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by

Martin Imre

With the ever-growing amount of data we are capable of collecting nowadays, the need

for methods to analyze and generate insight into the big data emerges. Data visualization

offers a powerful tool to allow humans to better understand the data. However, the large-

scale data generated through simulation or collected from real-world scenarios leads to an

insurmountable amount to sift through for humans, even when the data are visualized in a

concise format. To combat this, it is necessary to simplify the data using summarization

techniques. While summarization allows an overview that is easier to digest for humans,

it comes with the drawback of omitting parts of the data. To overcome this drawback,

data reconstruction techniques allow for a level-of-detail analysis of the underlying data.

They further make it possible to synthesize missing data. For both data summarization

and reconstruction, it is important to tackle different kinds of data in their respective ways.

In this dissertation, I describe several ways to summarize and reconstruct time-varying

multivariate, vector field data, and graph data.

Time-varying multivariate volumetric data typically stem from scientific simulations

that describe physical or chemical processes, usually in either two or three spatial di-

mensions, a temporal dimension, and contain multiple variables. Volume visualization

techniques are usually used to visualize and analyze them. In this dissertation, I focus on

data analysis using isosurface rendering, a commonly used volume visualization technique.
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While isosurface rendering allows detailed insight into time-varying multivariate data sets,

the sheer complexity of them makes it often impossible to analyze and visualize all the

data at once. A major challenge is the selection of interesting or important parts to bring

to the attention of the analyst. Previous works have presented algorithms to select salient

values, however, these algorithms do not scale well enough for big data analysis. In this

dissertation, I present an acceleration and analysis framework to efficiently analyze and

visualize complete large-scale time-varying multivariate data sets using isosurfaces.

A different type of data produced by scientific simulation is vector field data. At the

core of describing fluid dynamics, these data sets are composed of vector fields revealing

the underlying development of the flow. When it comes to the simulation of unsteady flow,

scientists often face the challenge of only being able to generate output at a coarse temporal

granularity. This leads to the problem of reconstructing the data at missing time steps with

high quality for postprocessing and analysis. In this dissertation, I study three different

deep-learning approaches to reconstruct missing vector fields from a small set of stored

ones.

Another way to navigate through data is by using a graph representation. Graph rep-

resentations are commonly used to show the relationship among entities. A typical way to

depict graph is a node-link diagram with entities being the nodes and their connections the

links. Similar to isosurface rendering, graph visualization suffers from the data overload-

ing issue. Further, computing a pleasing and information revealing layout for large graphs

can take a long time. To combat these problems, I present a framework to efficiently sum-

marize a graph into sparse levels, compute a layout, and then reconstruct this information

for denser levels of the graph.
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CHAPTER 1

INTRODUCTION

Most scientific simulations create data sets that are time-varying and multivariate. To

successfully analyze them and generate insight, visualization techniques should be used.

While this is easy when it comes to a single data point describing a time step and a variable,

it becomes a challenging task when considering a complete large-scale simulation data set.

These simulations can easily have hundreds of time steps and tens of variables. Visualizing

all of those at the same time is practically impossible. This poses a strong need for proper

summarization techniques to extract the most important information from the data.

Data summarization, sparsification, and reduction are powerful techniques that facili-

tate giving an overview of the underlying data. Using them, it is important to produce a

high-quality summarization, that extracts the most important aspects of the data. While

previous works have introduced various techniques for summarization, e.g., via represen-

tative selection, most of them lack scalability. In this dissertation, I focus on accelerating

previous approaches to allow them to scale for large-scale data sets. Obtaining a scalable

approach to analyze time-varying multivariate data sets, for example, grants the possibility

to analyze them as a whole rather than separately. When simplifying data in such ways, we

often have to omit part of the data. This calls for proper methods to reconstruct the missing

information.

Data reconstruction methods tackle the aforementioned problem. Scientists are often

faced with the decision on the granularity of output data from a simulation. This problem

is aggravated by slow storage devices which are a common bottleneck in supercomput-

ing. This leads to the data being compressed by only storing them at a coarse granularity,
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e.g., only storing every nth time step. Recovering the missing information is desired, but

poses significant challenges. Some reconstruction of them are solely concerned with syn-

thesizing missing data, e.g., generating a missing time step between two neighboring ones.

Others are trying to augment the existing data by identifying and highlighting features.

In this dissertation, I focus on three different ways of data reconstruction. First, we use

deep-learning techniques to identify features, that are not clearly defined, in scalar fields.

Second, we reconstruct missing time steps of flow simulations applying deep-learning as

well. Third, we combine summarization with reconstruction to allow a quick layout com-

putation for visualization of large graphs.

When inspecting the data set one can make a distinction among the type of data. In this

dissertation, I consider time-varying multivariate, unsteady flow field, and graph data. In

this chapter, I will introduce each type of data together with some challenges in analyzing

them and how we design summarization and reconstruction techniques to solve them.

1.1 Time-Varying Multivariate Volumetric Data

Time-varying multivariate volumetric data describe the evolution of multiple variables

in three spatial dimensions as scalar fields over time. These data sets can have hundreds of

time steps and tens of variables. To obtain comprehensive insights, one should conduct a

complete investigation by considering the time-varying and multivariate nature of scientific

data sets and enabling comparative visualization across time and variable. This, however,

remains challenging due to the size and complexity of the data sets.

A single variable at a given time step can easily be analyzed by visualizing it via volume

visualization. There are two popular techniques for the rendering of scientific volume data

sets: isosurface rendering and direct volume rendering. The former extracts and visualizes

surface geometry equal to a given isovalue while the latter maps voxels to optical quantities

(color and opacity) for back-to-front or front-to-back compositing. Figure 1.1 shows an

example of both techniques. In this dissertation, I focus on the analysis using isosurface
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(a) (b)

Figure 1.1. Example of direct isosurface rendering (a) and volume rendering (b)
showing the combustion data set.

rendering.

1.1.1 Acceleration Isosurface Similarity Map Computation

One key question for this surface-based approach is how to select salient or represen-

tative isosurfaces [24, 202, 220] so that the structures of the entire data set can be visually

perceived by observing these representatives. A commonly adopted strategy is to select the

most distinctive isosurfaces from a set of sample ones based on a similarity measure. Early

approaches relied on data histograms and higher order moments [202]. Recently, Bruckner

and Möller [24] employed mutual information to identify the similarity among isosurfaces

and depict them in a so-called isosurface similarity map (ISM). Given a discrete set of

n sampled isovalues, the self-similarity map is an n× n symmetric matrix recording the

similarity values for each pair of isosurfaces. Haidacher et al. [83] used similarity maps to

compare two different variables of a single volume for multi-modal surface similarity. In

this case, the similarity map is asymmetric.

However, the biggest impediment for leveraging ISMs to study time-varying multi-

variate data sets is the huge computation cost involved. The previous work [24] reported

around 25 minutes to compute a single similarity map using 256 isosurfaces of a volume

with the size 512×512×361. For a data set with ten variables and a hundred time steps,
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this amounts to more than 17 days just for getting self-similarity maps for all volumes, not

to mention the additional time to compute asymmetric similarity maps for different pairs

of variables or time steps.

To tackle these issues, I present a cost-effective GPU-accelerated solution that opti-

mizes every step of the process to efficiently generate ISMs. The major contributions are

the generation of distance field based on isosurface approximation, a heuristic to improve

the performance for the closest point query using bounding volume hierarchy (BVH)-trees.

Further, we implement everything in CUDA to leverage the massive GPU parallelism.

In Chapter 3, I present the GPU-accelerated solution that paves the way to computing

ISMs for large-scale time-varying multivariate data sets.

1.1.2 Overcoming Oversampling and Generating Nearly Equally Spaced Isosurfaces

The isosurface-based analysis of time-varying multivariate data strongly depends on

the surfaces selected to represent a variable at a time step. Previous works usually select

those representative surfaces based on an initial sample of the whole value range. One

major challenge exists for these approaches: it is essential for them to start with a set

of reasonably good samples of isosurfaces that capture different features in a balanced

way. Otherwise, the features missing in the samples will not be recovered in the later

stages, or the selection may be biased by favoring the features corresponding to more

samples. However, straightforward sampling techniques do not guarantee the desired set

of samples. Uniform sampling is likely to miss some features when many of them reside

in a small value range. Although sampling according to histograms of voxel values, i.e.,

placing more samples in the value ranges with more voxels, may alleviate this problem to

some degree, it still suffers from oversampling as the value ranges with more voxels do not

necessarily indicate more distinctive features.

In this dissertation, I present an approach for identifying nearly equally spaced isosur-

faces, so that the distance between neighboring surfaces is as similar as possible to the
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average distance. Our solution ensures that the isosurfaces corresponding to neighboring

isovalues are distinct enough according to the given distance measure. When identifying a

small number of isosurfaces, we can consider the resulting isosurfaces as salient features

on their own. Compared to the similarity-based approaches for identifying representative

isosurfaces, our approach does not require the isosurfaces to be selected from a limited

set of sample ones. It not only has a wider search space but also explicitly controls over

the resulting isosurfaces, which can potentially lead to better results. Compared to the

topology-based approaches, our method is more flexible when equipped with different dis-

tance measures. Although this offers great flexibility, our method relies on features being a

function of isovalues. Given that precondition, our algorithm may capture the topological

changes if the distance measure is topology-aware, and it may produce isosurfaces with

distinct shapes if the distance measure is shape-aware. In addition, when a large set of

isosurfaces is identified, the results can serve as reliable input to other volume analysis and

visualization tasks.

In Chapter 4, I present a two-stage algorithm that first quickly estimates to a rough

solution in the first stage, and refines it in the second stage.

1.1.3 Analysis and Visualization of Large-Scale Time-Varying Multivariate Data Sets

While the previously mentioned contributions allow the efficient and qualitative eval-

uation of a single variable at a given time step, they both lack an overarching component

to compare and visualize a complete data set. The goal for this is to be able to investigate

volumetric data evolution over space and time and across multiple variables and ensembles

by extracting a range of isosurfaces, computing their similarities, identifying representa-

tive surfaces, and presenting everything in a visual interface to organize, summarize, and

explore the underlying time-varying multivariate data set.

Several key challenges are involved in this approach. First, studying the similarities for

all the surfaces across time steps and variables leads to a very large number of similarity
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maps. For instance, for a data set of 100 time steps and ten variables, the total number

of similarity maps amounts to 55,000. These include 1000 self-similarity maps, 49,500

temporal similarity maps, and 4,500 variable similarity maps. Without an effective way

to organize and visualize them, examining such a large number of similarity maps would

become a daunting task. Second, even though similarity maps can help us see the summa-

rized information, we still need to examine related isosurfaces in the original spatial view

to identify where and how they are (dis)similar. Third, rendering just a few surfaces may

already lead to serious occlusion and clutter which prevents clear observation and compari-

son. This calls for new techniques that render a number of surfaces with minimal occlusion

while preserving their spatial relationships or context.

In Chapter 5, I show how we tackle the above challenges and present the matrix of

isosurface similarity maps (MISM), a new approach for comparative visualization of time-

varying multivariate volume data.

1.1.4 Feature Identification in Plasma Fusion Simulations

While the previously introduced topics were mostly concerned with summarization

techniques to analyze and visualize time-varying multivariate data, this part shows an ap-

proach of augmenting the data by detecting features in time-varying plasma fusion simu-

lation data. Plasma fusion energy is a promising future source of energy with a minimal

ecological footprint. A leading candidate for controlled fusion technique is to use a toka-

mak, which confines hot plasma in a torus-shaped reactor with a strong magnetic field.

Figure 1.2 shows a schematic view of a tokamak reactor. The edge of the plasma plays a

dominant role in the confinement of the plasma but needs to be managed to ensure high

confinement without ruining the tokamak walls. Scientists conduct large-scale 5D gyroki-

netic fusion plasma simulations using XGC [30, 31] in order to study the edge and improve

the tokamak design. The output is on a number of discrete 2D planes around the tokamak

(similar to the blue rings in Figure 1.2), with each poloidal plane representing a 2D cross-
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Figure 1.2. The schematic view of a tokamak (source: European Fusion
Development Agreement-Joint European Torus).

section of the simulated tokamak reactor.

An open problem in plasma fusion research is the detection of blobs—regions of high

turbulence that are thought to be a major cause of lost confinement at the edge—in fusion

simulation data. Blob detection is challenging because blobs are non-well-defined features.

While experienced scientists are able to empirically identify blobs, defining these features

mathematically remains an open challenge [32, 42].

D’Ippolito et al. [52] characterized blobs as higher-than-background density filaments

propagating outwards and lower-than-background density filaments propagating inwards,

and thus blobs have certain shapes, sizes, value ranges, and could only appear in certain

areas of the domain. Scientists urge the need for reliable detection methods to better un-

derstand the formation and impact of these blobs.

In practice, scientists empirically encircle a blob as a simply-connected and closed
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isocontour, or a local contour, in the output 2D scalar field. Scientists have been using

simple heuristics to find proper local contours based on their intuitions of blobs. In general,

blobs have a certain size, shape, value ranges, and could only appear in certain areas of the

domain.

To this end, Davis et al. [47] and Zweben et al. [239] used half-maximum levels as

isovalues to compute local contours for blob detection. In Wu et al. [225], the isovalue is

determined by the statistical distribution of the input data in a region of interest. However,

all existing methods are based on arbitrary choices that involve manual selections and thus

hard to generalize to the time-varying simulation output data.

In Chapter 6, I present a new deep-learning-based approach for detecting salient iso-

contours for blob identification.

1.2 Vector Field Data

A different kind of scientific simulation data is vector field data (VFD). These are

similar to the volumetric data sets, but instead of being scalar fields, are vector fields.

Flow visualization is a method for visualizing vector fields and has been a core area of

research and remains an active one in scientific visualization for three decades. Among

many approaches developed for flow visualization, integration-based approaches stand out

as the most popular form for visualizing vector fields where we place particles or seeds

in the domain to trace flow lines from the underlying flow fields for visual representation,

rendering, and understanding. These flow lines include streamlines traced from steady

flow fields and pathlines traced from unsteady flow fields. Figure 1.3 shows an example of

those tracing results rendered. In this dissertation, I propose a deep-learning approach to

reconstruct vector fields from missing time steps of a simulation.
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(a) (b)

Figure 1.3. Example of stremalines (a) and pathliens (b) showing the tornado
data set.

1.2.1 Unsteady Flow Field Reconstruction

For large-scale scientific simulations, scientists usually can only afford to store a frac-

tion of the simulation data in the reduced form. As high-performance computing systems

are often constrained with respect to data movement and storage, deciding what data are

most essential to store for post hoc analysis becomes a common task for many scientists

running their simulations. As data reduction becomes inevitable, data reconstruction or

restoration provides a necessary means to recover data resolutions and details from the

reduced data.

For unsteady flow fields, we consider a common scenario where scientists store vector

field data sparsely (e.g., every tenth time step) during the simulation and our goal is to

restore intermediate time steps as accurate as possible during postprocessing.

In Chapter 7, I conduct a study of three different deep learning solutions for unsteady

flow field reconstruction from sparsely-output vector fields.
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1.3 Graph Data

Graphs can represent a multitude of different kinds of data ranging from social net-

works to mathematical problems. Visualizing graphs can improve the understanding of

the underlying data tremendously and allow insights into the results of graph algorithms.

While graph algorithms have been thoroughly studied and optimized, graph-drawing al-

gorithms still struggle when it comes to huge graphs. In this dissertation, I present a

spectrum-preserving graph sparsification method, that allows to compute a layout on a

very sparse representation of and map it back to the original graph.

1.3.1 Spectrum-Preserving Sparsification for Big Graph Visualization

Spectral methods are playing an increasingly important role in many graph-based ap-

plications [201], such as scientific computing [192], numerical optimization [41], image

processing [187], data mining [172], machine learning [48], and graph analytics [101]. For

example, classical spectral clustering algorithms leverage the eigenvectors corresponding

to a few smallest nontrivial (i.e., nonzero) eigenvalues of Laplacians for low-dimensional

spectral graph embedding, which is followed by a k-means clustering procedure that usu-

ally leads to high-quality clustering results. Although spectral methods have many advan-

tages, such as easy implementation, good solution quality, and rigorous theoretical founda-

tions [119, 133, 167], the high memory and computation cost due to the involved Laplacian

eigenvalue problems could hinder their applications in many emerging big graph analytical

tasks [36, 58, 101].

Graph sparsification refers to the approximation of a large graph using a sparse graph.

Compared to the original graphs, sparsified graphs provide a number of advantages for

subsequent analysis and visualization. For example, sparsified transportation networks al-

low for developing more scalable navigation or routing algorithms for large transportation

systems; sparsified social networks enable more effective understanding and prediction of
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information propagation in large social networks; and sparsified matrices can be leveraged

to efficiently compute the solution of a large linear system of equations. Recent research

efforts on spectral graph sparsification allow computing nearly-linear-sized subgraphs or

sparsifiers (i.e., the number of edges is similar to the number of nodes in the subgraph)

that can robustly preserve the spectrum (i.e., eigenvalues and eigenvectors) of the origi-

nal graph Laplacian. This leads to a series of “theoretically nearly-linear-time” numerical

and graph algorithms for solving sparse matrices, graph-based semi-supervised learning,

spectral graph clustering, and max-flow problems [41, 70, 120, 124, 188–192]. However,

the long-standing question of whether there exists a practically efficient spectral graph

sparsification algorithm for tackling general large-scale, real-world graphs still remains.

For instance, the state-of-the-art nearly-linear time spectral sparsification methods lever-

age Johnson-Lindenstrauss Lemma to compute effective resistances for the edge sampling

procedure [189]. This requires solving the original graph Laplacian multiple times, thus

making them impractical for handling real-world big graph problems.

In Chapter 8, I present spectrum-preserving sparsification (SPS), a spectrum-preserving

framework for sparsification and visualization of big graph data. This framework allows

edge and node reduction, spectral clustering, and level-of-detail exploration to support

the adaptive visual exploration of big graph data based on a nearly-linear time spectrum-

preserving big graph sparsification framework.
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CHAPTER 2

RELATED WORK

In this chapter, I will give an overview of previous works on analysis and visualization

of scientific data. Although the main focus of my work lies in summarization and recon-

struction, it is important to understand the state of the art in different subareas of scientific

visualization and the problems I am tackling in this dissertation. Similar to Chapter 1, I

will first discuss analysis and visualization of time-varying multivariate data, followed by

works about vector field data, and graph data. Additionally, I will summarize recent devel-

opments using deep learning in the field of scientific visualization. Doing so, I will point

out problems that are tackled in later chapters of this dissertation.

2.1 Analysis and Visualization of Volume Data

To analyze and visualize volumetric data sets, researchers have sought different kinds

of methods to understand the structures of volumes. Among those, there are three different

analysis techniques with a closer relation to our work. First, distribution-based meth-

ods focus on the distributions of certain properties of the volume and identify the salient

structure based on their corresponding statistical characteristics. Second, similarity-based

methods measure the similarity between volume representations such as isosurfaces and

derive the representative ones based on their similarities. Third, topology-based methods

analyze the topological structure of the volumes and highlight the structures corresponding

to topological changes.

Distribution-based methods. Understanding the relationships between the volume

distribution and the isosurfaces allows us to identify salient features. For instance, Tengi-
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nakai et al. [202] detected salient isosurfaces using local higher order moments (LHOMs).

LHOMs are computed and plotted for different sample values for a semi-automatic selec-

tion. Scheidegger et al. [179] applied Federer’s Coarea Formula to improve the isosurface

statistics by weighting with the inverse gradient magnitude. Duffy et al. [55] developed a

mathematical model for continuous functions and proved the convergence to continuous

statistics for regular lattices. Pekar et al. [166] proposed to use Laplacian weighted his-

tograms for salient isovalue detection. However, the distribution of a volume data set does

not translate to the spatial relationship among surfaces extracted, which is the focus of this

dissertation.

Similarity-based methods. Recent works often seek to measure the similarities be-

tween a set of sample isosurfaces and derive the structure of the entire volume. For exam-

ple, Bruckner and Möller [24] evaluated the similarity between isosurfaces and organized

them in the form of an ISM. The similarity between two isosurfaces is defined as the mutual

information shared by the distance fields of the two isosurfaces. Representative isosurfaces

are identified using the ISM, which stores all pairwise similarity values. Haidacher et al.

[83] extended this approach to compare isosurfaces extracted from multiple volumes. Wei

et al. [220] proposed a similarity measure between two isosurfaces based on intermediate

level-set surfaces. The values on the intermediate surfaces are sampled from the volume

and their entropy values are used to evaluate whether the level-set surfaces align well with

the intermediate isosurfaces. Recently, Ma et al. [146] used a tensor-based perceptual dis-

tance measure that simulates the human visual system and employed k-means clustering

to select representative isosurfaces for comparing different volumetric data compression

approaches.

Ultimately, all of these methods share a bottleneck in calculating the distance fields,

which is a common task in many graphics and visualization applications. As a common

need of many applications, accelerating the distance field computation has been extensively

studied [126, 132, 138, 182, 233]. Yu et al. [233] presented the parallel distance tree that
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distributes the workload to multiple processors guided by a coarse global distance tree.

Each processor then constructs a local distance tree and derives the distance fields. To

compute the distance field, the bounding volume hierarchy (BVH)-tree is often used to

identify the closest points. Liu and Kim [138] proposed the multi-BVH that combines

the octree and BVH-tree. The use of octree provides additional information to reduce

the number of BVHs to be traversed. Karras [113] introduced a GPU-based method to

construct BVH-trees in parallel, which is one of the fastest GPU solutions available.

In Chapter 3, I will explain how we used Karras’ BVH-tree construction together with

a GPU-based approximation scheme to drastically accelerate the ISM computation.

Topology-based methods. These methods extract structures that essentially charac-

terize properties of space such as convergence, connectedness, and continuity, providing a

concise description of the overall structure of a volume. Bajaj et al. [7] proposed the con-

tour spectrum, an interface combining the contour tree together with a variety of isosurface

statistics, such as area and enclosed volume. Bremer et al. [21] presented the cancellation

tree for describing the simplification of a Morse-Smale complex. Each simplification step

cancels a pair of critical points, i.e., minima and maxima. The cancellation tree encodes

the simplification steps and provides the connections among critical points. They further

extended this approach to the hierarchical merge tree, which is a tracking graph that de-

scribes the temporal evolution of features [22]. Carr et al. [29] proposed to use the contour

tree to encode the nesting relationships among isosurfaces. It also serves as an interface

that allows users to select contours for operations such as removal, evolution, and tracking.

Correa et al. [45] introduced the topological spine that connects critical points along the

steepest ascending or descending directions. In addition, it includes geometric and contour

nesting information, providing better spatial reasoning.

Although rigorous, topology-based methods normally capture minute topological changes,

which lead to a large number of isosurfaces for a volume with complex topological vari-

ations. This, however, may not always be necessary for users to understand the overall
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structure of the volume. In contrast, a small set of nearly equally spaced isosurfaces would

be more amenable for user observation: each surface is distinct enough and they are mutu-

ally distant in the space. Such a set of isosurfaces could also be useful as a visual summa-

rization of the underlying volume.

In Chapter 4, I will show our work on extracting such a set of nearly equally spaced

isosurfaces.

2.1.1 Salient Isovalue Selection

Often, the goal of volume analysis is to select a set of salient isovalues. Similar to

volume analysis, salient isovalue selection algorithms can be categorized into statistics-,

topology- and similarity-based methods.

For statistics-based analysis, Bajaj et al. [7] introduced the contour spectrum to facili-

tate an easier choice of isovalue by displaying several statistics in a 2D curve in relation to

the isovalue. Pekar et al. [166] proposed a fast one-pass algorithm to analyze volumetric

data sets and find intensity transitions between different surface materials based on gray-

value histograms. Carr et al. [28] showed that histogram is inferior to statistics like area, or

approximation of those, e.g., triangle count, in terms of representing the underlying func-

tion distribution. Meyer et al. [154] revisited the relationship between histograms and the

underlying geometric structure of a volume data set. They used geometric measure theory

to establish a convergence between the area statistics and the histogram.

For topology-based analysis, a prominent technique is using contour trees to inspect

the development of underlying geometry based on the change of isovalue. Carr et al. [27]

showed that contour trees can be computed in all dimensions, while Pascucci et al. [165]

introduced branch decomposition to simplify the analysis of contour trees. Carr et al. [29]

introduced simplification based on local geometric measures of feature importance to allow

an interactive and flexible selection of isovalues.

For similarity-based analysis, together with ISM, [24] introduced a priority-ranking
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algorithm for isovalues based on the similarity maps. Other works have extended their

approach to multimodal analysis [83]. A shortcoming of these methods is that they all

limit their selection to a single or multiple isovalues for the whole volume.

In Chapter 6, I will show how our approach of detecting blobs in plasma fusion is

related to the problem of salient isovalue selection. However, it differs in that the outputs

of salient isovalue selection are a levelset of a given threshold in the entire scalar field.

I instead need to identify salient local contours defined by different levels with different

thresholds.

2.1.2 Analysis and Visualization of Time-Varying Multivariate Data

Data analysis and visualization. Analysis and visualization of time-varying multi-

variate data is an important yet challenging topic in scientific visualization [115, 147].

For time-varying data, researchers have studied efficient data organization and render-

ing based on spatiotemporal coherence [184, 210, 212, 214], transfer function specifica-

tion [110], direct rendering of multiple time steps into a single image [224], and in situ vi-

sualization [232]. They also experimented with illustration-inspired [112] and importance-

driven [213] techniques for visualizing time-varying data. For multivariate data, researchers

have investigated query-driven visualization using compound range queries [196] and fuzzy

queries using textual pattern matching [71]. They also explored variable correlation includ-

ing point-wise correlation coefficients [34, 75, 197] and gradient similarity measure [178],

causal relationships between variables using transfer entropy [215], variable grouping us-

ing mutual information (surprise and predictability) [14], and information flow between

variables based on association rules (informativeness and uniqueness) [140].

In Chapter 5, I will show how we investigate the relationships among different volumes

of time-varying multivariate data by extracting representative isosurfaces from each vol-

ume based on its similarity map and computing the similarity maps among representative

isosurfaces from volumes of different time steps and variables.
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Visual abstraction and interface. Time-varying multivariate data are high-dimensional

and complex, which poses a great challenge to effective visual exploration and compari-

son. The conventional way of only visualizing these data in the original space-time view

does not solve the inherent occlusion and clutter problem, nor does it offer a viable so-

lution for data feature or relationship selection, exploration, and tracking. Therefore, re-

searchers have studied various alternatives that map data and their relationships to lower-

dimensional, often abstract spaces and representations to assist relationship overview, in-

teraction, and navigation [209, 211]. Examples include the tri-space (i.e., spatial, tem-

poral, and variable) interface that allows exploration of the temporal and variable dimen-

sions of data along with the spatial context [3], multifield-graphs for studying correla-

tion fields in a hierarchical manner [178], interactive storyboard for overall time-varying

data visualization and feature exploration [145], attribute cloud that enables users to ex-

amine high-dimensional multivariate attributes in a 2D space [109], recurrence plot that

shows the temporal similarity between two time-dependent signals as a matrix for recur-

rence detection [6, 68, 151], AniViz for animation creation from time-varying multivariate

volume data [4], TransGraph for investigating the transition relationships in time-varying

data [77, 78], multivariate transfer function interface design that tightly couples parallel

coordinates plots and dimension projection plots [79], and iTree for compacting, indexing,

and exploring time-varying data [76].

Chapter 5 describes the visual interface that we have designed, which organizes the

MISM for an overview, filtering, and summarization, as well as detailed examination of

volume relationships over spatial, temporal, and variable domains.

Comparative visualization. To study data similarities and differences, one can em-

ploy comparative visualization to compare different time steps, spatial locations, data vari-

ables, or modalities [115]. Gleicher et al. [72] proposed a general taxonomy of visual

designs for comparison in information visualization based on the three building blocks of

juxtaposition, superposition, and explicit encodings. Verma and Pang [207] pointed out
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that scientific data can be compared at the image, data, or feature level, depending on the

level of data abstraction. They studied comparative visualization tools for analyzing flow

fields which allow the comparison of individual streamlines and stream ribbons as well

as a dense field of streamlines. Woodring and Shen [223] developed a volume shader for

time-varying multivariate data visualization. The shader allows users to select multiple

data volumes to create comparative visualization along with the presence of contextual in-

formation. Schneider et al. [181] presented a solution for interactive comparison of scalar

fields using isosurfaces. They defined features in two scalar fields by the largest contour

segmentation and matched these features using a similarity measure based on their spatial

overlap. A thumbnail gallery of feature pairs and a graph representation are used to show

all relationships between individual contours. Lampe et al. [129] designed a curve-centric

volume reformation technique to create compelling comparative visualizations. The tech-

nique deforms the volume surrounding a curve and preserves the spatial neighborhood

to the curve, thus permitting arc-length parameterized data visualizations in parallel for

comparison. Malik et al. [149] presented a comparative visualization technique that uses a

multi-image view and an edge explorer for dimensional measurement using 3D X-ray com-

puted tomography. Their generic solution can be applied to other application areas such as

parameter study of imaging modalities and detection of artifacts in data sets. Schmidt et al.

[180] designed a comparative visualization tool named VAICo for visualizing similarities

and differences in large image sets. This tool not only preserves contextual information

but also enables detailed analysis of subtle variations.

Our purpose is to investigate the evolution of time-varying data in the context of mul-

tiple variables using surface-based visual representation. In Chapter 5, I will explain how

we achieve this goal by clustering and filtering a large number of ISMs organized as a

matrix along with comparative surface summarization and rendering techniques that reveal

the spatial relationships of the corresponding isosurfaces.
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2.2 Analysis and Visualization of Flow Data

Flow visualization has been the topic of an ample amount of previous works. As this

dissertation focuses mainly on one particular aspect, namely, vector field reconstruction,

I refer interested readers to the overview of texture-based [130], integration-based [153],

topology-based [131], partition-based [175], illustration-based [19], and surfaced-based [61]

flow field visualization techniques.

2.2.1 Vector Field Reconstruction

Vector field reconstruction has been studied extensively, starting in the 1990s. Mussa-

Ivaldi [158] presented a least-square based method to reconstruct 2D vector fields from

samples. Gouesbet and Letellier [73] used a multivariate polynomial approximation for

global vector field reconstruction of time-continuous dynamical systems. Another algo-

rithm to reconstruct 2D vector fields was introduced by Lage et al. [128]. They used a

sparse set of samples to first fit a polynomial locally to describe each velocity component

and then globally approximated the vector field using the partition of unity. Letellier et al.

[136] extracted topological features to characterize and reconstruct 3D vector fields for ex-

perimental electrochemical systems. Chen et al. [38] applied triangulation to reconstruct

velocities from samples along streamlines and then linearly interpolated the grid points of

the vector field from the triangulation. Xu et al. [228] used Shannon’s entropy to compute

the information content of every voxel in a vector field to guide the streamline seeding pro-

cess. Xu and Prince [227] introduced gradient vector flow (GVF), which has been used for

vector field reconstruction from a set of representative streamlines by Tao et al. [199]. This

two-stage algorithm recovers a vector field from streamlines by first estimating velocities

for voxels with streamlines passing and then interpolating the missing voxels by mini-

mizing the Laplacian over the whole vector field. Recently, Han et al. [86] reconstructed

steady vector fields from streamlines using deep learning. As deep learning is an emerging
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technique to successfully tackle problems in many areas of computer science there has also

been some work in flow visualization recently, which I discuss next.

In Chapter 7 I will analyze three different deep learning solutions to reconstruct VFD

for unsteady flow simulations.

2.3 Deep Learning Techniques

In recent years, deep learning techniques have established themselves as a promis-

ing choice of technique to tackle large scale problem. With the ability to analyze a large

amount of data and generate a non-linear correlation to solve a task, they have outper-

formed many state-of-the-art algorithms. The computer vision and natural language pro-

cessing communities are at the forefront of this research, while the visualization commu-

nity has just started to witness the application of deep learning techniques to solve visu-

alization problems. In this dissertation, I show the application of two such techniques to

reconstruct missing time steps of unsteady flow fields and to highlight features as isocon-

tours in a time-varying plasma fusion simulation.

