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DEEP LEARNING FOR SCIENTIFIC DATA REPRESENTATION AND

GENERATION

Abstract

by

Jun Han

Scientific visualization (SciVis) is one of the core components in supporting funda-

mental scientific discoveries and engineering designs. For example, scientists perform

numerical simulations and produce 3D scalar and vector data to visualize, analyze, and un-

derstand various kinds of natural phenomena, such as climate change and star formation.

However, the cost of these simulations is expensive when time, ensemble, and multivariate

are involved and the scientific data are presented in diverse forms including streamline,

pathline, stream surface, volume, and isosurface. A core problem in SciVis is how to ef-

ficiently and effectively produce and analyze these diversified data. In this dissertation, I

develop novel deep learning methods to enable more effective and efficient frameworks for

scientific data representation and generation.

In scientific data representation, I propose a unified framework that processes both

streamlines and stream surfaces through auto-encoder decoder structure. Moreover, I build

an interface that allows users to explore the relationships between the learned features and

visual representations. I also utilize geometric deep learning (e.g., graph neural network) to

extract node-level and surface-level features in an unsupervised fashion for node clustering

and surface selection tasks. In scientific data generation, I introduce a comprehensive

pipeline for variable selection and translation through feature learning, translation graph

construction, and variable translation. This framework can serve as a data extrapolation
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and compression solution to reduce simulation costs. Besides, I develop an end-to-end

generative framework that can synthesize spatiotemporal super-resolution volumes with

high fidelity. Further, to improve network generalization, I propose an unsupervised pre-

training stage using cycle loss. This spatiotemporal super-resolution approach can upscale

data up to 512 times in spatial dimension and 11 times in temporal dimension, which offers

scientists an option to reduce data storage.
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CHAPTER 1

INTRODUCTION

Scientists perform numerical simulations and produce 3D scalar and vector data to

visualize, analyze, and understand various kinds of natural phenomena, such as climate

change and chemical reactions. A typical scientific visualization pipeline contains two

stages: simulation and post-hoc analysis. In simulation, domain scientists solve partial

differential equations on supercomputers given a set of initial conditions (e.g., pressure,

Reynolds number, and Kinematic viscosity) to produce ensemble, multivariate, and time-

varying volumetric data. After that, scientists design algorithms and interfaces to analyze

and visualize the data. In particular, large-scale simulations often produce thousands of

ensembles, thousands of time steps, and tens of variables with high resolution. Generating,

storing, analyzing, and visualizing a huge amount of data poses three main challenges.

During post-hoc analysis, the same data (e.g., vector data) may require diverse rep-

resentations for visualization and analysis. For example, streamlines and stream surfaces

are two visual forms to represent the underlying flow. However, existing flow analysis ap-

proaches focus on either streamlines [143, 170] or stream surfaces [29, 132], there is no

unified solution. Moreover, a single stream surface can encompass two-level information.

For instance, it can include both global information (such as the overall shape) and local

information (such as individual sources or sinks). No approach has been designed to ex-

tract local information for better visualizing and understanding steam surfaces. I focus on

two different aspects to address the mentioned problems. First, I use a single convolutional

neural network to learn hidden representations for both streamlines and stream surfaces

and these features can help us identify the representative set of lines and surfaces. Second,

1



I formulate the surface as a mesh structure and design a graph convolutional network to

learn the two-level information.

Running simulations is time-consuming and expensive and the limited I/O bandwidths

cannot match the rate of data production. As such, scientists could only afford to sparsely

store the outputs at the spatial, temporal, and variable levels. Techniques for generating sci-

entific data accurately allow scientists to obtain the data quickly without waiting for days.

In addition, these techniques reduce the storage cost while preserving the data evolution

and the relationships among different variables and ensembles. While previous approaches

have introduced various solutions for data generation, e.g., bicubic interpolation, histogram

matching, most of them can not tackle complex volumetric data and the generated results

may not preserve spatial (e.g., structure and texture) and temporal (i.e., close similarity

among neighboring time steps) coherence. I focus on deep learning-based data generation

approaches to enable scientists to recover high-fidelity data from different aspects (i.e.,

spatial, temporal, and variable).

(a) streamline rendering (b) stream surface rendering

Figure 1.1: Example of streamline rendering (a) and stream surface rendering (b) using the
five critical points and Bénard data sets, respectively.
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1.1 Steady Vector Data

One kind of scientific data is vector data. Each voxel stores the velocity components

(i.e., u, v, w). There are two common approaches to visualize and understand a vector data:

streamline rendering and stream surface rendering. A streamline is a curve tangent to the

flow field everywhere and a stream surface is a continuous surface that is everywhere tan-

gent to the vector it passes, which can be obtained from streamlines traced from a densely

seeded curve [1]. An example of these two renderings are shown in Figure 1.1.

1.1.1 Unified Deep Learning Framework for Streeamline and Stream Surface Clustering

and Selection

Many challenges exist when it comes to generating representative flow lines or sur-

faces as well as visually exploring a large collection of flow lines or surfaces. Although

seeding and selection of streamlines have been well studied, the same problem for stream

surfaces is clearly underexplored. All existing approaches for effective line and surface

seeding and selection explicitly make use of handcrafted features (e.g., entropy, curvature,

torsion, saliency, critical points, separation lines, vortex cores) in their solutions. I instead,

take a drastically different approach that automatically learns features from the input lines

or surfaces and encodes them implicitly in a latent space. This is achieved by borrowing

techniques from deep learning that has made a significant impact on many fields includ-

ing those that are closely related to scientific visualization, such as computer vision and

computer graphics.

I aim to automatically extract latent features from raw streamline or stream surface data,

which can be achieved using an auto-encoder. Note that generative adversarial network

is capable of generating novel data from a given data set that look at least superficially

authentic to human observers, which does not directly match our purpose. I choose the

sparse and stacked version of the autoencoder framework.
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In Chapter 3, I introduce FlowNet, a single deep learning approach for streamline and

stream surface clustering, filtering, and selection [51]. The key lies in the design of an

autoencoder that automatically learns line or surface feature descriptors. I show that by

carefully designing the network architecture and loss function, the features learned can be

used to well reconstruct the lines or surfaces with minimum errors. To visually explore the

features, I perform dimensionality reduction and apply different clustering algorithms. I

further develop a visual interface along with intuitive and convenient interactions to enable

users to effectively explore the underlying set of streamlines and stream surfaces.

1.1.2 Geometric Deep Learning for Node and Surface-Level Representation Learning

Achieving node clustering and surface selection needs to answer three key questions.

First, how to represent surfaces effectively? Although multiview-based [119, 139] and

voxel-based representations [51, 165] have been proposed to formulate a surface, these

methods have their disadvantages. Voxel-based representation is space-wasting and com-

putationally expensive since most voxels carry rather localized information when it comes

to encoding surface features. Multiview-based representation is impractical for stream sur-

faces since flow patterns could be severely self-occluded. Furthermore, this representation

can only extract surface-level information (such as the overall shape) rather than node-level

information (such as individual sources or sinks). Second, how to group nodes on a sur-

face without any given labels? Unlike 3D objects, where many node labels are supported,

it is impractical to manually label every node on the surface since this process is extremely

time-consuming and expensive. Third, how to derive surface features from a set of node

features? Although several existing approaches [56, 175] can directly generate surface fea-

tures, they require labeling each graph, which is not suitable in our scenario as we need to

handle a large set of surfaces (e.g., 1,000).

To respond, I apply a geometric representation [15] (i.e., meshes) for surfaces since it

can preserve geometric information of the nodes. We introduce SurfNet, a deep learning
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approach for embedding nodes on surfaces. These learned node embeddings support node

clustering, surface clustering, filtering, and selection. The crux of SurfNet is the design

of a graph convolutional network (GCN) and a novel loss that can automatically learn the

hidden feature of every node on a single surface in an unsupervised fashion. Specifically,

we train SurfNet to learn an end-to-end function that maps a node feature with only its

information (e.g., position, normal) to a node feature with its neighborhood information.

The trained model allows us to explore the relationship among different nodes on a single

surface or the relationship among different surfaces.

In Chapter 4, I leverage geometric deep learning framework to embed node-level and

surface-level information by designing an unsupervised geometric loss [48]. These learned

embeddings can be utilized in node clustering and surface selection tasks.

(a) direct volume rendering (b) isosurface rendering

Figure 1.2: Example of direct volume rendering (a) and isosurface rendering (b) using the
supernova and argon bubble data sets, respectively.

