix. We then normalize each distance matrices and

add them together to form the final distance matrix. Finally, we utilize the k-means algo-

rithm to cluster participants. The number of clusters nc is chosen as nc =
√

N/2, where N

is the number of participants. Based on the clustering, we allow users to select two partic-

ipants for comparison as shown in Figures 7.6 and 7.7. For MPMP, the distance between

two participants is the sum of their distances across all pages.

7.6 Results

In the section, we first report the data set and timing performance. Then we demonstrate

the results for SPSP, SPMP, MPSP and MPMP as well as the benefits and knowledge gained

using ETGraph. For the 13 research questions (Q1∼Q13) grouped into six categories (C1

∼ C6), we add a note such as (C1-Q1) to show which category and which question each

case study result answers.
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(a) (b)

Figure 7.8. The transition graph of SPSP view showing the clear separation of
two parts in reading by the participant. An interesting repeated rereading pattern

is also identified in green.

7.6.1 Data Set and Timing Performance

The data set was generated from eye gaze data collected while participants read an

excerpt from a book entitled “Soap-bubble and the Forces which Mould Them” [13]. This

text was chosen as it was on a novel topic which would be relatively unfamiliar to a majority

of readers. Eye gaze data was collected with a Tobii TX300 remote eye tracker affixed

below a monitor set to a resolution of 1920×1080, which displayed the text. The excerpt

consisted of text from the first 35 pages of the book and contained around 5700 words

across 10 pages. Each participant read the text for 20 minutes, and not every one was able

to finish reading all pages. Few participants read the final page (Page 10), so it has not

been included in our analysis. Eye gaze data were collected from both eyes and the data

from each eye was filtered and averaged together prior to eye movement detection. The

data were then converted into a series of fixations using a dispersion based filter. Using
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TABLE 7.1

THE TIMING RESULTS AND PARAMETERS

mean layout layout repeated edge

shift generation adjustment scanpath bundling

single

participant (SP) 1.283 18.941 3.968 0.143 -

multiple

participants (MP) 28.433 0.951 0.244 - 1.193

the Open Gaze And Mouse Analyzer (OGAMA) [126], the filter was set to detect fixations

if there were consecutive gaze points within a range of 57 pixels (approximately 1 degree

of visual angle) for longer than 100 ms, which is the shortest duration for naturalistic eye

movements during reading [58, 100]. Saccades were then calculated from the fixations.

The timing was collected on a PC with an Intel 3.6GHz CPU and 32GB Memory. The

processed data set consists of 27 participants and 9 pages. The timing result is shown in

Table 7.1.

7.6.2 SPSP

Figure 7.8 shows an example of SPSP. In (a), each dot in the page view represents a

fixation and the fixation clusters are highlighted using convex hulls. In (b), each node in

the graph view represents a fixation cluster and an edge represents a transition between

two clusters. In the graph, the nodes with stronger transitions are placed closer to each

other. The graph view provides an overview of the reading pattern for a single page. The

darkness of nodes (from dark to light) indicates the presumed reading order. Therefore,

in general, nodes with similar darkness values are placed nearby. We can observe that the
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(a) (b)

(a) (b)

Figure 7.9. Frequency distributions of (a) fixations, (b) saccade outliers, (c)
saccade outliers with large y distances, (d) saccade outliers with large x distances.

nodes in (b) are clearly separated into two groups. The nodes in one group are in green

and their corresponding fixations are located in the lower portion of the page as shown in

(a). The separation between these two groups of nodes could indicate that this participant

read the portion of text at the top of the page separately from the portion of text at the

bottom of the page. Although some saccade outliers connect the top and bottom portions

of the page, more connections exist within the two portions. This indicates that there are

stronger connections within each portion than between the two portions. Of particular

interest are the nodes in (b) that are not selected but are connected to nodes that are. The

corresponding fixations are located in the first few lines of the page, which could indicate

that the participant always returned to this location of the page to reread (C1-Q1).