2.3.1 Deep Learning in Scientific Visualization

With deep learning techniques emerging as strong candidates to tackle problems in dif-

ferent areas of research, they recently have also found their applications in the domain of

scientific visualization. Part of these works has tackled problems related to volume vi-

sualization. Zhou et al. [238] applied a convolutional neural network (CNN) for volume

upscaling. They adopted techniques from image super-resolution [54] and trained their

network using downsampled input volumes to reconstruct the original ones. Shi and Tao

[185] proposed a framework to estimate viewpoints for volume visualization. Their frame-

work also uses a CNN to extract the viewpoint parameters from a rendered image. Berger

et al. [12] used a generative adversarial network (GAN) to generate and guide the selec-

tion of a viewpoint and the design of transfer functions for volumetric data sets. Cheng
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et al. [39] presented a deep-learning approach to assist feature extraction from complex

structures for volume visualization, which is typically difficult to detect with conventional

methods. Porter et al. [169] established a CNN to select representative time steps for time-

varying multivariate data. Han and Wang [85] designed TSR-TVD, a recurrent generative

framework to interpolate intermediate volume data for time-varying volumetric data. He

et al. [93] proposed InSituNet, a neural network that synthesizes rendering images to allow

parameter space exploration of ensemble simulations. Weiss et al. [221] generated high-

resolution isosurface rendering from low-resolution ones by applying an image-based deep

learning framework.

For flow visualization, Hong et al. [97] employed long short-term memory (LSTM) to

estimate the access pattern for parallel particle tracing. Han et al. [87] clustered stream-

lines and surfaces automatically via a deep learning framework based on autoencoders.

Eckert et al. [59] presented ScalarFlow, a framework to reconstruct accurate physics-based

data from a small number of videos. Prantl et al. [170] proposed two-stage deformation-

aware neural networks to learn the weighting and synthesis of dense volumetric deforma-

tion fields in the space-time representation of physical surfaces from liquid simulations.

Kim et al. [117] synthesized fluid simulations from a set of reduced parameters using a

GAN model. Doing so, they designed a novel loss function that guarantees divergence-

free velocity fields. Guo et al. [80] designed CNNs that generate super-resolution of 3D

VFD in the spatial domain with a scaling factor of 4 or 8.

2.3.2 Image Segmentation Using Neural Networks

The method used in Chapter 6 is inspired by U-Net [173], a deep CNN for medical im-

age segmentation. U-Net detects cells in light microscopy images by downsampling and

upsampling an input image while copying over features between the downward and upward

phases. It was later adapted to work in 3D [43, 155]. Other approaches use hierarchical

cascaded models [183] or create semantic segmentation of objects [143]. Nabla-net [152]
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uses an encoder-decoder framework or biomedical image segmentation. Other researchers

proposed interactive segmentation using CNNs [216, 217] to guide users during a segmen-

tation task.

For blob detection, we cannot directly use a segmentation technique to identify salient

local contours. The typical output in such a task is a pixel-wise segmentation mask which

often does not encompass additional information. In our case, we need super-levelsets that

are encircled by closed isocontours, which is not necessarily the case in the output of a

straightforward segmentation. However, adopting such an approach to extract isocontours

instead of regions with different values can overcome this as shown in Chapter 6.

2.3.3 RNN and CNN for Sequence Learning

Recurrent learning techniques use an input series and adapt a set of inner states to cap-

ture temporal information from the input series. The widest-used form of recurrent neural

network (RNN) is LSTM [95]. LSTM uses three different gates to determine how the infor-

mation from the input and previous states influence the output. LSTM has previously been

used to tackle many problems, for example, anomaly detection in time series [148], speech

recognition [74], and human trajectory prediction in videos [5], just to name a few. With an

adaptation to the LSTM, convolutional long short-term memory (ConvLSTM) [186] uses

the convolution operation and Hadamard product to replace the fully-connected operation

inside the LSTM in order to consider spatial features, making it a spatiotemporal compo-

nent for RNNs. Pascanu et al. [164] pointed out two problems with RNN training, namely

gradient vanishing and gradient exploding. They further proposed gradient norm clipping

as a solution. Venugopalan et al. [206] used stacked LSTM to combat these problems.

Many impressive results for sequence learning tasks have been achieved using CNNs.

Niklaus et al. [163] introduced CNN to perform frame interpolation. Their network learns

a kernel from input frames and then uses it to generate missing frames. Nguyen et al. [161]

introduced a deep linear embedding model for intermediate frame interpolation. Their
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framework first extracts features from each frame and then linearly interpolates the inter-

mediate frames in the feature space before reconstructing the corresponding frame from

the interpolated features. Jiang et al. [111] employed CNNs to estimate the optical flows in

both directions from two given frames. They then generated in-between frames based on

these optical flows. Yu et al. [231] presented QANet, a CNN and self-attention based solu-

tion for reading comprehension tasks. Their framework is seven times faster and achieves

similar performance compared with RNN.

The work presented in Chapter 7 differs from these works mentioned above. First, we

use CNNs for vector field interpolation employing skip connection to incorporate temporal

information. Second, we consider the different value ranges of the three vector components

in 3D vector fields. Third, in contrast to video interpolation tasks where content loss and

perceptual loss are most important, we approximate magnitude loss and employ angle loss

to facilitate the generation of high-quality synthesized vector fields for unsteady flow.

2.4 Graph Visualization

Graphs are commonly used to describe the interconnectedness of multiple entities to

analyze the underlying network. To visualize graphs, the most common technique is to use

a node-link diagram with entities being depicted as nodes and their relationships as links

between them. While this representation allows an intuitive understanding of the matter,

the ever-growing size of graphs poses the challenge of generating a layout that not only

reveals information efficiently but is also visually pleasing. The main challenges to graph

visualization are scalability, readability, and aesthetics. As graph visualization is a vastly

studied topic, I focus on the main related works here and refer the interested reader to the

following surveys [11, 50, 82, 94, 211].
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2.4.1 Graph Layouts

There are many different ways of generating a graph layout, for example, force-directed

layouts [69], geometric layouts [53], or spectral layouts. Force-directed layouts use a

physics-based simulation that assigns attractive and repulsive forces between pairs of nodes,

aiming to minimize the energy function of these forces. In Chapter 8, I focus on spectral

layouts.

2.4.2 Spectral Graph Drawing

Among the spectral methods for graph drawing, the eigen-projection method uses the

first few nontrivial eigenvectors of the graph Laplacian matrix or the top dominant eigen-

vectors of the adjacency matrix. Hall [84] used the eigenvectors of the Laplacian to embed

graph vertices in a space of arbitrary dimension. The entries of the k eigenvectors related

to the smallest nonzero eigenvalues are used as a node’s coordinates. This is referred to

as k-dimensional graph spectral embedding. Pisanski and Shawe-Taylor [168] took Hall’s

method to generate pleasing drawings of symmetrical graphs such as fullerene molecules

in chemistry. Brandes and Willhalm [20] used eigenvectors of a modified Laplacian to

draw bibliographic networks. Note that for regular graphs (where every node has the same

degree), the eigenvectors of the Laplacian equal those of the adjacency matrix, but in a

reversed order. This is not the case for non-regular graphs. Using the Laplacian is advan-

tageous as it is rooted in a more solid theoretical basis and gives better results than those

obtained using the adjacency matrix.

Koren et al. [122, 123] proposed algebraic multigrid computation of eigenvectors (ACE),

an extremely fast algorithm for drawing very large graphs. ACE identifies an optimal draw-

ing of the graph by minimizing a quadratic energy function, which is expressed as a general

eigenvalue problem and efficiently solved using fast algebraic multigrid implementation.

Harel and Koren [89, 90] designed high-dimensional embedding (HDE) for aesthetic draw-

ing of undirected graphs. HDE first embeds the graph in a very high dimension and then
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projects it into the 2D plane using principal component analysis. This algorithm is fast, ex-

hibits the graph in various dimensions, and supports interactive exploration of large graphs.

Koren [121, 122] presented a modified approach that uses degree-normalized eigenvectors

to achieve aesthetic graph layouts. The degree normalized eigenvectors adjust the edge

weights to reflect their relative importance in the related local scale. As such, the modi-

fied solution can allocate each cluster an adequate area in the drawing and avoid drawing

extremely dense clusters. Hu et al. [101] designed a spectral graph drawing algorithm that

includes node projection, node dispersion, and sphere warping. They first projected nodes

onto a k-dimensional sphere, then dispersed nodes around the sphere’s surface to separate

apart densely connected clustered nodes, and finally warped the k-dimensional sphere’s

surface to a 2D space using multidimensional scaling. Their algorithm can clearly show

the topology and community structures of the graph.

Most spectrum-based graph visualization techniques [20, 89, 122, 123, 168] only place

their focus on graph layout. Besides drawing the graph using spectral sparsification, we

integrate spectral clustering and edge bundling to help users better examine the graph for

effective visual understanding. This is particularly important when handling big graph data

as visual understanding of the complex and diverse graph relationships is the key.

2.4.3 Spectral Methods for Graph Applications

To address the computational bottleneck of spectral methods in graph-related applica-

tions, recent research efforts aimed to reduce the complexity of the original graph Lapla-

cian through various kinds of approximations. For example, k-nearest neighbor (kNN)

graphs maintain k nearest neighbors for each node, whereas ε-neighborhood graphs keep

the neighbors within the range of distance ε [157]. Williams and Seeger [222] intro-

duced a sampling-based approach for affinity matrix approximation using the Nyström

method, while its error analysis has been proposed in [235]. Chen and Cai [37] presented

a landmark-based method for representing the original data points for large-scale spectral
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clustering. Yang et al. [229] proposed a general framework for fast approximate spectral

clustering by collapsing the original data points into a small number of centroids using

k-means or random-projection trees. Liu et al. [139] introduced a method for compressing

the original graph into a sparse bipartite graph by generating a small number of “supern-

odes”. Satuluri et al. [177] proposed a graph sparsification method for scalable clustering

using a simple similarity-based heuristic. However, existing graph approximation methods

cannot efficiently and robustly preserve the spectrums of the original graphs, and thus may

lead to degraded or even misleading results. Recently, spectral perturbation analysis was

applied to spectral graph sparsification and reduction in order to reduce the graph to nearly-

linear-sized with high spectral similarity [64, 65, 237]. This progress makes it possible to

develop much faster algorithms such as the symmetric diagonally dominant (SDD) matrix

solvers [236] as well as spectral graph partitioning algorithm [65]. Note that these recent

works on graph sparsification [64, 236, 237] only address spectral graph simplification but

not spectral graph drawing using a multilevel approach.

In Chapter 8, I will detail how we apply spectral methods to efficiently simplify a given

input graph for visualization.

2.4.4 Quality Metrics for Graph Sampling

An important question for graph sampling is how to evaluate the quality of the sim-

plified graph. To evaluate the similarity between the original and sampled graphs, Hu

and Lau [100] employed three metrics: (1) total variation distance which measures all

the difference between two distributions; (2) Kullback-Leibler divergence which captures

the difference between the two distributions accounting for the bulk of the distributions;

and (3) Kolmogorov-Smirnov statistic which captures the maximum vertical distance of

the cumulative distribution function of the two distributions. Zhang et al. [234] computed

seven statistical properties, namely, degree distribution, betweenness centrality distribu-

tion, clustering coefficient distribution, average neighbor degree distribution, degree cen-
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trality distribution, edge betweenness centrality distribution, and hop distribution, to quan-

titatively compare different graph sampling methods. Recently, Hong et al. [98] used five

metrics, namely, degree correlation assortativity, closeness centrality, clustering coeffi-

cient, largest connected component, and average neighbor degree, to evaluate their graph

sampling methods, which improve random-based sampling by considering the block-cut

tree.

A problem with the above statistical metrics and properties is that they are not well-

suited to capture the visual quality of the corresponding graph layout. This is especially

the case for large social and biological networks where nodes and edges could easily be-

come “blobs” in the drawing of dense graphs with a few hundred vertices or sparse graphs

with a few thousand vertices. Wu et al. [226] pointed out that quality metrics based on

statistical or topological properties do not translate to visual quality. Their study shows

that three visual factors significantly influence the representativeness of sampled graphs:

cluster quality, high degree nodes, and coverage area. Eades et al. [57] proposed a shape-

based quality metric for large graph visualization by treating the quality of a drawing D

of a graph G as the similarity between G and the “shape” of the set of vertex locations of

D. Nguyen et al. [162] generalized this metric to compare proxy graphs using the shape-

based quality metric. In our work, we use this so-called proxy quality metric to evaluate the

graph after spectral edge sparsification (where only edges are removed) and employ statis-

tical metrics to further evaluate the graph after multilevel node reduction (where nodes are

aggregated to form pseudo-nodes).
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CHAPTER 3

EFFICIENT GPU-ACCELERATED COMPUTATION OF ISOSURFACE SIMILARITY

MAPS

In this chapter, I present an approximation scheme to accelerate the ISM computation.

This is achieved by avoiding extracting full isosurfaces and instead only evaluate sample

points as the first step. This not only allows for a quicker computation in the first stage but

also drastically reduces the points for the distance field computation in the second stage.

The distance fields are then sped up using a parallel BVH-tree on the GPU. This allows for

a much faster computation of ISM and paves the way for subsequent large scale analysis.1

3.1 Our Approach

Our approach to generating ISMs consists of three steps: sampling a set of isosurfaces,

calculating distance fields, and computing the similarity map. First, we sample over the

value range to generate a set of isosurfaces. Instead of computing the actual surfaces,

we approximate each surface with a loosely ordered set of points for performance gain.

Second, we compute a distance field for every sampled isosurfaces. We leverage BVH-

trees for fast queries of the closest points and use a heuristic approach to improve the

performance of traversing the tree based on the loose order of points. Finally, we calculate

the similarity of every pair of sampled isovalues and organize all similarity values in a

similarity map. The similarity between two sampled isovalues is given by the mutual

information of their corresponding distance fields.

1This work was published as M. Imre, J. Tao, and C. Wang. Efficient GPU-accelerated computation of
isosurface similarity maps. In Proceedings of IEEE Pacific Visualization Symposium, pages 180–184, 2017
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3.1.1 Isosurfaces Approximation

Isosurfaces are usually generated using the marching cubes algorithm [144], which is

not only costly but also unnecessary for distance field calculation. The marching cubes al-

gorithm computes intersection points of the isosurfaces with each voxel and connects these

points for the exact surface. However, to calculate a distance field with reasonable preci-

sion, it is unnecessary to compute multiple points for one voxel or know the connections

of those points.

Our approach approximates an isosurfaces S corresponding to a value v by generating

one point for each 3D grid cell containing a part of S. A grid cell is a 1×1×1 cube whose

vertices are the eight voxels in a 2× 2× 2 spatial region. Whether a grid cell contains

a part of S is determined by checking the values of the eight voxels corresponding to it.

If some of the values are larger than v and some are smaller than v, linearly interpolated

values at some points in the grid cell must be v, which means that the grid cell contains

a part of S. In this case, the center of this grid cell will be recorded as a sample point

of S (for efficiency, we use the center instead of computing the actual intersection point).

Otherwise, the grid cell does not contain any part of S and will be ignored. Our implemen-

tation leverages the parallelism of GPU to scan the grid cells simultaneously. Each GPU

thread checks a grid cell and stores the result in a binary volume. Then we employ a GPU

compaction scheme to convert the binary volume into an array of point coordinates (i.e.,

the approximation of an isosurfaces). The points are listed in the scanline order, providing

loose spatial relationships among points.

Note that the error of using this approximation to compute the distance from a point

p to a surface S is bounded by
√

3/2 (half the diagonal length of the grid cell) due to the

triangle inequality. This error is acceptable, since downsampled distance fields are usually

used to compute the similarity map [24]. In Figure 3.1, we can see that our approximation

(c) yields a very similar similarity map as the exact marching cubes algorithm does (a). We

further select three representative isosurfaces for each similarity map, which are shown in
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Figure 3.1. Comparing similarity map and representative isosurfaces generated
using actual isosurfaces ((a) and (b)) against our approximation ((c) and (d))

with the CT data set. The isosurfaces are colored in the descending order of their
importance: red, green, blue. The number in the brackets indicates the index of
sampled isovalue. The marching cubes algorithm is used to extract the actual

surfaces shown in (b) and (d) for given representative values.

Figure 3.1 (b) and (d), respectively. Although there are slight differences in the selected

isovalues, those are barely visible in the surface rendering. This minor difference is ne-

glectable as the main goal of selecting the most salient values and depicting their surfaces

is still achieved.

3.1.2 Distance Field Computation

A distance field of an isosurfaces is a volume with every voxel containing the distance

from the center of this voxel to the isosurfaces. In order to compute this, it is necessary to

find the closest point of an isosurfaces for every voxel in the distance field. To decimate

the search space for this problem, we downscale the resulting distance field. A typical

solution for such a search problem is a tree structure. In our approach, we leverage BVH-

trees to accelerate the search for the closest point. A BVH-tree is a binary tree used to

subdivide a scene into a tree structure. Each node of a BVH-tree consists of a bounding

volume that includes all of its descendants. A leaf consists of a single primitive — in our

case a single point. Although other bounding volumes increase the traversal speed, we use
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bounding boxes for lower construction time and apply Karras’s algorithm [113] to build

BVH-trees in parallel. This is essential since a tree needs to be built for every isosurface’s

approximation.

To compute the distance fields of a given isosurface’s approximation, we spawn a

CUDA thread to search the closest point in the BVH-tree for each voxel by traversing

the tree in a depth-first search manner. During the traversal for a voxel v, we maintain an

upper bound of the closest distance from v to the isosurfaces. The sub-tree rooted at an

internal node n will not be traversed, if the distance d(v,n) between v and n is larger than

the upper bound. The distance d(v,n) between a voxel v and an internal node n is given

by the minimum distance from v to the bounding box of n. The distance d(v,n) between a

voxel v and a leaf n is given by the distance between v and the corresponding point of n.

Specifically, the traversal procedure can be described in the following four steps:

1. Take a set of sample points P and calculate the initial upper bound du =minp∈P d(v, p).

2. Add the root to a stack.

3. Pop the first node n from the stack. If n is an internal node, for each of its child node
nc, compute the distance d(v,nc). If d(v,nc)< du, push nc onto the stack. If n is a leaf,
compute the distance d(v,n) between v and n, and update du with min(du,d(v,n)).

4. Repeat Step 3 until the stack becomes empty.

For an efficient traversal, a good initial upper bound is needed. Unlike the existing

approaches, which usually initialize the upper bound when the first leaf is encountered, we

estimate the upper bound before the traversal by computing the distance from the voxel to

a set of sample points. Note that the points approximating an isosurfaces are listed in the

scanline order. By evenly sampling the approximating points in that array, we obtain a set

of sample points that is roughly evenly spaced over the isosurfaces. This provides a tighter

estimation of the initial upper bound, allowing more branches to be pruned, especially at

the beginning stage of the traversal.
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3.1.3 Similarity Map Generation

The similarity between two isosurfaces are measured by the mutual information of their

corresponding distance fields. To calculate the mutual information, we compute a joint

histogram of the two distance fields, where each entry (i, j) in the joint histogram contains

the number of voxels that fall into bins i and j in the first and second distance fields,

respectively. Then, the mutual information can be derived from the joint histogram. In our

GPU implementation, we spawn a CUDA thread for each pair of sampled isosurfaces. Each

thread reads two distance fields, computes the joint histogram and mutual information, and

stores the value of mutual information in the similarity map.

3.2 Results and Discussion

We used multiple data sets with different characteristics to benchmark our applica-

tion on a desktop with an Intel i7-4790 quad-core CPU running at 3.6 GHz, 32 GB main

memory, and an NVIDIA GeForce GTX 760 GPU with 2 GB memory. Throughout the

evaluation we used Bourke’s [18] implementation of the marching cubes algorithm as a

baseline. Table 3.1 shows the total time (in seconds) spent in each step of the similarity

map generation pipeline. The timing results were collected with a GPU implementation

for all 256 isovalues using each data set.

It took us under 2.5 minutes to generate an isosurfaces similarity map for most of these

data sets. The only exception is the Combustion data set, which has the largest volumes

and the greatest numbers of points in the surfaces. As we can see from Table 3.1, the three

variables (CHI, mixture fraction, and vorticity) of the Combustion data set have the same

dimensions and cost similar time to approximate the isosurfaces. But these variables have a

high fluctuation in the number of points in surface approximation, which leads to different

running times to compute the distance fields of the same size.
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TABLE 3.1

TIMING AND PARAMETERS ISOSURFACE APPROXIMATION

time surface distance similarity marching cubes approximation

data set variable step dimensions points approx. field map surface DF surface DF

Ionization GT 75 600×248×248 148,213 78.12 9.54 35.45 2607 14.50 590 9.54

Ionization GT 146 600×248×248 185,897 78.02 10.27 37.35 2617 12.67 590 10.27

Ionization H 150 600×248×248 156,086 77.85 7.32 21.10 2586 9.93 590 7.32

Combustion CHI 45 480×720×120 1,984,240 90.14 57.92 45.66 4033 69.91 695 57.92

Combustion CHI 90 480×720×120 2,823,210 89.45 82.53 46.05 4524 102.77 683 82.53

Combustion mixture fraction 45 480×720×120 375,039 88.06 16.69 43.17 3085 20.63 666 16.69

Combustion mixture fraction 90 480×720×120 495,256 87.85 20.45 43.72 3137 25.05 666 20.45

Combustion vorticity 45 480×720×120 1,462,340 88.56 42.62 40.55 3710 52.62 669 42.62

Combustion vorticity 90 480×720×120 1,980,120 88.87 54.55 41.24 4031 66.72 672 54.55

CT – – 256×256×230 248,607 32.90 8.05 17.16 1199 10.02 243 8.05

Hurricane precipitation ratio 17 500×500×100 639,957 53.81 16.28 24.21 2075 19.60 402 16.28

Hurricane precipitation ratio 36 500×500×100 790,787 53.97 20.36 25.06 2164 24.68 402 20.36

Hurricane water vapor ratio 17 500×500×100 408,140 53.56 11.98 25.99 1959 15.66 402 11.98

Hurricane water vapor ratio 36 500×500×100 448,670 53.67 12.91 26.15 1975 16.46 402 12.91

All timing results are in seconds and for all isosurfaces of 256 sampled isovalues, “surface points” shows the average 
numbers of points per isosurface, distance fields were downscaled by 8 in each dimension. We used 1500 sample points 
prior to the traversal. The last columns of “surface” and “DF” show the running time for surface computation and 
distance field calculation, respectively.
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Generally, for all data sets, we can observe that the time for surface approximation is

proportional to the size of volumes and the time for distance field computation depends on

both the dimensions and surface points. Furthermore, the traversal time for the BVH-trees

highly depends on the choice of sample points. For this evaluation we opted to choose

1500 as this tends to yield a swift traversal time for all of the data sets.

To demonstrate the quality of the isosurfaces similarity maps produced by our ap-

proach, we identified representative isosurfaces following [24]. Figure 3.2 shows the three

most significant isosurfacess for certain data sets and variables in the first row and the cor-

responding similarity maps in the second row. The blue isosurfaces are the most important

ones, followed by green and orange. The corresponding isovalues are highlighted in the

similarity maps as well. For each variable, we can observe that the three selected isosur-

faces capture the principal patterns. In addition, Figure 3.1 shows that we obtained similar

similarity maps and representative isosurfaces as reported in [24]. With our acceleration

solution and the modern graphics hardware, the performance is greatly improved, as the

time to generate the similarity map is reduced from 22.1 minutes (refer to Table 1 in [24])

to less than one minute (refer to the CT data set in Table 3.1).

Furthermore, we examined the difference of similarity maps when applying different

levels of downsampling for the distance fields. Specifically, we downscaled the distance

fields by 8 along each dimension and compared this to a version with a downscale by

4. While the overall time to calculate 256 distance fields for a data set already shows

a 3.5-fold increase, the similarity map computation suffered even more from increasing

the accuracy. On average the similarity map calculation took 7.8 times longer than that

with a lower resolution of distance fields. We computed the difference of every entry in

the similarity maps using the two downscaling factors for all data sets listed in Table 3.1.

Our results show an average difference of 1.5% using the lower resolution distance fields,

which is fairly acceptable in exchange for significant performance gain. Further reducing

the downsampling rate inevitably leads to an even higher increase in computation time

34



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2. Rendering of the most important isosurfaces (a) to (d), with their
corresponding similarity maps (e) to (h). The first and second columns show

mixture fraction and vorticity of the Combustion data set, respectively. The third
column shows water vapor ratio of the Hurricane data set, and the fourth column

depicts GT of the Ionization data set.

while not improving the results by a reasonable amount.

3.2.1 Isosurfaces Approximation

With our approximation, we reduced the time for generating the surfaces points by an

ample amount. Table 3.1 compares the running time of the marching cubes algorithm and

our approximation both running on CPU. As we can see, our approximation outperforms

the marching cubes algorithm, achieving an average speedup of 5.1 times for surface cre-

ation.

Another advantage of the approximation is that the points in the surface are loosely

sorted, which allows our heuristic sampling method to find a tight initial upper bound for

the tree traversal used in distance field computation. This increases the performance of
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distance field calculation by 20% on average. Although this only amounts to a difference

of a few seconds in a process that takes around 10 minutes on average, once the GPU

approximation is realized, this difference would lead to up to 10% of the total time before

creating the similarity map.

3.2.2 Initial Upper Bound Estimation

We examined the impact of the number of samples to the performance of BVH-trees

traversal when estimating the initial upper bound. As one could expect, the size of the

sample point set has a high influence on the duration of the traversal. With more sample

points, the time to estimate an initial upper bound increases, while the traversal time de-

creases due to a tighter upper bound. Figure 3.3 shows the average time spent on traversing

the trees for a given number of sample points. Without an initial upper bound (i.e., zero

sample point), the traversal takes the longest time, as the tree needs to be examined until

the first leaf is reached. After that the average duration for the traversal falls rapidly in

the beginning and then slowly approaches the minimums. Most data sets have their lowest

traversal time between 2000 and 2300 points and just fluctuate by one millisecond.

Interestingly, the two variables CHI and vorticity of the Combustion data set reach

their minimums early with just 1200 and 1500 sample points respectively. After that, the

running time rapidly increases from 94.58 to 380.36 (CHI), and from 69.25 to 248.82

(vorticity). These two variables have higher numbers of points in surface approximation

(refer to Table 3.1), which makes it surprising since we expect that in those cases a higher

quality upper bound would be more beneficial. The rapid increases of the running time may

be related to the different characteristics shown in the isosurfaces of these two variables.

We compared the representative isosurfaces of the variables mixture fraction and vorticity

that are shown in Figure 3.2 (a) and (b), respectively. Other than having tremendously more

points per isosurfaces, the isosurfaces of vorticity distribute more evenly over the entire

volume than those of mixture fraction. The same nature can be observed for isosurfaces
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Figure 3.3. Average traversal time for different numbers of sample points. We
sampled from 0 to 3500 points with a step size of 50.

of CHI. We suspect that the high number of points, coupled with their spatial distribution

of CHI and vorticity, allows an easy identification of tight upper bounds, rendering more

examination prior to the traversal unnecessary.

We expect a similar increase of the running time for the other data sets with higher

numbers of sample points as this process converges toward a brute force approach. But the

performance gained by using a tighter upper bound usually outweighs these costs during

the traversal for less than 1500 sample points. As we can see in Figure 3.3, it is safe to

take any value between 1000 and 1500 for the data sets we chose. In general, if the data

sets examined are of a reasonable size, a value in that range will always be preferable over

a smaller value for selecting the initial upper bound.
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3.3 Conclusions

With our approach we manage to achieve a considerable speedup without impacting

the quality when creating ISMs. Our isosurface approximation allows fast generation of

the point sets needed for computing the distance fields with small bounded errors. Fur-

thermore, we use BVH-trees to efficiently compute the distance fields. The loosely sorted

points from our approximated surface generation enables the use of our heuristic for finding

a tight upper bound before initiating the tree traversal. Our experiment demonstrates that

the number of samples can be safely determined to achieve significant speedup. Our work

allows users to extract the most important isosurfaces from a data set within a much short

amount of time, opening up the possibility to perform a more thorough analysis employing

multiple variables and time steps.
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CHAPTER 4

IDENTIFYING NEARLY EQUALLY SPACED ISOSURFACES FOR VOLUMETRIC

DATA SETS

In this chapter, I present a two-stage approach to identify nearly equally spaced isosur-

faces. Using the accelerations from Chapter 3, we can quickly compute a distance between

a set of isosurfaces. This allows us to get an almost equal spacing in the first stage by opti-

mizing the distance to be as equal as possible to the average. In the second stage we refine

these distances by adapting the isovalues of non-neighboring isosurfaces in an alternating

fashion. Although the distance measures are not continuous, we still achieve nearly equally

spaced isosurface. This allows for an overview of the data set or a better pre-sampling for

other analysis tools.1

4.1 Our Approach

We propose a two-stage approach for finding nearly equally spaced isosurfaces. Both

stages run over several iterations aiming for convergence. First of all, during the estimation

stage, we measure the distance between every pair of neighboring isosurfaces and resample

the isovalues based on these distances using linear interpolation. This stage, however, as-

sumes piecewise linearity of the distance function between neighboring isosurfaces, which

does not hold in general. In our experiment, it approaches approximate solutions in a few

iterations but normally does not converge to the optimal solution. Therefore, we introduce

the refinement stage that adopts a binary search strategy to adjust each isovalue so that

1This work was publish as M. Imre, J. Tao, and C. Wang. Identifying nearly equally spaced isosurfaces
for volumetric data sets. Computers & Graphics, 72:82–97, 2018
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Figure 4.1. The estimation stage. Identifying isovalue vτ
i+1 based on its left

neighbor vτ
i and the distances evaluated at the previous time step τ−1.

its surface has equal distance to its two neighbors. By repeating this process for several

iterations, we achieve nearly equal distances between all neighboring isosurfaces.

In this chapter, we denote a set of isovalues at iteration τ as V τ = {vτ
1,v

τ
2, . . . ,v

τ
n}, the

isosurface corresponding to an isovalue vτ
i as sτ

i , and the distance between two values vτ
i

and vτ
j as the distance between their respective surfaces, di, jτ , or more generally, d(vi,v j).

4.1.1 Estimation Stage

For the estimation stage, we start from a uniformly sampled set of isovalues V 0 and

gradually adapt the isovalues based on the previous set of isovalues and their distances.

Specifically, at each iteration τ , we first approximate the isosurface using the approxima-

tion scheme introduced in Chapter 3 (refer to Chapter 4.1.4), sτ−1
i of each isovalue vτ−1

i

at the previous iteration τ−1 and evaluate the distance dτ−1
i,i+1 between every pair of neigh-

boring isovalues vτ−1
i and vτ−1

i+1 using their corresponding approximated isosurfaces. The

average distance dτ−1
µ = (∑n−1

i=1 dτ−1
i,i+1)/(n− 1) (µ stands for the average) is considered to

be the target distance to achieve at the current iteration τ .

Then, starting from the first isovalue vτ
i = vmin, where vmin is the minimum isovalue,

we resample each isovalue vτ
i+1 that has approximately the target distance dτ−1

µ to its left

neighbor vτ
i , as illustrated in Figure 4.1. The distance is estimated under two assump-

tions. First, the distance between neighboring isovalues can be linearly interpolated. For

example, the isovalue vτ
i falls between two previous isovalues vτ−1

k−1 and vτ−1
k . We as-
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sume that the distance between vτ
i and vτ−1

k can be linearly interpolated using the distance

dτ−1
k−1,k. Second, we assume that the distance can be added to estimate the distance be-

tween non-neighboring isovalues. For example, we assume that the distance dτ−1
k, j can be

obtained using the summation of all neighboring distances between vτ−1
k and vτ−1

j , i.e.,

dτ−1
k, j = dτ−1

k,k+1+ · · ·+dτ−1
j−1, j. In this way, we can iteratively identify the entire set of isoval-

ues Vτ . This process can also be considered as a parameterization based on the distances

evaluated from previous neighboring isovalues.