1.2 Multivariate Time-Varying Volumetric Data

Multivariate time-varying volumetric data (MTVD) demonstrate how multiple variable

scalar fields evolve over time. They usually have tens of variables and each variable has

5



thousands of time steps. Researchers often apply volume visualization techniques to visu-

alize a single variable at a specific time step. In general, there are two common approaches

to render volumetric data: direct volume rendering and isosurface rendering. The former

maps voxels to color and opacity through a set of predefined parameters (i.e., transfer func-

tion and viewpoint). The later extracts geometric features (i.e., triangles) from the volume

given an isovalue. Figure 1.2 shows an example of both rendering results.

1.2.1 Variable Selection and Translation

Translating one variable sequence to another variable sequence poses four main chal-

lenges. First, understanding the relationships among different variables in MTVD is critical

for variable-to-variable (V2V) translation. Choosing two arbitrary variables for translation

could lead to unexpected results since the randomly chosen variables may exhibit dra-

matically different patterns. Therefore, variable selection should be considered so that

high-quality V2V translation can be achieved. Second, once the transferable variables

are determined, choosing the appropriate source and target variables is still crucial since

the translation difficulty could vary given a different variable as input. Third, unlike vol-

ume temporal and spatial super-resolution tasks that aim to interpolate data through their

neighborhood information, V2V translation performs extrapolation instead of interpola-

tion, which is a much more difficult task. Fourth, both global and local information must

be considered simultaneously as multivariate temporal patterns in different regions are

non-linear and non-uniform. Assuming the translation is local and linear may not ensure

acceptable results: producing blurred features and resulting in fewer details in the visual-

ization (i.e., direct volume rendering and isosurface rendering).

To tackle these challenges, I propose a novel solution for addressing the V2V transla-

tion problem for MTVD analysis and visualization, inspired by image-to-image translation

tasks and representation learning techniques. V2V is a comprehensive framework for se-

lecting transferable variables and synthesizing variable sequences. I leverage GANs to
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learn the variable mapping non-linearly and non-locally. Our solution consists of three

stages: feature learning (aiming to find the relationships among different variables for

MTVD), translation graph construction (aiming to detect the source and target variables),

and variable translation (aiming to learn a mapping function from one variable to another

variable). The training data could be obtained at earlier time steps from the two variable

sequences. During inference, V2V can synthesize a variable sequence conditioned on an-

other variable at later time steps.

In Chapter 5, I present a three-stage solution (i.e., feature learning, translation graph

construction, and variable selection) to recover one variable sequence conditioned on an-

other variable sequence [52]. We also propose a deep learning solution for translating

scalar field into vector fields [42].

1.2.2 Spatiotemporal Super-Resolution

Three challenges remain for the spatiotemporal super-resolution (STSR) task. First,

although SSR and TSR have been studied independently, merely concatenating the two so-

lutions cannot guarantee satisfactory STSR volumes since the rendering quality is far away

from GT. An example is shown in Figure 1.3. Designing an end-to-end STSR architecture

is critical for avoiding error accumulation and amplification. Second, deep learning’s suc-

cess depends heavily on large input data, which is often challenging to acquire in scientific

visualization. The limited training data will prevent the network from a better generaliza-

tion during inference. How to utilize inadequate data samples to improve the generalization

power should be considered in the optimization. Third, the computational cost is high as

it usually requires days to train a GAN on 3D data. In addition, the synthesized volumes

should maintain similar spatial (e.g., structure and texture) and temporal (e.g., close simi-

larity among neighboring time steps) coherence compared with GTs.

To respond, I design STNet, an end-to-end spatiotemporal generative network for

STSR. STNet encompasses two stages: pre-training and fine-tuning. During pre-training,
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(a) SSR+TSR (b) TSR+SSR (c) GT

Figure 1.3. STSR using two solutions: SSR+TSR and TSR+SSR.

STNet accepts all available low-resolution data as input, generates synthesized low-resolution

volumes, and applies cycle loss for optimization. During fine-tuning, STNet takes low-

resolution data at early time steps as input, produces STSR volumes, and leverages vol-

umetric and adversarial losses for training. Specifically, I first investigate popular frame-

work designs in both SSR and TSR tasks and design an end-to-end spatiotemporal model

with post-upsampling for spatial upscaling and feature interpolation for temporal upscal-

ing. That is, STNet interpolates the feature of each low-resolution volume and upscales

the features into the data (super-resolution) space. Second, I customize a pre-training

task for STSR by only leveraging the information from low-resolution volumes. The goal

is to explicitly promote a better generalization for producing spatiotemporal volumes for

time-varying data. Third, I design a spatiotemporal discriminator to guarantee spatial and

temporal coherence of the synthesized spatiotemporal volumes. I apply a two-stage opti-

mization procedure to cut the computational cost and boost the stability of GAN training.

In Chapter 6, I will propose an end-to-end spatiotemporal super-resolution solution

combined with pre-training techniques to further improve the generalization of deep learn-

ing models [53]. I also studied the spatial and temporal super-resolutions for scalar [45, 46]

and vector [43, 47] fields.
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Besides the mentioned works, I investigated the problem of reconstructing steady [50]

and unsteady [41] from streamline using deep learning, and volume completion [49].

1.3 Organization

This dissertation is organized as follows. Chapter 2 introduces related works and dis-

cusses how our approaches relate to and differ from others. Chapter 3 establishes FlowNet,

a unified deep learning-based framework that allows users to interactively explore stream-

lines and stream surfaces in 2D space for clustering and selection. Chapter 4 presents a

graph convolutional network for learning node and surface embeddings from surface in

an unsupervised fashion. Chapter 5 introduces V2V, a deep learning solution for variable

selection and translation, which are based on computing variable similarities in the feature

space and translating variables using GAN. Chapter 6 describes an end-to-end approach

for synthesizing spatiotemporal super-resolution volumes and a pre-training algorithm to

improve network generalization. Chapter 7 discusses several future directions, including

lightweight model design, physics-informed deep learning, disentangled learning, feder-

ated learning, etc.
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CHAPTER 2

RELATED WORK

In this chapter, I provide an overview of previous works on machine learning for sci-

entific visualization (including flow visualization, volume visualization, and multivariate

relationships), data recovery and representation with deep learning techniques, pre-training

techniques, and geometric deep learning.

2.1 Machine Learning for Scientific Visualization

There is a growing body of works that apply deep learning to solve scientific visualiza-

tion problems. Tzeng et al. [149, 150] pioneered the use of artificial neural networks for

classifying 3D volumetric data sets. Ma [98] pointed out the use of neural networks as a

promising direction for visualization research. With the explosive growth of modern deep

learning techniques, researchers have recently started to explore the capabilities of deep

neural network (DNN) to address various problems.

2.1.1 Flow Visualization

Hong et al. [63] leveraged long short-term memory (LSTM) to estimate the access

pattern for parallel particle tracing. Wiewel et al. [164] proposed an LSTM-based solution

to predict the changes of pressure fields for learning the temporal evolution of fluid flows.

Kim and Günther [76] extracted steady reference frames from unsteady 2D vector fields

through a two-step CNN. Jakob et al. [70] designed a CNN for interpolating flow maps by

creating a large 2D fluid flow field as training samples. Guo et al. [43] designed CNNs that
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generate super-resolution of 3D vector field data in the spatial domain with a scaling factor

of 4 or 8. Werhahn et al. [163] established two GANs for fluid flow super-resolution:

one upscales slices, which are parallel to the xy-plane, and the other refines the whole

volume along the z-axis working on slices in the yz-plane. Eckert et al. [28] presented

ScalarFlow, a deep learning solution for accurate physics-based reconstructions from a

small number of videos. Prantl et al. [118] proposed two-stage deformation-aware neural

nets that learn the weighting and synthesis of dense volumetric deformation fields for the

space-time representation of physical surfaces from liquid simulations. Kim et al. [77]

presented a GAN model to synthesize fluid simulations from a set of reduced parameters

and designed a novel loss function that guarantees divergence-free velocity fields.

2.1.2 Flow Line and Surface Selection

In flow visualization, selecting representative flow lines has become a useful alterna-

tive of seed placement. For view-dependent streamline selection and filtering, Marchesin

et al. [99] measured the contribution of each streamline to the understanding of the vector

field and selected those streamlines that have a higher contribution and lower probability

leading to visual clutter. Ma et al. [97] presented an importance-driven approach that en-

sures coherent streamline update when the view changes gradually. For view-independent

streamline clustering and selection, Yu et al. [176] clustered streamlines hierarchically and

formed streamline bundles as representatives that succinctly capture flow features and pat-

terns at varying levels of detail. Tao et al. [143] selected streamlines by considering their

contributions to all sample viewpoints. Both streamline selection and viewpoint selection

can be achieved using a unified information-theoretic framework which builds two interre-

lated information channels between a pool of streamlines and a set of sample viewpoints.