To understand the scanpath structures, besides regular reading patterns, it is important

to analyze saccade outliers. They could indicate a portion of text that is difficult to un-

derstand or a rereading pattern. In Figure 7.1 (a) and (b), the fixation clusters and nodes

of the saccade outliers are in yellow. The selected clusters and nodes are in green. Red

and blue edges indicate backward and forward saccade outliers, respectively. Most of the

saccade outliers in Figure 7.1 (a) are targeted at or moving from the upper portion of text.
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(a)

2 3

5 46

Figure 7.10. The SPMP view and the pink nodes indicate the occurrence of MW.

This could indicate that the participant reread this portion of text. In addition, there is a

saccade outlier from the middle of the page toward the bottom of the page (outside of the

screen), but the connected nodes of the saccade outlier are close in Figure 7.1 (b), which

demonstrate that ETGraph gathers the nodes based on their transition relationships instead

of their spatial closeness. In the time view of Figure 7.1 (c), the vertical lines indicates

the time slots where saccade outliers occurred. The saccade outliers are displayed in red

and blue. Figure 7.1 (d) shows the distribution of the saccade outliers in each of the three

sections of the page. This distribution shows that this participant had a large number of

saccade outliers in the first section of the page (C2-Q3).
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(a) (b)

Figure 7.11. (a) and (b) are the page and graph views of Page 2 of the participant
in Figure 7.10, respectively.

7.6.3 SPMP

An analysis of the reading patterns of a participant for multiple pages can be done by

studying the supergraph of the chosen pages along with their statistical information. Figure

7.4 displays a supergraph of nine pages for a single participant. The transition graphs of

Pages 1, 5 and 8 are quite simple since each transition graph forms a smooth curve. The

graph of Page 3 is very interesting because it consists of two paths from the beginning to

the end, which could mean that this participant read the page twice. However, this graph

structure is still simple compared to the graphs for Pages 4, 6 and 7. These graphs consist of

complex relationships between nodes which could indicate that the participant read these

pages backward and forward many times (C1-Q6). Shifting to the corresponding SPSP

view allows for a more detailed examination of these pages, which could offer additional

insights.

SPMP also allows a comparison of pages by displaying statistical information for each
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(a) (b)

Figure 7.12. (a) and (b) are the page and graph views of Page 5 of the participant
in Figure 7.10, respectively.

page, which could indicate consistency of reading patterns across all pages. The charts in

Figure 7.9 (a), (b), (c), and (d) show the distribution of fixations, saccade outliers, saccade

outliers with large y distances, and saccade outliers with large x distances, respectively. In

(a), the fixation distributions are quite similar among the first seven pages, which indicates

similar reading patterns. In (b) and (d), the saccade outlier distributions are similar between

Page 2 and Page 3, Page 4 and Page 5, and among Page 6, Page 7 and Page 8. In (b), (c)

and (d), the saccade outlier distributions are similar between Page 2 and Page 3, Page 4

and Page 5. We conclude that there were similar reading patterns between these pages,

especially adjacent pages (C6-Q7).

Besides showing the structures of the scanpaths, ETGraph may be useful to find the

patterns of MWs. Figures 7.10, 7.11, and 7.12 show MWs of a participant. In Figure

7.10, the pink nodes indicate the appearance of MWs. Figure 7.11 (a) and (b) show the

page and graph views of Page 2, respectively. Figure 7.12 (a) and (b) show the page and
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graph views of Page 5, respectively. In Figures 7.11 (a) and 7.12 (a), the scanpaths around

the MWs consist of saccade outliers. So, in Figures 7.11 (b) and 7.12 (b), the subgraphs

around the MWs span a large area. We can see that ETGraph could provide a hint for users

to detect pages consisting of MWs. If there are more than one episode of MW per page,

the subgraphs of MWs may consist of saccade outliers and have overlap between them

(C4-Q5).

7.6.4 MPSP

To show the overall reading patterns of MPSP, we bundle the edges to observe their

trends, as shown in Figure 7.5. In (b), only the saccade outliers are bundled since bundling

all edges would hide the trend in the saccade outliers. The regular (non-outlier) edges are

shown in various gray colors and the darkness of each edge shows its transition frequency.