We repeat this process for several iterations until a predefined minimum iteration num-

ber δe is reached and the variation of neighboring distances stops decreasing. As shown

in the first two rows of Figure 4.5, we can see that the estimation stage approaches the de-

sired solution within a small number of iterations. Note that the computation of distances

between neighbors, which is the most costly step, can be performed in parallel for each

iteration. As previously mentioned, this stage is unlikely to converge since the two afore-

mentioned assumptions do not hold for many volumetric data sets. In most cases, it is more

likely to have di, j+d j,k > di,k due to the triangle inequality. Therefore, the estimation stage

only provides a rough solution, and an additional refinement stage is needed to obtain the

optimal solution.

4.1.2 Refinement Stage

In the refinement stage, we advocate a binary search strategy: placing the candidate iso-

value in the middle of its two neighbors to identify an isosurface having the equal distance

to its two neighboring isosurfaces. The distance function in this stage neither assumes lin-

earity nor violates the triangle inequality. Unlike the estimation stage, this stage provides

a slower but more robust process of convergence. This is achieved by adjusting the odd-

indexed isovalues and even-indexed ones alternatively, as shown in Figure 4.2 (a). Specif-

ically, the refinement stage is performed in multiple steps (δr). At odd steps, we adjust

the red isovalues vi−2,vi,vi+2 with odd indices (assuming i is an odd number), so that they
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Figure 4.2. The refinement stage. (a) Adjusting odd-indexed and even-indexed
isovalues alternatively. (b) Identifying an isovalue vi that has the equal distance

to its two neighbors vk and v j. The red (blue) curve in (b) represents the distance
function from an isovalue in [vk,v j] to vk (v j).

have the equal distance to their neighbor isovalues, i.e., di−3,i−2 = di−2,i−1, di−1,i = di,i+1,

and di+1,i+2 = di+2,i+3, as indicated by the red arrows. Since the blue isovalues with even

indices are fixed at odd steps, each odd-indexed isovalue can be adjusted independently

in parallel. At even steps, we adjust the blue isovalues in the same fashion. Note that the

blue and red arrows connect all distances between neighboring isovalues, which leads to

equally spaced isovalues when this stage converges.

In every step, we use several iterations (δτ ) of a binary search strategy to identify an

isovalue vi that has the equal distance to its two neighbors vi−1 and vi+1, as illustrated in

Figure 4.2 (b). This means that the goal becomes finding one intersection point of the red

and blue curves. At each iteration τ , we maintain a lower bound lτ
i and an upper bound uτ

i

that contain the intersection point between them. The lower and upper bound are initialized

as vk and v j, respectively, i.e., l0
i = vk and u0

i = v j. The lower bound maintains a property

that it is always closer to vk than v j, i.e., dk,li < dli, j, and the upper bound maintains a

similar property in the opposite way, i.e., dk,ui > dui, j. Due to these properties, the red and

blue curves must intersect somewhere in the middle as long as the distance functions are

continuous.
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At each iteration, we assume that the two distance functions change linearly between

the bounds, as shown by the blue and red dashed lines in Figure 4.2 (b), and compute the

intersection point, as indicated by the black dot. This intersection point provides the new

isovalue vτ
i at step τ , as shown by the black solid line in Figure 4.2 (b). We compute the

distances dτ
k,i and dτ

i, j and determine whether vτ
i will replace the lower or upper bound. In

this example, since dτ
k,i < dτ

i, j, indicated by the intersection points between the black solid

line and the two curves, we replace the lower bound with vτ
i , i.e., lτ+1

i = vτ
i , so that the

properties of the lower and upper bounds still hold.

It is clear that the smaller the search range gets, the better the distance functions can

be approximated by linear functions. As shown in Figure 4.2 (b), the curves between the

bounds are nearly straight even if the distance functions themselves are not linear. This

allows the desired isovalue to be identified within a small number of iterations. In our

experiment, we find that five iterations per step is sufficient. For more details, please refer

to Figure 4.5 and Chapter 4.2.1.

4.1.3 Convergence Stabilization

During the refinement stage, some proposed isovalues potentially lead to an adverse

change of distance. This typically translates into distance values, named spikes, that are

much higher/lower than the average distance, causing large average and maximum errors.

Figure 4.3 demonstrates two common types of spikes: (1) the binary search successfully

finds an isovalue that has mostly equal distances to its two neighbors, but these distances

are larger than the average distance; and (2) the binary search fails to identify a desired

isovalue, and the distance between this isovalue and one of its neighbors becomes a spike.

The first type of spikes between three isovalues vi−1, vi, and vi+1 can be expressed as

di−1,i≈ di,i+1 and di−1,i,di,i+1 >> dµ . These spikes usually appear due to the underestima-

tion of the differences of isosurfaces in the interval [vi−1,vi+1]. For example, in Figure 4.3

(a), after one step of the refinement stage, the binary search identifies an isovalue v12 whose
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Figure 4.3. An example of neighboring distances from different time steps of the
GT variable of the Ionization data set. Every bar shows the distance d(i, i+1).

(a) shows one reason for a spike where two neighbors are too far apart. (b) shows
a different cause, that is related to a jump discontinuity in the distance function.

distances to its neighbors (i.e., d11,12 and d12,13) are about twice as high as the average dis-

tance, meaning that the interval between v11, v12, and v13 may be too large. This type of

spikes may gradually disappear since vi−1 and vi+1 will be moved closer to vi in the next

step of the refinement stage. For example, since d10,11 is much smaller than d11,12, v11

will be moved closer to v12 to reduce d11,12 for an equal distance between v10, v11, and

v12. However, this type of spikes still causes a steep increase of the average and maximum

errors, leading to an unstable status during the refinement stage.

To alleviate this problem, we propose a spike treatment that rejects isovalues leading to

spikes. Formally, for every isovalue vτ
i that has been changed in step τ , we compare dτ

i−1,i

and dτ
i,i+1 to dτ

µ using their relative differences with respect to dτ
µ .

If any of the two difference values surpasses a predefined spike threshold δs, we reject

vτ
i and replace it with vτ−1

i . Note that the old value vτ−1
i has more agreeable distances, as

vi−1 and vi+1 are static in this step. Intuitively, by avoiding the steep changes, this treatment

postpones, instead of preventing, the salient isovalue vi to be discovered. Therefore, the
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Figure 4.4. An example of discontinuous distance functions using the GT
variable of the Ionization data set. (a) shows the distances to isovalue 20547.8
(blue) and to isovalue 20680.4 (red). The horizontal axis represents sampled
isovalues and the vertical axis represents the distance. (b) and (c) are the two

isosurfaces corresponding to the isovalues highlighted by the dashed lines in (a).

entire refinement stage will exhibit a more smoothly convergence toward the best solution.

For the second type of spikes, the binary search fails to identify an isovalue vi with

equal distances to its neighbors. In this case, at least one of the distances di−1,i and di,i+1

will differ from the average distance dµ . For example, in Figure 4.3 (b), the distance d8,9

is much smaller than the other distances between neighbors, therefore, leading to a larger

error. This type of spikes is usually caused by a jump discontinuity in the distance functions

between the neighboring isovalues.

A jump discontinuity (henceforth jump) appears when the distance function between

two isovalues is discontinuous. An example is demonstrated in Figure 4.4. For the purpose

of analysis, we consider two distance functions dl(vi) and dr(vi), which map an isovalue

vi to its distances to its left and right neighbors, respectively. In this example, we densely

sample 200 isovalues between two fixed isovalues 20547.8 and 20680.4, and compute the

distance from each sampled isovalue to the fixed ones. In Figure 4.4 (a), the distances to

isovalues 20547.8 and 20680.4 are plotted as blue and red lines, respectively. Unlike the
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case of two smooth distance functions, as demonstrated in Figure 4.2 (b), a steep change

occurs, highlighted by the red dashed ellipse. This indicates that the two distance functions

are not continuous at the corresponding isovalue.

Figure 4.4 (b) and (c) show the isosurfaces corresponding to the two isovalues on the

two sides of this critical isovalue. We can see that this isovalue actually corresponds to

the topological change with the lower ring emerging. The blue line appears below (above)

the red line before (after) this change. This means, given the properties of the lower and

upper bounds, the lower (upper) bound will always be on the left (right) of this isovalue.

After several steps, the binary search will be trapped in a small value range centered at this

critical isovalue. This does not only lead to a large error by itself but also stops the distance

values from propagating from one side of the critical isovalue to the other side. Therefore,

when a jump appears, we may only achieve two equal distances on the two sides of the

critical isovalue.

To tackle this problem, we propose a jump treatment that first identifies the isovalue v∗

of the jump and balances the distances on its two sides. By definition, a jump is a discon-

tinuous point in the distance functions. Therefore, v∗ can be detected through examining

the following criterion

d(vi,v∗+ ε)>> d(vi,v∗), and

d(v∗,v j)>> d(v∗+ ε,v j). (4.1)

Instead of explicitly detecting v∗, we examine this criterion at each iteration of the refine-

ment stage. Once a jump is encountered, we fix the upper and lower bounds of the binary

search so that the jump will reside in the bounded interval, and push the isovalues from one

side of the jump to the other side. Let Vl = {vk| 0≤ k≤ i} and Vr = {vk| j ≤ k < n} be the

isovalue sets on the left and right sides of the jump, respectively, and let dµ(Vl) and dµ(Vr)
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be the average distances of the neighboring isovalues in Vl and Vr, respectively. Without

loss of generality, assuming dµ(Vl)< dµ(Vr), we take an isovalue from Vl and push it to Vr,

so that the set of isovalues Vl becomes sparser and the set of isovalues Vr gets denser. This

will lead to an increase of dµ(Vl) and a decrease of dµ(Vr), thus achieving a better balance

of the average distances on both sides.

4.1.4 Distance Measures

We experiment our approach with two different distance measures: the mean of the

closest point distances (MCP) [156] and the ISM measure [24]. Other distance measures

may be applied as well, according to the specific analysis goals.

MCP distance. The MCP distance between two isosurfaces si and s j uses the Eu-

clidean distance to compute the closest distance for every point pk on si to any point pl on

s j and vice versa. The MCP distance of si and s j is defined as follows

dMCP(si,s j) =
1
2
(
d(si,s j)+d(s j,si)

)
, where

d(si,s j) =
∑pk∈si minpl∈s j ‖pk− pl‖

|Si|
. (4.2)

ISM distance. The ISM measure inspects the mutual information of the distance fields

corresponding to two isosurfaces si and s j. Based on the uniformly sampled distance fields

of the two isosurfaces, a joint histogram can be computed to derive the mutual information.

Again, we use the Euclidean distance to compute the distance fields for an isosurface s. For

each grid point in the distance field, we record two closest distances from that point to the

two isosurfaces si and s j, and compute the joint histogram of the distances. The mutual

information between two random variables X and Y can be computed from their joint

histograms as follows
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I(X ,Y ) = H(X)+H(Y )−H(X ,Y ), with

H(X) =−∑
x∈X

pX(x) log(pX(x)), (4.3)

H(X ,Y ) =−∑
x∈X

∑
y∈Y

pX ,Y (x,y) log(pX ,Y (x,y)),

where H(X) and H(Y ) are the marginal entropies and H(X ,Y ) denotes the joint entropy

of X and Y . In our case, X (Y ) is the distance from a grid point in the distance field to

isosurface si (s j). We further normalize the mutual information

Î(X ,Y ) =
2I(X ,Y )

H(X)+H(Y )
, (4.4)

and convert the similarity measure into a distance measure

dISM(si,s j) = 1− Î(si,s j). (4.5)

Approximation and acceleration. Distance measures between isosurfaces often share

two common steps: constructing isosurfaces and identifying the closest points of given

points. When computing the ISM distance, the distance field of an isosurface requires the

distance from each grid point to the closest point on the isosurface to be computed. When

computing the MCP distance between two isosurfaces, for each point on one isosurface,

the closest point on the other isosurface needs to be identified. We take three considerations

from Chapter 3 to accelerate these two key steps.

First, we approximate each isosurface using a point set instead of extracting the actual

surface. Generating the exact isosurface produces multiple points and their connections for

each voxel. However, the connections are usually not involved in the distance computation

and the points are often unnecessarily dense. This approximation scheme splits the volume

into uniform blocks and examines each block to determine whether it contains the isosur-
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face. The centers of blocks that contain the isosurface are considered as an approximation

of the isosurface. Using this scheme, the error for computing the closest point is bounded

by (
√

3/2)l (i.e., half the length of a block’s diagonal l).

Second, we build one BVH-tree for each isosurface to organize its approximation

points. This allows the closest point on an isosurface to be queried efficiently. For con-

struction efficiency, we use bounding boxes and leverage Karras’ algorithm [113] to build

each BVH-tree on GPU in parallel. The BVH-trees are stored in the graphics memory, so

that multiple closest point queries can be performed in parallel. In addition, given a point,

we estimate the upper bound of the distance to the closest point by uniformly sampling the

approximation points. Since the approximation points are loosely ordered following the

scanline order, this provides a tighter upper bound and therefore avoids many unnecessary

branches of the BVH-tree to be traversed.

Third, both the distance fields and the approximation of isosurfaces can be downsam-

pled to further reduce the time cost. The approximation can be downsampled by scanning

blocks of voxels. The centers of blocks that contain the isosurface become the approxima-

tion in this case. The error of the closest point is bounded by (
√

3/2)l, where l is the edge

length of a block in voxels. For the distance fields, it has been shown that the resolution

can be reduced by eight folds along each dimension without sacrificing the quality of the

resulting ISMs [24].

Through this acceleration measures, we can achieve a linear time complexity consid-

ering all steps to compute neighboring distances, except for building the BVH-trees. The

initial approximation examines O(|V |) voxel, where |V | is the size of the volume. For

the next step, building the BVH-tree, Karras reported the time complexity of O(n logn) in

the worst case [113]. Note that number of points from the approximation, n, is typically

much smaller than |V |. Using the BVH-tree, querying the closest point of a given point

takes on average O(logn) steps. The number of queries for this is bounded by either the

size of the distance field (O(|V |)) (when using ISM distance) or the size of another surface
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(O(n)) (when using MCP distance). Using the GPU, multiple queries can be performed

in parallel. For the ISM distance, we further compute mutual information, by examining

every point in the distance field. In our experiment, we find that computing the distance

between two isosurfaces already fully utilizes the computation power of a single GPU.

Therefore, the cost of our approach is linear to the number of isosurfaces if a single GPU is

used. Multiple GPUs, if available, can be readily utilized as computing multiple distances

is embarrassingly parallel.

4.2 Results

We mainly run our experiments on a desktop with an Intel Core i7-4790 quad-core

CPU @ 3.6 GHz, 32 GB RAM, and an NVIDIA GeForce GTX 760 GPU accelerator. For

further exploration of time-varying data sets, we leveraged a cluster with a shared GPU

queue. The shared GPU queue uses the following systems:

• 8 Quantum TXR231-1000R servers with dual Intel Xeon 12-core CPU E5-2650 v4
@ 2.20GHz, 128 GB RAM, and 4 NVIDIA TITAN X (Pascal) GPU accelerators;

• 8 Quantum TXR231-1000R servers with dual Intel Xeon 12-core CPU E5-2650 v4
@ 2.20GHz, 128 GB RAM, and 4 NVIDIA Tesla P100-PCIE-16GB GPU accelera-
tors.

The queue distributes the workload on different machines depending on the availability.

Since we were only interested in the number of iteration needed to achieve a good solution,

we did not restrict our runs to a single hardware configuration. In the following, we first an-

alyze our general approach quantitatively (Chapter 4.2.1) and qualitatively (Chapter 4.2.2),

and then study the impact of the spike treatment and jump treatment (Chapter 4.2.3).

4.2.1 Quantitative Study

Quality measures. We evaluate the quality of a set of selected isovalues V = {v1, . . . ,vn}

based on the distances among neighbors (i.e., d1,2, . . . ,dn−1,n) and the average distance dµ .
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Figure 4.5. Parameter choices on error curves. (a) and (b) CHI variable of the
Combustion data set at time step 20. (c) and (d) show GT variable of the

Ionization data set at time step 150. (a) and (c) use the ISM distance, and (b) and
(d) use the MCP distance. Top to bottom: < δe,δτ ,δr >=< 10,5,20 >,

< 10,10,20 >, < 50,5,20 >, < 0,5,20 >, < 1,5,20 >, and < 10,5,200 >,
respectively. In each plot, the yellow and white background colors indicate the

estimation and refinement stages, respectively. The blue, orange, and green
curves show the maximum error, average error, and best error over iterations.

51



For each distance di−1,i, we compute an error term ei−1,i to indicate the difference between

this distance and the average distance

ei−1,i =
‖di−1,i−dµ‖

dµ
, (4.6)

where dividing the absolute difference by the average distance normalizes the error term.

In this work, we quantify the quality of selected isovalues using the average error

eµ =
∑

n
i=2 ei−1,i

n−1
, (4.7)

and the maximum error

emax = max
2≤i≤n

{ei−1,i}. (4.8)

Since the maximum error is usually determined by the nature of the data sets and the

distance measures, as will be shown in Chapter 4.2.3, we focus on the average error and

use it to determine the best solution, i.e., the set of isovalues with the minimum average

error. We do not use the variation or standard deviation to evaluate whether the distances

are similar since both of them are dominated by the maximum error when the other errors

are small.

Parameter choices. Our approach has three parameters: δe the minimum number of

iterations in the estimation stage, δτ the number of iterations at each step in the refine-

ment stage, and δr the number of steps in the refinement stage. For simplicity, we use a

3-tuple < δe,δτ ,δr > to denote a parameter setting. Figure 4.5 shows the results of using

two variables of the Combustion and Ionization data sets for both the ISM and MCP dis-
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tance measures with six different sets of parameter values (< δe,δτ ,δr >=< 10,5,20 >,

< 10,10,20 >, < 50,5,20 >, < 0,5,20 >, < 1,5,20 >, and < 10,5,200 >). For each run,

we plot the maximum error, the average error, and the current best solution over iterations.

The current best solution is the one with the minimum average error obtained up to the

current iteration.

We first investigate the impact of parameter δτ . In the top two rows of Figure 4.5,

we fix the two parameters δe = 10 and δr = 20 and compare the performance of δτ = 5

(first row) and δτ = 10 (second row). At each step, having more iterations may potentially

allow better convergence of the binary searches. But overall, we do not see a noticeable

improvement of accuracy using δτ = 10 over δτ = 5 since the shape of the green curves

(best solution) in the same column are mostly the same. With the same number of steps

(δr = 20), this indicates that we obtain similar results using δτ = 10 but with twice the

number of iterations as using δτ = 5.

Next, we study the impact of parameter δe. In the first and third rows of Figure 4.5,

we use δe = 10 and δe = 50, respectively. The other two parameters are fixed (δτ = 5

and δr = 20). We find that more than ten iterations in the estimation stage are usually

unnecessary since the best solution is mostly unchanged after ten iterations, as shown in

the third row of Figure 4.5. In addition, we do not find that having more iterations in

the estimation stage helps the refinement stage reach the best solution faster. The green

curves in the white background, corresponding to the best solution in the refinement stage,

demonstrate similar decreasing patterns.

However, we still find that the estimation stage is necessary for the refinement stage

to quickly reach its best solution. In the fourth row of Figure 4.5, we experiment our

approach with only the refinement stage, i.e., δe = 0. With this setting, we find that the

refinement stage approaches the optimal solution much slower. For example, using CHI

of the Combustion data set and the ISM distance measure shown in (a), the best solution

slowly improves over the 100 iterations without the estimation stage and reaches the mini-
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mum average error of 0.179 at the last iteration. With the estimation stage, the best solution

until the 20-th iteration in the refinement stage has an average error of 0.121, which is al-

ready very close to the minimum average error of 0.120 for the entire 100 iterations. The

computation time of each iteration in the estimation and refinement stages is similar, since

both of them are dominated by the computation of distances between neighbors. Therefore,

including the estimation stage clearly gives a better performance.

The fifth row shows the results with only one iteration in the estimation stage, i.e.,

δe = 1. In contrast to setting δe = 10, letting δe = 1 leads to a more stable convergence,

implying that the algorithm got stuck in a local optimum. Note that for the CHI variable at

time step 20, we sometimes obtain empty isosurfaces. In this case, we run the estimation

stage for more iterations until we obtain a set without empty surfaces.

In the last row, we show the results with < δe,δτ ,δr >=< 10,5,200 > (1000 total

iterations in the refinement stage). For some data sets, we achieve a slightly better solu-

tion several hundreds iterations later than the best solution achieved within 100 iterations.

However, the overall convergence pattern does not change. We believe that, given the

time-quality trade-off, a relatively good solution can be found within 100 iterations.

In Figure 4.6, we show the visual differences among three sets of isosurfaces identified

in 20, 100, and 1000 iterations, respectively, using the GT variable of the Ionization data

set at time step 150. While the best solution after 1000 iterations is found at iteration

333 with an average normalized error of 1.86%, the earlier ones 2.89% (at iteration 92)

and 3.92% (at iteration 20) show small errors as well. Although the relative difference in

average error seems enormous, their absolute difference is still small. Visual comparison

confirms that similar isosurfaces are identified. In the top row of Figure 4.6, we show all

isosurfaces corresponding to solutions at iteration 20 (a), 92 (b), and 333 (c), respectively.

We find that the overall difference is barely visible. Therefore, to inspect more closely,

we depict the fourth isosurface of the selected sets in the second row. We can clearly see

a difference between the first two images ((d) and (e)) and the last one (f). Furthermore,
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(a) (b) (c)

(d) (e) (f)

Figure 4.6. Comparison of the isosurfaces identified in different numbers of
iterations using the GT variable of the Ionization data set at time step 150. The
isosurfaces are selected from the best solutions after 20 ((a) and (d)), 100 ((b)
and (e)), and 1000 ((c) and (f)) iterations in the refinement stage. The top row

shows 17 selected isosurfaces rendered together. The bottom row shows a single
surface highlighting the fine differences.

subtle differences between (d) and (e) can be seen. Although single surfaces differ among

the different solution sets, the overall sets look fairly similar, offering a comprehensive

overview of the volumetric data set.

In our experiment, we use a large enough value of δr = 20 to study how the best solution

evolves over iterations. We find that the setting of < δe,δτ ,δr >=< 10,5,20 > usually

yields good results in terms of timing and error. Therefore, we use this setting for reporting

the remaining results.
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TABLE 4.1

PERFORMANCES USING THE ISM (A) AND MCP (B) DISTANCE.

dimension avg. # iterations timing (sec.) average error refine difference to best (%)

data set x, y, z, v, t estimate refine estimate refine initial estimate best improve 20 iter. 40 iter. 60 iter. 80 iter.

Atmosphere 147, 129, 49, 4, 121 11.1 57.9 3.36 27.61 0.437 0.153 0.081 47.29% 26.62 13.47 5.71 1.71

Climate 360, 66, 27, 2, 120 11.8 47.5 2.87 22.21 1.060 0.251 0.165 34.12% 10.12 6.37 1.32 0.07

Combustion 480, 720, 120, 5, 122 11.9 68.8 27.90 211.35 0.417 0.184 0.099 46.20% 25.39 13.16 5.31 1.16

Hurricane 500, 500, 100, 11, 48 11.2 59.2 28.07 230.11 0.427 0.150 0.073 51.07% 40.50 18.08 7.65 3.92

Ionization 600, 248, 248, 8, 199 11.5 63.9 20.70 164.63 0.597 0.287 0.188 34.33% 30.12 20.49 10.85 2.79

Vortex 128, 128, 128, 1, 90 13.3 95.0 8.49 60.73 0.158 0.041 0.011 73.81% 41.42 28.95 20.22 15.27

(a)

dimension avg. # iterations timing (sec.) average error refine difference to best (%)

data set x, y, z, v, t estimate refine estimate refine initial estimate best improve 20 iter. 40 iter. 60 iter. 80 iter.

Atmosphere 147, 129, 49, 4, 121 11.1 59.6 4.10 31.70 0.525 0.198 0.099 49.94% 57.60 19.91 8.92 2.74

Climate 360, 66, 27, 2, 120 12.3 93.8 6.34 48.29 0.863 0.260 0.033 87.15% 206.16 104.33 53.49 27.29

Combustion 480, 720, 120, 5, 122 12.9 72.2 91.51 646.55 0.560 0.205 0.099 51.54% 46.03 27.18 16.89 9.50

Hurricane 500, 500, 100, 11, 48 12.8 88.8 49.57 379.31 0.281 0.061 0.010 82.17% 98.95 49.67 28.76 11.92

Ionization 600, 248, 248, 8, 199 11.8 62.3 38.65 290.46 0.524 0.209 0.135 34.98% 27.79 15.26 6.08 2.72

Vortex 128, 128, 128, 1, 90 11.0 80.0 15.42 126.15 0.533 0.194 0.072 62.81% 61.68 46.20 28.25 14.36

(b)
The three columns of average errors show the initial average error of uniform sampling, the average error after the estimation stage, and the average error 

of the best solution. The column “refine improve” shows the percentage of average error reduced by the refinement stage. The four columns of “difference to 
best” show the percentage of difference between the average error of the best solution and the average errors after 20, 40, 60, and 80 iterations in the 
refinement stage.
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Timing and quality. As shown in Table 4.1, we study the timing and quality perfor-

mance using six data sets with different characteristics. For each data set, we use all the

associated variables with three time steps selected (the beginning, middle, and ending time

steps). Collected for each variable and each selected time step, the results are averaged for

each data set.

Table 4.1 (a) shows the results using the ISM distance. Our approach produces mostly

equally spaced isosurfaces with the average errors smaller than 0.1 for most of the data

sets except the Climate (0.165) and Ionization (0.188) data sets. This may be related to

the structures of the data sets as their initial errors are the largest among these six data

sets. The number of iterations in the estimation stage is stable for all data sets and slightly

above our minimum number (δe = 10). In the refinement stage, our approach reaches

the best solution around 60 iterations for most of the data sets, except the Vortex data set

(averaging 95 iterations). The Climate data set even reaches solutions that are close to the

best solution within 20 iterations, with only 10.12% difference. The other data sets except

the Vortex data set have differences less than or around 20% within 40 iterations and less

than or around 10% within 60 iterations. Although having the slowest convergence, the

Vortex data set achieves the smallest average error (0.011) among all data sets after the

refinement stage. In Figure 4.9 (k) and (l), we find that the green curve declines slowly

after 15 iterations in the refinement stage. The higher percentages shown in the table are

probably due to the small average error. The average errors are smaller than 0.3 for all the

data sets after the estimation stage, and the refinement stage further reduces the average

errors by at least 30%, which confirms the necessity of the refinement stage. Our approach

performs efficiently using the ISM distance. To process one volume, it takes around one

minute for the Atmosphere, Climate, and Vortex data sets, and less than five minutes for

the other data sets.

Table 4.1 (b) shows the results using the MCP distance. In general, we find that it takes

more iterations for the refinement stage to approach the best solutions using the MCP dis-
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tance. Three data sets reach the best solutions after 80 iterations. Within 40 iterations, only

two data sets obtain good solutions whose average errors have less than 10% differences

from the best solutions. For five of the data sets, it takes 80 iterations to reach reasonably

good solutions with less than 15% difference from the best solutions. However, we find

that the average errors are usually smaller using the MCP distance. The largest average

error is 0.135 using the Ionization data set, and all the other data sets have average errors

smaller than 0.1. The refinement stage provides more significant improvement using the

MCP distance. It reduces the average error by at least 80% for two data sets and 49% for

five data sets. Actually, we find that the data sets with a smaller best error usually benefit

more from the refinement stage and take more iterations to reach the best solution. This is

likely related to the intrinsic structures of the data sets. The distance functions are probably

more continuous using these data sets so that the binary search in the refinement stage is

less likely to be trapped by the discontinuous points in the distance function. Although the

average error is smaller, we find that the MCP distance takes more time to compute. The

Combustion data set requires the longest total computation time of around nine minutes.

The computation time for the other data sets varies from one to seven minutes.

4.2.2 Qualitative Study

Comparison to other approaches. For visual comparison, we generate eight isosur-

faces of the GT variable of the Ionization data set at time step 10 using our approach, the

ISM approach [24], and k-means clustering [146]. For our approach, we fix the minimum

and maximum isovalues and compute eight isovalues between them. For the other ap-

proaches, we evenly sample 128 isovalues and identify eight representative ones. We use

the approximation from Chapter 3 to compute the ISM distances between the sampled iso-

values for all three variants. The implementation of the ISM algorithm is based on the pri-

ority queue algorithm [24] and the k-means clustering is based on Lloyd’s algorithm [142].

Figure 4.7 (a) shows the distance matrix of the isosurfaces selected by our approach. Note
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Figure 4.7. Comparison of our approach (top row), the ISM approach (middle
row), and the k-means approach (bottom row) using the GT variable of the

Ionization data set at time step 10. (a), (d), and (g) show the distance matrices of
the selected isosurfaces. Note that the distances are normalized and all matrices
use the same color map. (b), (e), and (h) show all the selected isosurfaces in a

single image. (c), (f), and (i) show the central regions of individual isosurfaces in
separate images.
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that in this, and the following images, the distance values are in [0,1]. We can see that

the cells recording the differences between neighboring isosurfaces (i.e., the cells that are

next to the diagonal cells) share similar colors. This indicates similar distances between

neighbors. Figure 4.7 (b) confirms this observation as the selected isosurfaces distribute

evenly in the space. The eight isosurfaces demonstrate a smooth transition of the features

at the center of each isosurface, as shown in Figure 4.7 (c).

In contrast, five of the representative isosurfaces selected by the ISM approach and

four of the representative isosurfaces selected by the k-means approach are similar. In

Figure 4.7 (d), we can see a 5× 5 block at the bottom left corner of the distance matrix

of the representative isosurfaces, indicating high similarities among the corresponding iso-

surfaces. Similarly, Figure 4.7 (h) contains a 4×4 block.

In Figure 4.7 (e), we can see that the five similar representative isosurfaces collapse

in space. Therefore, five of the feature regions in the representative isosurfaces actually

corresponds to the nearly identical structure, as shown in Figure 4.7 (f). Although the

ISM approach has a scheme to prevent similar isosurfaces to be selected [24], this scheme

may be ineffective when the input is biased. As a matter of fact, more than half of the

sampled isosurfaces in this volume correspond to the same structure. In general, we find

that the distance matrix of the representative isosurfaces identified by the ISM approach

often exhibits this kind of blocking effect for the structures captured by more sampled

isosurfaces. This echoes that it is critical to producing unbiased isosurfaces as input for the

surface-based volumetric data analysis algorithms. In addition, Figure 4.7 (h) shows the

same effect for the k-means clustering with four similar isosurfaces selected. In Figure 4.7

(i), a closer inspection reveals that three of the four surfaces are very similar, with the

fourth one being closely related to them.

In contrast, Figure 4.8 depicts the representative isosurfaces selected by the ISM [24]

and k-means clustering [146] approaches using 128 nearly equally spaced isosurfaces as

input instead of the uniformly sampled ones. We use the GT variable of the Ionization
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(a) (b) (c)

(d) (e) (f)

Figure 4.8. Comparison of results using a set of 128 nearly equally spaced
isosurfaces as input for the ISM approach (top row) and the k-means approach

(bottom row) using the GT variable of the Ionization data set at time step 10. (a)
and (d) show the distance matrices, (b) and (e) show the representative

isosurfaces rendered together, while (c) and (f) show the individual surfaces.

data set at time step 10. In (a) and (d), the distance matrices do not show the strong block-

ing effect, which means that the problem of oversampling certain value ranges could be

circumvented. Compared to Figure 4.7, we can see that there is a shift between the rep-

resentative surfaces selected, allowing to further explore previously overseen isosurfaces.

For example, the third surface in the second row (pink) in both (c) and (f) has not been

discovered previously. This further indicates that an unbiased input may improve the un-

derstanding of the underlying surfaces.