Lu et al. [96] advocated a distribution-based approach and utilized dynamic time warp-

ing to define the similarity between streamlines for clustering and query. Oeltze et al. [111]

evaluated three different kinds of clustering techniques (k-means clustering, agglomerative
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hierarchical clustering, and spectral clustering) in terms of clutter reduction when visual-

izing streamlines traced from simulated blood flow.

Only a few works address the issue of flow surface selection. Martinez Esturo et al.

[32] favored stream surfaces where the flow is aligned with principal curvature directions.

Simulated annealing is used to select a globally optimal stream surface based on a set of

stream surface quality measures. Schulze et al. [132] extended the above work to select

a set of globally optimal stream surfaces in an iterative manner. All selected surfaces

are mutually distant to convey different flow features while reducing visual occlusion and

clutter.

2.1.3 Volume Visualization

Zhou et al. [186] presented a convolutional neural network-based (CNN) solution for

volume upscaling which better preserves structural details and volume quality than linear

upscaling. Raji et al. [122] leveraged CNNs to iteratively refine a transfer function, aiming

to match the visual features in the rendered image of a similar volume data set with the one

in the target image. Cheng et al. [20] presented a deep-learning-assisted solution which

depicts and explores complex structures that are difficult to capture using conventional ap-

proaches. Berger et al. [12] designed a generative neural network (GAN) to compute a

model from a large collection of volume-rendering images conditioned on viewpoints and

transfer functions. Shi and Tao [136] proposed a CNN-based viewpoint estimation method

that achieves good performance on images rendered with different transfer functions and

rendering parameters. Xie et al. [167] designed a temporally coherent approach to gen-

erate spatial super-resolution volumes where temporal coherence is guaranteed through a

temporal discriminator. Weiss et al. [162] presented an image-space solution that learns to

upscale a sampled representation of geometric properties of an isosurface at low resolution

to a higher resolution. They considered temporal variations by adding a frame-to-frame

motion loss to achieve improved temporal coherence. He et al. [60] presented InsituNet, a
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rendering image-based generative network that takes ensemble and rendering parameters

as input and produces the corresponding volume rendering images as output. Tkachev et

al. [147] established a CNN for detecting irregular behaviors in spatiotemporal volumes,

which assists in selecting time steps and analyzing ensemble dissimilarity.

2.1.4 Multivariate Relationships

Researchers have studied point-wise correlation coefficients [17, 37, 120, 140] and

gradient similarity measure [131]. Wang et al. [153] studied the information flow be-

tween variable pairs using transfer entropy for investigating variable causal relationships.

Biswas et al. [13] classified variables using surprise and predictability derived from in-

formation theory and leveraged a graph-based representation for variable exploration. Liu

et al. [94] designed the probabilistic association graph based on the informativeness and

uniqueness concepts to uncover the hidden associations between different variables. Tao

et al. [144] considered isosurface similarities across the time and variable dimensions for

time-varying multivariate data and designed the matrix of isosurface similarity map for

visual exploration.

2.2 Data Representation and Generation

2.2.1 Representation Learning

Representation learning is a focused goal of many deep learning solutions. For exam-

ple, Girdhar et al. [36] utilized an autoencoder to learn representative features of 3D objects

for producing novel 3D objects and the corresponding 2D images. Chen et al. [19] designed

LassoNet that attempts to learn a latent mapping from viewpoint and lasso to point cloud

regions for lasso selection of 3D point clouds. Porter et al. [117] established a CNN to

select representative time steps for time-varying multivariate data. Hao et al. [184] built

a representative slice selection approach based on image features extracted by deep learn-
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ing models for improving the image segmentation quality. Zhang et al. [182] proposed a

feature-based metric for evaluating the generated images across different architectures and

tasks and the metric can better capture human perceptual similarity judgement.

In Chapter 3, I propose a unified framework for representative streamline and stream

surface selection using encoder and decoder structure. Beside the deep learning solution,

a novel interface is also designed for user to explore the relationship between learned rep-

resentation and object.

2.2.2 Temporal and Spatial Super-Resolution

Deep learning has achieved great success in generating temporal super-resolution for

video. For instance, Niklaus et al. [109] introduced a CNN for frame interpolation where

the network learns a kernel through the input frames and then applies the learned kernel to

generate the missing frames. Nguyen et al. [108] proposed a deep linear embedding model

to interpolate the intermediate frames. They transformed each frame into a feature space,

then linearly interpolated the intermediate frames in the feature space, and finally recovered

the interpolated features to the corresponding frames. Jiang et al. [72] established a CNN to

estimate the forward and backward optical flows via two given frames. They then wrapped

these optical flows into the frames to generate arbitrary in-between frames. Liu et al. [95]

proposed Deep Voxel Flow, a deep learning-based solution for interpolating video frames

by estimating optical flows without supervision. Meyer et al. [102] conducted PhaseNet, a

CNN-based solution, that can directly estimate the large motions and phase decomposition

of the intermediate frames.

In spatial super-resolution, for images, Dong et al. [27] proposed an autoencoder that

upscales single images with an upscaling factor of three (i.e., the scaled image is nine

times of the original one in size). Ledig et al. [83] established a GAN with residual blocks

to infer photo-realistic natural images for an upscaling factor of four. Zhang et al. [183]

proposed a deep CNN with a channel attention mechanism to achieve better visual single
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image super-resolution results. For videos, Sajjadi et al. [130] utilized the early synthesized

high-resolution frames to predict the subsequent frames through a recurrent video super-

resolution solution. This treatment yields temporally-consistent results while reducing the

computational cost. Jo et al. [73] proposed a DNN that generates dynamic upsampling fil-

ters and a residual image so that the low-resolution image can utilize the dynamic filter to

generate a high-resolution image directly, and the computed residual can refine the struc-

tural details. Pérez-Pellitero et al. [115] established an adversarial recurrent network for

video upscaling, where a temporally-consistent loss is computed through estimating the

optical flow of two frames to guarantee the temporal coherence among different frames.

In Chapter 6, I propose an end-to-end generative framework for producing high-quality

spatiotemporal volumes with a cycle loss-based pre-training algorithm.

2.2.3 Paired Image-to-Image Translation

Deep learning solutions have achieved great success in image-to-image translation

tasks, such as image colorization and style transfer. Zhang et al. [180] designed a deep

learning solution that produces vibrant and realistic colorful images conditioned on gray-

scale images. Zhang et al. [181] established a CNN which directly maps a gray-scale

image, along with sparse, local user “hints” to an output colorization and propagates user

edits. Isola et al. [69] utilized conditional GANs for studying various image-to-image

translation problems, such as aerial-to-map, day-to-night, and edge-to-photo. Park et al.

[112] proposed a spatially-adaptive normalization layer for synthesizing photo-realistic

images based on a semantic layout. Wang et al. [156] proposed few-shot vid2vid frame-

work which requires few example images during training through a novel network weight

generation module utilizing an attention mechanism.

In Chapter 5, I show how to apply representation learning and GAN to select trans-

ferable variables, detect transferable variable order, and translate one variable volume se-

quence to another variable volume sequence.
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2.3 Network Pre-Training

Pre-training in deep learning models aims to provide a good parameter initialization

for better generalization in a particular task (e.g., classification). Based on different tasks,

pre-training examples include inpainting [114], colorization [82], synthesis [26], feature

agreement [40], rotation prediction [35], context prediction [24], and feature contrast [18,

59]. Unlike these pre-training approaches, which are tailored for classification, detection,

or segmentation, in Chapter 6, I propose a novel unsupervised pre-training method for

STSR using cycle loss [177, 187].

2.4 Geometric Deep Learning

Geometric deep learning can be mainly classified into two categories: spectral and

spectral-free solutions [15].