These gray-color edges give an impression of common reading patterns (C1-Q8). In con-

trast, the saccade outliers are bundled and highlighted in blue. Nodes or bundles can be

selected to see their corresponding fixations and saccades. The selected bundles are shown

in orange and their connected nodes are shown in green. The corresponding page view in

(a) illustrates a strong relationship between the areas highlighted in green.

Besides showing the overall patterns of all participants, we can also cluster participants

based on their attributes, e.g., fixation distribution, graph similarities, and repeated scan-

paths (C5-Q11). Figure 7.6 shows a comparison of two participants who are in the same

cluster based on fixation distribution. In (b), blue nodes belong to one participant and red

nodes belong to another, while gray nodes belong to both of them. The dark edges belong

to both participants and the gray ones do not. In this example, most of the nodes and a

large number of edges are shared, which indicates that their corresponding graphs are also

quite similar. From (a), we can see that the two participants share a lot of fixation clusters

shown in gray. The clusters that differ are located at the boundaries of the page, shown

in blue and red. In addition, they both have a relative lack of fixations in the middle area,
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(a)

(b) (c)

(d) (e)

Figure 7.13. (a) The time view of saccade outliers and repeated scanpaths for
MPSP, organized in a stacked bar chart. Repeated scanpaths are shown in gray
while saccade outliers are highlighted in red and blue bars, indicating backward
and forward saccade outliers, respectively. The red rectangle marks the repeated
scanpaths that overlap with saccade outliers. (b) A participant is selected from

(a) and the corresponding time view is shown. (c) The repeated scanpath is
selected. (d) and (e) are the corresponding page view and graph view for the

repeated scanpath, respectively.
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highlighted in yellow. (c) displays the time of saccade outliers in the gray time views at

the top and bottom, and the shared repeated scanpaths in the middle time view. There

are a large number of colored bars which shows that the two participants shared a large

number of repeated scanpaths. This further indicates that the two participants had similar

reading patterns. (d) compares the fixation distributions of all pages and similar fixation

distributions can be observed (C6-Q2, C6-Q9).

Figure 7.7 shows a comparison of two participants who are in two different clusters

based on fixation distribution. In (b), the number of blue nodes is much larger than the red

nodes. From (a), we can see that there is a large number of blue fixation clusters in the

middle of the page and there are no red fixation clusters, which indicates that the participant

in red did not read those portions at all. In (c) there are only four colored bars which shows

that the two participants only shared two repeated scanpaths. This further indicates that the

two participants have different reading patterns. (d) compares the statistics of fixations of

all the pages and shows different distributions (C6-Q2, C6-Q9).

We also provide statistical information to help users identify similarities and differ-

ences between all participants. For example, in our data, we found that the saccade outliers

with large y distances do not occur in any repeated scanpaths for all participants. This in-

dicates that the participants did not revisit two portions of text that have a large y distance.

However, it is not the case for saccade outliers with large x distances. Figure 7.13 (a) shows

the repeated scanpaths and saccade outliers with large x distances. The repeated scanpaths

are shown in gray while the saccade outliers are highlighted in red and blue bars indicating

backward and forward saccade outliers, respectively. Repeated scanpaths occur when a

participant rereads some portion of text. A repeated scanpath may represent a scan of the

text or a return to a particular sentence (C3-Q4). When a participant tries to understand

a large paragraph and a repeated scanpath is only part of it, then this repeated scanpath is

only a scan. This is different from when the time gap between the corresponding scanpaths

of a repeated scanpath is short and there is a saccade outlier between them. In Figure 7.13,
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1 2 3 4 5 6 7 8 9

Figure 7.14. The statistics view of time usage for MPMP. In the stacked bar
chart, there are a total of nine pages and each page is partitioned into three equal
sections: top, middle and bottom. The shading of a section (from dark to light)

indicates the time spent on reading it (from more to less).

we can see from Figure 7.13 (a) that there are some repeated scanpaths overlapped with

saccade outliers with large x distances highlighted in the red rectangle. These repeated

scanpaths may be more interesting than others. In this figure, participant’s repeated scan-

paths that consist of saccade outliers are shown in the red rectangle. The corresponding

time view is shown in Figure 7.13 (b). The corresponding selected repeated scanpaths are

shown in Figure 7.13 (c). The corresponding graph and page views are shown in Figure

7.13 (d) and (e), respectively. The page view shows that this participant reread this sentence

twice, ostensibly for better understanding.