Comparison of ISM and MCP distances. For a qualitative study of the impact of dis-

tance measures, we first investigate the error curves using the ISM distance and the MCP

distance, as shown in Figure 4.9. For each volume, we chose to identify 15 equally spaced
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Figure 4.9. Typical error curves over iterations using the ISM distance (first and
third column) and the MCP distance (second and fourth). (a) and (b) show the

results of the curl magnitude (CURL MAG) variable of the Atmosphere data set
at time step 50. (c) and (d) show the results of the temperature (TEMP) variable
of the Climate data set at time step 270. (e) and (f) show the results of the heat
release (HR) variable of the Combustion data set at time step 60. (g) and (h)

show the results of the cloud moisture mixing ratio (QCLOUD) variable of the
Hurricane data set at time step 40. (i) and (j) show the results of the H mass
abundance (H) variable of the Ionization data set at time step 150. (k) and (l)

show the results of the Vortex data set at time step 30.

isovalues between the minimum and maximum isovalues. In general, the curves confirm

our finding in Table 4.1 that the MCP distance has a slightly smaller average error. The

only exception is the Vortex data set. Figure 4.9 (k) and (l) show that the MCP distance

converges slower with unstable spikes of the maximum error curve for this data set. Fig-

ure 4.10 shows the distance matrix and a set of selected isosurfaces using the Vortex data

set for each distance measure. In Figure 4.10 (a), we can see that the distances between
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(a) (b) (c) (d) (e) (f)

Figure 4.10. Comparison of the ISM distance (top row) and the MCP distance
(bottom row) using the Vortex data set at time step 30. (a) shows the distance
matrices of the selected isosurfaces. (b) to (f) show the two sets of isosurfaces

chosen by the respective distance measures.

neighbors are actually similar for both measures. However, the two distance measures be-

have differently with this data set: the MCP distance changes in a smoother manner when

the isovalues become more different, while the ISM distance seems to better distinguish

isovalues in a smaller value range. For each distance measure, we evenly select five iso-

surfaces (the second, fifth, eighth, 11th, and 14th) from the set of fifteen isosurfaces, as

shown in Figure 4.10 (b) to (f). We find that the ISM distance identifies more large-scale

isosurfaces while the MCP distance selects more small-scale isosurfaces. This is probably

because the ISM distance better distinguishes the large isosurfaces and the MCP distance

better differentiates the small ones using this data set.

We then investigate the Combustion data set, for which the average errors are similar

using both measures. We show the results of the HR variable in the top two rows of

Figure 4.11. For this variable, although both the error curves in Figure 4.9 (e) and (f) and

the distance matrices in Figure 4.11 (a) indicate smaller errors using the MCP distance, we

find that the isosurfaces selected using the two distance measures are actually similar, as

shown in the top two rows of Figure 4.11 (b) to (d). The isosurfaces are the ninth, 12th, and
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(a) (b) (c) (d)

Figure 4.11. Comparison of the ISM distance and the MCP distance using the
heat release (HR) and hydroxyl radical mass fraction (YOH) variables of the

Combustion data set at time step 60. Rows from top to bottom show the results
using HR with ISM distance, HR with MCP distance, YOH with ISM distance,
and YOH with MCP distance, respectively. (a) shows the distance matrices of

the selected isosurfaces. (b) to (d) show the four sets of isosurfaces chosen by the
respective combinations of variable and distance measure.

14th from the fifteen selected ones. The first nine isosurfaces all demonstrate small-scale

structures, which are visually similar. For the YOH variable, the distance matrices and

the fourth, eighth, 12th isosurfaces (evenly sampled) are shown in the bottom two rows of

Figure 4.11. We can see that the ISM distance selects more small-scale isosurfaces, which

contradicts our findings with the Vortex data set. We actually find that both measures

are sensitive to changes on small-scale isosurfaces in general. This leads to the conclusion:

the behavior of the two distance measures heavily depends on the spatial distribution of the
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isosurfaces. While large isosurfaces usually have stable spatial distributions, changes (even

if they are tiny) on small isosurfaces may lead to significantly different spatial distributions.

Therefore, due to the nature of these two measures, the differences among small isosurfaces

are often emphasized.

4.2.3 Discussion

Time-varying data sets. We further experiment possible solutions to improve the per-

formance of time-varying data sets. In Chapter 4.2.1, we demonstrate that the refinement

stage converges much faster with the use of the estimation stage, which indicates the im-

portance of a good initial set of isovalues. Observing that the structures of volumes usually

change gradually over the time steps, we hypothesize that using the isovalues selected for

the same variable at the previous time step will speed up the computation. Although this

strategy has not been fully studied, we discuss some preliminary findings. We use a cluster

with a shared GPU queue to experiment with the six data sets shown in Table 4.2. For each

variable, we have a normal run that starts from the uniform sampling of the value range for

each time step, and a run that starts from the isovalues selected at the previous time step.

Each computation node in the GPU queue performs one run of a variable. Since the clus-

ter contains computation nodes of different configurations, we compare the performance

using the number of iterations instead of the computation time.

Our experiment shows that we do not always get better results by starting from the

isovalues at the previous time step. Keeping the isovalues produces better results than

the normal run for more than 70% of the volumes with four data sets. However, for the

Combustion and Ionization data sets, this strategy fails to produce better or even similar

results. For the volumes that better results are obtained, it generally takes much fewer

iterations to achieve the better results (less than 60% for three of the four data sets). For

the Vortex data set, it only takes 21% of the number of iterations compared to the normal

run. For five of the data sets, it takes less than 40% of the number of iterations to achieve a
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TABLE 4.2

USING THE ISOVALUES SELECTED AT THE PREVIOUS TIME STEP AS

INITIAL ISOVALUES FOR THE NEXT TIME STEP

better vol. (%) # iter. (%)

data set # vol. best 10% diff. best 10% diff.

Atmosphere 242 87.6 91.3 57.2 38.7

Climate 151 72.9 99.3 91.4 35.20

Combustion 61 0.0 1.6 N/A 18.93

Hurricane 19 79.0 84.2 42.6 33.7

Ionization 25 16.0 24.0 57.3 57.2

Vortex 45 77.8 82.2 21.0 18.4

“# vol.” shows the number of volumes experimented with. “better
vol. (%)” shows the percentage of volumes achieving better results. “#
iter. (%)” shows the percentage of iterations spent to achieve better re-
sults. “best” indicates that the result is better than the best solution ob-
tained from the normal run, and “10% diff” indicates that the result is
within 10% difference from the best solution of the normal run

similar result. However, the conditions under which this strategy will perform effectively

are still not clear. We further investigate the impact of the overlap percentage of the value

ranges at neighboring time steps and the average error at the previous time step, but none

of them exhibits a significant impact on the performance. It seems that the performance

of this strategy heavily relies on the nature of the data since for all the data sets shown in

Table 4.2, the percentage of volumes with better results is either higher than 70% or less

than 20%. If we can determine in advance that a time-varying data set is suitable for this

strategy, nearly 2× speedup can be obtained.

Spike treatment. To analyze the impact of the parameter δs, we conduct an experiment

using the common setting of < δe,δτ ,δr >=< 10,5,20 > but varying δs from 0.05 to
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Figure 4.12. Comparison of the impact of δs on the convergence and the final
result using the ISM distance on the GT variable of the Ionization data set at time
step 60. (a) shows the original error curve over the set of iterations (i.e., δs = ∞).

(b) to (f) show the configurations with δs = {0.05,0.1,0.15,0.2,0.25},
respectively.

0.25 in steps of 0.05. Note that the original approach without spike treatment can be

considered as setting δs = ∞, meaning that all spikes are tolerated and will not be explicitly

treated. Figure 4.12 shows the results for the GT variable of the Ionization data set at time

step 60. The figure represents typical error curves for the ISM distance measure with

different δs settings. We can see that using a high tolerance value for δs, as seen in (a)

the original (δs = ∞), (e) δs = 0.2, and (f) δs = 0.25, yields high spikes in the maximum

error, resulting in spikes in the average error. Dampening those instabilities by reducing

the threshold translates to fewer negative changes as can be seen in (b) δs = 0.05, (c)

δs = 0.1, and (d) δs = 0.15. This further allows us to achieve a lower average error for

the two variations shown in (c) and (d). Using δs = 0.05 may easily get trapped in a local

optimum, since this parameter setting is too strict to allow any drastic changes that could

resolve the problem. Setting δs to 0.1 or 0.15 leads to the most stable convergence, showing

that those values offer a good balance between allowing too little changes (δs = 0.05) and
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Figure 4.13. Error curves generated with different configurations using the GT
variable of the Ionization data set at time step 20. (a) shows the original

approach without jump and spike treatments. (b) shows a configuration with
only jump treatment. (c) to (g) show configurations with both jump and spike
treatments while δs increases from 0.05 to 0.25 in steps of 0.05. Dots on the

curves indicate the iterations when jumps are detected.

allowing too much changes (δs≥ 0.2). However, the best average errors achieved by setting

δs = 0.1,0.15,0.2,0.25 are similar. We will study the impact of δs to the best average errors

using more data sets later in this chapter.

Jump treatment. To analyze the impact of jumps and our treatment, we experiment

our approach with several configurations (with and without spike treatment) using the GT

variable of the Ionization data set at time step 20. The error curves are shown in Fig-

ure 4.13. In (a), we can see the original without jump or spike treatments. The rest shows

the different parameter settings for δs to treat spikes while handling jumps at the same time.

In our experiments, we encounter at most three jumps during the refinement stage using

this data set. In (c) to (e), a strict choice of δs = 0.05,0.1,0.15 restricts isovalue changes

to a degree where it is not possible to detect a single jump in the distance functions. By al-

lowing more drastic changes to the isovalues ((f) δs = 0.20, (g) δs = 0.25, and (b) δs = ∞),
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we can see that jumps appear around strong fluctuation on the error curve. Treating these

jumps helps to reduce the fluctuation from that point on. In (b), although the error curve

still has strong spikes after treating the first jump, it finds a better solution than the original

approach in a later iteration. An even stronger reduction in fluctuation of the error curve

can be seen in (f). Dampened by spike treatment, the first jump is detected at iteration

70 and its treatment allows the curve to come down further, achieving the best solution

for this data set at iteration 90. However, jump treatment does not always lead to better

convergence or lower average and maximum error values. Figure 4.13 (g) showcases this.

Instantly after the jump around iteration 50, the error function cannot recover, resulting in

another jump quickly. This results in multiple fixed isovalues, allowing fewer changes in

the set of isovalues at every iteration, which hinders the optimization process.

As mentioned previously, it is not always clear beforehand whether or not jump treat-

ment improves the best solution due to multiple reasons. First, we treat each jump when it

is detected at the refinement stage without the knowledge of all jumps. Therefore, treating

one jump may lead to the appearance of an undiscovered jump. As shown in Figure 4.13

(g), the treatment may not be effective when multiple jumps are encountered. Second,

pushing an isovalue over a jump does not guarantee that the distances on the two sides of

the jump will be equal, especially when the jump occurs close to the end of the value range.

In addition, this situation is often aggravated when additional jumps are encountered.

Configuration selection. As we have seen before, treating jumps and spikes can both

have a positive or a negative impact on the achieved solution. In order to recommend an

appropriate configuration, we run experiments among all time steps of different data sets

and variables. Figure 4.14 shows the mean and standard errors of the best average errors

with different configurations using four variables from four different data sets. The top

row shows the results collected using all the time steps. We can see that in most of the

cases, one of our convergence stabilization configurations improves the overall solution or

yields a solution similar to the original one. For (a), the CHI variable of the Combustion
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Figure 4.14. Comparison of the best average errors with different settings using
(a) the CHI variable of the Combustion data set, (b) the H variable of the

Ionization data set, (c) the salinity (SALT) variable of the Climate data set, and
(d) the velocity magnitude (VEL MAG) variable of the Atmosphere data set.

The top row shows the results using all the time steps and the bottom row shows
the results using only the first five time steps. In each chart, a bar represents the

mean of the average errors achieved over the respective time steps of the
corresponding data set (lower is better). The bars from left to right correspond to

the original (δs = ∞), spike treatment with δs = 0.05,0.1,0.15,0.2,0.25, and
jump and spike treatments with δs = ∞,0.05,0.1,0.15,0.2,0.25, respectively.

The error bars in red indicate the standard error of the mean. The bars in green
represent the best settings.

data set, our experiment shows that treating the jumps but ignoring spikes outperforms the

other methods by a huge margin. This is likely due to an initial set of isovalues being

stuck in a local optimum and can only escape it by treating jumps while allowing huge

spikes. For (b), the H variable of the Ionization data set, we witness that a strict policy

for spikes yields the best results. Interestingly, we can see that all configurations, except

for δs = 0.05,0.1 without jump treatment, and δs = 0.2 with jump treatment, have a very

high standard error. This indicates that the structure of the volume differs heavily between

time steps. In contrast, a loose spike treatment (δs = 0.2,0.25) has a small standard error
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among all configurations using the SALT variable of the Climate data set, as shown in

(c). Similarly, in (d), the bar chart shows that too strict spike treatment can have a strong

negative impact on the performance, using the VEL MAG variable of the Atmosphere data

set.

As there is no clear favorite among all data sets, we sample the first five time steps

of a data set to see if we can predict a good configuration for the full run. These results

are demonstrated in the bottom row of Figure 4.14. In (a) and (b), our method performs

consistently over the time steps, showing the possibility to predict the best variation from

the first couple of time steps. In (c), although we mispredict the best configuration, the

predicted one still shows significant improvement over the original. However, in (d), the

bar chart indicates that a bad configuration is recommended based on the results using

the first five time steps. Although the recommended configuration (δs = 0.15 with jump

treatment) performs similarly as the original approach, we fail to spot the best configuration

(δs = 0.15 without jump treatment). In this example, the high standard errors among the

first five time steps may indicate that the intermediate favorite is not a stable one for all the

time steps. Overall, we cannot always predict the exact configuration that yields the best

result for a given data set. However, when considering the first couple of time steps, we

often identify a configuration of the convergence stabilization that outperforms the original.

4.3 Conclusions

We have presented a solution for identifying nearly equally spaced isosurfaces for vol-

umetric data sets. Motivated by finding a small set of isosurfaces to better represent the

underlying volume data in the spatial domain, we design a two-stage approach to seeking

an approximated solution that maintains a good balance between quality and performance.

The resulting surfaces are nearly equally spaced, and the user can freely choose the number

of surfaces. Our study demonstrates the effectiveness of the proposed approach and leads

to valuable feedback. To conclude, we summarize our key findings and major recommen-
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dations as follows.

First, our two-stage strategy is effective for achieving the best solution in a small num-

ber of iterations. Our experiment shows that both stages are necessary: without the esti-

mation stage the refinement stage would require a lot more iterations to converge, and the

estimation stage may never achieve a solution with a similar error as the refinement stage

does.

Second, our approach can produce nearly equally spaced isosurfaces for most of the

data sets, although some error may be introduced by jump discontinuities in the distance

functions. These points may divide the entire range of isovalues into multiple segments

and prevent the isovalues from moving between neighboring segments, resulting in un-

equal distances among the segments. Our convergence stabilization scheme alleviates this

situation by treating spikes and jumps explicitly, although the effectiveness depends on the

specific data set.

Finally, our approach is independent of the choice of the distance measure. This pro-

vides great flexibility for users to apply a suitable distance measure according to their own

needs. Our experiment performs effectively using both the ISM and MCP distance mea-

sures with a common parameter setting of < δe,δτ ,δr > =< 10,5,20 > for all the data

sets. To ensure smoother convergence without a strong restriction, we recommend using

δs = 0.2 and ignoring jumps, as these settings either outperform or show similar results as

the original across all data sets.
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CHAPTER 5

EXPLORING TIME-VARYING MULTIVARIATE VOLUME DATA USING MATRIX

OF ISOSURFACE SIMILARITY MAPS

In this chapter, I present an interface to visualize and analyze large-scale time-varying

multivariate volume data. The preprocessing for the MISM consists of computing ISM

for each time step and variable, as well as across variables and time steps. Further, rep-

resentative isosurfaces are fully extracted and simplified to save disk space. Lastly, all

these artifacts are assembled into an interface which allows close inspection and guided

exploration of a large-scale time-varying multivariate volume data set.1

5.1 Design Requirements

To investigate the physical phenomenon of the multifaceted time-varying multivariate

data sets, experts need to understand the relationships among time steps, variables, and

value ranges, which are often complicated and dynamic. The relationships of value ranges

of multiple variables may exhibit various patterns even at a single time step, and these

relationships may evolve over time and develop into different patterns. Understanding

these relationships can hardly be achieved without an effective visual analytics system. We

formulate the design requirements of such a system as follows:

R1. Overview. The system should provide two levels of overview. First, it should

allow users to observe the overall relationships between variables and time steps at the

1This work was published as J. Tao, M. Imre, C. Wang, N. V. Chawla, H. Guo, G. Sever, and S. H.
Kim. Exploring time-varying multivariate volume data using matrix of isosurface similarity maps. IEEE
Transactions on Visualization and Computer Graphics, 25(1):1236–1245, 2019
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volume level, helping them answer questions such as which variables are more similar,

which time steps are more similar, and which variables exhibit more frequent changes than

the others? Second, it should allow users to understand the relationships at the isovalue

level. Similar questions should be answered at this level with more detail: which ranges of

isovalues lead to the relationships discovered at the volume level?

R2. Identification of representatives. The system should quantify the similarities

among time steps, variables, and isovalues and derive the representative ones. This pro-

vides users more quantitative evidence to verify the relationships they observe from the

overview and to reduce the search space for detailed exploration.

R3. Relationship-centric exploration. The system should provide multiple modes to

investigate various types of relationships, including the relationships among value ranges

for a given variable at a specific time step, the relationships among variables at a spe-

cific time step, the relationships of the same variable at different time step, the temporal

evolution of the relationships of two variables, and the relationships of a specific feature

and others (which may not reside in the same variable), etc. The system should be able to

quantify each type of relationship and the interface should be optimized to allow exploring

each type of relationships efficiently.

R4. Multi-step comparison path. The dynamic relationships among variables may

require comparisons of hundreds of surfaces to be demonstrated. The system should de-

compose these complicated relationships into a path of multiple comparison steps. Each

step should reveal a facet of the relationships with a reasonable number of surfaces that

can be effectively rendered for clear visual comparison. In addition, the system should

also maintain the consistency between surfaces in consecutive steps to preserve the user’s

mental map.

R5. Path customization. Users should be able to interact with the system to customize

paths focusing on certain variables of interest or a specific type of relationship described in

R3. The customized path should answer questions such as how does a feature evolve over
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time, what are the surfaces related to the selected one over time, and what are the most

different surfaces from the selected one over time?

R6. Path animation. The system should produce an animation that concisely de-

scribes the comparison path with isosurface rendering. The animation should answer the

questions in R1 with more detail: it not only indicates which isosurfaces are (dis)similar,

but also describes how they are (dis)similar by providing the isosurfaces in the spatial view.

For effective visual comparison, the isosurfaces at each animation frame may need to be

rendered in different styles, allowing the more important ones to be observed clearly.

5.2 Matrix of Isosurface Similarity Maps

5.2.1 Overview

Based on our analysis of requirements in Chapter 5.1, we design MISM as the main

visual representation and interface for exploring the underlying time-varying multivari-

ate data set. As shown in Figure 5.1, our interface consists of four components: parameter

panel, matrix view, isovalue view, and isosurface view. The matrix view is the core compo-

nent of our system. It displays MISM in multiple modes to allows the observation of both

an overview of the data set (R1) and different types of relationships among variables (R3).

The matrix of maps allows the relationships to be understood both at map-level (volumes)

and cell-level (isosurfaces). With visual hints provided by the MISM display, users can

easily identify the variable/isovalues of interest and interact with the matrix view to navi-

gate the related variables/isovalues. The key function we introduce for navigating MISM is

path recommendation (R4 and R5): users can select two or more similarity maps in MISM

and we recommend a traversal path that maximizes certain criteria (e.g., the smoothest, or

most surprising path). In conjunction with the isovalue and isosurface views, animating the

path in MISM and displaying the corresponding isosurfaces enable users to conveniently

tour through the underlying data set (R6).
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Figure 5.1. MISM interface. The cells in the similarity maps are colored
purple/white/green for high/medium/low values. A path is specified to reveal the

connections between the isosurfaces of variable U corresponding to four
different wind directions using the Atmospheric ensemble data set. (a) shows the

parameter panel. (b) shows the matrix view with a user-specified path. A
summarized view of the matrix is displayed on the left and the representative
SSMs and VSMs related to the path are displayed on the right. (c) shows the

isovalue view. The blue, orange, green, and red paths correspond to the isovalues
of U under the west, east, south, and north wind directions, respectively. (d) and

(e) show the isosurface view with surface silhouettes and original surfaces,
respectively.

As described in Chapter 5.2.2, we define three types of similarity maps in this work:

the self-similarity map (SSM) of the isosurfaces from individual volumes, the temporal

similarity map (TSM) of the isosurfaces from the same variable at different time steps, and

the variable similarity map (VSM) of the isosurfaces from different variables at the same

time step. The definition of similarity follows that of the ISM approach [24]. The matrix

view provides four display modes to explore different types of relationships: (1) the single-

variable mode that displays a single SSM to explore a single volume; (2) the single-pair

mode that displays a VSM or TSM and the two corresponding SSMs for comparison of two

volumes (e.g., Figure 5.14 (a)); (3) the all-pairs mode that displays all SSMs and VSMs for

selected variables at a given time step (e.g., Figure 5.8 (a)); and (4) the evolution mode that

displays all SSMs and VSMs for selected variables and time steps through clustering and
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Figure 5.2. The diagram of our framework. Self-similarity maps (SSMs) are
computed for each volume of the data, from which we compute representative
isovalues and isosurfaces and further derive temporal similarity maps (TSMs)

and variable similarity maps (VSMs). At runtime, SSMs, TSMs, and VSMs are
used to construct MISM for users to explore the underlying data set.

filtering (e.g., Figure 5.1 (b)). Only the evolution mode displays multiple time steps, where

the horizontal direction represents the selected variables and all related variable pairs, and

the vertical direction represents representative time steps. SSMs of the selected variables

and all related VSMs are displayed but not TSMs.

Interaction and typical workflow. We propose a set of interactive functions for navi-

gating the huge matrix of similarity maps (see Figure 5.2). We cluster temporal sequences

and group variables to reduce the exploration space (R2). We also highlight representative

cells in a similarity map to attract user attention and guide the exploration (e.g., Figure 5.7).

A typical workflow to explore a data set using MISM is as follows. Users will start by ex-

amining the matrix view in the evolution mode, which shows the SSMs and VSMs of all

the representative time steps and variables. This provides users an overall understanding

of the data set and guides them to discover the time steps and variables of interest. Then,

users can simply click and drag to form a path that reveals the temporal development of

the selected variables and time steps. Users can further create waypoints to edit the traver-

sal path so that the connections to additional features can be discovered. In the evolution
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mode, users can easily click an SSM to enter the single-variable mode or click a VSM to

enter the single-pair mode for detailed exploration. They can specify a time step to explore

the relationship among all variables in the all-pairs mode as well. Finally, they can create

paths to investigate the isovalues in these detailed modes.

First we describe the computation for the needed similarity maps in Chapter 5.2.2.

Next, we introduce temporal clustering and variable grouping (Chapter 5.2.3), path rec-

ommendation and graph construction (Chapter 5.2.4), and silhouette-based rendering and

animation (Chapter 5.2.5).

5.2.2 Temporal and Variable Similarity Maps

To fulfill the design requirement R3, we create three types of similarity maps to capture

different types of relationships among the isosurfaces.

Self-similarity map. We refer to the previously introduced ISM (see Chapter 3) as the

self-similarity map (SSM) because it is only concerned with isosurfaces generated from a

single volume.

For a time-varying multivariate data set of t time steps and v variables, we need to com-

pute t× v SSMs. Since each SSM may take hours to compute given a reasonable number

of sampled isosurfaces (e.g., we use n = 256), we apply the GPU-accelerated approxima-

tion solution introduced in Chapter 3 to speed up the computation while maintaining the

fidelity of the resulting SSM. The major steps are listed in Figure 5.2.

For each SSM, we identify m representative isovalues using a greedy strategy that re-

cursively partitions the set of isovalues and selects representative ones based on a priority

queue scheme [24]. Typically, m is much smaller than n, e.g., we use m = 16. We leverage

a GPU to compute isosurface approximations, downsampled distance fields, and joint his-

tograms. With that, we are able to reduce the average time to compute a single SSM from

hours to a few minutes using a single GPU.

Isosurface computation. After the representative isovalues are identified for each

78



volume, we implement a GPU version of the marching cubes algorithm [144] to compute

the actual isosurfaces and simplify the resulting surfaces [99]. Both steps are performed

on the CPU during a one-time preprocessing stage. The simplification can significantly

reduce the space for storing isosurfaces without sacrificing much of the surface quality.

This is important as we need to generate a total of m× t× v representative isosurfaces for

the entire time-varying multivariate data set. Using simplified isosurfaces alleviates I/O

burden, making it possible for us to achieve interactive visualization and comparison of a

number of isosurfaces while still maintaining good visual quality.

As an example, we can see in Figure 5.3 that our approximation (b) yields a very similar

SSM as the exact marching cubes algorithm does in (a). In (d), we show the isosurfaces

corresponding to the four most representative isovalues selected in (b). Comparing (a) and

(b), although there are slight shiftings of the selected isovalues, those are barely visible

in the surface rendering, as shown in the difference image (c). Such minor differences

are neglectable as the main goal of selecting the most salient isovalues and depicting their

surfaces is still achieved. With our CUDA-accelerated solution, the time cost to compute

the SSM is improved by a factor of 43× (72.30s vs. 3,161.70s). The difference image

shown in (e) indicates that surface simplification yields a close rendering result with a

much less number of triangles (3,519,952 vs. 235,030, or nearly 15× reduction).

Temporal and variable similarity maps. Our goal is to investigate not only the SSMs

corresponding to individual volumes, but also the similarity maps between the volumes of

different time steps and the volumes of different variables. Therefore, we also compute

two other kinds of isosurface similarity: temporal similarity and variable similarity, ex-

tending the work of multimodal surface similarity [83] from only a single pair to all pairs

of variables, and from steady to time-varying data. These similarities are computed be-

tween representative isosurfaces from the same variable at different time steps (temporal

similarity), and from different variables at the same time step (variable similarity). We

call the resulting similarity maps temporal similarity maps (TSMs) and variable similarity
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Figure 5.3. Comparing SSMs generated using (a) the actual isosurfaces against
(b) our approximation with the Combustion data set (a time step of the MF

variable). The marching cubes algorithm is used to extract the surfaces shown in
(d) for the four most representative isovalues selected in (b). (c) shows the
difference between the surfaces selected in (a) and (b), and (e) shows the

difference between the surfaces selected in (b) and their simplified version.

maps (VSMs), respectively. A TSM or VSM is not symmetric anymore as the representa-

tive isovalues come from different volumes. Each TSM or VSM is much smaller in size

compared with an SSM (m×m vs. n× n), but the numbers of TSMs (i.e., v× t(t− 1)/2)

and VSMs (i.e., t× v(v−1)/2) are much larger than that of SSMs (i.e., t× v) as we need

to compute TSMs and VSMs for different pairs of time steps and variables.
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5.2.3 Clustering and Grouping

We reduce the size of MISM along the temporal and variable dimensions through clus-

tering temporal sequences and grouping variables, respectively. This not only allows users

to quickly identify the representative time steps or variables for exploration, but also pro-

duces more compact paths and animations for efficient knowledge discovery. We define

a similarity measure between volumes using TSMs or VSMs and use it to derive the sim-

ilarity between two time steps or two variables. We apply affinity propagation [67] to

cluster the temporal sequences based on the similarity measure. Affinity propagation au-

tomatically determines the number of clusters, which naturally reflects how frequently the

variables change along time in a data set. For variables, we use k-means clustering to

group the variables into the desired number of groups. In the following, we only describe

our similarity measure for temporal clustering, as the detail for variable grouping is the

same.

Similarity measure. We evaluate the similarity of two volumes based on the similari-

ties among their isosurfaces. Two volumes are considered to be similar if for each isosur-

face in one volume, a similar isosurface can be identified in the other volume. Our sim-

ilarity measure is analogous to the mean of closest point distances defined on two curves

by considering each volume as a curve and each isosurface of the volume as a point on the

curve. Formally, the similarity of an isosurface S′ and a volume V is defined as

S (S′,V) = min
S∈V

S (S′,S), (5.1)

where the similarity between two isosurfaces, S (S′,S), can be looked up from TSMs or

VSMs. The similarity of two volumes Vi and V j is defined as the weighted average of the

similarity of each isosurface in one volume to the other volume, i.e.,
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S (Vi,V j) =
∑Sp∈Vi wSp S (Sp,V j)

∑Sp∈Vi wSp

+
∑Sq∈V j wSq S (Sq,Vi)

∑Sq∈V j wSq

, (5.2)

where the weight wSp for an isosurface Sp is derived based on its representativeness rank-

ing, which is used for selecting the most representative isovalues Note that the similarity

between any pair of volumes is in [0,1], which has the same range as the similarity between

any pair of isosurfaces.

Temporal clustering. Temporal clustering evaluates the combined similarity between

two time steps as the summation of similarities calculated for each of the variables using

Equation 5.2. Affinity propagation is applied to cluster the time steps based on their com-

bined similarities. For each cluster, the clustering algorithm identifies one exemplar, which

is considered as the representative time step for that cluster.

5.2.4 Path Recommendation

MISM has a two-tiered structure: maps at the coarse matrix level and cells at the fine

map level. The map-level captures the overall relationships among volumes, while the cell-

level allows the detailed relationships among isosurfaces to be discovered. Given two user-

specified maps (cells) as the start and end points, path recommendation identifies a series

of intermediate maps (cells) to construct a path for traversal. We create an animation for

the generated path, showing the isosurfaces corresponding to a map (cell) at one animation

frame. Users can adjust the weights of different terms to define the desired path. They

may visit the maps or cells to discover affinity relationships or compare distinct features.

The differences between frames can be minimized or maximized for generating a smooth

animation or increasing information gain. They can specify the start and end points of a

path in the matrix view, and drag any point along the path to add waypoints. We identify a

path that minimizes the total cost between the user-specified points.
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We introduce the following types of paths: (1) map-level paths for the evolution mode,

(2) cell-level paths for all the four modes, and (3) variable traversal paths for only the all-

pairs mode. All three types of paths are built with similar constructions. In the following,

we discuss map-level paths in detail. For the other two, we only explain their differences

with respect to map-level paths.

We denote a similarity map between two variables A and B at time step τ as MAB,τ and

their corresponding volume as VA,τ and VB,τ . Note that MAB,τ can refer to an SSM when

A = B or a VSM when A 6= B. However, it does not refer to a TSM (which is not displayed

in the matrix view) as the indices do not specify two different time steps. We use MAB,τ [i, j]

to denote a cell in MAB,τ at the i-th row and the j-th column, and SA,τ,i and SB,τ, j to denote

the two isosurfaces corresponding to the i-th row and j-th column, respectively. We may

ignore τ in the notation for simplicity when time is not discussed. We define the difference

D(,) between two elements as 1−S (,).

Map-level path. We identify the map-level path between two similarity maps as the

shortest path in a map-level graph. A map-level graph is a directed graph whose nodes

are all SSMs and VSMs and whose edges are all the possible transitions from one map

to another, as illustrated in Figure 5.4 (a). Specifically, we consider two kinds of transi-

tions: (1) variable transition between similarity maps at the same time step sharing at least

one common variable, as shown by the blue arrows; and (2) temporal transition between

similarity maps at neighboring time steps, as shown by the red arrows.

Weighing the edges appropriately is critical to obtaining a path that shows the desired

features. In our approach, the weight of an edge corresponding to a transition is a linear

combination of the target cost C tg and the transition cost C ts raised to a user-specified

power exponent α: (wtg C tg+wts C ts)
α , where wtg and wts are the weights of C tg and

C tg, respectively. We include α to further distinguish the edge costs, so that the shortest

path is less likely to end up with a path with a larger average cost but a smaller number

of edges. Consider the transition MAB→MBC (from the yellow node to the green node)
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Figure 5.4. Top: map-level graph construction. (a) transitions in map-level
graphs. (b) edge weights corresponding to two transitions between maps MAB

and MBC. Bottom: transitions between cells. (c) transitions in cell-level graphs.
(d) transitions in variable traversal graphs.

in Figure 5.4 (b). The target cost C (MBC) is the difference D(VB,VC) between the two

corresponding volumes VB and VC. When the target cost is weighed positively, the shortest

path is more likely to visit the maps corresponding to variables with similar structures by

minimizing the cost. When the target cost is weighed negatively (we use 1−C (MBC)),

the resulting path tends to visit the variables with different behaviors for the most surprise.