2.4.1 Spectral Methods

Monti et al. [105] designed Gaussian mixture model convolution (GMMConv) to graphs

and meshes for learning task-specific representations. Yi et al. [173] introduced SynSpec-

CNN that parameterizes kernels in the spectral domain spanned by graph laplacian eigen-

bases for keypoint detection and part clustering. Ranjan et al. [123] proposed a spectral

convolutional network that can capture non-linear variations of shapes for 3D face gener-

ation. Liu et al. [93] utilized convolution operating on 1-ring neighbors of each node in

mesh for the classification of mild cognitive impairment and Alzheimer disease. Shu et

al. [137] applied autoencoder to transform low-level features into high-level features of

meshes and grouped the high-level features to co-segment 3D shapes.
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2.4.2 Spectral-Free Methods

Litany et al. [92] proposed a variational graph convolutional autoencoder that learns

hidden representations of meshes to complete partial shapes. Smith et al. [138] conducted

GEOMetrics, a deep learning method based on graph convolution, for reconstructing mesh

objects. Yao et al. [171] applied graph convolutional networks (GCNs) to learn motions

from meshes for face reenactment. Kostrikov et al. [80] built Surface Networks, lever-

aging Dirac operator on meshes, for temporal prediction of mesh deformations and mesh

generation. Wang et al. [158] proposed EdgeConv, a convolutional operation acting on

point clouds, to handle high-level tasks, including classification and clustering. Wang et

al. [155] introduced Pixel2Mesh that generates meshes from single RGB images based

on GCNs. Hanocka et al. [56] established MeshCNN that utilizes geodesic connections

among edges to process meshes for mesh classification and clustering.

In Chapter 4, I establish a GCN framework for effectively learning node and surface

embedding for stream surface and isosurface.
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CHAPTER 3

FLOWNET: A DEEP LEARNING FRAMEWORK FOR CLUSTERING AND

SELECTION OF STREAMLINES AND STREAM SURFACES

3.1 FlowNet

Given a large set of streamlines or stream surfaces generated from a flow data set, I aim

to identify a subset that best captures the underlying flow features and patterns. Instead of

identifying the representatives directly, I opt to partition the input set into clusters and then

select one from each cluster to form the representatives. A key question is how to learn

the feature descriptor for a line or surface. I propose FlowNet design based on an autoen-

coder [11] that learns the feature representation using a deep neural net. I first voxelize

and downsample each object (line or surface) into a 3D binary volume of an appropriate

resolution, which will be the input to the autoencoder. The autoencoder trains the neu-

ral net and learns feature descriptors automatically. Instead of relying on labeled data for

supervised learning, FlowNet applies the autoencoder for unsupervised learning, or more

precisely, self-supervised learning. This eliminates the need to produce labeled data for

training. Once the network converges, I apply t-SNE [151] to the feature descriptors for

dimensionality reduction. I perform interactive clustering using DBSCAN [31] to identify

the representatives. Finally, I design a visual interface for users to intuitively explore the

line or surface collection and perform visual analysis and analytical reasoning.

3.1.1 Feature Descriptor Learning

Object voxelization. I define two representations of an object: sequence and voxel rep-

resentations. The sequence representation of an object is a 1D vector, s= {x1,y1,z1, · · · ,xn,yn,zn},
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where (xi,yi,zi) is a point on the object and n is the number of points. The voxel repre-

sentation of an object is a volume V with size L×W ×H. For streamlines, each object

is a streamline represented by a sequence of points. For stream surfaces, each object is a

stream surface where the sequence representation stores, line by line, the corresponding

points following the streamline or timeline direction. I apply the rounding strategy so that

each point on an object is mapped to its nearest voxel. If the voxel V[li,w j,hk] is occupied

by the object, then the value of this voxel is 1 otherwise the value is 0.

Object voxelization transfers the sequence representation of an object into its voxel

representation. The rule is that V[xi,yi,zi] = 1 for i = 1 to n and the remaining voxels are

filled with 0. Due to the GPU memory constraint, given the original volume V of size

L×W ×H, I downsample it into a volume V′ of size L
′ ×W

′ ×H
′
. I first calculate the

downsamping ratio of each dimension: xr = L/L
′
, yr = W/W

′
, zr = H/H

′
. Then I set

V′[x′i,y
′
i,z
′
i] = 1 for i = 1 to n, where x

′
i = xi/xr, y

′
i = yi/yr, z

′
i = zi/zr. The remaining voxels

are set to 0.

CNN and autoencoder. As a class of deep, feed-forward artificial neural networks, a

CNN performs the computation by neurons, which are organized into layers of different

types: convolutional (CONV) and fully-connected (FC). The CONV layer detects local and

non-linear combinations of features from the previous layer to capture important informa-

tion from the raw data. The FC layer serves as further learning (from general to specific)

of the input observation, combining local features into global features.

An autoencoder consists of two parts: encoder and decoder. The encoder takes an ob-

ject as input and maps it to a feature descriptor. The decoder takes the feature descriptor

as input and reconstructs the object. The basic autoencoder only consists of FC layers for

unsupervised learning, which cannot ensure that the network learns a concise data rep-

resentation and could impact its performance in reconstructing complex data such as 3D

models. I can improve the reconstruction results by introducing CONV into the autoen-

coder. This is because there are always linear combinations of neurons in the FC layers
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while CONV layers allow local and non-linear combinations of neurons, which enables the

network to learn a complex data representation. Another advantage of using CONV layers

is that it reduces the parameters to be learned through parameter sharing.

Original
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Figure 3.1. FlowNet for object feature learning. The input to FlowNet is the
voxelized object representation. The network includes convolutional (CONV),

batch normalization (BN), and fully-connected (FC) layers.

FlowNet architecture. As sketched in Figure 3.1, our FlowNet design includes two

stages: feature learning (encoder) and object reconstruction (decoder). The first stage

learns object features by non-linearly mapping each object representation to a feature de-

scriptor (I use 1024 dimensions). Inspired by the work of Girdhar et al. [36], I design a

CNN for feature learning and object reconstruction. Since there is no padding, I set the

stride to 1 in all CONV layers. Moreover, I apply the batch normalization (BN) layer [68]

to prevent the network from overfitting and gradient vanishing, while speeding up network

training. The FC layers at the end enable the network to learn global features from local

ones. The second stage is the inverse of the first. It reconstructs the object based on the

feature descriptor learned. A loss function is used to indicate the error between the recon-
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structed and original binary volume representations. FlowNet will adjust the parameters

iteratively so that a more accurate feature representation can be learned.

Specifically, FlowNet takes a L×W ×H voxel representation of an object as input.

The encoder consists of four CONV layers with BN added in between, one CONV layer

without BN, followed by two FC layers. With five CONV layers and four BN layers,

the decoder takes this embedded feature and maps it to a L×W ×H voxel grid. I apply

the rectified linear unit (ReLU) [107] at the hidden layers and the sigmoid function at the

output layer. Compared to other activation functions (e.g., tanh and sigmoid), ReLU can

effectively avoid two major challenges in network training: gradient vanishing and ex-

plosion. Gradient vanishing happens when the gradient is close to zero in some hidden

layers which prevents updating the parameters to their previous layers. Gradient explosion

happens when the gradient is close to infinity which keeps the network from learning the

structure of data. I train FlowNet with a binary cross-entropy loss on the final voxel output

against the original voxel input. This loss qualifies the difference between the probability

distributions of the true and predicted data. Other loss functions (e.g., mean squared er-

ror) will lead to a slower convergence of the network because they are prone to gradient

vanishing [38]. The loss function of one training sample is defined as

L =− 1
N

N

∑
i=1

[
pn log p̂n +(1− pn) log(1− p̂n)

]
, (3.1)

where pn is the target probability (1 or 0) of a voxel being filled, p̂n is the predicted prob-

ability obtained through FlowNet, and N = L×W ×H. The total loss is the sum of losses

for all training samples.

3.1.2 Dimensionality Reduction and Object Clustering

Exploring the feature descriptors generated from FlowNet for clustering and selection

requires mapping these feature descriptors to a low-dimensional (e.g., 2D) space and then
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grouping similar objects via clustering. The input to dimensionality reduction is the dis-

tance matrix recording the Euclidean distances between feature descriptors where each

feature vector has been individually normalized [68] using L1-norm. After experiment-

ing with three popular dimensionality reduction methods: t-SNE [151], MDS [81], and

Isomap [145], and three widely used clustering algorithms: DBSCAN [31], k-means, and

agglomerative clustering, I choose the combination of t-SNE and DBSCAN. All results

presented for the rest of the chapter use this combination.

3.1.3 Interface and Interaction

Our FlowNet interface consists of two views: the volume view and projection view.