7.6.5 MPMP

Figure 7.14 shows a summarization of the time information for MPMP. It can be seen

from the stacked bar chart that most of the participants did not finish reading all the pages.

In addition, those participants that behaved differently (e.g., have sections that are relatively

darker) may warrant further analysis (C6-Q12).
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7.7 User Study and Expert Evaluation

7.7.1 User Study

We recruited five unpaid PhD students in our university to evaluate the effectiveness of

ETGraph. One student is from the Department of Psychology and four students are from

the Department of Computer Science and Engineering. All five users are studying MW in

their respective PhD studies using different kinds of data, e.g., physiology, facial features

or eye gaze. The user study was conducted in a lab using the same PC for each user. The

users were first introduced to ETGraph and were instructed about its design goals and main

functions. Then they were given ten minutes for free exploration to get familiar with the

system. After that, they were asked to complete six tasks and a survey of seven general

questions on the design of ETGraph. These tasks were written on paper and the users hand

wrote their responses. The observer (i.e., one author of this work) stood near by and took

notes. After the study, he then interviewed the users about their thoughts of the tasks and

ETGraph.

As shown in Table 7.2, T1 asked the users to compare three given graphs and observe

their corresponding scanpaths. The task evaluated if the user was able to identify the graph

with an abnormal scanpath compared to the other two. T2 asked the user to circle clusters

in the graph and observe their corresponding portions in the page view. This task evaluated

if the user understood that the nodes are placed nearby in the graph due to their strong

relationships in the scanpath. T3 asked the user to estimate which edges in the graph

represent saccade outliers and to verify their guesses using ETGraph. This task evaluated

if the user understood that saccade outliers with large y distances exist between two nodes

with very different degrees of gray-scale colors or have longer edges. T4 asked the user to

watch the scanpath animation and identify whether MW was reported on the page. T5 and

T6 asked the user to identify whether MW was reported on the page based on the graph

structure and saccade outliers, respectively.
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TABLE 7.2

THE SIX TASKS IN THE USER STUDY AND USER SCORES OF THE

TASKS

task description average standard

score deviation

T1 Identify the abnormal reading pattern based on the graph 1 0

representations, and study their corresponding scanpaths.

T2 Circle the clusters in the graph and observe their 1 0

corresponding portions in the page view.

T3 Circle the saccade outliers with large y distances in the 0.8 0

graph view and verify your guesses in the page view

T4 Identity the pages with MW based on the animation of the 0.7 0.21

whole scanpath.

T5 Identify the pages with MW based on the graph structures. 0.8 0.27

T6 Identify the pages with MW based on the saccade outliers 0.8 0.45

in the graph view.
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Users could perform the tasks at their own pace. Each session took about 30 to 60

minutes to complete. We summarized the binary task completion scores for the six tasks

in Table 7.2.

We note that all users answered T1 and T2 correctly. For T1, users noticed that when

a participant read from left to right and from top to bottom, then the corresponding graph

presents a continuous transition from darker nodes to lighter nodes, which conforms to the

presumed reading order. However, the graph structure became complex when there were

a large number of saccade outliers. For T2, users drew circles to highlight the clusters

in the graph, and selected each group to verify their estimates. They concluded that if

the participants separated the text into portions and read each portion carefully, then each

portion would form a cluster in the graph.

For T3, users can identify most of the saccade outliers with large y distances based

on the edge lengths of the graph, but there was one saccade outlier that they all failed to

identify. The edge of that saccade outlier linked two nodes that are close in the graph

but one node was very dark and the other was very light. The fixation of the light node

was very close to the bottom of the page and the dark node consisted of a lot of fixations

at the top of the page. Therefore, the dark node pulled the light one close to itself and

the corresponding edge length was small. Failing to identify such an outlier shows that

we should have explained the details of ETGraph construction and the layout generation

algorithm to users. This would help users better understand the graph so they would know

that the edge represents a saccade outlier when they observe such a phenomenon.