The transition cost is the penalty when we replace the isosurfaces to display for MAB to

those for MBC. It can be weighed positively in the linear combination, so that the shortest

path minimizes the transition cost and maintains a smooth animation between neighboring

frames; otherwise, it can be weighed negatively using 1−C (MAB →MBC) to visit the

maps with diverse information.

A variable transition from a VSM MAB,τ to another MBC,τ indicates that the focus of

analysis shifts from one pair of variables (A and B) to another pair (B and C). After the tran-

sition, we replace the isosurfaces of A with the ones of C in the isosurface view. Therefore,

we weigh the corresponding edge by the difference of their volumes, i.e., D(VA,τ ,VC,τ).

The edge weight for transitions between a VSM and an SSM can be defined similarly

by letting A = B. For coherence, variable transitions should take place only if necessary.
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To avoid the paths from jumping back and forth among the variable pairs, we include a

sufficiently large jumping cost in the variable transition.

A temporal transition between two VSMs MAB,τ and MAB,τ+1 describes the evolution

of the two variables A and B over time. The corresponding edge weight is defined as

(D(VA,τ ,VA,τ+1)+D(VB,τ ,VB,τ+1))/2.

Cell-level path. Similar to the map-level path, the cell-level path is the shortest path

between two cells in a directed cell-level graph. Each node in the cell-level graph repre-

sents one cell and each edge represents one transition. For the cell-level graph, we con-

sider three kinds of transitions, as shown in Figure 5.4 (c): (1) variable transition (the blue

arrows) between cells in two similarity maps at the same time step sharing at least one

common variable; (2) temporal transition (the red arrow) between cells in two similarity

maps corresponding to the same pair of variables at different time steps; and (3) isovalue

transition (the green arrows) between cells in the same similarity map. Similarly, the edge

weight is a linear combination of transition cost and target cost. The target cost is given by

the difference of the two isosurfaces corresponding to the target cell. The transition cost

is defined by the difference between the isosurfaces that are not shared by the two cells.

For example, for a variable transition MAB,τ [i, j]→MBC,τ [ j,k], the transition cost is the

difference between SA,τ,i and SC,τ,k, i.e., D(SA,τ,i,SC,τ,k).

We further provide two options for users to improve the cell-level path. First, we

allow users to specify the exact endpoint as cells, or simply select a map that contains the

endpoint. When a map is specified, the cell with minimum cost is automatically identified

on the map. In this case, we create an edge from each cell in the map to a dummy node

with zero weight and compute the shortest path. Second, we design a scheme to further

reduce the average cost between cells. The shortest path often tends to minimize the total

cost along the path by reducing the number of cells. It is possible to identify a path with

a minimum number of undesired transitions. Therefore, finding a path with the smallest

average weight between nodes is more desired in our scenario. Since this problem is NP-
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Figure 5.5. The path with the same start point and parameters as Figure 5.1 (b).
The example shown here uses the original cell-level graph instead of the reduced

weight graph.

hard, we provide an approximate solution here. We start with the shortest path identified

by Dijkstra’s algorithm and compute the average weight w̄ along the path. Then, we create

a cell-level reduced weight graph. This graph contains the same edges as the original cell-

level graph, but the weight of each edge is reduced by w̄. The edges with negative weights

are eliminated by assigning a small weight (0.001 in our implementation) to them. Note

that the edges with weights smaller than w̄ have a minimum cost now. This allows a longer

path with more desirable transitions to be identified as the shortest path in the reduced

weight graph. Figure 5.1 (b) and Figure 5.5 show two cell-level paths produced by the

reduced weight and original graphs, respectively. In Figure 5.5, we can see that without

reducing the weights, the path only visits one cell in each map at similar locations, even

under the setting of wtg = 0.1 and wts = −1, which suppose to show more distinguished

isosurfaces. In contrast, with the reduced weight graph, the path usually visits multiple

cells in each graph to increase the information gained, as shown in Figure 5.1 (b). For a

quantitative comparison, we evaluate the average weight of the two paths in the original

graph. The path produced by the reduced weight graph can effectively bring down the

average weight from 0.227 to 0.172.

Variable traversal path in all-pairs mode. A variables traversal path visits a chain

of variable pairs that covers every variable for a complete understanding of relationships

among variables at a given time step. For example, this chain can be < A,B >→<
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B,C >→< C,D >→< D,A > for a data set with four variables. Given a user-specified

cell (and therefore a pair of variables to start), we determine the order of variables to visit

using a greedy strategy: at each step, we select the unvisited variable that is most similar

to the current variable.

The variable traversal path is identified in a variable traversal graph which is con-

structed similarly as the cell-level graph with variable transitions and isovalue transitions.

The definitions of transition cost and target cost are the same as the ones described for

the cell-level graph. The only difference is that variable transitions are constrained to take

place between only boundary cells following the order of the maps being visited. For ex-

ample, consider the two pairs of variables < A,B > and < B,C > to be neighbors along

the path, as shown in Figure 5.4 (d). We only allow transitions from the boundary cells

MAB,τ [1, j] and MAB,τ [m, j] in map MAB,τ to the boundary cells MBC,τ [ j,1] and MBC,τ [ j,m]

in map MBC,τ that correspond to the same isosurface SB,τ, j. This forces the path to enter

and leave a similarity map at the boundaries to build a more complete path visiting a large

portion of value range for each variable.

5.2.5 Surface Rendering and Animation

We render the isosurfaces using an approach based on per-pixel link lists [230] for

real-time order independent transparency. The rendering is performed in two passes. The

first pass generates a link list for each pixel to store the fragments that are rendered to

that pixel. The second pass sorts fragments at the same pixel according to their depth and

blends the fragments in the sorted order. Inspired by the silhouette-based rendering [49],

we only render the silhouettes for the less important isosurfaces to reduce visual clutter. We

combine these two approaches by checking whether a fragment belongs to the silhouettes

before storing the fragment in the link lists. The fragments of the less important isosur-

faces that are not related to the silhouettes are discarded to reduce the storing and sorting

effort. Using our approach, rendering some surfaces as silhouettes not only allows clearer
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(e) (f) (g) (h)

Figure 5.6. Isosurfaces corresponding to map-level paths using the Ionization
data set. (a) to (c) show the representative isosurfaces for H2 at time steps 31, 98,
and 181, respectively. (d) shows the same isosurfaces as (b) but focusing on the

orange isosurface. (e) to (g) show the same as (a) to (c) but for H+.

observation but also has a lower cost than rendering all surfaces in full.

An animation will be produced when a path is specified in the matrix view. As shown

in Figure 5.1, with the evolution mode of the matrix view, we also display the isovalue

view to show the evolution of isovalues corresponding to the rendered isosurfaces. We

synchronize the animation across the matrix, isovalue, and isosurface views. The path is

displayed in both the matrix and isovalue views with the current animation step highlighted.

We display a timeline in the isovalue view. Users can drag it to play a specific animation

step. They can also drag the highlighted isovalues in the isovalue view to create additional
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waypoints and modify the path. When multiple variables are involved in an animation,

the isosurfaces are colored according to their corresponding variables, as indicated by the

legends in the isosurface view (e.g., Figure 5.1 (d)). We create an animated transition

for each variable transition on the path to gradually transit from one variable to another.

When a single variable is used in an animation, we color the isosurfaces according to their

representativeness. The representativeness ranking is indicated by the legends shown in

the isosurface view, with the most representative one displayed on the left (e.g., Figure 5.6

(a)). By default, we render the complete isosurface for the most representative one and

the silhouettes for the others. Users may switch the focus to render any representative

isosurface as a complete one.
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TABLE 5.1

AVERAGE TIMING RESULTS USING THE CPU/GPU CLUSTER

data set dimension x× y× z× v× t distance field x× y× z SSM extraction simplification reduction TSM VSM total

Atmospheric 360×360×112×32×13 45×45×14 26.85s 8.31s 94.20s 7.56× 0.0953s 0.0941s 24.1h

Climate 360×66×27×2×1200 120×33×9 4.85s 0.18s 1.82s 9.39× 0.0810s 0.0778s 10.9h

Combustion 480×720×120×5×122 60×90×15 50.66s 8.11s 56.44s 10.72× 0.2290s 0.2275s 23.5h

Ionization 600×248×248×8×199 75×31×31 25.99s 4.34s 14.40s 12.42× 0.1936s 0.1919s 20.1h

The average timing results for computing an SSM, an isosurface and its simplified version, a TSM, and a VSM using a CPU/GPU, and the total computation time for the
entire data set using the CPU/GPU cluster.
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5.3 Results and Discussion

5.3.1 Data Sets and Timing Performance

We used several time-varying multivariate data sets with different sizes and character-

istics for our experiment. The data sets and timing performance are reported in Table 5.1.

The timing was collected using a CPU/GPU cluster (8 Quantum TXR231-1000R servers

each with a dual Intel E5-2650 12-core CPU @ 2.2 GHz, 128 GB RAM, and 4 NVIDIA

TITAN X GPUs). The computation of the distance fields and similarity maps (SSMs,

TSMs, and VSMs) was performed in the GPU, while isosurface extraction and surface

simplification were performed in the CPU. The timing for SSM (256× 256) includes the

time to compute distance fields, joint histogram, and mutual information. The time costs

for surface extraction and simplification mainly depend on the complexity of the surface

and the number of triangles involved. The timing for TSM or VSM (16× 16) includes

the time to compute joint histogram and mutual information. The time cost to compute a

TSM or VSM mainly depends on the size of distance fields. In our experiment, since the

computation of similarity maps or isosurfaces consists of largely independent tasks, we use

8 CPU cores and 8 GPUs of the CPU/GPU cluster to speed up the computation in parallel,

reducing the total computation time for each data set to a day or less.

We further examine the accuracy and speed-up of our similarity map computation. Our

solution introduces two major variants to speed up the computation: using approxima-

tion (APP) to replace GPU-accelerated marching cubes (MC) for surface generation and

using downsampled (DS) distance fields instead of the ones with original (ORI) resolu-

tion. We evaluate the performance of different combinations of these two variants (i.e.,

DS-MC, ORI-APP, and DS-APP) by comparing them to the ground truth (ORI-MC). The

accuracy is evaluated by the mean of squared error (MSE). Giving two sets of values

X = {x1, · · · ,xn} and X′ = {x′1, · · · ,x′n}, MSE is computed as
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TABLE 5.2

MEAN SQUARED ERROR (MSE) AND SPEED-UP (SU) FOR COMPUTING

SSMS USING DIFFERENT CONFIGURATIONS.

DS-MC ORI-APP DS-APP

data set MSE SU MSE SU MSE SU

Atmospheric 0.0006 23.11× 0.2191 1.06× 0.1637 110.67×

Climate 0.0046 13.13× 0.0060 1.02× 0.0052 30.50×

Combustion 0.0001 48.86× 0.0584 1.23× 0.0474 182.48×

Ionization 0.0134 43.69× 0.0831 1.27× 0.0489 299.26×

MSE(X,X′) =
1
n

n

∑
i=1
|xi− x′i|2. (5.3)

For the Climate data set, we collect the results using ten sample time steps, and for the

others, we use five sample time steps. Note that this already contains 1.3 million to 2

million similarity values per data set so that we can draw a reliable conclusion. In Table 5.2,

we can see that using downsampled distance fields produces mostly the same similarity

values, with the largest MSE being 0.0134 for the Ionization data set. Surprisingly, we find

that DS-APP outperforms ORI-APP in terms of MSE for all the data sets, probably because

distance fields of the original resolution may be more sensitive to the errors introduced

by the approximation. DS-APP produces reasonable results with MSE smaller than 0.05

except for the Atmospheric data set (0.1637). In terms of efficiency, DS itself speeds up

the computation by more than 10×. APP does not lead to large speed boost with ORI, but

it can further increase the performance of DS, resulting in 30× to 300× speed-up.
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Figure 5.7. Overview of the evolution mode of the matrix view with four
variables (HR, MF, VORT, and YOH) of the Combustion data set.

5.3.2 Case Studies with Expert Evaluation

Combustion data set. This data set comes from direct numerical simulation of tem-

porally evolving turbulent non-premixed flames. The simulation generates five variables:

heat release (HR), mixture fraction (MF), vorticity (VORT), mass fraction of hydroxyl

radical (YOH), and scalar dissipation rate (CHI). Initially, the thin planar scalar layers are

placed in the middle of the computational domain. The layers evolve into complex isosur-

faces as they interact with the surrounding turbulence. Combustion reactions occur within

the scalar layers.
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We invited a domain expert with 20 years of experience in turbulent Combustion mod-

eling and simulation to explore this data set using MISM. The exploration started with

the evolution mode of the matrix view with four variables (HR, MF, VORT, and YOH),

as shown in Figure 5.7. The expert commented that the similarity maps at different rep-

resentative time steps are able to summarize the overall data characteristics. For each

individual variable, at earlier time steps, since the scalar layers are planar, all scalars are

well correlated, and most regions of the SSMs in the bottom rows are purple. As time

goes on, these scalar layers are distorted by turbulence. Meanwhile, the scalar layers are

thickened since small-scale turbulence enhances scalar mixing. As the scalar layers are

thickened and interact with turbulence, the isosurfaces corresponding to lower and higher

values become dissimilar. Therefore, the positive correlations (purple cells) only appear

along the diagonals of the SSMs in the top rows. The expert further pointed out that the

matrix view demonstrates the relationship development of YOH and MF over time. YOH

and MF are perfectly correlated, when Combustion reaction time scales are much shorter

than turbulence time scales. This condition is closely satisfied at later time steps, as the

YOH-MF VSMs in the top rows show a strong correlation near the diagonal regions. On

the contrary, at earlier time steps, the fast chemistry condition is not satisfied. This leads to

no evident correlation of these two variables at earlier time steps. The SSMs in the bottom

rows confirm this by exhibiting more uniform correlations. In addition, the expert found

that the relationship between VORT and MF is interesting, since the VORT-MF VSMs

gradually develop into a pattern with a purple upper-left triangle and a green lower-right

triangle. The expert stated that the physical origin of this trend could not be fully under-

stood at this moment, but it was likely related to the effects of HR on turbulence. This

demonstrates the potential of our work for revealing physics behind the data set.

Then, the expert analyzed the relationships among four variables (VORT, CHI, MF, and

YOH) at time step 111 using the all-pairs mode of the matrix view. Time step 111 is the

first time step of the last temporal cluster. The all-pairs mode facilitates better comparison
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Figure 5.8. Variable traversal paths using time step 111 of the Combustion data
set. (a) shows a path with a positive target weight (wtg = 1, wts = 0.1, and

α = 4). (b) to (e) show four animation frames corresponding to the path in (a).

of the VSMs. In Figure 5.8 (a), the expert found that the pattern of the YOH-MF VSM is

different from others. As already observed in the evolution mode, the diagonal of YOH-

MF VSM is mostly purple, indicating strong correspondence between the value ranges in

YOH and MF. The only exception is the top-right corner corresponding to larger isovalues

of YOH and MF, which is mostly green. This means that the larger isovalues of these two

variables are less relevant to each other. The expert explained that the value of YOH is

the highest in the reaction zone and decreases toward the fuel and oxidizer sides, which

correspond to the lower and higher values of MF, respectively. Therefore, there is no

evident correlation of YOH and MF at higher values of each variable. The expert selected
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a purple cell in this VSM, as highlighted in the blue circle, to generate a variable traversal

path. A positive target weight (wtg = 1) was used to identify a path demonstrating similar

isosurfaces for each of the variable pairs: YOH and MF, MF and CHI, CHI and VORT, and

VORT and YOH. A small transition weight (wts = 0.1) was used to maintain the minimum

smoothness between the consecutive animation frames. Figure 5.8 (b) to (e) show four

animation frames presenting the similar isosurfaces. The similarity of isosurfaces seen

in Figure 5.8 (c) indicates that the variations of CHI on isosurfaces of MF occur mainly

at large scales, which happens mostly for thin scalar layers with high values of CHI. The

regions where the CHI and MF isosurfaces collapse correspond to the thin layers with steep

scalar gradients (high values of CHI). In Figure 5.8 (d), while the isosurfaces of CHI and

VORT are complex, the expert pointed out that low CHI regions correspond to high VORT

regions, because strong vortical motions tend to mix scalars and reduce their gradients.

Finally, the expert switched to the evolution mode of the matrix view to further in-

vestigate the relationship between YOH and MF. Two purple cells were specified as the

starting and ending points in the YOH-MF VSMs. Two paths were generated for compari-

son: one with a positive target weight (wtg = 1) and the other with a negative target weight

(wtg = −1). The transition weight wts was set to 0 to eliminate the influence of transition

cost, and α was set to 4 to allow more edges with smaller cost. Figure 5.9 (a) shows the

path with the positive target weight and the isosurfaces in three animation steps along the

path. The path passes only the purple regions near the centers of the VSMs, corresponding

to the middle range isovalues of YOH and MF. In the isosurface view, it can be seen that

the blue isosurfaces occupy similar regions as the corresponding orange ones at all the

three time steps, due to the correlation of YOH and MF. In contrast, the path with the nega-

tive target weight goes through the green regions at the bottom-right corners of the VSMs,

even if it starts and ends at purple cells, as shown in Figure 5.9 (b). This path mostly relates

to the high MF isosurfaces and the low YOH ones. In the isosurface view, it can be seen

that the blue and orange isosurfaces are disjoint in the space. As the wrinkling history of

96



YOH

MF

YOH

MF

(a) (b)

Figure 5.9. Cell-level paths in YOH-MF VSMs using the Combustion data set.
(a) shows a path with a positive target weight (wtg = 1, wts = 0, and α = 4) and
three corresponding animation frames. (b) shows a path with a negative target

weight (wtg =−1, wts = 0, and α = 4) and three corresponding animation
frames.

isosurfaces due to turbulence is different for isosurfaces present in different regions, the

dissimilarity is expected.

Atmospheric data set. A set of 3D numerical experiments is performed to explore the

mechanical impacts of Graciosa Island on the dry boundary layer evolution under varying

wind speed and surface friction setups. The simulations are conducted using the Cloud

Model 1 (CM1 release 19 [25]). The full data set has 32 ensemble simulations which are

comprised of four basic wind speeds (1, 5, 10, and 20 m/s), four wind directions (west,
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Figure 5.10. Comparison of four wind directions with friction and wind speed 5
m/s using the Atmospheric ensemble data set. (a) shows the all-pairs mode of the
matrix view at time step 13. (b) shows the isovalue view at time steps 2 (bottom)
and 13 (top). (c) to (e) show two isosurfaces of variable U corresponding to (c)

small absolute wind speeds of the west and north, (d) small absolute wind speeds
of the west and east, and (e) large absolute wind speeds of the west and east.

east, north, and south), and two bottom boundary conditions (friction/no friction). Two

variables, the U and W components of the wind flow, are studied. To distinguish the

variables under different simulation setups, we add the initials of the wind directions and

speeds to the names of variables. For example, “E5U” stands for variable U with the east

wind direction and speed 5 m/s.

We invited a domain expert with ten years of experience in Atmospheric sciences to

evaluate MISM using this data set. Since friction effects are more pronounced in lower

wind speeds, the expert focused on the 5 m/s case to visualize and analyze flow variability.

The expert first investigated the evolution of variable U under different wind directions
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with friction and 5m/s wind setup. Figure 5.10 (a) shows the matrix view in the all-pairs

mode at time step 13. The SSMs at the diagonal show that the west and east have similar

patterns, and so do the SSMs of the north and south. In Figure 5.10 (b), the isovalue

view shows a similar relationship. The representative isovalues distribute similarly for

the four wind directions at time step 2 (bottom). In contrast, at time step 13 (top), the

distributions form two different patterns. The expert explained that this means from time

step 2 to 13, the west and east show much larger flow variability compared to the north and

south, which is attributed to the west-east orientation of the island located at the center

of the simulation domain. The representative isovalues spread out in different directions

for the west and east, but the representatives of the south and north are still similar to

those in the first time step. Figure 5.10 (c) shows that the isosurface of the north (orange)

has quite a different shape from that of the west (blue). Unlike the blue isosurface, the

orange one covers both the upper and lower portions of the domain, although the isovalue is

small. In contrast, the isosurfaces corresponding to small absolute wind speeds of the west

(blue) and east (orange) have similar shapes, as shown in Figure 5.10 (d). Both isosurfaces

reside in the lower portion of the domain, although their orientations are opposite. By

selecting the isovalues representing larger wind speeds (as highlighted by the red circle in

Figure 5.10 (a)), the expert found that the corresponding isosurfaces are also similar, as

shown in Figure 5.10 (e). These two isosurfaces occupy mostly the entire domain as the

wind gets stronger. The expert commented that the east wind direction seems to be more

interesting. It demonstrates more variation on the surfaces and in the isovalue view, due to

a stronger island effect on incoming flow in this configuration.

Then, the expert compared four variables within the east wind direction: E5U, E5W,

E1U, and E1W (i.e., variables U and W with wind speeds 5 m/s and 1 m/s). Only one tem-

poral cluster is produced by affinity propagation, indicating a consistent pattern over time.

Therefore, the expert used all individual time steps to explore their temporal relationships.

Figure 5.11 shows the overview of the evolution mode of the matrix view. In general, the
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Figure 5.11. Overview of the evolution mode of the matrix view with two
variables (U and W) produced under two wind speeds (5 m/s and 1 m/s) using

the Atmospheric ensemble data set.

expert found that the patterns of matrices in different rows are similar, which confirms the

temporal clustering results. Note that, for E5U and E1U, the purple regions in the middle

value range are growing over time. The expert commented that this is indicative of the

non-steady simulation behavior. By displaying the isosurfaces, the expert found that the

purple region corresponds to surfaces covering the entire domain. This trend indicates that,

at the later time steps, the surfaces of different value ranges of U tend to cover more space

and become more similar to each other. Figure 5.12 (a) shows two isosurfaces of a larger

isovalue of E1U at time step 2 (blue) and time step 13 (orange), respectively. It can be seen

that the orange surface covers almost the entire domain, but the blue one is mainly located

at the center of the domain.

The temporal development of variable W with wind speeds 5 m/s and 1 m/s seems to

be slightly different. While the pattern in column E1W is more stable, the purple region

in E5W is shrinking over time. This indicates that, unlike variable U, the isosurfaces of
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(a) (b) (c)

Figure 5.12. Isosurface rendering of (a) E1U at time steps 2 and 13, (b) E5W and
E1W at time step 2, and (c) E5W and E1W at time step 13.

E5W appear to be similar at the beginning, but tend to be more distinguishable over time.

Although the development trend is different, the expert found that E5W and E1W become

more similar in the larger value range, since the upper-right corners of the E1W-E5W

TSMs gradually transit from green to light green. At time step 2, the isosurfaces corre-

sponding to a larger isovalue of E5W (blue) and E1W (orange) occupy different spatial

regions, as shown in Figure 5.12 (b); but at time step 13, the two isosurfaces reside in the

same region, as shown in Figure 5.12 (c). However, the similarity is still not high, since

the distance between different layers of the blue surfaces is much larger.

5.3.3 Additional Case Studies

Climate data set. This data set was generated from a simulation of salinity (SAL) and

temperature (TEM) in the equatorial region from 20°S to 20°N for a period of 100 years.

This data set contains 1200 time steps (one month per time step), from which temporal

clustering identifies 13 representatives, as shown in Figure 5.13. From the representatives,

we can see that SAL exhibits a more stable pattern than TEM. Interestingly, although our

temporal clustering does not consider the order of time steps, nine months in the first

year are selected as representatives. Overall, the clusters are consistent with the monthly

weather change in each year. But we can also notice that for two long periods of time, most
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Figure 5.13. Overview of the entire Climate data set of 1200 time steps.

of the time steps are placed in the same cluster, as highlighted in the blue rectangles.

Then, we examine the temperature change with the El Niño condition. We select time

step 289 (with El Niño), as highlighted by the red bar in Figure 5.13, and compare it with

time step 265 (without). Time step 265 corresponds to the same month as time step 289,

but two years before. The single-pair mode of the matrix view displays the two SSMs

on the left and the corresponding TSM on the right, as shown in Figure 5.14 (a). The

arrows indicate TEM from low to high. We find that both SSMs share the same pattern:

the low TEM isosurfaces are very similar to each other, indicated by a dark purple block;

the medium TEM isosurfaces are moderately similar to each other and the low TEM ones

but not that similar to the high TEM ones; and the high TEM isosurfaces are similar to

each other but not that similar to the low and medium TEM ones. Similar patterns can

be observed in the TSM as well, except that the high TEM isosurfaces do not share high

similarity.

By selecting the cell highlighted in the blue circle, the isosurface view renders a high

TEM isosurface (blue) and a low TEM one (orange) at time step 265 for comparison, as

shown in Figure 5.14 (b). The high TEM isosurface is associated with a small region

close to the ocean surface and the low TEM one covers the entire oceans at the bottom.
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Figure 5.14. The single-pair mode of the matrix view using the Climate data set.
(a) shows the TSM comparing time steps 265 and 289. Time step 289 is

associated with the El Niño condition. (b) and (c) show a high TEM isosurface
(blue) and a low TEM one (orange) at time steps 265 and 289, respectively. (d)
shows two high TEM isosurfaces at time steps 265 (blue) and 289 (orange). (e)

shows two high TEM isosurfaces at time steps 241 (blue) and 265 (orange).

By selecting the cell highlighted in the red circle, two isosurfaces at time step 289 are

displayed, as shown in Figure 5.14 (c). We can see that the low TEM isosurface is mostly

the same as the corresponding one at time step 265; but the high TEM isosurface is quite

different, with the central and eastern equatorial Pacific Ocean covered, confirming the

existence of El Niño. By selecting the cell highlighted in the green circle, we compare

the two high TEM isosurfaces, as shown in Figure 5.14 (d). The cells related to these

two isosurfaces are highlighted by rectangles in the corresponding colors, as shown in

Figure 5.14 (a). Figure 5.14 (e) shows two high TEM isosurfaces at time steps 265 and

241 (which is exactly two years before 265). Clearly, without the El Niño condition, the

high TEM regions are similar in the same month across years.

Ionization data set. For this data set, we find that all SSMs show a similar pattern: the

purple cells mostly concentrate along the diagonals leaving other regions in green. This

indicates the strongly localized pattern for isosurfaces at different value ranges. We use

map-level paths to trace the movement of the Ionization front for each individual variable

and show the corresponding isosurfaces in Figure 5.6. Figure 5.6 (a) to (c) correspond

to H2 at three representative time steps at the beginning, middle, and ending stages, re-
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spectively. Obviously, the most representative isosurface shown in blue moves from left

to right and demonstrates different shape characteristics. In Figure 5.6 (a), we can also

observe three other representative isosurfaces with a similar shape as the most representa-

tive one, displayed as the orange, red, and purple silhouettes. However, in Figure 5.6 (b),

the other representative isosurfaces are occluded by the most representative one shown in

blue. Therefore, we shift the focus to the orange one, as shown in Figure 5.6 (d). The blue,

green, and purple silhouettes indicate that the isosurfaces form multiple layers of the same

structure. Figure 5.6 (c) shows the isosurfaces of H2 at the ending stage. Figure 5.6 (e) to

(h) show a similar process for H+ but with a different shape of the Ionization front.

5.4 Conclusions

To provide a convenient mechanism for users to browse through a large time-varying

multivariate or ensemble data set in the form of isosurfaces, we present MISM, a visual

interface that organizes a huge number of ISMs for navigation and exploration. We de-

sign effective solutions to achieve both computational scalability (by computing a massive

number of self, temporal, and variable similarity maps using GPU-accelerated approxi-

mation) and visualization scalability (by presenting MISM at different levels of detail via

clustering, grouping, and filtering schemes). To the best of our knowledge, both scalabil-

ities have not been demonstrated previously in this context. With advanced features such

as path recommendation and surface comparison, MISM is the first of its kind that sup-

ports flexible relationship exploration and examination among isosurfaces extracted from

the multifaceted data, providing the capability that goes beyond a traditional animation

playback could offer.
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CHAPTER 6

CONTOURNET: SALIENT LOCAL CONTOUR IDENTIFICATION FOR BLOB

DETECTION IN FUSION PLASMA SIMULATION DATA

In this chapter, I present a deep-learning framework, called ContourNet, for blob detec-

tion in XGC plasma fusion simulation data. Blobs are areas of interests close to the bound-

ary of the reactor which can cause damage to the outer wall. Usually, they can be roughly

characterized as nearly elliptical and containing a higher than average energy. However,

there is no clear definition for blobs and thus they can only be identified heuristically or by

domain experts. Based on the discussion with scientists, I transform the problem of blob

detection to salient local isocontour detection. Aiming to detect blobs in plasma fusion,

our supervised learning solution is based on expert labels, a label propagation strategy, and

a deep CNN.1

6.1 Background

Formally, the input of blob detection is the scalar field ft,s : D→R on the sth 2D cross-

section of the tokamak at time step t, where D⊂ R2 is the domain for a 2D cross-section,

and the output is a number of regions {Bi
t,s} that represent blobs. Depending on the context

of different experimental and simulation studies, the input scalar field can be temperature,

electron densities, scalar derivative of electrostatic potential, and normalized fluctuating

density that characterize the fluctuating level. Without loss of generality, we only study

1This work was published as M. Imre, J. Han, J. Dominski, M. Churchill, R. Kube, C.-S. Chang, T. Pe-
terka, H. Guo, and C. Wang. ContourNet: Salient local contour identification for blob detection in plasma
fusion simulation data. In Proceedings of International Symposium on Visual Computing, pages 289–301,
2019
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blobs that are associated with local maxima. Assuming the smoothness of the input scalar

field Ft,p(x), we define

L( ft,s,θ) = {x | Ft,s(x)≥ θ}=
⋃
k∈I

Rk
t,s(θ) (6.1)

as the super-levelset of ft,s(x) with respect to the threshold θ ; {Rk
t,s(θ)} are disjoint con-

nected components (Rk
t,s(θ)∩Rl

t,s(θ) = /0, for any k 6= l ∈ I) of the super-levelset and I is

the index set. We further define a blob candidate

C( ft,s,θ ,x) = {Rk
t,s | x ∈ Rk

t,s} (6.2)

as the simply connected component that contains x in the super-levelset L( ft,s,θ). The

blobs {B j
t,s} are a subset of blob candidates that meet the empirical rules defined by scien-

tists, where j is the index of the blob.

In practice, scientists define empirical rules to filter the candidates that connected to a

few selected local maxima locations {m j
t,s} (m j

t,s ∈D) with different super-levelset thresh-

olds {θ j
t,s}, that is,

B j
t,s =C(N,θ j

t,s,m
j
t,s). (6.3)

In Kube et al. [127], the threshold θ j
t,s was set to 60% of the selected maximum value

ft,s(x j). Davis et al. [47] first found large local maxima in ft,s(x) by thresholding, and then

fitted an ellipse to the contour at the 50% maximum level. The same technique was used by

Zweben et al. [239] and Churchill et al. [42], but the selection of local maxima is nontrivial

and subject to small perturbations of ft,s(x). Based on the statistics of ft,s(x) in a small

region of interest, Wu et al. [225] determined the local contour level to only incorporate

regions with significantly higher temperatures and densities than the surroundings. A two-

phase algorithm was proposed that first selects candidate points and then extracts blobs as

the connected components of the candidates.
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We follow the convention to localize blobs by contouring. Although it is possible to

approach blob detection as an object detection problem by segmenting a 2D cross-section

into blob and non-blob areas, a local contour has clearer physical meaning than an arbitrary

segmentation does. In general, the output segmentation is not necessarily local isocontours

and thus could be misleading. Therefore, we aim to segment the image into areas that can

be encircled with local isocontours.

For ease of description in terms of image input data, we define vt,s(i) as the W ×H

regular 2D image that represents ft,s(x), where 0 ≤ i <W ×H is the the pixel index. The

blob candidate ct,s(i) is defined as the binary (0 or 1) image of the connected component

C( ft,s, ft,s(xi),xi) that contains xi, the physical coordinates of i. We also define the Boolean

function bt,s(i) to denote if the blob candidate ct,s(i) is a blob. The purpose of ContourNet

is to learn blob labels b̃t,s(i), in order to predict bt,s(i) for arbitrary t, s, and i, as detailed

next.