Both views are connected via brushing and linking: when users interact with one view, the

other view will be automatically updated. The volume view displays the line or surface

objects in the original 3D spatial domain and the projection view displays the objects as

points in the abstract 2D space. I provide the following functions to explore these objects

and their features descriptors:

Clustering. Our interface allows users to interactively tune the parameters of DB-

SCAN (e.g., the maximum distance between two feature descriptors and the minimum

number of samples in one cluster) to generate the desired clustering results. To distinguish

each cluster, I draw neighboring clusters using different colors. The selected cluster is

highlighted with a black boundary and the volume view displays the corresponding ob-

jects. Users can also select multiple clusters simultaneously in the projection view and

examine the relationships among them in the volume view. An example is shown in Fig-

ure 3.2 (a).

Representatives. To identify one representative from each cluster, I calculate the clus-

ter’s center as the data point where the sum of the Euclidean distances from this point to

all the other points in the same cluster is the minimum. Users can interactively set the

number of representatives. The volume view displays these representative objects, and the
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projection view shows the clustering result with the centers highlighted.

Neighborhood. By computing the distance between the centers of two clusters as their

inter-cluster distance, I allow users to “expand” one selected cluster to its neighborhood

and conveniently explore the neighboring clusters. An example is shown in Figure 3.2

(b). To verify the similarities and differences among these neighboring clusters, users can

examine these clusters one by one ordered by their distances to the selected cluster. Such

an example is shown in Figure 3.2 (c).

(a) (b) (c)

Figure 3.2: A sequence of cluster interactions in the t-SNE view and the linked volume
view using the supernova data set: (a) choosing multiple clusters simultaneously, (b) ex-
panding from one selected cluster highlighted at the bottom of the t-SNE view in (a) to
its neighboring clusters, and (c) looping through each of these clusters (the focal cluster is
highlighted with additional + signs). In (c), the remaining streamlines in the neighborhood
are drawn in gray as the context.

3.1.4 Validation

Feature descriptor. To justify the need of deriving feature descriptors from stream-

lines, I compare the results generated using feature descriptors with FlowNet employed vs.

direct use of binary volumes without FlowNet employed. The distance between two binary

volumes is their summed, voxel-wise Euclidean distance. I project the streamline binary

volumes with t-SNE for the five critical points data set, as shown in Figure 3.3 (b). The

brushing and linking result shows that projecting binary volumes directly does not help to
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(a) (b)

Figure 3.3: Comparison of t-SNE projections of (a) feature descriptors and (b) binary
volumes using the five critical points data set. Two point groups (orange and green) are
selected via brushing and linking and their corresponding streamlines are shown. The
unselected points are in blue.

reveal useful potential structures, for example, the streamlines around the critical regions

that capture the main flow features, while projecting feature descriptors with t-SNE reveals

these main features, as shown in Figure 3.3 (a). This comparison indicates that by extract-

ing feature descriptors using the autoencoder, FlowNet can preserve structure exhibited by

the streamline set rather than manufacturing structure by coincidence.

Distance measure. To verify the effectiveness of using the Euclidean distance between

the corresponding feature descriptors for dimensionality reduction, I compare our distance

measure against the mean of the closest point (MCP) distances between streamlines [176]

and Hausdorff distance between streamlines [127] previously used to measure streamline

similarity. I use t-SNE to project the data points and DBSCAN to group these points

using the car flow and two swirls data sets, as shown in Figure 3.4. The result of the car

flow data set shows that our distance measure can well separate the streamlines passing

through the car (refer to the cyan cluster) from those passing by the car (refer to the green

cluster), as shown in (a). Further brushing and linking shows that the surrounding small

24



(a) (b) (c)

Figure 3.4: Comparison of different distance measures. (a) to (c) show FlowNet feature
Euclidean distance, streamline MCP distance, and streamline Hausdorff distance. Top row:
the car flow data set showing 35 clusters. Two streamline clusters are shown. Bottom row:
the two swirls data set showing 36 clusters. Four largest streamline clusters are shown at
the top-right. Eight selected neighboring streamline clusters are highlighted in the t-SNE
view and shown at the bottom-right.

clusters correspond to streamlines located at the volume boundary. The other two distance

measures, however, separate the streamlines passing through the car into different clusters,

as shown in (b) and (c), which is not desirable. The result of the two swirls data set shows

that all these three distance measures yield the four biggest streamline clusters which reveal

the major structure of the two swirling patterns. However, our distance measure can better

separate contextual streamlines from those streamlines in the biggest clusters. In addition,

these contextual streamline clusters in (a) exhibit a better symmetry compared with those

in (b) or (c).

Loss function measure. To verify the effectiveness of using binary cross-entropy for

FlowNet training, I compare feature descriptors under three different loss functions: binary

cross-entropy, mean squared error (MSE), and Dice loss [103]. I apply t-SNE projection

and DBSCAN clustering for the two swirls data set, as shown in Figure 3.5. The clustering

result shows that all these three loss functions can separate out the four biggest clusters.
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(a) (b) (c)

Figure 3.5: Comparison of feature descriptors under different loss functions using the two
swirls data set. (a) to (c) show binary cross-entropy, F1 score = 0.88, AMSE, F1 score =
0.75, aDice loss[103], F1 score = 0.84. All generate 25 clusters through DBSCAN. The
selected streamline clusters are highlighted and shown in the t-SNE view.

However, compared to Dice loss, binary cross-entropy and MSE can discover the stream-

lines located at the volume boundary and therefore, better separate contextual streamlines.

Moreover, using binary cross-entropy yields the highest F1 score. Therefore, I choose

binary cross-entropy as the loss function.
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TABLE 3.1

THE DIMENSION OF EACH DATA SET AND RESPECTIVE KERNEL SIZE

USED

Original Downsampled Kernel

Data Set Dimension Dimension Size

ABC 51×51×51 51×51×51 3×3×3

Bénard flow 128×32×64 64×16×32 4×1×2

car flow 368×234×60 92×59×15 6×4×1

computer room 417×345×60 105×87×15 8×6×2

crayfish 322×162×119 81×40×30 4×2×2

five critical pts 51×51×51 51×51×51 3×3×3

solar plume 126×126×512 32×32×128 2×2×8

square cylinder 192×64×48 96×32×24 8×3×2

supernova 100×100×100 50×50×50 2×2×2

tornado 64×64×64 50×50×50 3×3×3

two swirls 64×64×64 32×32×32 4×4×4
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(a) training set only (b) test set only (c) training set + test set

Figure 3.6: Evaluation of FlowNet using the tornado streamline and stream surface data
via brushing and linking. Two selected point groups and their corresponding streamlines
or surfaces are shown. The training and test sets are in blue and red, respectively.
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TABLE 3.2

PERFORMANCE COMPARISON AMONG DIFFERENT DATA SETS

Training Training Testing Testing Training Training Testing Testing

Data Set # Lines F1 Score # Lines F1 Score # Surfaces F1 Score # Surfaces F1 Score

ABC 3,000 0.91 3,000 0.82 2,000 0.84 2,000 0.71

Bénard flow 3,000 0.87 3,000 0.80 2,000 0.84 2,000 0.79

car flow 3,000 0.81 3,000 0.69

computer room 3,000 0.74 3,000 0.68 2,000 0.83 2,000 0.59

crayfish 3,000 0.86 3,000 0.78

five critical pts 3,000 0.96 3,000 0.72 2,000 0.72 2,000 0.57

solar plume 4,000 0.83 4,000 0.76 1,000 0.84 1,000 0.57

square cylinder 3,000 0.84 3,000 0.72 2,000 0.91 2,000 0.86

supernova 3,000 0.86 3,000 0.75

tornado 3,000 0.91 3,000 0.76 2,000 0.88 2,000 0.78

two swirls 3,000 0.88 3,000 0.75 2,000 0.91 2,000 0.81

29



(a) binary cross-entropy loss (b) F1 score

Figure 3.7: Performance curves under different numbers of training streamlines for the five
critical points data set.

Underfitting and overfitting. Two central challenges in machine learning are under-

fitting and overfitting [39]. Underfitting occurs when the model is not able to fit the training

set. Overfitting occurs when the model fits the training set perfectly but fails to fit the test

set. In Tables 3.1 and 3.2, I report for each data set, the sizes of training and test sets and

their corresponding F1 scores. Note that the test sets are randomly generated, in the same

fashion as the training sets.