For T4, users tended to animate the entire scanpath to understand the reading pattern

and identify possible MW. However, it was sometimes difficult for users to do this because

of visual clutter and the effort of remembering the previous scanpath. To help users keep

track of the reading pattern, ETGraph only displays a few of the most currently displayed

saccades and all the previous saccade outliers during the animation. The average score of

successfully identifying MW was 0.7 for this task and most of the users considered this
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task difficult to complete. All users except one made at least one incorrect judgement.

Most of the users stated that viewing an animation based on time that included saccade

outliers helped them identify rereading behaviors and abnormal reading patterns that may

include MW, but this function still requires users to have some knowledge about typical

reading patterns associated with MW.

For T5, the average score of successfully identifying MW was 0.8. All users stated

that the graph structure could help determine whether the participant read normally or

was MW. This task consisted of two subtasks. Three users who considered this task easy

completed it correctly. The remaining two users only answered one small task correctly.

They both agreed that Figure 7.11 (b) that was used in T5 showed a graph with a normal

structure. This result indicates that we need to train users about the graph structure in order

to distinguish the differences between graphs with and without MW.

For T6, the average score of successfully identifying MW was 0.8. This task consisted

of two subtasks. Four users who considered this task easy completed it correctly. The

remaining user did not respond correctly. She studied the content connected by the saccade

and decided that there was no MW present if the content was related. However, this is not

necessarily always the case.

On the general questions, all users agreed that ETGraph was helpful for studying eye-

tracking data. Based on the graph structure, they could get an impression on whether the

participant followed a regular reading pattern or not. Saccade outlier detection helped them

identify saccade outliers and possible MW. Users also had some suggestions to improve

ETGraph. Four of them suggested that we should provide more training and explanation

of ETGraph for better use. One even suggested that we list pages with or without MW, so

that their differences would be more obvious in ETGraph. Two users suggested that we

develop an iPad or Windows version for them to explore further as our current system runs

on Linux.
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7.7.2 Expert Evaluation

We also invited two experts: a professor and a PhD student whose research interest

is identifying MW in eye-tracking data. We utilized the think-aloud protocol during the

evaluation. The experts described their thoughts while completing the tasks, and we sum-

marized their comments after the evaluation. They both agreed that ETGraph is a very

helpful tool for researchers who are interested in studying eye movements.

The professor considered ETGraph a useful tool to identify the reading patterns around

MWs. He pointed out some suggestions to improve ETGraph. First, he suggested that

screen space should be added for the graph view so that users can select multiple graphs

for comparison. Second, he suggested that ETGraph should focus more on saccade outliers

with large y distances because they are important to identify rereading and MW. Saccade

outliers with large x distances might be due to the poor calibration of eye trackers and

line jumps. For MPSP, he thought bundling outliers was helpful to identify the trend of

abnormal reading patterns. However, he suggested that we bundle the outliers separately

for pages with or without MW. This could help researchers study common patterns of

MWs. Finally, he thought that after identifying the common patterns of the graphs with

MW, using graph similarity measures could help identify the pages with MW.

The student expert considered ETGraph to be a useful tool because it provides a new

approach to visualize eye-tracking data. He has used tools like the Open Gaze and Mouse

Analyzer (OGAMA) [126] and has even written his own programs to analyze eye move-

ments. These tools render the data using a scanpath or heatmap. Visual clutter is in-

evitable when displaying a scanpath, while heatmaps lack saccade information. ETGraph

addresses both limitations. In addition, he thought that ETGraph helps to not only visualize

eye movements but also gain an understanding of patterns that are not obvious with other

tools. In addition, he is particularly interested in the repeated scanpath detection function.