6.2 Workflow and Architecture

Blob detection workflow. The input data of our blob detection workflow is the scalar

field ft,s(x), and the outputs are a number of detected blobs {B j
t,s}. The core of our ap-

proach is ContourNet, a deep neural network that takes a single slice as input and returns a

segmentation for blob and non-blob regions. In this study, ContourNet is based on a mod-

ified U-Net [173], which is a CNN originally designed for medical image segmentation.

For the ease of data handling using ContourNet, we transform the scalar field ft,s(x) into

an image and the ground truth blob candidates into a binary mask.

We tailor both the training and inference routines of ContourNet, in order to detect

blobs accurately and efficiently. At the training stage, we gather as many labeled blobs as

possible through expert labeling and label propagation. We worked closely with scientists

on the user interface design for expert labeling, and co-designed the automatic label prop-

agation strategy, in order to minimize the burden of manual labeling and to maximize the
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blobs

(a) (b)

Figure 6.1. (a) shows a zoomed view of a blob. The dark red area corresponds to
the blob. (b) shows the architecture of ContourNet. Similar to U-Net,

ContourNet has two phases. However, there is no change of the image size. The
numbers in the figure show the number of channels after a given batch

normalization.

blob detection accuracy.

ContourNet architecture. The original U-Net is designed for image segmentation:

the input is a fixed-size image and the output is a mask that segments the different areas of

the image. U-Net contains a downward phase and an upward phase. At each level of the

downward phase, a convolutional layer halves the size of the image and doubles the size

of the feature maps. Within each level of the upward phase, the exact opposite happens

by applying deconvolution operations. Additionally, the features in a given level of the

downward phase are copied over as additional input into the same level of the upward

phase.

The modified U-Net design for ContourNet is illustrated in Figure 6.1 (b). ContourNet

consists of four levels in both the downward and upward phases. The biggest difference

to the original U-Net architecture is that ContourNet does not perform any downscaling

of the input. We do this as blobs are small-scale features in comparison to the image,

which could get missed in an early layer and not be recovered later. The input to each

(de-)convolutional layer varies depending on its position in the network. The ith level has
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Figure 6.2. The training stage for ContourNet. Expert labels are first propagated
to increase the amount of training data. The data slice is then combined with a

blob mask as input for network training.

the same size as the input image but with a different number of features in the feature map.

To copy over the features from the downward to the upward phase, we concatenate them

to the already existing feature map.

The last layer produces a binary segmentation mask that we then perform the following

to further transform into a mask of isocontours. First, we compute the connected compo-

nents for every blob in a segmentation mask. Second, we generate a super-levelset for

every point of a given connected component. Third, we compare the given super-levelset

to the area from the segmentation using the Dice coefficient and pick the best fit. Finally,

we extract the isocontour from the super-levelset and store the seed point for future use.

6.3 ContourNet Training

The training stage of ContourNet is shown in Figure 6.2. During training, we prepro-

cess the simulation data into input image vt,s(i) and obtain labeled samples b̃t,s(i) from

scientists. We further improve the accuracy of ContourNet by introducing propagated la-

bels.
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Data preprocessing. Because the input image vt,s(i) is not directly available from the

simulation, we need to preprocess the simulation data. Based on the instructions from

scientists, we first derive ft,s(x) by normalizing the electrostatic potential field with the

plasma temperature. The field data, which are defined on a 2D unstructured mesh, are

stored in multiple HDF5 files. Because the current CNN implementations do not inherently

support unstructured mesh data, we interpolate and convert the data into a 400×400 regular

mesh, which is fine enough to capture blobs for this study. During mask preparation, we

collect all the labeled blobs for a time step and slice combination and generate another

regular 400×400 grid with blob areas set to 1 and the rest to 0.

Label propagation. We propagate the blob labels b̃t,s(i) to a few neighboring time

steps to increase the amount of training data and ease the amount of time that scientists need

to spend on labeling. Although the propagation is an approximation and cannot be used to

detect newly appeared or disappeared blobs, based on the verification from scientists, the

propagated blobs are acceptable for the training purpose. A set of propagated labels can

be seen in Figure 6.3. In each image, we show blobs as filled regions rather than contours

as we used a region-based coefficient to select the best matches. In the figure, (a) shows

the expert labels at time step 60, (b) is the propagation to time step 59 which shows very

good quality. The propagation to time step 65 is shown in (c). Here we can already see the

quality deteriorating as fewer blobs are propagated, but the output is still acceptable. In

(d), we can see that the propagation to time step 70 showing even fewer blobs, resulting in

a misleading training sample.

Formally, we propagate the labels b̃t,s(i) to the next n time steps {t +1, . . . , t +n}. The

propagation to preceding time steps can be done similarly. Based on the verification from

scientists, we set n = 5 to achieve a balance between the propagation precision and the

number of propagated labels. With this setting, the propagation enables us to generate ten

times the labeled blobs that we obtained from the scientists.

The propagation is an iterative process over the consequent time steps. In the kth
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(a) (t,s) = (60,10) (b) (t,s) = (59,10) (c) (t,s) = (65,10) (d) (t,s) = (70,10)

Figure 6.3. Four different time steps showing the same slice with the
expert-labeled (a) or propagated (b-d) blobs. (t,s) are for time step ID and slice

ID, respectively. We use the underlying density values ρt,s as the background and
overlay them with the blobs in yellow. The density values are clamped to [−1,1].

The background is light gray. The images use a 400×400 pixel resolution.

iteration, we find all blob candidates ct+k,s(i) that are already labeled as blobs, that is,

b̃t+k,s(i) = 1 for all i. We then compare each ct+k,s(i) with all possible blob candidates

ct+k+1,s(i′) using the Dice coefficient [51]. The Dice coefficient for two binary images is

defined as

dice(I1, I2) =
2×|V (I1)∩V (I2)|
|V (I1)|+ |V (I2)|

, (6.4)

where I1 and I2 are the two blob candidates being compared, and V (·) is the number of

nonzero elements in the image. We then find the blob candidate ct+k+1,s(i′) with the max

Dice coefficient

argmax
i′

dice
(
ct+k,s(i),ct+k+1,s(i′)

)
, (6.5)

and label b̃t+k+1,s(i′) as 1. If there is no overlap found, we disregard all candidates.

To generate possible blob candidates, we exhaustively sample the area close to the
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outer wall at a given slice s at time step t. To do so, we first filter the ring-like structure

of the cross-section. Starting from the remaining area, we inspect every pixel and use it

as a seed point to compute an isocontour with its corresponding value and fill the area for

propagation.

Training process. We use all labels b̃t,s(i) including both expert labels and propagated

labels to train ContourNet. Domain scientists labeled every slice for time step 60, yielding

a total of 225 labeled blobs for 15 slices. We extend this set with our label propagation

strategy to obtain a total of 165 slices label with about 15 blobs for each slice. We then

train ContourNet for 100 epochs on these sets of training data. One epoch took about 52

seconds on a server with an Intel Core i7-7700K 4.2GHz quad-core processor, 32GB main

memory, and an NVIDIA Titan Xp GPU. Every input slice comes with a ground-truth

mask which is used to compare the weighted cross-entropy loss defined as follows

L =−(δB log(p)+ γ(1−B) log(1− p)) , (6.6)

where B is the ground truth segmentation mask, p is the predicted likelihood for each pixel

to be part of a blob, and δ and γ are, respectively, the weighting factors for the blob and

non-blob classes. For the results shown in Chapter 6.4, we set δ to 5 and γ to 1.

6.4 Results and Discussion

We used 90% of our data for training and 10% for inference. Among the testing set,

the prediction yields a Dice score of 0.628. A commonly acceptable Dice score for seg-

mentation tasks is ≥ 0.7. However, in our scenario, we lower the requirement to a score

of ≥ 0.6 for two reasons. First, we compare inferred results to heuristically generated and

noisy “ground truth” (propagated results). Second, small-scale blobs are very difficult to

segment and jointly, they only account for a fraction of the image. The average prediction

time was 7.56 seconds (segmentation 0.52s, contour extraction 7.04s). In the following,

112



(a) (t,s) = (60,6) (b) (t,s) = (60,6) (c) (t,s) = (60,7) (d) (t,s) = (60,7)

Figure 6.4. Comparing ContourNet’s segmentation results to the ground truth.
(a) and (c) show the predictions (red), whereas (b) and (d) show the ground truth

(yellow).

we discuss selective results in detail.

Comparison to the ground truth. Figure 6.4 shows the comparison of our prediction

and the ground truth at time step 60. Note that we show the images side by side to avoid

the overlap of contours. In (a), we can see that the overall prediction for slice 6 is very

good. While some of the blobs differ in the shape or position from the ones shown in (b),

the differences are relatively low. In (c), we can see that ContourNet detects more blobs

than shown in the ground truth for slice 7. Besides that, some of the blobs have different

shapes (bottom right) and there are a few missing ones (top center and right). These results

are mostly false positives. We point out that the goal of ContourNet is to assist scientists

in identifying blobs, and therefore, false positives are better than a false negatives.

Figure 6.5 shows a comparison of our prediction and the propagated labels at time step

56. (a) and (b) show slice 8 with ContourNet predicting some false positives (center right,

bottom). However, the shapes of the detected blobs seem fairly accurate. In (c) and (d), we

can see that the prediction for slice 12 is more accurate but misses some of the blobs (top

center, right middle).

Expert evaluation. We conduct an expert evaluation of ContourNet with fusion sci-

entists. Their feedback is as follows. All in all, ContourNet correctly identifies relevant
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(a) (t,s) = (56,8) (b) (t,s) = (56,8) (c) (t,s) = (56,12) (d) (t,s) = (56,12)

Figure 6.5. Comparing ContourNet’s segmentation results to the propagated
ground truth. (a) and (c) show the predictions (red), whereas (b) and (d) show the

ground truth (yellow).

(a) (t,s) = (30,7) (b) (t,s) = (55,9) (c) (t,s) = (70,10) (d) (t,s) = (170,6)

Figure 6.6. ContourNet segmentation results where contours are highlighted in
red.

potential blob candidates across a large spectrum of different simulation data. Figure 6.6

shows toroidal slices of the simulation data at four different time steps. These instances

show a variety of situations that typically occur in simulations. In (a), a large number of

potential blobs can be seen at the magnetic separatrix. ContourNet identifies the relevant

large-amplitude regions in the data and visually, no other region would be a blob candidate.

The situation in (b) is more difficult. Again, ContourNet correctly identifies the relevant

large-amplitude regions of the image. Note that these regions appear more stretched out
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along the poloidal direction than in (a). On the other hand, the negative regions in the

outboard mid-plane region might be relevant for the physics of the system. In (c), per-

turbations of the electric potential can be seen all along the separatrix. Here ContourNet

identifies contour regions only on the rightmost half, the region where blob dynamics are

most relevant to plasma confinement. This inference result is significantly better than the

corresponding propagated result shown in Figure 6.3 (d). The simulation data shown in (d)

are a difficult test case. Again, small-scale perturbations of the potential appear all along

the magnetic separatrix. These stretch out over an X-shaped region at the bottom of the

simulation domain. ContourNet identifies multiple blob instances, two of them in the X-

shaped bottom region. This area is relevant for the physics underlying blob motion. There

are no regions identified in the left half of the image, a region that is not very relevant for

blob motion.

6.5 Conclusions

We have presented ContourNet, a deep CNN to detect blobs as local isocontours in the

XGC plasma fusion simulation. ContourNet learns from expert labeled data and profits

from a label propagation strategy that allows us to heuristically label neighboring time

steps from the ones labeled by experts. We further present expert evaluation agreeing with

the performance of ContourNet. Our work provides a baseline for future improvement that

uses only minimal labeling effort.
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CHAPTER 7

A STUDY OF DEEP LEARNING APPROACHES FOR UNSTEADY FLOW FIELD

RECONSTRUCTION

In this chapter, I conduct a study of deep learning frameworks to synthesize vector

fields of missing time steps in unsteady VFD. Large-scale unsteady flow simulations can

often afford to output the vector fields only at a coarse temporal granularity. Augmenting

the temporal resolution during post-processing will lead to higher quality analysis and

visualization of the underlying flow field data. In this study, I train three different variants

of a deep CNN based on the vector fields of two non-adjacent time steps. During the

reconstruction, the network only uses a pair of vector fields as input and synthesizes the

missing ones in between the input pair.1

7.1 Study Description

Flow visualization is a core area of research in scientific visualization. While there are

many methods developed for flow visualization, the ones based on integration is the most

popular one for three-dimensional VFD. For integration-based methods, seeds are placed

in the vector field and traced as streamlines (steady flow) and pathlines (unsteady flow) for

visualization. In this chapter, I focus on unsteady vector fields.

Scientists performing large-scale flow simulations usually run into the problem of hav-

ing only limited storage possibilities, and therefore, they only save the output sparsely.

1This study is part of an ongoing project.
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This is especially challenging due to the storage and data movement limitations in high-

performance computing systems, which allows scientists to store only the most relevant

data for post hoc analysis. As this form of data reduction is an inevitable threat to analysis,

data reconstruction and restoration becomes necessary to enable detailed insight into the

data. In our scenario, we consider unsteady vector fields, typically stored sparely (e.g.,

every fifth or tenth time step) during simulation time. Our goal is to restore unsaved inter-

mediate time steps to accurately reconstruct missing output in a post-processing step.

This task poses several challenges. First, the uvw channels of a vector field, unlike

the rgb channels of an image, could have dramatically different ranges. For instance,

u ∈ [−5,3], v ∈ [−0.03,0.05], and w ∈ [−10−4,10−2]. Treating these channels equally

using a CNN, RNN, or GAN would not work because components with a larger range will

eliminate the smaller ones during convolutional operations.

Second, the change over time in VFD does usually not exhibit linear behavior. Thus

linear interpolation (LERP) would not lead to desirable results because it interpolates the

vectors based on local information rather than considering the global evolution and non-

linear changes.

Third, VFD need to be accurate in both magnitude and angle. Only using one of

those measures during optimization could lead to inaccurate flow behavior. To reconstruct

missing VFD, we should account for both measures.

To tackle these challenges, we propose channel CNN (CCNN), an approach for un-

steady VFD reconstruction using a deep neural network. The goal of this study is to let

CCNN learn the nonlinear behavior along both the spatial and temporal dimension to gen-

erate accurate intermediate vector fields. Doing so, we employ a combination of losses,

considering both vector magnitude and angle. Furthermore, we split the three components

into three different networks to solve the value-range problem. Given two vector fields for

interpolation, CCNN can synthesize the missing intermediate vector fields after the train-

ing converges. We perform quantitative and qualitative evaluation of different variants of
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CCNN on data sets with different characteristics.

The main contributions of this study are as follows. First, this is the first attempt that

uses a deep neural network for unsteady vector field reconstruction. Second, we combine

both magnitude and angle loss for the optimization of CCNN. Third, we propose a new net-

work architecture separating the input channels, which is untypical for other tasks such as

image or volume super-resolution. Fourth, this study investigates several hyperparameter

settings and their impact on the performance.

Figure 7.1. Overview of the CCNN framework. A sequence of vector fields is
used as input and decomposed into three separate networks. Intermediate vector

fields are synthesized.

7.2 CCNN

Figure 7.1 shows an overview of our framework. Given a sequence of vector fields

F = {F1, · · · ,Fk}, we subdivide it into FT = {F1, · · · ,Fn} as the sequence of vector fields

used for training, and FI = {Fn,Fn+s, · · · ,Fn+ms} as the sequence of vector fields used for

inference. s is defined as the interpolation interval, which is the granularity at which rate

the input data are stored. Each Fi consists of three different channels Fi,u, Fi,v, and Fi,w.
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We denote L, H, and W as the three spatial dimensions of the vector fields F. For the

neural networks (u-Net, v-Net, and w-Net), we denote the learnable parameters as θU , θV ,

and θW , respectively.

We study an interpolation function I with the goal of I (Fi,Fi+s)≈{Fi+1, · · · ,Fi+s−1},

where i ∈ [n,n+ s, · · · ,n+(m−1)s]. This means, given the vector fields at both ends of an

interpolation interval s: Fi and Fi+s, we interpolate s− 1 intermediate vector fields: Fi+1

to Fi+s−1.

CCNN accepts Fi and Fi+s as input and decomposes each vector into its three com-

ponents: (Fi,u, Fi,v, and Fi,w) and (Fi+s,u, Fi+s,v, and Fi+s,w). Three independent neural

networks (u-Net, v-Net, and w-Net) process each of the components to interpolate the in-

termediate time steps:

{F̂ i+1,u, · · · , F̂ i+s−1,u} ≈Iu(F i,u,F i+s,u), (7.1)

{F̂ i+1,v, · · · , F̂ i+s−1,v} ≈Iv(F i,v,F i+s,v), (7.2)

{F̂ i+1,w, · · · , F̂ i+s−1,w} ≈Iw(F i,w,F i+s,w). (7.3)

Once completed, CCNN concatenates the synthesized components {F̂i+1,u, · · · , F̂i+s−1,u},

{F̂i+1,v, · · · , F̂i+s−1,v}, and {F̂i+1,w, · · · , F̂i+s−1,w} into {F̂i+1, · · · , F̂i+s−1}.

The goal is to minimize the difference between the interpolated vector fields F̂ and the

ground-truth F. During training, the difference is propagated to u-Net, v-Net, and w-Net to

find the best global settings of θU , θV , and θW . Next, we describe the network architecture

and loss function of CCNN, followed by the optimization details used during training.
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Figure 7.2. Network architecture of CCNN. We omit ReLUs in the figure for
brevity. CCNN consists of three paths, an encoding, a refining, and multiple

decoding ones.

7.2.1 Network Architecture

As shown in Figure 7.1, CCNN uses two sampled vector fields (i.e., Fi and Fi+s) as

input and leverages the three separate neural networks to interpolate each of the vectors’

components individually to finally produce the intermediate vector fields F̂. We leverage

two techniques in CCNN to guarantee the network’s performance: (1) we add residual

blocks (RBs) [92] to circumvent the gradient vanishing problem and (2) we apply skip

connection [174] to incorporate temporal information to improve the quality of the inter-

polated vector fields.

RBs connect feature maps directly from earlier layers to later layers, allowing the gra-

dient to be calculated through multiple paths. He et al. [92] has shown to alleviate the

gradient vanishing problem during network training. A typical RB consists of multiple

paths. One path has several convolutional (Conv) layers that do not change the input di-

120



mensions. The other path has only one Conv layer that processes the input. Finally, both

paths’ outputs are added together. In addition, we use skip connection to incorporate tem-

poral coherence. We do so by allowing information flow from starting and ending vector

fields into the generative process for the synthesized vector fields. This allows CCNN to

leverage the temporal information rather than only considering deep spatial features.

During this process, more specifically, a feature map is fed into RB to extract and

refine higher-level features to be added to the input feature map. Skip connections stack

their output feature maps from the encoding stage on top of the input feature maps during

the decoding stage at their respective level. A single Conv is used to merge the stacked

features into a feature map of the corresponding size.

Figure 7.2 shows the network architecture of each of the three corresponding networks.

The network consists of an encoding path, a refining path, and s− 1 decoding paths (s is

the interpolation interval). There are four Conv layers in the encoding path, several RBs

in the refining path, and four composites of deconvolutional (DeConv) and Conv layers

in the decoding path. Throughout the encoding path, each of the four Conv layers halves

the input dimensions. In the refining path, RBs are used to refine the output feature maps

from the encoding path. In each decoding path, DeConv layers double the dimensions of

the features maps. As previously mentioned, we add skip connection to merge the features

maps from the encoding and decoding paths.

After each Conv and DeConv layer, a rectified linear unit (ReLU) [159] is added to help

networks learn faster and perform better. Note that there is no activation function after the

final Conv layer. Full details of the network’s parameters are shown in Table 7.1. We opted

to use separated decoding paths, because the dynamic behaviors of unsteady flow could

lead to similar flow behaviors in synthesized vector fields from a weight-sharing decoder

(i.e., s−1 decoders sharing the same weights).
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TABLE 7.1

PARAMETER DETAILS FOR THE CCNN ARCHITECTURE.

type kernel size output channels output size

Input N/A 1 L×H×W

Conv+ReLU 4 64 L/2×H/2×W/2

Conv+ReLU 4 128 L/4×H/4×W/4

Conv+ReLU 4 256 L/8×H/8×W/8

Conv+ReLU 4 512 L/16×H/16×W/16

K×RBs 3 512 L/16×H/16×W/16

DeConv+ReLU 4 256 L/8×H/8×W/8

Conv+ReLU 3 256 L/8×H/8×W/8

DeConv+ReLU 4 128 L/4×H/4×W/4

Conv+ReLU 3 128 L/4×H/4×W/4

DeConv+ReLU 4 64 L/2×H/2×W/2

Conv+ReLU 3 64 L/2×H/2×W/2

DeConv+ReLU 4 32 L×H×W

Conv 3 1 L×H×W

The listed parameters are for a single network of the three u,v,w-nets.

7.2.2 Loss Function

The synthesized quality of vector fields depends on the speed (magnitude) and direc-

tion (angle) of each of their vectors. Specifically, both attributes have a significant influ-

ence on streamline and pathline tracing, and errors could accumulate, leading to inaccurate

streamline and pathline tracing and rendering results. To optimize CCNN’s parameters via

backpropagation, the differences in both of these have to be computed between the synthe-

sized intermediate and ground truth vector fields. While the difference in magnitude of a

122



vector can be substituted for LM, the mean squared error (MSE) by omitting the square

root operations, the angel difference needs to be computed.

We define the angle loss as

LA =
1

k×L×H×W

k

∑
j=1

arccos(F j, F̂ j), (7.4)

where k is the number of training samples, arccos(·) is the inverse cosine function, and F j

and F̂ j are the ground-truth and synthesized vectors at the jth training sample, respectively.

Combining both losses, we define the final loss function as follows

L = λLA +(1−λ )LM, (7.5)

where λ ∈ [0,1] is the impact of the angle loss.

7.2.3 Optimization

The training process of CCNN is as follows. The training data FT = {F1, · · · ,Fn} is

reorganized as vector field pairs (F1,Fs+1),(F2,Fs+2), · · · ,(Fn−s,Fn). With the vector field

pairs, θU , θV , and θW , and λ , we update CCNN iteratively by applying stochastic gradient

descent (SGD) for a preset number of epochs. During each epoch, CCNN processes all

the training sample pairs. Given a vector field pair, CCNN outputs the intermediate vector

fields. Using Equation (7.5), the gradients 5θU L , 5θV L , and 5θW L are computed.

Using an optimizer and a predefined learning rate allows us to automatically update the

parameters θU , θV , and θW with the gradients. The inference stage behaves the same, with

the exception that gradients are not computed.
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TABLE 7.2

UNSTEADY FLOW DATA SETS

data set dimension (L×W×H×T) crop size δe training time (s)

Square Cylinder 192×64×48×97 full 1.521 50.2

Tornado 128×128×128×43 full 2.028 167.2

Solar Plume 128×128×512×25 80×80×320 3.25 63.3

Hurricane 256×256×56×43 224×224×48 3.25 188.3

Supernova 256×256×256×121 128×128×128 3.0 105.74

The experimented data sets with their dimensions, the used crop size, the entropy value used for entropy-
based evaluation and the training time of a single epoch

7.3 Preliminary Results

7.3.1 Data Sets and Network Training

Table 7.2 shows the simulation data sets we experimented with, including their dimen-

sion, crop size, selected entropy threshold δe (see Chapter 7.3.3), and training time, sorted

by the volume size of a single vector field. The inference for a given interpolation interval

takes between 0.25 and 0.34 second, depending on the size of the data set. From top to

bottom, these data sets depict, respectively, the 3D flow around a square cylinder between

parallel walls [208], a procedurally generated tornado [46], the compressible downflow of

a solar plume [171], a simulation of hurricane Isabel (a strong hurricane in the western At-

lantic region in September 2003) made available through IEEE Visualization 2004 Contest,

and the flow of core-collapse supernova [16].

We trained three different architectures for our evaluation. CCNN is the network ar-

chitecture shown in Chapter 7.2.1. LSTM adapts CCNN by adding an ConvLSTM cell

between the last RB and the decoders. GAN trains a general adversarial network, using

CCNN as the generator and a simple CNN (four Conv and LeakyReLU layers) as the dis-
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(a) GT (b) CCNN (c) GAN (d) LSTM

Figure 7.3. Comparison of the traced pathlines. From top to bottom: Square
Cylinder, Tornado, Solar Plume, Hurricane, and Supernova. (All variants use the
same seeds for pathline tracing. A difference image is shown at the bottom-right

corner.
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criminator. A single NVIDIA TESLA V100 GPU was used for training and testing except

for LSTM, which needed to be split into two NVIDIA TESLA V100 GPUs due to mem-

ory limitations. For each epoch, we use a random crop with the size depicted in Table 7.2

from a vector field pair (Fi,Fi+s) due to memory constraints. Note that for the Tornado

and Square Cylinder data sets, we use the full vector field size. This cropping mechanism

speeds up the training process and allows processing of large vector fields.

For optimization, the parameters are initialized by He et al. [91] and updated through

the Adam optimizer [118]. We set one training sample per minibatch. We set the learn-

ing rate to 10−4, β1 = 0.9, and β2 = 0.999 for the Adam optimizer. The networks were

trained for 1,500 epochs per data set. Note that we stopped training for GAN when the

discriminator collapsed.

7.3.2 Qualitative Evaluation

For qualitative evaluation, we use different ways to visualize the complete vector field

sequences FC = F T ·F I = {F1, · · · ,Fn,Fn+1, · · · ,Fn+ms} where · denotes concatenation.

Let Fk be Fn+ms. First, we trace and render pathlines from F1 to Fk (Figure 7.3). Second,

we trace and render streamlines in the vector field Fk− s
2

(Figure 7.4) as this should be the

worst possible result for our methods because it is in the middle of the interval furthest

away from FT . Third, we depict the error volume for the vector field Fk− s
2

(Figure 7.5)

defined as follows

E (F, F̂) = E (F[i], F̂[i]), for each i ∈ F, (7.6)

where the voxel error for the ith voxel in F is given by

E (F[i], F̂[i]) =
√

∑
j∈u,v,w

(F[i] j− F̂[i] j)2, (7.7)

and F̂ is the synthesized vector field.

Figure 7.3 shows the traced pathlines for the five data sets. All of the pathlines are
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traced through the whole sequence (F1, Fk). The pathlines are colored by velocity magni-

tude from dark red (low) to yellow (high). For easy comparison, we show the difference

image between the ground truth and the corresponding image at the bottom-right corner.

The difference image is derived by calculating pixelwise differences (the Euclidean dis-

tances) in the CIELUV color space of streamline or pathline rendering images generated

from the synthesized and original VFD. We map the noticeable pixel differences (with

∆≥ 6.0) to nonwhite colors (clamping differences larger than 255). For the Square Cylin-

der data set, we can see that CCNN produces errors mostly in the boundary region, but

has a better grasp of the center. Here the LSTM variant seems to perform better, showing

fewer errors in the difference image. Similar to this, but not as significant is the difference

for the Solar Plume data set. However, the errors spread throughout the whole volume.

For the Tornado data set, CCNN performs the best among the three candidates, whereas

GAN and LSTM show many errors. For the Hurricane data set, all methods show many

errors throughout the whole vector field. However, CCNN has some white region (zero

error) closer to the hurricane’s eye. This data set depicts the movement of a hurricane. It is

quite difficult to reconstruct missing information due to significant changes between time

steps. Lastly, the difference images for the Supernova data set shows that all versions have

difficulty in capturing the behavior in the boundary region. Overall, we can see that GAN

does not perform as well as the other two (CCNN and LSTM).

The next comparison, shown in Figure 7.4, shows the streamlines for all data sets at

time step Fk− s
2
, which is the time step in the middle of the interval furthest away from the

training samples. The streamlines are colored by velocity magnitude from blue (low) to

red (high). Similar to the pathline images, we show the difference image at the bottom-

right corner. The tracing results show very similar quality as those for pathlines. CCNN

and LSTM usually perform well at the center of the feature region but struggle at the

boundary. For the Tornado data set, we can see that CCNN performs better than LSTM,

while the other data sets show very similar quality. Similar to the pathlines comparison,
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(a) GT (b) CCNN (c) GAN (d) LSTM

Figure 7.4. Comparison of the traced streamlines. From top to bottom: Square
Cylinder, Tornado, Solar Plume, Hurricane, and Supernova. All variants use the

same seeds for streamline tracing. A difference image is shown at the
bottom-right corner.

128



GAN performs the worst among the three methods.

Figure 7.5 shows the error volumes between each method and the ground truth for all

data sets at time step Fn+ms− s
2
. The images in the left column show the color map for

each data set, respectively, ranging from blue (low) to red (high). For the Square Cylinder

and Hurricane data sets, it is immediately visible that there are small errors throughout the

whole vector field across all three variants. In the case of the Square Cylinder data set,

CCNN only shows a tiny red area at the center, and two small ones along the right border,

while GAN and LSTM also have some more high-error regions at the center residing in

the feature region. The other case with the Hurricane data set shows that all methods have

error regions at the center of the hurricane’s eye, and smaller errors to almost no errors

further away from it. However, among all three methods, CCNN has the smallest high-

error region at the center of the hurricane’s eye. For the Tornado data set, we set the lower

bound of the error to 2.2∗10−2 to avoid having minute errors obscuring the feature region.

These tiny errors occur across all methods and vector fields. The center, however, shows

that LSTM and CCNN most accurately synthesize the feature region while GAN produces

the error in the form of a swirl below the top of the tornado. The error volumes for the

Solar Plume data set show that all methods have some errors at the center of the solar

flare. GAN has small errors in the boundary region, while LSTM and CCNN show minute

errors there. Upon closer inspection of the feature region, one could see that there are

almost no red areas in the rendering of the error volume for all methods. This suggests

that these methods produce pretty accurate results by keeping the maximum error down.

Last, we show the Supernova data set’s error volumes, also with a lower boundary to avoid

occlusion from non-significant errors in the boundary region. Here we see very similar

results for all methods. However, it is worth noting that, compared to other methods,

CCNN has fewer but larger high-error regions. This shows that CCNN usually performs

very well in the feature region and has small errors spreading throughout the vector field.
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(a) CCNN (b) GAN (c) LSTM

Figure 7.5. Error volumes for Fk− s
2
. From top to bottom: Square Cylinder,

Tornado, Solar Plume, Hurricane, and Supernova.

130



7.3.3 Quantitative Evaluation

For quantitative evaluation, we use the peak signal-to-noise ratio (PSNR) and average

angle distance (AAD) as metrics. PSNR is defined as

PSNR(F, F̂) = 20log10 I(F)−10log10 MSE(F, F̂), (7.8)

where F and F̂ are the original an reconstructed vector fields, respectively, I(F) describes

the value range of the vector field as

I(F) = max(F u,F v,F w)−min(F u,F v,F w), (7.9)

where Fu, Fv, and Fw are the velocities for the components u, v, and w in F, respectively.

MSE(F, F̂) is the mean squared error between F and F̂, defined as

MSE(F, F̂) =
1

3×L×W ×H

L×W×H

∑
i=1

∑
j∈u,v,w

(F[i] j− F̂[i] j)
2, (7.10)

where F[i] and F̂[i] are the vectors of F and F̂ at voxel i, respectively.

AAD averages the difference of the angles of all the corresponding vectors in both F

and F̂ as follows

AAD(F, F̂) =
1

L×W ×H

L×W×H

∑
i=1

arccos
F[i] · F̂[i]
‖F[i]‖‖ F̂[i]‖

/π, (7.11)

where · denotes the dot product, ‖ · ‖ denotes the magnitude of a vector. Note that if either

of the vectors is the zero vector, then the value of arccos is undefined. In this case, we set

it to the maximal error of π .