F1 score is defined as

F1 =
2

1
recall +

1
precision

=
2

FNs+TPs
TPs + FPs+TPs

TPs

, (3.2)

where TPs, FPs, and FNs stand for true positives, false positives, and false negatives, re-

spectively. In our context, given a voxel in the binary volume, it is a true positive/false

positive/false negative if the value of ground truth is 1/0/0 and the possibility predicted by

FlowNet is greater/greater/less than 0.5. Ranging between 0 and 1, F1 score defines the

similarity between the original and the predicted objects. If F1 score is closer to 1/0, it

indicates that the predicted object is more/less similar to the original object.

The F1 scores reported for training show that FlowNet is not underfitting. To visually

demonstrate that FlowNet is not overfitting, I qualitatively compare the t-SNE views of the
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training set and test set via separate projections, as shown in Figure 3.6 (a) and (b). Note

that the embedding is with respect to the data points, not the underlying space. Although

the orientations or spreads are different (which is due to the randomness of the t-SNE

algorithm), both views share the similar global structure and local characteristics. Through

brushing and linking, I can further verify that the trained model works as expected for the

test set. I also experiment with projecting the training and test sets in the same view, as

shown in Figure 3.6 (c). The interspersed points from both sets confirm that the trained

model can map new, previously unseen inputs to appropriate feature vectors.

TABLE 3.3

F1 SCORES UNDER DIFFERENT TRAINING SAMPLES

Data Set computer room five critical pts supernova two swirls

# Lines 1,000 1,000 1,000 1,000

F1 Score 0.36 0.31 0.38 0.35

# Lines 2,000 2,000 2,000 2,000

F1 Score 0.62 0.68 0.69 0.67

3.2 Results and Discussion

3.2.1 Data Sets and Network Training

Data sets. I experimented with the list of data sets shown in Table 3.2. From top

to bottom, these data sets are: the Arnold-Beltrami-Childress (ABC) incompressible flow

which is an exact solution of Euler’s equation [25], the liquid flow between two parallel
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(a) (b)

Figure 3.8: Representative stream surface selection with t-SNE projection and DBSCAN
clustering using the Bénard flow data set.

planes [161], the air flow around a car [99], the air flow in a computer room [160], the

heat flow around a cooking crayfish [99], a synthesized flow field consisting of five critical

points [172], the compressible downflow solar plume [124], the flow around a confined

square cylinder [152], the flow of core-collapse supernovae [14], a procedurally generated

tornado [22], and swirls resulting from wake vortices [99].

FlowNet training. I implemented FlowNet in PyTorch using an NVIDIA TITAN Xp

1080 GPU for network training. In the training process, I initialized all layers of FlowNet

from scratch using N (0,0.01) and applied the Adam optimizer [78] with learning rate

10−6 to update the parameters. I used the minibatch size of 1 and trained FlowNet with

100 epochs. For training efficiency, I follow a simple scheme to decide the training sample

size. For streamlines, I initialize the training sample size with 1,000 and train FlowNet.

Then, I check the F1 score after training FlowNet with 100 epochs. If the score is accept-

able (e.g., larger than 0.7 based on our empirical experience), the training sample size is

determined. Otherwise additional 1,000 streamlines will be added to the training pool to

retrain FlowNet. For stream surfaces, I initialize the training sample size with 1,000, and

if the training F1 score is less than 0.7, additional 500 stream surfaces will be added to the

training pool to retrain FlowNet. Based on this scheme, the size of the training set and the
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corresponding kernel size are listed in Table 3.2. The testing F1 scores for the computer

room, five critical points, and solar plume surface data are relatively low (less than 0.6),

mainly due to the complex flow features exhibited by these data sets.

In Figure 3.7, I report the binary cross-entropy losses and F1 scores under different

training samples for the five critical points data set. In (a), I can see that the binary cross-

entropy loss converges fast as the number of training samples increases. In (b), I can

see that the F1 score significantly improves when using more streamlines in the training

process. This indicates that the performance of FlowNet is highly related to the number of

training samples used. Adding more streamlines to the training pool, FlowNet converges

faster and F1 score also improves. However, both benefits are at the expense of longer

training time. Balancing between performance and training time, I choose an increment of

1,000 streamlines for the training. In Table 3.3, I report F1 scores under different training

samples for different data sets. It is clear that using 1,000 and 2,000 streamlines cannot

achieve a good performance (e.g., F1 score is larger than 0.7), while the performance is

acceptable if 3,000 samples are used for training, as shown in Table 3.2. Based on this

experiment, I conclude that using 3,000 streamlines is enough to train FlowNet. For the

solar plume data set, I use 4,000 streamlines for training, leading to the F1 score of 0.83

(3,000 streamlines only give the F1 score of 0.67).

All streamlines are traced from seeds randomly placed in the domain. All stream sur-

faces are traced from random seeding curves following the binormal directions. Each

seeding curve is generated by tracing in the binormal field with a random starting point

and length [142]. For stream surfaces, I do not experiment with the car flow, crayfish,

and supernova data sets, since the flow patterns in these data sets are either laminar or too

complex to be effectively captured by the randomly-placed surfaces. The training time is

mainly determined by the sizes of the kernel and training set. Our experiments show that

the Bénard flow stream surface data require the lowest training time (15 minutes per epoch)

while the computer room streamline data require the highest training time (90 minutes per
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epoch). So training 100 epochs would take anywhere from one to seven days.

3.2.2 Results and Feature Understanding

Clustering and selection results. In Figure 3.2, Figures 3.4 to 3.6, and Figures 3.8 to 3.10,

I show the results of clustering and selection of streamlines and stream surfaces. The brush-

ing and linking results in Figure 3.3 (a) and Figure 3.6 show the good correspondence of

neighboring points in the t-SNE view and neighboring lines or surfaces in the spatial view.

This indicates that FlowNet feature vectors are a faithful representation of the underlying

streamlines and stream surfaces in terms of their shapes and locations. It also shows that

the t-SNE projection well preserves neighborhood information. The clustering results in

Figures 3.2, 3.4, and 3.5 show that meaningful clustering and flexible exploration can be

achieved using our method. In Figures 3.8 to 3.10, I show representative streamline and

stream surface results. Unlike representative streamlines which are normally in the range

of tens to hundreds, representative stream surfaces are typically within ten or up to tens.

Therefore, I select representative streamlines automatically, while giving the option of a

two-step process for representative stream surface selection. With this option, I first gener-

ate a certain number of representative stream surfaces and then let users pick a subset that

strikes a balance between surface representativeness and domain coverage. In Figure 3.8,

I show a set of representative surfaces following this two-step process. Four surfaces are

selected from the t-SNE view showing 11 clusters. These four surfaces are the centroids

of the largest four clusters. Figure 3.12 (a) and (c) show two other sets of representative

surfaces based on the t-SNE view shown in Figure 3.8 (a). With this process, users are

able to generate customized representative surface results. In Figure 3.10, the represen-

tative streamlines and surfaces show that I can generate a good representation of the flow

fields with representative streamlines and surfaces at varying levels of detail. The appropri-

ate number of representatives is determined empirically as users can make the adjustment

interactively to generate desirable results.
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Figure 3.9: Representative stream surfaces of the solar plume, five critical points, tornado,
and two swirls data sets. (a) to (d) show 7, 7, 4, and 4 representative surfaces, respectively.
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Figure 3.10: Representative streamlines and stream surfaces of the computer room data
set. (a) to (c) show 70, 150, and 300 streamlines, respectively. (d) to (f) show 40, 60, and
80 stream surfaces, respectively. Velocity magnitudes are mapped to streamline colors.

Separation of cross-dataset features. I also experiment with the joint training of

streamline and stream surface data drawn from different data sets. I select two data sets

and use half of the training samples from each data set for joint training. The results are

shown in Figure 3.11. I can see from the t-SNE view that the two data sets are largely

separated in the projection as these two data sets contain very dissimilar flow features and

patterns. The first row of Figure 3.11 shows that the overlapped points in the t-SNE view

correspond to similar streamlines around the volume boundary while the separated points

correspond to streamlines of distinct spatial locations and flow patterns. The stream surface

results in the second row also confirm similar findings, although there is a less number of

similar surfaces. This is mainly because stream surfaces are one dimension higher than

streamlines. Using random seeding, it is less likely to generate similar stream surfaces

from these two data sets. This experiment shows the potential of FlowNet in separating

cross-dataset features and the possibility to generalize FlowNet to handle multiple data

sets.
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(a) (b) (c)

Figure 3.11: Joint training of the five critical points (green) and ABC (orange) streamline
and stream surface data. (a) highlights where the two data sets overlap in the t-SNE view.
(b) and (c) show an example of where the two data sets are separated in the t-SNE view.