For him, this function provides additional information drawn from ETGraph besides sac-

cade outliers that could be used to detect MW. Finally, he thought that our approach could

204



help to engineer novel features for use in machine learning based on observations drawn

from ETGraph.
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CHAPTER 8

CONCLUSIONS

This dissertation presents a graph-based visualization approach that aims to assist users

in better navigating, exploring, and understanding various high-dimensional, heteroge-

neous, and complex data. This is achieved by carefully defining nodes and edges in graphs

to encode the underlying data relationships and providing multi-view interfaces for effec-

tive interaction. Different definitions are designed to meet specific needs according to the

distinctive characteristics of a particular type of data. A set of graph-based techniques is

developed to filter the nodes and connections among them, so that complex data can be

simplified into less cluttered graph structures for cost-effective visual understanding. With

these graph representations, users can quickly build mental connections among graph fea-

tures and data features, and identify important data relationships and track changes over

time. Furthermore, this dissertation proposes solutions to tackle the ever-growing data size

from multiple aspects. For example, graph hierarchies are constructed to allow users to

explore the graph in a coarse to fine manner. Graph mining techniques are applied to sim-

plify graphs and provide guidance for exploration. In addition, parallel algorithms are also

implemented for performance speedup.

For time-varying volumetric data, I present three works: TransGraph, a hierarchical

graph representation to visualize transition relationships; an extended work based on Trans-

Graph which utilizes graph mining techniques to understand large transition graphs; and

iTree for data impacting, indexing and classification. In a single 2D graph view, I design

TransGraph that visualizes the transition relationships among data blocks of all time steps,

and allows the direction of time evolution easily readable. The correspondences between
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volume regions and graph nodes can be inferred through brushing and linking. In other

words, TransGraph augments our ability to better understand time-varying volumetric data

by providing an occlusion-free overview map that encompasses all time steps, controllable

interactions that helps users track data transition over space and time, and adaptive ex-

ploration that allows us to go beyond small- and medium-scale data sets. However, the

transition relationships presented in TransGraph can still be complicated for large-scale

and complex data sets. In the second work, I apply a series of graph mining techniques

including graph simplification, community detection, and visual recommendation, to sim-

plify the graph and provide high-level visual guidance for user exploration. The results and

evaluation with different data sets demonstrate that such a mining approach points out a

promising direction to shield users from undue distraction by the complexity of graphs and

thus enables them to concentrate on effective reasoning about the data. In the third work,

I introduce iTree for time-varying data impacting and indexing. Built on an indexable hi-

erarchical structure, iTree nicely combines data compacting, indexable data searching and

querying with visually adaptive data exploration, a unique feature that makes our frame-

work amenable for tackling large-scale time-varying data sets.

To visualize large image-text collections, I present iGraph that provides essential ca-

pabilities including interactive filtering, node comparison, and visual recommendation to

support progressive graph drawing and user-driven exploration. The general approach pro-

posed for iGraph is applicable to many other large graph drawing, visualization, and ex-

ploration applications. I integrate additional features including the bubble sets to visually

differentiate node groups, suggestion of abnormal keywords and time periods, and com-

parison of different recommendation solutions to enrich the power of iGraph. In addition,

I leverage multiple GPUs for preprocessing and multiple CPUs for runtime graph lay-

out generation and interactive visualization. The effectiveness of iGraph is demonstrated

through experimental results and a user study.

For the visualization of eye-tracking data, I present ETGraph that transforms eye-
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tracking data of a reading study from the original page view to an abstract graph repre-

sentation. The graph view represents fixation clusters as nodes and saccades as edges.

For graph drawing, the positions of nodes are adjusted based on graph layout algorithms.

Therefore, instead of indicating the locations of fixation clusters, node positions actually

reveal the very nature of the underlying reading pattern. Through brushing and linking,

users are able to explore eye-tracking data from multiple perspectives. I demonstrate the

usefulness of ETGraph by studying the reading patterns in four different settings: sin-

gle participant single page, single participant multiple pages, multiple participants single

page, and multiple participants multiple pages. The feedback from the domain scientist

and a group of student researchers confirms the effectiveness of our approach.
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