Table 7.3 shows PSNR ↑ (higher is better) and AAD ↓ (lower is better) values for all

data sets and methods we have experimented. We highlight the best value for each data

set and metric in bold. As we can see, CCNN dominates the PSNR rating, showing that
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TABLE 7.3

PSNR ↑ AND AAD ↓ FOR ALL DATA SETS AND METHODS

data set method PSNR ↑ AAD ↓

Square Cylinder

GAN 32.401 0.027

LSTM 41.883 0.187

CCNN 42.049 0.170

Tornado

GAN 46.013 0.020

LSTM 53.250 0.004

CCNN 54.045 0.004

Solar Plume

GAN 43.506 0.237

LSTM 46.548 0.069

CCNN 46.930 0.087

Hurricane

GAN 40.509 0.156

LSTM 41.381 0.148

CCNN 42.999 0.128

Supernova

GAN 41.664 0.0307

LSTM 44.326 0.0218

CCNN 44.324 0.0217
The best method is highlighted in bold.

the network can adequately learn to synthesize missing vector fields with high precision in

the magnitude of the three vector components. The results for AAD are mixed. From our

experiments, we cannot select a clear favorite. However, CCNN performs either the best

or is close to the best method except for the Square Cylinder data set.

Figure 7.6 shows PSNR and AAD values plotted over time. What we can see from the

plots is that for every data set except the Solar Plume and Supernova data sets, there is a
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Figure 7.6. PSNR (top) and AAD (bottom) plots over all time steps for five
different data sets.

clear split between the intervals Ft and FI . While this is expected, it shows the difficulty in

learning the temporal development in unsteady flow. The plots also make it quite visible

that there is a big difference between the time steps within the interpolation interval. Typi-

cally PSNR (AAD) tends to be lower (higher) in the middle of the interval, as it is further

away from the ground truth input. The only exception to this is CCNN for the Solar Plume

data set. What goes hand in hand with this is a sharp fall in PSNR. This shows a direct

correlation between AAD and PSNR for the Solar Plume data set and the CCNN method.

Besides that, the plots do not consider feature regions and outside regions, in which the

Solar Plume data set has a clear distinction.

To further investigate which method has better performance overall or in feature re-

gions, we employ an entropy-based evaluation.

Entropy-based evaluation. For a more detailed evaluation of the feature regions, we

compute the entropy field for every data set at every time step and then incorporate these

fields into the metric computation. More specifically, let E be the entropy field of F, then
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we update the PSNR computation to

ˆPSNR(F, F̂,E) = 20log10 I(F)−10log10
ˆMSE(F, F̂,E), (7.12)

where ˆMSE is the entropy-based filtered MSE defined as

ˆMSE(F, F̂,E) =
1

L×W ×H

L×W×H

∑
i=1

Ê[i]
3 ∑

j∈u,v,w
(F[i] j− F̂[i] j)

2, (7.13)

and

Ê[i] =


1, i f E[i]≥ δe

0, i f E[i]< δe

where δe is the entropy threshold as listed in Table 7.2.

Similarly, we adapt AAD to

ˆAAD(F, F̂,E) =
1

L×W ×H

L×W×H

∑
i=1

Ê[i]arccos
F[i] · F̂[i]
‖F[i]‖‖ F̂[i]‖

/π. (7.14)

Table 7.4 shows the entropy-based metrics for all data sets and methods. Note that the

values are lower due to evaluating fewer non-zeros, but averaging based on the size of the

vector field. We can see that the PSNR value for the Square Cylinder and Tornado data

sets decreases, while it increases for other data sets. This means that the first two data

sets are reconstructed worse in the feature region than on the boundary, whereas the latter

three experience a better synthesis in the feature region. The main contributor to this is

the size of the vector field. A larger vector field has more voxels in the boundary region

compared to the ones in the feature region. Another interesting finding was that, among

the three methods, GAN gains most from only considering high-entropy regions. That

being said, the relative changes were almost the same across all data sets and methods,

hinting that these methods were already performing well at the center, but not in the outer

regions. For the entropy-based AAD, all methods improve vastly, showing that errors in
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TABLE 7.4

ENTROPY BASED PSNR ↑ AND AAD ↓ FOR ALL DATA SETS AND

METHODS

data set method PSNR ↑ AAD ↓

Square Cylinder

GAN 30.684 8.33∗10−3

LSTM 36.115 8.37∗10−3

CCNN 35.867 7.37∗10−3

Tornado

GAN 42.470 8.38∗10−5

LSTM 49.877 2.12∗10−5

CCNN 50.242 1.91∗10−5

Solar Plume

GAN 54.687 4.04∗10−3

LSTM 58.518 9.17∗10−4

CCNN 58.753 9.09∗10−4

Hurricane

GAN 62.754 1.08∗10−3

LSTM 63.208 1.04∗10−3

CCNN 64.045 9.14∗10−4

Supernova

GAN 45.983 2.84∗10−3

LSTM 30.267 2.19∗10−2

CCNN 30.681 2.55∗10−3

The best method is highlighted in bold.

vector angles are mainly present in the boundary region, which occupies the largest part

of the vector field. Although all methods have a significant change in AAD, CCNN gains

the most, hinting that it synthesizes vectors in feature regions with a better angle accuracy

than outside those regions.

As we can see, CCNN is performing the best among the three versions in terms of
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PSNR, visual quality, and almost always in AAD as well.

(a) GT (b) λ = 0 (c) λ = 0.01

(d) λ = 0.05 (e) λ = 0.1

Figure 7.7. Comparison of different λ settings using the Solar Plume data set.
Images show the pathlines.

7.3.4 Hyperparameter Study

To evaluate CCNN, we analyze the following hyperparameter settings: the choice of

λ , the number of training epochs, the crop size, the interpolation interval s, and whether a

decomposition into the three channels is necessary.

Loss composition factor λ . Figure 7.7 shows different settings of λ for the Solar

Plume data set. Although not instantly visible, the quality of the synthesized vectors at
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the center of the vector field tends to be higher. This is visible on close inspection of

the difference images, showing that λ = 0.05 is overall clearer and has more white space

than the other two. While this has not a huge impact on PSNR (46.93 (b), 46.42 (c),

and 46.67 (d)) the impact on AAD is remarkable. With λ = 0 having an AAD of 0.087,

the slightest increase for λ to 0.01 improves AAD to 0.053 already. Increasing it even

further to λ = 0.05 shows a smaller yet still important impact, resulting in an AAD of

0.042. Although expected, it is generally not easy to pick the right factor for λ , as a too-

large one harms PSNR. This can be seen when increasing λ to 0.1 (e). Not only does the

visual quality of the traced pathlines decreases, but also PSNR decreases to 46.06, and

AAD increases to 0.08. This indicates an over-correction during training based on the

AAD, making the overall result worse in terms of both PSNR and AAD. We generally

recommend using λ = 0.05 as a safe choice.

Training epochs. We investigate the impact of the number of epochs trained on visual

quality, PSNR, and AAD values. For this investigation, we use the Tornado and Solar

Plume data sets.

Figure 7.8 shows the pathlines for the Tornado data set after different training epochs.

We can see that there is no drastic change between the results of the different epochs.

However, the difference images show that there is an improvement in quality at the bottom

of the vector field. Although the rendering shows steady improvement, PSNR fluctuates

from 51,55 (b) to 54.04 (c), followed by 51.99 (d), and then increasing to 52.13 (e) and

52.16 (f). AAD, on the other hand, shows a steady decreasing trend (0.0042, 0.0039,

0.0034, 0.0030, and 0.0032 for (b) (c) (d) (e), and (f), respectively) leading to the steady

improvement in visual quality.

Similar to this, in Figure 7.9, we can see the same behavior for the Solar Plume data set.

While there are only small differences between 1,000 (b) and 1,500 (c) epochs, the core

structure of the plume clears up at 2,000 (d) epochs. After that, it first gets worse at 2,500

(e) and then clears up again at 3,000 (f) epochs. Here, however, PSNR (AAD) increases
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(a) GT (b) 1,000 (c) 1,500

(d) 2,000 (e) 2,500 (f) 3,000

Figure 7.8. Comparison of different training epochs using the Tornado data set.
Images show the pathlines.

(decreases) steadily from 45.49 (0.193) at 1,000 epochs to 48.23 (0.044) at 3,000 epochs.

This shows that there is no apparent convergence, and it might be necessary to train for

further epochs. However, with an average training time of roughly a minute per epoch,

training 3,000 epochs already takes more than two days, making it infeasible to continue

training. Furthermore, the example of the Tornado data set shows that for visual quality,

both PSNR are AAD are essential metrics for a comprehensive evaluation.

Crop size. As big data sets cannot entirely fit into memory, we introduce cropping.

Besides reducing the memory requirements, cropping also increases the training speed. To

investigate the impact of the crop size on the quality of the synthesized vector fields, we
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(a) GT (b) 1,000 (c) 1,500

(d) 2,000 (e) 2,500 (f) 3,000

Figure 7.9. Comparison of different training epochs using the Solar Plume data
set. Images show the pathlines.

used the Supernova data set with a crop size of 32×32×32, 64×64×64, and 128×128×

128. Figure 7.10 shows the traced pathlines for the three different crop sizes. From the

difference image at the bottom-right corner of each image, it is easily visible that 128×

128× 128 (d) shows fewer errors than the other two versions. Interestingly, 32× 32× 32

(b) also shows fewer errors than 64× 64× 64 (c). When it comes to PSNR, the same is

visible comparing 39.6 (b), 43.67 (c), and 44.32 (d). AAD values reveal the same trend

with 0.042 (b), 0.025 (c), and 0.022 (d). Although AAD did not change as drastically

between 64× 64× 64 and 128× 128× 128, the minor change in both PSRN and AAD

are enough to argue for a bigger crop size. As expected, average training per epoch time

favors the 32× 32× 32 version (10.32 seconds) over 64× 64× 64 (22.36 seconds), and

128× 128× 128 (105.74 seconds). This means, if the quality is not the highest priority,

one should opt for a smaller crop size, allowing much faster training.
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(a) GT (b) 32×32×32 (c) 64×64×64 (d) 128×128×128

Figure 7.10. Comparison of different crop sizes using the Supernova data set.
Pathlines are traced over all time steps.

(a) GT (b) s = 6 (c) s = 8 (d) s = 10

Figure 7.11. Comparison of different interpolation interval s using the Tornado
data set. Pathlines are traces over all time steps.

Interpolation interval. Another important parameter for our framework is the inter-

polation interval s. Figure 7.11 shows a comparison of three different settings for s. As

expected, a short interval of s = 6 (b) performs much better than longer intervals. That

being said, there is a big difference between s = 8 (c) and s = 10 (d), showing that after

s = 6, there is a sharp decline in quality. This can also be seen with a decrease in PSNR

with 54.04 (s = 6), 50.39 (s = 8), and 48.88 (s = 10), as well as an increase in AAD 0.004

(s = 6), 0.009 (s = 8), and 0.011 (s = 10). This means that s = 6 is a good choice.
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(a) GT (b) decomposed (c) combined

Figure 7.12. Comparison of decomposed and combined approaches using the
Square Cylinder data set. Pathlines are traces over all time steps.

Channel decomposition. We use the Square Cylinder data set to investigate whether

the decomposition does have a significant impact. The version without decomposition has

the same network architecture as CCNN, except that instead of splitting the three channels

in u, v, and w-net, it is a single network with three input channels instead of one. Fig-

ure 7.12 shows the pathlines traced over all time steps. As we can see, the decomposed

variant (b) synthesizes the feature region with much higher accuracy than the variant with-

out decomposition (c). Even in the boundary regions, the decomposition helps improving

reconstruction accuracy. All this is reflected in PSNR (42.05 and 36.71) and AAD (0.17

and 0.19). Although the decomposition presumably should take a longer time to train, both

variants take the same amount (about 50.17 seconds per epoch).

7.4 Conclusions and Future Work

We have studied three deep learning methods (CCNN, LSTM, GAN) to reconstruct in-

termediate vector fields for unsteady flow data. We design neural nets that take a sequence

of vector fields for training. Once trained, the networks can synthesize intermediate vector

fields from two vector fields at both ends of an interpolation interval as input. Compared

with GAN and LSTM, CCNN yields synthesized vector fields of better visual quality, both

qualitatively and quantitatively.
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In the future, we would incorporate CCNN into an in-situ scenario. During pre-processing,

we will train the network with pre-run data. Then at simulation time, we will output tem-

porally sparsely sampled VFD for storage saving. During post-processing, we will interpo-

late unsaved intermediate time steps. With a recommended interpolation interval of s = 6,

we can synthesize missing vector fields with high accuracy after training CCNN for only

1,500 epochs.
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CHAPTER 8

SPECTRUM-PRESERVING SPARSIFICATION FOR VISUALIZATION OF BIG

GRAPHS

In this chapter, I present spectrum-preserving sparsification (SPS), a spectrum-preserving

framework for sparsification and visualization of big graph data. This is achieved by first

doing edge sparsification followed by iterative node reduction to generate multiple lev-

els of a given graph. Following this, the layout on the coarsest level is computed and

then mapped back to denser levels using an eigenmap procedure. This allows to quickly

compute spectrum-based layouts and clustering for large graphs, as well as interactive

level-of-detail exploration.1

8.1 Background

Consider a graph G = (N,E,w) where N and E are the node set and edge set respec-

tively, and w is a weight function that assigns positive weights to all edges. The symmetric

diagonally dominant Laplacian matrix of G can be constructed as follows

LG(ni,n j) =


−wi j if ei j ∈ E,

∑eik∈E wik if ni = n j,

0 otherwise.

(8.1)

1This work has been accepted as M. Imre, J. Tao, Y. Wang, Z. Zhao, Z. Feng, and C. Wang. Spectrum-
preserving sparsification for visualization of big graphs. Computers & Graphics, 87:89–102, 2020

143



where ni is a node, ei j is the edge between ni and n j, and wi j is the weight of ei j. Graph

sparsification aims to find G′ = (N,E ′,w′), a subgraph or sparsifier of G that maintains the

same set of nodes but fewer edges. To tell if two graphs have similar spectra, we usually

use the following Laplacian quadratic form

xT LGx = ∑
ei j∈E

wi j
(
x(ni)−x(n j)

)2
, (8.2)

where x ∈ RN is a real vector. Two graphs G and G′ are σ−spectrally similar if the

following condition holds for all real vectors x ∈ RN

xT LG′x
σ

≤ xT LGx≤ σxT LG′x. (8.3)

Defining the relative condition number to be κ(LG,LG′) = λmax/λmin, where λmax and

λmin are the largest and smallest nonzero generalized eigenvalues satisfying

LGu = λLG′u, (8.4)

where u is the generalized eigenvector of λ . It can be further shown that κ(LG,LG′)≤ σ2,

which indicates that a smaller relative condition number or σ2 corresponds to a higher

spectral similarity.

The state-of-the-art nearly-linear time spectral sparsification algorithm leverages an

edge sampling scheme that sets sampling probabilities proportional to edge effective resis-

tances [189]. However, it becomes a chicken-and-egg problem since even approximately

computing edge effective resistances by leveraging the Johnson-Lindenstrauss Lemma still

requires solving the original graph Laplacian matrix log |N| times and thus can be ex-

tremely expensive for very large graphs, not to mention directly computing the Moore-

Penrose pseudo inverse of graph Laplacians. For example, a recent work on graph drawing

using spectral sparsification shows the major computational bottleneck is due to estimat-
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ing edge effective resistances (by computing the Moore-Penrose pseudo inverse): even

for a relatively small graph with |N| = 7,885, |E| = 427,406, the spectral sparsification

procedure can take several hours to complete [58].

8.2 Our Approach

Layout Computation

Spectral Clustering Multilevel Eigensolver Graph Drawing

Input Graph
Spectral Edge Sparsification

(SES)

Multilevel Node Reduction

(MNR)
Eigenvector Computation

Figure 8.1. The diagram of our SPS framework. Layout computation could use
the eigenvector-based layout, t-SNE-based layout, or any other graph drawing

algorithm.

Figure 8.1 shows an overview of our SPS framework. Given the input graph, we first

perform SES (Chapter 8.2.1) to reduce the number of edges. Next, based on the edge spar-

sification results, we perform MNR (Chapter 8.2.2) to further produce multiple levels of

node simplification. This leads to a fairly small graph that preserves spectrally-important

nodes and edges, allowing us to compute the eigenvectors of the graph Laplacian in an ef-

ficient manner. We then use these eigenvectors as input for dimensionality reduction using

t-distributed stochastic neighbor embedding (t-SNE) [204, 205] and for spectral clustering

using k-means. For spectral graph drawing (Chapter 8.2.3), we can layout the most sim-

plified level of the graph based on the eigenvectors, t-SNE, and clustering results, where

node positions are determined by either the leading eigenvectors or t-SNE projection and

node colors are determined by spectral cluster labels. To obtain the graph drawing at a finer
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level, we can compute positions for newly-added nodes based on a multilevel eigensolver

without recomputing the layout. Note that our SPS framework can readily work with other

graph drawing algorithms by replacing the layout based on eigenvectors, t-SNE, or with

another one.

8.2.1 Spectral Edge Sparsification

We outline the key steps of the proposed method for spectral graph sparsification of a

given undirected graphs as follows: (1) low-stretch spanning tree extraction based on the

original graph [2, 62]; (2) spectral embedding and criticality ranking of off-tree edges us-

ing approximate generalized eigenvectors leveraging the recent spectral perturbation anal-

ysis framework [64]; (3) subgraph densification by recovering a small portion of the most

“spectrally critical” off-tree edges to the spanning tree; and (4) subgraph edge weight scal-

ing via stochastic gradient descent (SGD) optimization.

In the following, we assume that G = (N,E,w) is a weighted, undirected, and con-

nected graph, whereas G′ = (N,E ′,w′) is its graph sparsifier. The descending generalized

eigenvalues of L+
G′LG are denoted by λmax = λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0, where L+

G′ denotes

the Moore-Penrose pseudoinverse of LG.

Spectral distortion of spanning-tree sparsifiers. Spielman [193] showed that there

are not too many large generalized eigenvalues for spanning tree sparsifiers: L+
G′LG has at

most k generalized eigenvalues greater than stG′(G)/k, where stG′(G) is the total stretch of

the spanning-tree subgraph G′ with respect to the original graph G that can be considered

as the spectral distortion due to the spanning tree approximation. Recent research shows

that every graph has a low-stretch spanning tree (LSST) such that the total stretch stG′(G)

can be bounded by [188]

O(|E| log |N| log log |N|)≥ stG′(G) = tr(L+
G′LG) = ∑

|N|
i=1 λi ≥ σ2, (8.5)
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where tr(L+
G′LG) is the trace of L+

G′LG. As a result, it is possible to construct an ultra-

sparse yet spectrally similar sparsifier by recovering only a small portion of spectrally

critical off-tree edges to the spanning tree. For example, σ -similar spectral sparsifiers with

O(|E| log |N| log log |N|/σ2) off-tree edges can be constructed in nearly linear time [64].

Edge embedding with generalized eigenvectors. To identify the off-tree edges that

should be recovered to the spanning tree to dramatically reduce spectral distortion (the total

stretch), Feng [64] introduced an off-tree edge embedding scheme using generalized eigen-

vectors, which is based on the following spectral perturbation framework. Considering the

following first-order eigenvalue perturbation problem

LG(ui +δui) = (λi +δλi)(LG′+δLG′)(ui +δui), (8.6)

where a perturbation δLG′ is applied to LG′ , which results in perturbations in generalized

eigenvalues λi+δλi and eigenvectors ui+δui for i = 1, . . . ,n, respectively. The first-order

perturbation analysis shows that [64]

−δλi

λi
= uT

i δLG′ui, (8.7)

which indicates that the reduction of λi is proportional to the Laplacian quadratic form of

δLG′ with the generalized eigenvector ui. Consequently, if the eigenvector u1 is applied,

a significant reduction of the largest generalized eigenvalue λ1 can be achieved. Once all

large generalized eigenvalues are dramatically reduced, the subgraph G′ can serve as a very

good spectral sparsifier of G.

To achieve effective reductions of large generalized eigenvalues, we exploit the fol-

lowing two key steps: (1) recover a small portion of most spectrally-critical off-tree edges

into the spanning tree; (2) scale up edge weights in the subgraph G′ to further improve the

approximation. Additionally, the scaling factor obtained for each edge can be treated as its

spectral importance in the subgraph: a larger scaling factor may indicate a more important
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role that the edge plays in mimicking the original graph.

Subgraph densification. If we denote e jk ∈ RN the vector with only the j-th element

being 1, the k-th element being −1, and others being 0, then the eigenvalue perturbation

due to the inclusion of all off-tree edges can be expressed as follows

−δλi

λi
= uT

i δLG′,maxui = ∑
e jk∈E\E ′

w jk

(
eT

jkui

)2
= ∑

e jk∈E\E ′
H jk(ui), (8.8)

where δLG′,max = LG−LG′ denotes the Laplacian including all off-tree edges, H jk(ui) de-

notes the Joule heat (power dissipation) of edge e jk by considering the undirected graph G

as a resistor network and ui as the voltage vector. Equation (8.8) can also be considered as

a spectral off-tree edge embedding scheme using generalized eigenvectors. It indicates that

when using the first few dominant generalized eigenvectors for off-tree edge embedding,

the top few generalized eigenvalues can be dramatically reduced by recovering the most

spectrally-critical off-tree edges back to the spanning tree. In practice, we can leverage ap-

proximate eigenvectors computed via a few steps of generalized power iterations for good

efficiency [64]:

• Step 1: Compute an approximate generalized eigenvector ht from an initial random
vector h0 via t-step generalized power iterations

ht =
(
L+

G′LG
)t h0 =

(
L+

G′LG
)t
|N|
∑
i=1

αiui =
|N|
∑
i=1

αiλ t
i ui; (8.9)

• Step 2: Compute the Joule heat of all off-tree edges with ht by

hT
t δLG′,maxht = ∑

|N|
i=1 (αiλ t

i )
2(λi−1)

= ∑e jk∈E\E ′w jk ∑
|N|
i=1 α2

i λ 2t
i

(
eT

jkui

)2
= ∑e jk∈E\E ′H jk(ht).

(8.10)

Similar to Equation (8.8), Equation (8.10) also allows embedding generalized eigenvalues

into the Laplacian quadratic form of each off-tree edge and thus ranking off-tree edges

according to their spectral criticality levels: recovering the off-tree edges with the largest

edge Joule heat values will most significantly decrease the largest generalized eigenvalues.
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In practice, using a small number (e.g., 0 < t < 3) of power iterations suffices for the

embedding purpose.

Subgraph edge scaling via SGD iterations. Once a sufficient number of off-tree

edges (O(|E| log |N| log log |N|/σ2)) are selected and recovered to the spanning tree, the

subgraph can already well mimic the original graph by approximating its first few Lapla-

cian eigenvectors. To further mitigate the accuracy loss due to the missing edges in the

subgraph, we introduce a novel edge scaling procedure that scales up edge weights in the

subgraph so that λ1 can be substantially reduced. To this end, we express the dominant

eigenvalue perturbation δλ1 in terms of edge weights perturbation δw as

−δλ1

λ1
= uT

1 δLG′u1 = ∑
e jk∈E ′

δw jk

(
eT

jku1

)2
, (8.11)

which directly gives the sensitivity of λ1 with respect to each edge weight w jk as

δλ1

δw jk
=−λ1

(
eT

jku1

)2
≈−λ1

(
eT

jkht

)2
. (8.12)

With the weight sensitivity expressed in Equation (8.12), SGD iterations can be performed

for scaling up edge weights: during each iteration of SGD, a random vector is first gener-

ated and used to compute the approximate dominant eigenvector (ht) using Equation (8.9)

as well as edge weight sensitivities using Equation (8.12) for the following edge scaling

step; when the edge weight sensitivities are small enough, we can terminate the SGD it-

erations. Since edge weights in G′ will be updated during each SGD iteration, we need

to solve a new subgraph Laplacian matrix LG′ for updating the approximate eigenvector

u1 in Equation (8.12). This can be achieved by leveraging recent graph-theoretic alge-

braic multigrid algorithms that have shown highly scalable performance for solving large

graph Laplacians [125, 141, 236]. Since the subgraph structure remains unchanged with

only edge weights adjusted during the SGD iterations, it is also possible to incrementally

update graph Laplacian solvers for achieving better computation efficiency.
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8.2.2 Multilevel Node Reduction

To generate the reduced graph based on the original graph (in our case, the graph after

SES), our MNR framework applies a spectrum-preserving node aggregation scheme where

the node affinity metric is considered [237]. Given neighboring nodes p and q, the node

affinity between them is defined as [35, 141]

ap,q =
‖(Xp,Xq)‖2

(Xp,Xp)(Xq,Xq)
, (Xp,Xq) =

K

∑
k=1

(
x(k)p ·x(k)q

)
, (8.13)

where X = (x(1), . . . ,x(K)) is a vector set with K test vectors which are computed by ap-

plying a few Gauss-Seidel (GS) relaxations to the linear system of equations LGx(i) = 0

for i = 1, . . . ,K, starting with K random vectors that are orthogonal to the all-one vector

1. If we consider x̃(i) to be the approximate solution of LGx(i) = 0 after a few GS relax-

ations, and x(i) to be the true solution, the error between x̃(i) and x(i) can be expressed as

e(i)s = x(i)− x̃(i). Due to the smoothing property of GS relaxation, e(i)s will only contain the

smooth (low-frequency) modes of the initial error, while the oscillatory (high-frequency)

modes of the initial error will be effectively removed [23]. Based on these K smoothed

vectors in X, we are able to embed each node into a K-dimensional space such that nodes

p and q are considered spectrally-close to each other if their low-dimensional embedding

vectors, xp ∈ RK and xq ∈ RK , are highly correlated. Thus, spectrally-similar nodes p and

q can be aggregated together for node reduction purpose.

The node affinity metric ap,q also reflects the distance or strength of the connection

between nodes p and q. For example, the algebraic distance dp,q can be expressed by

dp,q = 1− ap,q, which can be used to represent the geometric distance in grid-structure

graphs. Nodes with large affinity or small algebraic distance should be aggregated to-

gether to form the nodes in the reduced graph. Based on this node aggregation scheme,

we can generate the next coarser-level graph by applying it to the original graph. To fur-

ther reduce its size, we leverage a multilevel procedure by repeatedly applying the above
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level 1 (finest)
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Figure 8.2. The framework of multilevel node reduction and multilevel
eigensolver.

node reduction procedure to the current-level graph until the desired size of the reduced

graph at the coarsest level is reached, as shown in Figure 8.2. Once the node aggrega-

tion scheme for each level is determined, we can define the graph mapping operators Hi+1
i

(fine-to-coarse) and Hi
i+1 (coarse-to-fine), which can be further leveraged for constructing

the spectrally-reduced graph. For example, given the graph Laplacian LG and the defined

mapping operators from the finest level 1 to the coarsest level r, we can always uniquely

compute the final reduced Laplacian by LR = HR
GLGHG

R , where HR
G = H2

1H3
2 · · ·Hr

r−1 and

HG
R = H1

2H2
3 · · ·Hr−1

r .

The computational cost of node reduction scheme based on the above spectral node
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affinities is linear. This allows us to preserve the spectral properties of the original graph

in a highly efficient and effective manner: the node aggregation scheme will preserve the

smooth components in the first few Laplacian eigenvectors well, which is key to preserving

the first few eigenvalues and eigenvectors of the original graph Laplacian in the reduced

graphs.

Since only the first few nontrivial eigenvectors of the original graph Laplacian are

needed for graph visualization tasks, they can efficiently and effectively be calculated by

leveraging a multilevel eigensolver procedure [237], as shown in Figure 8.2. Instead of

directly solving the eigenvalue problems on the original graph G, we will first reduce G

into a much smaller graph R such that the eigenvectors of the reduced graph can be easily

calculated. Once we get the eigenvectors of graph R, we will map them back to next finer

level using the mapping operators defined during the MNR process. To further improve the

solution accuracy of the mapped eigenvectors, a weighted-Jacobi-iteration-based eigenvec-

tors smoothing (refinement) scheme is applied. The eigenvector mapping and smoothing

procedures are recursively applied until the finest level graph is reached. Finally, all the

eigenvectors for the finest level will be orthonormalized using the Gram-Schmidt process.

Note that the MNR process taken by SPS generates pseudo-nodes that are not in the

node set of the original graph. As shown in Figure 8.3 (a), at each level of node reduction,

our process essentially aggregates nodes into groups and creates a pseudo-node to represent

each group. On the contrary, other node reduction methods do not create pseudo-nodes.

As shown in Figure 8.3 (b), at each level of simplification, they simply sample the graph

and output a subset of nodes from the node set of the original graph. In this process, no

pseudo-nodes are created.

8.2.3 Spectral Graph Drawing

SPS is a practically efficient solution for spectrum-preserving graph sparsification and

Laplacian eigenvalue computation. This enables us to tackle much bigger graphs previ-
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level 1

level 2
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level 2
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Figure 8.3. Comparison of different node reduction processes. (a) shows the
node reduction process taken by our SPS (or METIS) method where

double-circled nodes are pseudo-nodes newly created. (b) shows the node
reduction process taken by graph sampling methods (such as DSS and FF, refer

to Chapter 8.3.1).

ously impossible by creating spectrally-simplified graphs at various levels of detail for

graph drawing and interaction. We present two different layouts to use in conjunction with

SPS: the eigenvector-based (EIGEN) and t-SNE-based (t-SNE) layouts. The EIGEN lay-

out lays out the graph vertices using certain eigenvectors of the related matrices (we use

the two leading eigenvectors). The t-SNE layout employs t-SNE to create a 2D embedding

based on the leading eigenvectors (we empirically use the first 50 dominant eigenvectors).

Layout generation. To generate a layout for visualizing a given graph, we propose the

following steps as outlined below:

• Step 1: Apply SPS to simplify the graph G0, yielding the sparsified graphs G1,G2, . . . ,Gr
and their associated sparse Laplacian matrix LGi, i ∈ {0,1, . . . ,r} of size |Ni|2. Note
that G0 is the original graph and Gr is its most simplified form.

• Step 2: Perform an eigenanalysis [134, 195] on LGr to obtain the first k′ leading
eigenvectors and their associated eigenvalues (we set k′ = 50). Each of these eigen-
vectors is |Nr|-dimensional and every graph node has a k′-dimensional representa-
tion.

• Step 3: Identify the largest eigengap, i.e., the largest difference of two neighboring
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eigenvalues, among the first k′ eigenvalues to determine the desired number of clus-
ters k. Perform spectral clustering using k-means to obtain cluster labels for the k
different clusters.

• Step 4: Either use the two leading eigenvectors as 2D positions of the nodes (for the
EIGEN layout), or perform dimensionality reduction, which maps the graph’s node
positions from k′D to 2D using t-SNE (for the t-SNE layout).

• Step 5: Map the cluster labels, eigenvectors, and t-SNE results from Gr to Gr−1, and
repeat this iteratively until the mapping from G1 to G0 is obtained.

After these steps, we hold all the data needed (2D coordinates, cluster labels, Laplacian

matrix) to display the graph in 2D for the various levels of detail from G0 to Gr. Nodes are

colored to show their cluster memberships where neighboring clusters shown in the layout

use different colors. To draw the graph at a given level of detail i, we position the nodes

of Gi according to the selected layout and draw a straight line for each edge present in

LGi . Note that our SPS algorithm is independent of the choices of graph layout. Although

our layout algorithm is not interactive, the timing results in Table 8.1 show that the SPS

algorithm allows efficient layout generation for large graphs.