3.2.3 Comparison against Existing Methods

Stream surface selection. In Figure 3.12, I compare our stream surface selection

results against those generated from the feature-centered automatic surface seeding by Ed-

munds et al. [29] and the global selection of stream surfaces by Schulze et al. [132]. Both

methods being compared are fully automatic, while our method provides the two-step pro-

cess to users so that they can handpick representative stream surfaces. With this flexibility,

for the Bénard flow data set, I are able to generate representative stream surface results

similar to those generated by Edmunds et al. [29] (see (a) and (b)) and Schulze et al. [132]

(see (c) and (d)). For the square cylinder data set, although the numbers of representa-

tive stream surfaces are not the same, the important surface features on the left are well

captured by all three methods.

Streamline selection. In Figure 3.13, I compare our streamline selection results against

those generated from the dual information channel based method of Tao et al. [143] and

the entropy-based method of Xu et al. [170]. For fairness, each method produces the same

number of streamlines. The information channel is built between the set of streamlines

and a set of sample viewpoints. I generate the selection results using three criteria: p(s)

(streamline probability), I(s;V ) (streamline information), and REP (streamline representa-
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(a) our method (b) Edmunds et al. [29] (c) our method (d) Schulze et al. [132]

(e) our method (f) Edmunds et al. [29] (g) Schulze et al. [132]

Figure 3.12: Top to bottom: comparison of surface selection results of the Bénard flow
and square cylinder data sets using different methods. (a) to (d) show four stream surfaces
each. (e) to (g) show three, five, and four stream surfaces, respectively.

tiveness). Our method and each of the three criteria of Tao et al. [143] select representatives

from the same pool of streamlines. The entropy-based method generates streamlines iter-

atively guided by the conditional entropy between the original vector field and the field

reconstructed from selected streamlines. By comparing the results side by side, I can

observe that our method strikes a good balance between streamline informativeness and

domain coverage, achieving comparable results with respect to those of REP. For the so-

lar plume data set, our method yields the best domain coverage. For the five critical points

data set, p(s) fails to select surrounding streamlines which correspond to the saddle pattern,

while our method and REP best capture the source at the center of the volume. For the tor-

nado data set, I(s;V ) gives the best result by revealing the swirling pattern surrounding the

vortex core at the bottom. For the two swirls data set, our method strikes the best balance

between domain coverage and feature highlighting. Overall, I feel that using FlowNet fea-

tures generates competitive streamline selection results comparing to these state-of-the-art

solutions.

To quantitatively evaluate the quality of selected streamlines, I use them to reconstruct

the vector field V′ through gradient vector flow [168]. I follow the work of Tao et al. [143]
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(a) (b) (c) (d) (e)

Figure 3.13: Top to bottom: comparison of streamline selection results of the solar plume,
five critical points, tornado, and two swirls data sets using different methods. (a) to (e)
show our method, p(s) Tao et al. [143], I(s;V ) Tao et al. [143], REP Tao et al. [143], and
Xu et al. [170]. All methods show the same number of streamlines: 100, 140, 60, and 80,
respectively.

to initialize V′ and iteratively refine V′ using the generalized diffusion equations. After

that, I compute the peak signal-to-noise ratio (PSNR) and average angle difference (AAD)

of V′ with respect to the original vector field V. For AAD, I calculate the angle difference

between the original and reconstructed vectors for all voxels and then get the average. I

normalize the error to [0,1] by dividing the AAD by π . A method is the best if it leads to

the largest PSNR and the lowest AAD. In Table 3.4, under a given setting for the number

of streamlines, I can see that our method achieves the highest PSNR and lowest AAD

except for the solar plume data set. For that data set, REP achieves the best quality, while
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(a) solar plume (b) five critical points (c) tornado (d) two swirls

Figure 3.14: Comparison of PSNR (top row) and AAD (bottom row) of reconstructed
vector fields under different streamline selection methods and different numbers of training
streamlines.

our method is the second best in terms of both PSNR and AAD. More extensive quality

comparison results are given in Figure 3.14. I can see that in general, our method is the best

under different streamline selection methods and different numbers of training streamlines.
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TABLE 3.4

PERFORMANCE COMPARISON OF RECONSTRUCTED VECTOR FIELDS

UNDER DIFFERENT STREAMLINE SELECTION METHODS

PSNR (dB) AAD

Data Set # Lines Ours p(s) I(s;V ) REP Xu’s Ours p(s) I(s;V ) REP Xu’s

crayfish 70 30.94 30.84 30.91 30.02 28.97 0.102 0.105 0.103 0.116 0.144

solar plume 100 30.68 30.37 30.07 30.75 15.78 0.283 0.309 0.286 0.280 0.303

five critical pts 140 26.25 21.23 21.13 25.50 20.16 0.023 0.031 0.036 0.026 0.031

tornado 60 29.74 28.12 29.44 29.13 28.30 0.080 0.167 0.116 0.105 0.101

two swirls 80 36.35 36.30 34.55 36.21 27.72 0.065 0.066 0.079 0.070 0.071
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It is the clear winner for the five critical points and tornado data sets. For the crayfish

data set, our method starts with the worst quality but ends with the best. For the solar

plume data set, our method achieves the highest PSNRs very similar to REP, while loses

to I(s;V ) and REP by a small margin in terms of AAD when the number of streamlines

is larger than 140. For the two swirls data set, our method achieves the highest PNSRs

very similar to p(s) and REP, while the lowest AAD when the number of streamlines is

larger than 80. I conclude that our method actually performs almost the best quantitatively

compared to p(s), I(s;V ), REP, and Xu’s method.

3.3 Conclusions

I have presented FlowNet, a novel approach for clustering and selection of streamlines

and stream surfaces. Based on the encoder-decoder, FlowNet is able to learn latent features

of streamlines and stream surfaces within a single framework in an unsupervised manner,

which distinguishes itself from all previous works which have to solve them separately and

explicitly utilize handcrafted features. These latent features encode the shape and location

information of objects rather than the physical flow information. I then project the result-

ing feature vectors into a low-dimensional space, which lends itself to a visual mapping

and interface for user interaction. Brushing and linking yields meaningful clustering and

selection results. The line and surface clusters generated from FlowNet capture both spa-

tial proximity and/or geometric similarity. I validate FlowNet using the network learned

from the training set to examine the test set, and compare the results using FlowNet-trained

features against those using other state-of-the-art methods.
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CHAPTER 4

SURFNET: LEARNING SURFACE REPRESENTATIONS VIA GRAPH

CONVOLUTIONAL NETWORK

4.1 SurfNet

Given a large set of stream surfaces or isosurfaces generated from a vector or scalar

field data set, we propose two aims: clustering and selection. For clustering, we aim to

partition every stream surface or isosurface into several parts so that these parts exhibit

different patterns. For selection, a subset of surfaces best covering the underlying features

and patterns needs to be identified. Instead of identifying these surfaces directly, we group

the input set into clusters and select the representatives from these clusters. A key question

is how to generate node features for a surface in an unsupervised manner. We propose

SurfNet, a GCN that learns node features through graph convolution. An overview of

SurfNet is sketched in Figure 4.1 (a). We first simplify the surfaces using a mesh sim-

plification algorithm [34] as needed. Then, we transform every simplified surface into an

undirected unweighted graph, which will be the input to SurfNet. We initialize the node

features using their positional information. SurfNet learns node features automatically by

aggregating their neighborhoods. To optimize SurfNet, we compute a node similarity ma-

trix, and based on this matrix, SurfNet will update learnable parameters through gradient

descent. Once SurfNet converges, these node features represent each node’s information or

the entire surface’s information. We then apply t-SNE [151] to node features for projecting

to a low-dimensional space and leverage DBSCAN [31] to identify the clustering or the

representatives based on interactive clustering. Finally, users can explore the surface(s)

and perform visual analysis and analytical reasoning through a visual interface.

43



24.56 56.78 12!72

74.28 86.21 9!45

98.35 21.33 41!45

mesh 

simplification

feature 

initialization

similarity 

measurement

2.67 0.00…

0.00 0.56…

10.21 12.31…

15.67 2.56…

1.89 4.78…

19.45 9.41…

graph 

convolution

graph 

convolution…
graph 

convolution

SurfNet

u

layer j

u

layer j+1

(a) (b)

Figure 4.1: (a) SurfNet for node embedding learning. The input to SurfNet is the simpli-
fied surface. Several graph convolutions are leveraged to learn node embeddings. Finally,
a similarity measure is applied to optimize SurfNet. (b) An example of embedding prop-
agation in GCN. The latent embedding for node u at layer j + 1 is aggregated from its
previous embedding and immediate neighbors at layer j.