Graph interaction. For graph interaction, we allow users to change the graph layout,

the level of detail, and turn on or off edge bundling. Edge bundling is computed in real

time as we avoid its pre-computation for every graph level by implementing FFTEB, the

state-of-the-art edge bundling technique using the fast Fourier transform (FFT) [137].
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TABLE 8.1

TIMING RESULTS (IN SECONDS) FOR ALL DATA SETS

data set nodes edges
SPS FFE FFN

DSS
SES 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

small data sets (DSS compatible)

Facebook 4,039 88,234 0.30 1.19 0.11 0.16 0.05 0.15 0.27 0.20 0.13 0.11 0.10 0.30 0.31 0.11 0.16 0.10 802.8

Airfoil 4,253 12,289 0.07 2.94 0.24 0.19 0.11 0.27 0.15 0.11 0.05 0.03 0.02 0.11 0.13 0.05 0.05 0.07 947.4

ND3k 9,000 3,279,690 5.93 1.18 0.17 0.19 0.07 0.17 4.02 4.04 4.22 3.90 2.68 2.98 2.43 2.43 2.19 2.29 12,774

USPS10NN 9,298 136,762 0.92 1.33 0.15 0.17 0.07 0.15 0.89 1.07 0.65 0.35 0.35 0.36 0.23 0.20 0.17 0.17 11,448

Mycielskian14 12,287 3,695,512 6.42 1.23 0.11 0.17 0.07 0.19 3.36 3.19 3.11 2.90 2.90 3.35 3.15 3.33 2.81 2.69 27,181

Appu 14,000 1,839,104 11.60 1.33 0.14 0.21 0.06 0.14 2.86 2.30 2.79 1.96 2.69 5.00 6.32 7.55 5.66 4.78 34,236

big data sets (DSS incompatible)

Vsp 21,996 1,221,028 5.36 1.30 0.17 0.20 0.08 0.15 8.85 5.57 5.40 3.90 2.72 2.38 2.14 2.09 2.09 1.94

Protein DB 36,417 2,154,174 11.19 1.36 0.18 0.20 0.08 0.15 16.30 9.15 6.43 4.77 4.06 6.38 4.04 3.09 3.01 3.05

Mesh 40,000 79,600 0.64 1.31 0.15 0.21 0.08 0.16 6.43 3.10 1.86 1.09 0.49 4.47 2.18 0.90 0.62 0.26

CFD 70,656 878,854 10.48 1.59 0.24 0.24 0.08 0.16 20.74 14.00 9.38 4.84 2.60 28.69 13.58 4.77 3.04 1.58

DBLP 317,080 1,049,866 19.08 3.63 0.50 0.26 0.18 0.11 306.12 164.19 63.47 31.07 19.03 63.87 19.48 7.58 5.55 5.50

ND 325,729 1,469,679 19.11 2.74 0.63 0.44 0.15 0.25 501.65 245.22 144.24 61.28 17.25 129.88 23.77 11.46 4.89 2.51

IL2010 451,554 1,082,232 9.47 3.06 0.91 0.53 0.20 0.20 855.67 388.49 202.90 97.24 51.84 773.92 300.86 130.06 60.46 25.30

 The data sets are ordered according to the number of nodes in the original graphs, and split into two groups (small and big data sets). The five 
levels of simplification under SPS is for the MNR step.
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8.3 Results and Discussion

8.3.1 Data Sets and Methods

We experimented our approach with the graph data sets from different application do-

mains as listed in Table 8.1. Among them, Facebook and DBLP are from the social net-

work domain, recording a friend network (Facebook) and co-authorship relations (DBLP).

Airfoil is a mesh graph from finite element analysis, ND3k is a graph generated from

a 3D mesh problem, and Mesh is a 200× 200 mesh graph with uniform edge weights.

USPS10NN is a k-NN network for handwritten digit recognition. Mycielskian14 repre-

sents a triangle-free graph with the chromatic number of 14. Appu and Vsp are random

graphs, representing the app benchmark from NASA Ames Research Center and a graph

with a star-like structure. CFD is from computational fluid dynamics application repre-

senting a symmetric pressure matrix. ND is a web graph of the webpages of Notre Dame.

IL2010 is a geographic network of the census blocks of Illinois. Protein DB is the protein

databank of an enzyme found in HIV.

To compare different graph sparsification methods, we evaluated the results of four

methods: SPS (ours), deterministic spectral sparsification (DSS) [58], and two variants of

a traversal-based sampling method named forest fire (FF) [135]. DSS picks edges with the

largest effective resistances. Note that Eades et al. [58] also introduced a second variant

of spectral sparsification, stochastic spectral sparsification (SSS). However, DSS has been

shown to perform better than SSS. Hence, we only use DSS in our comparison, where the

pseudoinverse is computed using OpenIMAJ [88]. As a probabilistic version of snow-ball

sampling (SBS) [203], FF randomly selects a seed node with incident edges and adjacent

nodes getting “burned” away recursively with a probability. In this work, we continue FF

sampling until a desired number of edges (FFE) or nodes (FFN) are reached.

Besides DSS, the only other implementation publicly available is provided by Spiel-

man, which is based on the effective-resistance sampling approach [189] and has been
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recently available for download [194]. However, such an implementation needs to set up

input parameters carefully for each individual input graph and thus does not allow effective

control of spectral approximation levels, such as the spectral similarity. In other words, it

is impossible to control the approximation quality or sparsity of the sparsified graph using

a common set of input parameters. In contrast, our SPS allows precise control of spectral

similarity or graph sparsity, thereby enabling effective trade-offs between approximation

quality and graph complexity. Our latest extensive experiments carried out on a series of

public-domain graphs show that it is almost impossible to compare the sparsified graphs

obtained by using our SPS method and Spielman’s approach due to the above reasons.

For multilevel graph drawing, we compare MNR against METIS [114], a fast and

high-quality multilevel scheme for graph partitioning. The version of METIS provided

by Karypis and Kumar [114] is used, where we set the number of clusters METIS should

produce to the number of nodes of the equivalent level of MNR. We merge a cluster i into

a new node i′ and add an edge between two new nodes i′ and j′ if there exists an edge from

any node in cluster i to any node in cluster j. In order to make fair comparisons, we only

use the graph after SES as input for METIS.

The graph data sets experimented are split into two groups: small data sets (< 15,000

nodes) and big data sets (> 15,000 nodes). This is due to the fact that DSS is not able to

handle the big data sets on the machines we used. Given a data set, after edge sparsification,

we produced five levels of node reduction for SPS and used the resulting numbers of edges

and nodes as the targets to obtain the sparsification results for DSS (small data sets only)

and the two variants of FF.

8.3.2 Sparsification Timings

Table 8.1 reports the timing results in seconds for graph sparsification. For SPS, FFE,

and FFN, we show the computation time to achieve five different levels of sparsification. As

the MNR step of SPS is an iterative algorithm, the results only show the time it takes from
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level i (finer) to level i+1 (coarser), while the entries for either FFE or FFN always show the

total computation time starting from the original graph. For DSS, only a single computation

time is reported for each data set, as the algorithm computes the effective resistance for

every edge and then uses a desired number of edges with the highest resistance values as

the result. All the reported timing results were collected from runs on Lenovo NeXtScale

nx360 M5 Servers with dual 12 core Intel Xeon CPU E5-2680 v3 @ 2.50GHz Haswell

processors and 256GB RAM.

Small data sets. The upper part of Table 8.1 shows that DSS cannot keep up with the

speed of the other algorithms. Even for the smallest data sets (Facebook and Airfoil), it

already takes more than 10 minutes to compute the effective resistance value for the entire

graph. In contrast, SPS and the two FF methods, always complete the computation under

20 seconds, with most of the cases below 10 seconds. When comparing SPS against FFE

and FFN, we can see that either FFE or FFN outperforms SPS for all the data sets, due to

the time spent by SPS on SES. However, the performance gap decreases with increasing

graph size.

Big data sets. The lower part of Table 8.1 shows the timing results for the bigger data

sets. Besides the spectral sparsification, SPS stays consistent with its low computation

time. On the contrary, the computation time for FFE and FFN drastically increases along

with the input graph’s size. The first three data sets (Vsp, Protein DB, and Mesh), still

show a similar timing performance for all three methods, due to the time spent by SPS on

the SES step. After that, starting with CFD, the difference in computation time between

SPS and the FF methods increases drastically to more than 10 folds (DBLP and ND), and

about 70 folds (IL2010) at the finest level. At the coarsest level, however, the difference

between SPS and FFE vanishes for DBLP and ND, and decreases to about five folds for

IL2010. At this sparse level, FFN outperforms any method except for the IL2010 data set.

This demonstrates the competitive advantage of our SPS method in terms of computational

scalability.
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(a) original (b) after SES (c) original (d) after SES
EIGEN FM3

Figure 8.4. Graph drawings of the Airfoil data set using the EIGEN ((a) and (b))
and FM3 ((c) and (d)) layouts. The drawings show the original graph ((a) and

(c)) and the reduced graph after SES ((b) and (b)).

8.3.3 Graph Visualization

For graph drawing, we used the following methods: (1) EIGEN (refer to Chapter 8.2.3),

(2) t-SNE (refer to Chapter 8.2.3), and (3) fast multipole multilevel method (FM3) [81].

Note that we leveraged MATLAB for computing EIGEN and t-SNE, and OGDF [40] for

computing FM3. We chose FM3, a force-directed layout for large graphs, because it has an

efficient time complexity of O(|N| log |N|+ |E|) and was recently applied to graph draw-

ing with spectral sparification [58]. We did not draw the original graphs, but only their

sparsified or sampled versions, as it is often not possible to draw the full-size graph due to

the computational costs of EIGEN and t-SNE for large graphs. To circumvent the problem

of not drawing the original big graph, we used the proxy quality metric [162] to evaluate

the quality of the graph’s proxy drawing. Our work demonstrates the capability of draw-

ing graphs with spectral sparsification on data sets much larger than recently attempted by

Eades et al. [58].

We implemented FFTEB to reduce visual clutter. Based on the spectral clustering

result, we colored the nodes in different clusters with different colors. To allow easier

visual comparison, for the FF and DSS sampling results, we kept the coloring based on the
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(a) level 1 (b) level 2 (c) level 3 (d) level 4 (e) level 5

Figure 8.5. Graph drawings of the Airfoil data set using the EIGEN layout. The
drawings from left (finest) to right (coarsest) show the five levels of

simplification using the SPS algorithm.

SPS clusters and used black for all the nodes that do not exist in the SPS results at the same

sparsification level.

Edge sparsification. Figure 8.4 shows the Airfoil data set before and after SES. Ig-

noring the flip that occurred, we can see that in (a) and (b), the graph structure remains

the same using the EIGEN layout, with (b) showing fewer edges. The drawings in (c) and

(d) reveal the same using the FM3 layout. This indicates that SES can successfully keep

edges relevant for the graph structure while removing non-essential edges. Additionally,

the spectral clusters are also well preserved in the drawing.

Comparison across simplification levels. In Figure 8.5, we compare the five levels of

sparsification using the Airfoil data set using the EIGEN layout. We can see that although

the number of nodes halves at each level of simplification, the overall graph structure

remains the same. Even the coarsest level (Figure 8.5 (e)) shows the two big circle-like

structures as the most distinguishable features of this data set. Similarly, the first two rows

of Figure 8.6 show the graph drawings for the five sparsification levels of the CFD data

set using the t-SNE layout. Again we can see that the structure from the layout at the fifth

level is preserved through the multilevel eigensolver. For this much bigger and denser data

set, we do not observe an almost bone-like structure like for the Airfoil one at the coarsest

level. However, we can still witness how the number of nodes in each cluster reduces
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(a) level 1 (b) level 2 (c) level 3 (d) level 4 (e) level 5

Figure 8.6. Graph drawings of the CFD data set using the t-SNE layout. The
drawings from left (finest) to right (coarsest) show the five levels of

simplification. Top two rows: MNR. Bottom two rows: METIS. For either
method, the upper or lower row shows the drawing without or with edge

bundling.

successively between the neighboring levels without losing the inter-cluster connectivity.

Figure 8.7 shows the drawing of the ND data set at its five sparsification levels using

the FM3 layout. This even bigger graph does not show much difference at the first four

levels as the numbers of nodes at these four levels remain pretty high. At the last level

(Figure 8.7 (e)), however, we can see a drastic skew in the layout. Although this represents

a strong change in the layout, the graph features, especially the clusters, still remain easily
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(a) level 1 (b) level 2 (c) level 3 (d) level 4 (e) level 5

Figure 8.7. Graph drawings of the ND data set using the FM3 layout. The
drawings from left (finest) to right (coarsest) show the five levels of

simplification using the SPS algorithm.

distinguishable. These three examples show how well the multilevel eigensolver allows

using the layout from a coarser level and map it back to the original one without changing

the overall graph structure.

Comparison across sparsification methods. Figure 8.8 shows a comparison of the

three sparsification methods for the ND3k (top row) and Facebook (bottom row) data sets.

We use the t-SNE layout and the third level of sparsification. In Figure 8.8 (a) and (c), we

can see that the two spectrum-based methods do a better job at preserving the underlying

graph structure compared to the FFE result shown in Figure 8.8 (b). The drawing of the FFE

method seems rather random and contains a large number of small node clusters (shown

in black) that do not exist in the SPS result. It is worth noting that the two spectrum-based

methods mostly agree on the chosen nodes, while the FFE method contains many nodes

that do not exist in the SPS variant. In the second row of Figure 8.8, we can see that the

FFE method needs more nodes than the other two methods for the Facebook data set to

achieve the desired number of edges. This shows that spectrum-based methods are better

suited to give an overview of the most important nodes of the graph than the FFE sampling.

In Figure 8.9, we show similar comparisons for the Protein DB and IL2010 data sets

using the FM3 layout. Protein DB shows the finest level of sparsification while IL2010

shows the coarsest level. For the Protein DB data set, we can see that the layout produced
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(a) SPS (b) FFE (c) DSS

Figure 8.8. Graph drawings of the different sampling methods for the ND3k (top
row) and Facebook (bottom row) data set using the t-SNE layout. All drawings

use the third level of sparsification.

by FFE mixes the clusters together, resulting in a confusing structure. The layout pro-

duced by SPS shows a much smoother and nicer cluster separation and a more revealing

overall structure. When it comes to the IL2010 data set, FFE results in a tree-like graph,

while SPS shows a more dispersed structure that looks similar to a flipped version of the

underlying geographical map of the state of Illinois. Capturing and representing features

like geographical and geometric structures underlines the advantages of SPS over random

sampling methods.

Figure 8.10 shows the USPS10NN and Mesh data sets using the EIGEN (top row) and

t-SNE (bottom row) layouts. USPS10NN uses the finest level of sparsification while Mesh
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(a) SPS (b) FFE (c) SPS (d) FFE

Figure 8.9. Graph drawings of the different sampling methods using the FM3

layout. (a) and (b) are for the Protein DB data set at the finest level of
sparsification. (c) and (d) are for the IL2010 data set at the coarsest level of

sparsification.

uses the coarsest level. For the USPS10NN data set, FFE finds one cluster instead of mul-

tiple ones like the SPS method. Thus the resulting drawing for the FFE sample is very

dense and cluttered into one corner (EIGEN) or a hairball (t-SNE) instead of more evenly

distributed like the drawing of SPS. For the Mesh data set, the drawing of the FFE sample

again shows tree-like and hairball-like structures for the EIGEN and t-SNE layouts, respec-

tively. The drawing of the SPS sample, on the other hand, highlights the grid-like structure

of the underlying mesh in either layout. This shows that based on spectral analysis, SPS

can reveal the underlying structures well at both the finest and coarsest levels.

Comparison of MNR and METIS. In Figure 8.11, we show a comparison of the

MNR and METIS methods. For both drawings, we use the FM3 layout and keep the

cluster labels from SPS for easier comparison. Besides the different cluster ordering, there

is no significant visual difference. Nevertheless, we point out that unlike METIS, MNR

preserves the spectrum of the graph and does not require layout recomputation as we move

from the coarsest level to the finest level. This can be seen in Figure 8.6, where we show

the t-SNE layout for the five sparsification levels for MNR and METIS along with edge

bundling disabled and enabled. We can see that the graph structure in the drawing is
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(a) SPS (b) FFE (c) SPS (d) FFE

Figure 8.10. Graph drawings of the different sampling methods using the EIGEN
(top row) and t-SNE (bottom row) layouts. (a) and (b) are for the USPS10NN

data set at the finest level of sparsification. (c) and (d) are for the Mesh data set at
the coarsest level of sparsification.

fairly consistent across the five levels with MNR, which is certainly not the case with

METIS. Since the t-SNE layout is based on the leading eigenvectors resulting from SPS, we

can claim that MNR better preserves the spectrum of the underlying graph. Furthermore,

the MNR results show many shorter edges, indicating a well-translated structure from the

reduced graph into the drawing.

For edge bundling, clearly, it helps to reduce visual clutter, especially for the five levels

with METIS where edges are longer. However, edge bundling introduces ambiguities at

the endpoints of thicker bundles.

Visual quality of spectral graph. We point out that spectral drawing of a graph may

not necessarily lead to good visual quality. The general idea behind spectral graph drawing

is to translate the spectral properties of the graph to the visualization. Prior works on graph

165



(a) level 1 (b) level 2 (c) level 3 (d) level 4 (e) level 5

Figure 8.11. Graph drawings of the Mesh data set using the FM3 layout. The
drawings from left (finest) to right (coarsest) show the five levels of

simplification. Top row: MNR. Bottom row: METIS.

drawing using spectral information [20, 89, 122, 123, 168] do not necessarily generate

visually pleasing or aesthetic layouts either. Our observations are that spectral methods

are good for drawing grid- or mesh-like graphs, but could be bad for other graphs. In

those cases, the nodes in the spectral layout could overlap with each other (due to the great

similarity of their spectral properties) or form a linearization pattern.

8.4 Quantitative Comparison

8.4.1 Quality Metrics

To evaluate the visual quality of graph samples, Nguyen et al. [162] introduced the

proxy quality metric, which compares the drawing of a graph sample to the underlying

graph in order to express the faithfulness of the drawing. This metric compares the sim-

ilarity of each node in the drawing to the node in the underlying graph using one-to-one

correspondence. The SPS algorithm, however, does not preserve such a correspondence
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due to the introduction of pseudo-nodes in MNR (refer to Chapter 8.2.2). Therefore, we use

the proxy quality metric to compare the samples after SES but before MNR. We employ

four other statistical metrics to quantify the sampling quality of MNR.

The proxy quality metric obtains a shape graph from the sampled graph drawing and

then compares it to the original graph. Formally

Qµ,φ (G,S(G)) = µ(G,φ(S(G))), (8.14)

where µ is a comparison function that compares the two graphs and returns a real num-

ber, φ is a shape graph function, and S(G) is a sample of the original graph G. Exam-

ples of shape graphs include the α-shape [60], k-nearest neighbor graph (k-NN graph),

Gabriel graph, relative neighborhood graph (RNG), and Euclidean minimum spanning

tree (EMST). The similarity between two graphs of the same vertex set can be measured

efficiently using the mean Jaccard similarity (MJS). In this work, we used the Gabriel

graph as the shape graph function φ and the MJS as the comparison function µ . The MJS

between S(G) and G is defined as

MJS(S(G),G) =
1
|N| ∑v∈N

|NS(G)(v)∩NG(v)|
|NS(G)(v)∪NG(v)|

, (8.15)

where NS(G)(v) and NG(v) are the neighborhoods of node v in S(G) and G, respectively.

For simplicity, we define Q(SPS), Q(DSS), and Q(FFE) for the MJS between the original

graph and its sample with SPS, DSS, and FFE, respectively.

To evaluate the quality of the MNR samples, we use four of the five metrics used by

Hong et al. [98]:

• degree correlation assortativity (DCA) which describes how well similar nodes are
connected to each other [160];

• closeness centrality (CCe) which sums the lengths of the shortest paths from each
node to all other nodes [66];

167



• clustering coefficient (CCo) which measures how well nodes cluster together within
the graph [176];

• average neighborhood degree (AND) which averages the degrees of neighboring
nodes for each node [9].

We do not use the fifth metric, largest connected component (LCC), as SPS and FF always

yield a graph with a single connected component. We compare the metric on a given

sample and the original graph using the Kolmogorov-Smirnov (KS) test. The KS-test

computes the difference between two probability distributions and describes it as a result

between 0 (same) and 1 (completely dissimilar).
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TABLE 8.2

AVERAGED RESULTS OVER THREE LAYOUT ALGORITHMS OF THE

QUANTITATIVE COMPARISON USING MJS

data set edges after SES Q(SPS)/Q(FFE) Q(SPS)/Q(DSS) data set edges after SES Q(SPS)/Q(FFE)

Facebook 7,872 1.03 2.84 Vsp 42,752 2.30

Airfoil 4,934 0.72 3.19 Protein DB 70,491 2.49

ND3k 16,745 1.73 50.33 Mesh 45,261 66.71

USPS10NN 12,900 0.89 2.96 CFD 106,879 1.64

Mycielskian14 14,060 1.34 * DBLP 358,226 6.25

Appu 16,366 2.34 3.65 ND 388,436 2.85

IL2010 504,465 7.60

Left table: small graphs. Right table: big graphs. The columns show the number of edges after SES and the quality ratios (higher is better). The *
denotes that DSS does not achieve a MJS within the machine precision, i.e., it is very close to zero.
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8.4.2 Comparison Results

Proxy quality metric. In Table 8.2, we report the averaged MJS ratios Q(SPS)/Q(DSS)

and Q(SPS)/Q(FFE) for the comparison between SPS and DSS, as well as SPS and FFE

respectively. Note that we only use FFE here, as we only compare the results of SES, an

edge-based sparsification technique. We use the t-SNE, EIGEN, and FM3 layouts for this

comparison. The ratio values above 1.0 favor SPS over the comparing method. We can see

that SPS generally achieves a better quality than DSS and FFE, with the exception of the

Airfoil and USPS10NN data sets when compared to FFE. This is mainly because for these

two data sets, FFE sampling vastly outperforms SPS sampling with the t-SNE and FM3

layouts. Further worth mentioning are the high values of Q(SPS)/Q(DSS) for ND3k and

Q(SPS)/Q(FFE) for Mesh. These are due to the fact that SPS sampling vastly outperforms

the sampling being compared across all three layouts. With these results, we conclude that

the SES step of SPS preserves the structure of the original graph better than DSS and FFE.

Sampling quality metrics. Figure 8.12 shows the KS-test results between the original

graph and a given sample for the four different metrics (lower KS-test values are better). In

the charts, we can see that SPS (either SPSSES or SPSORI) generally outperforms the FFE

sampling methods, but there is no clear winner between SPS and DSS. METIS behaves

very similar to SPSSES in terms of DCA and CCe, while it performs better in terms of

CCo and worse in terms of AND. While DCA remains mostly stable among all methods

and sample sizes, the other metrics show interesting trends. CCe yields worse results for

SPSSES than SPSORI. This means that the shortest path lengths after MNR are closer to

the ones of the original graph than to those after SES. For the sake of argument, consider

the average of the shortest path lengths for each node to all other nodes. If we compare

the distribution of those average shortest path lengths (1) between the sampled graph and

the original graph and (2) between the sampled graph and the graph after SES, then the

difference between the sampled graph and the graph after SES will be smaller. This is

because SES takes a graph as input and produces another graph that is similar to a spanning
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Figure 8.12. Averaged KS-test values (lower is better) between the original
graph and the sample. Top row: small graphs. Bottom row: big graphs. SPSSES
denotes the comparison between MNR and the graph after SES. SPSORI denotes

the comparison between MNR and the original graph.

tree of the original graph. Evaluating the average of the shortest paths (for each node) in a

spanning tree will be quite different from using the original graph.

Now if we consider the distribution of the average of shortest paths in a graph after

applying the MNR procedure. As shown in Figure 8.3 (a), MNR reduces the graph through

node aggregation: a pseudo-node at level i+ 1 represents multiple nodes at level i. Any

edge between two nodes which are both represented by the same pseudo-node is removed.

The pseudo-node becomes incident to any edge that connects two nodes of which only one

of them is represented by the pseudo-node. As we aggregate nodes together and take the

edges from all their original nodes, the graph at a coarser level is less similar to a spanning

tree of the original graph. The impact of this is the opposite of what SES has on a graph.

Therefore, comparing closeness centrality after MNR with respect to the original graph

shows more similarity than that after SES.

For CCo, we see that typically after the third level of MNR, the SPSSES and SPSORI
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lines cross. The reason for this is analog to what is discussed previously. The difference

is that we consider between-cluster and within-cluster edges in the graph. Since MNR

is applied after SES, it uses a spanning tree as input. Therefore at the finer levels, it is

more like a spanning tree and less like the original graph, while at the coarser level, MNR

produces a graph that is less like a spanning tree. The worse score for METIS in terms of

CCo is due to the number of edges. Over all data sets and all simplification levels, METIS

produces an average of 13% (20-70% for denser graphs, e.g., ND and Vsp, and less than

10% for sparser graphs, e.g., Airfoil, IL2010) more edges compared to MNR. As the input

graph for this comparison is the graph after SES, i.e., a very sparse graph, the denser output

can translate into a different CCo.

For AND, we can see that SPSSES and SPSORI trend toward similar values the more

iterations of SPS we run. This is because, with a more reduced graph, there are only the

important nodes and their neighborhood relationships left to represent the original (spar-

sified) graph. Interestingly, METIS has an AND value more similar to the graph after

SES than MNR. This shows that our MNR removes edges more aggressively to preserve

spectral properties.

8.5 Conclusions

We have presented SPS, an effective solution for spectrum-preserving sparsification of

big graphs. The innovation of SPS is that for the first time, it combines spectral graph

sparsification to achieve scalable visualization of large graphs while allowing for spectral

clustering analysis at the same time. Our SPS algorithm includes two steps: spectral edge

sparsification (SES) followed by multilevel node reduction (MNR). The SES algorithm

is three to four orders of magnitude faster than the state-of-the-art DSS algorithm. The

dramatic gain in speed performance enables us to handle edge sparsification and subse-

quent node reduction on big graphs with hundreds of thousands of nodes and millions of

edges, which was previously impossible. Furthermore, using different graph drawing lay-
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outs (EIGEN/t-SNE, FM3), we find that in general, SPS outperforms DSS and FF under

a proxy quality metric (for the SES step) and other statistical properties of the graphs (for

the MNR step). We demonstrate the effectiveness of our approach using results gathered

from a number of graph data sets of varying sizes and characteristics.
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CHAPTER 9

CONCLUSIONS

In this dissertation, I explored several GPU-accelerated techniques to summarize and

reconstruct big data in the area of scientific and information visualization. Besides simpli-

fying data to a more manageable amount and summarizing them for visual representation,

I also showed possible ways to identify and reconstruct missing information. Through-

out this endeavor, I have used several techniques ranging from GPU-based parallelization

and approximation, over iterative optimization, to deep learning techniques. Doing so, I

approached different types of data to show how the used methods can help to generate

insights into them without overwhelming a potential viewer.

For time-varying multivariate data, I presented an approach on how to approximate

and simplify the isosurface selection. The presented algorithm avoids fully extracting iso-

surfaces. It thus omits computing unnecessary information during the evaluation of iso-

surfaces similarity to allow for a faster importance ranking. Based on said ranking, it is

then possible to only fully extract the representative isosurfaces for a given volume. This

procedure resulted in a speedup of up to 20× without significant loss in quality. Further,

it allowed subsequent works doing a more in-depth analysis of time-varying multivariate

data. The first of these works aimed to overcome oversampling of unevenly spread value

ranges in scientific volumetric data. I presented a two-stage iterative optimization algo-

rithm to find nearly equally spaced isosurfaces for a given volume. The algorithm starts

from an evenly distributed sample and first quickly converges to a rough solution. This

solution avoids the problem that a part of the value range is oversampled while other,

shorter ranges are undersampled. After that, a refinement procedure continues to optimize
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the solution until nearly equally spaced isosurfaces are found. The second of these works

allowed us to create a complete overview of a time-varying multivariate data set. To do

so, we need to analyze hundreds of time steps and tens of variables quickly. By using the

acceleration technique, it was possible to extract representative surfaces across the whole

time and variable domain and compare these among each other. Based on this analysis, an

interface can be used to spot interesting developments to gain an overview and then further

explore the data more thoroughly.

For vector field data, I presented a study that examines the strengths and weaknesses of

three deep-learning methods for reconstructing missing time steps in unsteady flow data.

Flow simulation data often can only be stored in coarse granularity, and thus reconstruction

would be beneficial for post hoc analysis for scientists. I showed that, when splitting the

three channels of VFD, it is possible to synthesize a set of vector fields between two others

with high quality and accuracy for tracing streamlines and pathlines.

For graph data, I presented a framework that allows us to quickly reduce a big graph to

a small, yet visually accurate representation while creating multiple levels of detail. The

presented framework, SPS, first recursively down-samples a big graph to a manageable size

before computing a layout. The computed layout is then mapped back from the smallest

level in the same recursive manner. During the whole procedure, the spectrum of the

graph is preserved with high accuracy, making it possible to have a drawing in every level

representing the graph with high visual quality.

175



BIBLIOGRAPHY

1. The 2015 Gordon Research Conference on Visualiza-
tion in Science and Education. https://www.grc.org/

visualization-in-science-and-education-conference/2015/. Accessed:
2019-10-16.

2. I. Abraham and O. Neiman. Using petal-decompositions to build a low stretch span-
ning tree. In Proceedings of ACM Symposium on Theory of Computing, pages 395–
406, 2012.

3. H. Akiba and K.-L. Ma. A tri-space visualization interface for analyzing time-varying
multivariate volume data. In Proceedings of Eurographics - IEEE VGTC Symposium
on Visualization, pages 115–122, 2007.

4. H. Akiba, C. Wang, and K.-L. Ma. AniViz: A template-based animation tool for vol-
ume visualization. IEEE Computer Graphics and Applications, 30(5):61–71, 2010.

5. A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, F.-F. Li, and S. Savarese. Social
LSTM: Human trajectory prediction in crowded spaces. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pages 961–971, 2016.

6. D. Angus, A. Smith, and J. Wiles. Conceptual recurrence plots: Revealing patterns
in human discourse. IEEE Transactions on Visualization and Computer Graphics,
18(6):988–997, 2012.

7. C. L. Bajaj, V. Pascucci, and D. R. Schikore. The contour spectrum. In Proceedings
of IEEE Visualization Conference, pages 167–173, 1997.

8. J. Barnes and P. Hut. A hierarchical O(n logn) force-calculation algorithm. Nature,
324(6096):446, 1986.

9. A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespignani. The architecture of
complex weighted networks. Proceedings of the National Academy of Sciences, 101
(11):3747–3752, 2004.

10. M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source software for explor-
ing and manipulating networks. In Proceedings of International AAAI Conference on
Weblogs and Social Media, 2009.

11. F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A taxonomy and survey of dynamic
graph visualization. Computer Graphics Forum, 36(1):133–159, 2017.

176

https://www.grc.org/visualization-in-science-and-education-conference/2015/
https://www.grc.org/visualization-in-science-and-education-conference/2015/


12. M. Berger, J. Li, and J. A. Levine. A generative model for volume rendering. IEEE
Transactions on Visualization and Computer Graphics, 25(4):1636–1650, 2019.

13. J. Berry. Improving discrete mathematics and algorithms curricula with LINK. ACM
SIGCSE Bulletin, 29(3):14–20, 1997.

14. A. Biswas, S. Dutta, H.-W. Shen, and J. Woodring. An information-aware frame-
work for exploring multivariate data sets. IEEE Transactions on Visualization and
Computer Graphics, 19(12):2683–2692, 2013.

15. V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Exper-
iment, 2008(10):P10008, 2008.

16. J. M. Blondin and A. Mezzacappa. Pulsar spins from an instability in the accretion
shock of supernovae. Nature, 445(7123):58–60, 2007.

17. M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE Transac-
tions on Visualization and Computer Graphics, 17(12):2301–2309, 2011.

18. P. Bourke. Polygonising a scalar field. http://paulbourke.net/geometry/

polygonise/, 1994. [Online; accessed 1-June-2017].

19. A. Brambilla, R. Carnecky, R. Peikert, I. Viola, and H. Hauser. Illustrative flow
visualization: State of the art, trends and challenges. In Eurographics State-of-the-
Art Reports, pages 75–94, 2012.

20. U. Brandes and T. Willhalm. Visualizing bibliographic networks with a reshaped
landscape metaphor. In Proceedings of Eurographics - IEEE TCVG Symposium on
Visualization, pages 159–164, 2002.

21. P.-T. Bremer, V. Pascucci, and B. Hamann. Maximizing adaptivity in hierarchical
topological models. In Proceedings of International Conference on Shape Modeling
and Applications, pages 298–307, 2005.

22. P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell. Interactive explo-
ration and analysis of large-scale simulations using topology-based data segmenta-
tion. IEEE Transactions on Visualization and Computer Graphics, 17(9):1307–1324,
2011.

23. W. L. Briggs, H. Van Emden, and S. F. McCormick. A Multigrid Tutorial. SIAM,
second edition, 2000.
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