4.1.1 Notation

Formally, we define a surface (mesh) as a graph G = (V,E), where V is the set of

all nodes (e.g., sample tracing points along both streamline and timeline directions on a

stream surface or triangle vertices on an isosurface) and E is the set of all edges (e.g., edges

connecting sample tracing points on a stream surface or triangle edges on an isosurface).

Each node u ∈ V has a set of associated feature values, denoted as Fu. Fu could denote

various pieces of information (e.g., position, normal, velocity) of the corresponding node

u. N (u) denotes the neighborhood of u. In addition, G = {G1,G2, . . . ,Gn} is a set of

graphs and FGi represents the feature descriptor of graph Gi.

4.1.2 Node Embedding

Given a surface, SurfNet aims to generate a set of node features, and each node feature

presents rich spatial and geometric information of the corresponding node on the surface.

To this end, SurfNet needs to satisfy the two major properties as suggested by Bai et al.

[4]:

• Inductivity. SurfNet should learn a unified mapping function so that it can be di-
rectly applied to any unseen surface to generate the corresponding node features.
• Permutation invariance. A different adjacency matrix can represent the same sur-

face by permuting the order of nodes, and SurfNet should be insensitive to such
permutations.

Across different node embedding models, neighborhood aggregation methods based on
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GCN are permutation-invariant and inductive. This is because the core operation, graph

convolution, updates a node’s representation by aggregating the node and its neighbors’

features. Since the aggregation function treats a node’s neighbors as a set, the order does

not affect the final embedding result.

Node aggregation. To merge information on a node u, we choose a topology-based

aggregator [174], as sketched in Figure 4.1 (b). The aggregator works as follows. For

each node u on a surface, all nodes v, where v ∈N (u), are first identified. Then, a multi-

perceptron layer is leveraged to transform the node representation Fv into a new node

representation through an aggregation function (e.g., averaging or summation). This ag-

gregation function merges representations Fu and Fv, where v ∈ N (u). After that, we

apply an activation function to the transformed embedding to increase the capability of

capturing nonlinear behaviors. Finally, a representation of u consisting of the node and its

local neighborhood’s information is produced.

64 128 256 256 256 256

graph convolution K node embedding dimensionresidual connection

21.1 34.5 65.3

12.4 23.5 34.4

12.4 0.0…

15.7 29.6 45.3

5.6 2.2…

7.4 0.0…

Figure 4.2. The architecture of SurfNet. SurfNet contains six graph convolution
layers and the last four graph convolutions are bridged by residual connection.

Network architecture. As sketched in Figure 4.2, following Ying et al. [174], after

applying one graph convolution to a surface, we update the feature representation of each
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surface node u. We employ several graph convolutions to aggregate enough information

from u’s neighbors. Specifically, SurfNet contains six graph convolution layers. These six

layers embed the features into 64, 128, 256, 256, 256, and 256 dimensions, respectively.

Moreover, we leverage residual connection [58] to bridge the last four graph convolution

layers, mitigating the impact of vanishing gradients and accelerating convergence [169].

We apply the rectified linear unit (ReLU) [107] as the activation function after each graph

convolution layer. Note that the initial representations (i.e., the input to the first layer)

could be the original information of the surface nodes (e.g., position, normal). The detailed

parameters are listed in Table 4.1. Note that we increase the embedding dimension in

network design so that the learned features have enough information to represent nodes.

TABLE 4.1

NETWORK PARAMETER DETAILS OF SURFNET

operation # input neurons # output neurons

graph Conv 3 64

graph Conv 64 128

graph Conv 128 256

graph Conv 256 256

graph Conv 256 256

graph Conv 256 256
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4.1.3 Loss Function

To optimize SurfNet, we investigate several loss functions for measuring node similar-

ity in the feature space.

• Optimization based adjacency matrix [3]:

L =
n

∑
i=1

∑
u∈Vi

∑
v∈Vi

(Ai(u,v)−FT
u Fv)

2, (4.1)

where n is the number of graph samples (i.e., {G1,G2, . . . ,Gn}) used for training, Vi
is the node set of Gi, and Ai is the adjacency matrix of Gi.
• Optimization based on random walk [44]:

L =
n

∑
i=1

∑
u∈Vi

[
− log(σ(FT

u Fv))− ∑
k∈Pu

log(σ(FT
u Fk))

]
, (4.2)

where v is a node that is near u on a fix-length random walk (e.g., 10), σ is the
sigmoid function, and Pu is a negative sampling node set of node u.
• Optimization based on node distance: Inspired by Corso et al. [21], which embeds

biological sequences by reducing the difference between the sequences’ edit distance
and the distance between the learned embeddings, we design a novel self-supervised
loss as follows

L =
n

∑
i=1

∑
u∈Vi

∑
v∈Vi

(D(u,v)−d(Fu,Fv))
2, (4.3)

where d(·, ·) denotes the distance measure (such as L2 norm) in the feature space
and D(u,v) is a distance metric between nodes u and v (e.g., position, normal, or
geodesic similarity).

Loss analysis. To investigate the effectiveness of various losses, we train SurfNet

with different objective functions (i.e., adjacency matrix, random walk, Euclidean, normal,

velocity, and geodesic distances) using the five critical points data set. The results are given

in Figure 4.3. Node clustering results are not satisfactory using the adjacency matrix,

random walk, normal, and velocity distances. For example, these loss functions cannot

isolate the spirals on this surface. Euclidean distance can detect the spiral at the top of the

surface (i.e., the yellow part) but fails to discover the other one. The geodesic distance can

separate the two spirals at both ends (the yellow and blue parts). Therefore, in the chpater,

we choose geodesic distance as the objective function for SurfNet optimization.
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(a) adjacency matrix (b) random walk (c) Euclidean

(d) normal (e) velocity (f) geodesic

Figure 4.3: SurfNet node clustering results of a stream surface under different loss func-
tions using the five critical point data set.

We further reason these losses during network optimization. As illustrated with an

example in Figure 4.4, Euclidean distance deems red and yellow nodes closer than red and

purple nodes. This contrasts the observation that red and purple nodes should be more

similar since they come from the same surface branch, while red and yellow nodes are less

similar as they reside in two different branches. For adjacency matrix and random walk,

both determine that the red node is equally distant from the green and yellow ones. The

red node is disconnected from the yellow or green node in the adjacency matrix. The red

node cannot reach the yellow or green node through multiple random walks. Only the loss

function based on the geodesic distance reflects the correct similarity order.

48



,sim( ) > ,sim( ) ,sim( )=

,sim( ) > ,sim( ) ,sim( )>

,sim( ) > ,sim( ) ,sim( )>

adjacency matrix

geodesic distance

random walk
,sim( ) > ,sim( ) ,sim( )=

Euclidean distance

Figure 4.4: Comparison of different loss functions. The correct similarity order is
sim( , )>sim( , )>sim( , ). This is because red, purple, and green nodes are on the same
surface branch while red and yellow nodes are on two different branches. In addition, red
and purple nodes are closer on the surface than red and green nodes.

(a) CD (b) JSD (c) SurfNet

Figure 4.5: Evaluation of different surface distance metrics using the two swirls data set
via brushing and linking. The unselected nodes are colored in gray.

4.1.4 Surface Embedding

For surface Gi, given a set of node embedding features F = {F1,F2, · · · ,F|Vi|}, we

compute the corresponding surface embedding feature as

FGi =
1
|Vi| ∑

u∈Vi

Fu, (4.4)

where |Vi| is the number of nodes in Gi.

Similar to Tkachev et al. [148], the distance between surfaces Gi and G j is defined as

D(Gi,G j) = ||FGi−FG j ||2, (4.5)
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where || · ||2 is L2 norm.

To demonstrate the effectiveness of this surface distance metric, we compare this metric

with two traditional surface distance metrics, i.e., chamfer distance (CD) [6] and Jensen-

Shannon divergence (JSD) [88]. A comparison is shown in Figure 4.5. In the projection

space generated by each distance metric, we brush two parts and display the corresponding

stream surfaces. For CD, similar surfaces are not placed in close locations. For JSD,

the projection cannot show any relationship among those surfaces. For SurfNet, we can

observe that the surfaces can be classified into four groups in general and similar surfaces

can be placed together.

surface
view

projection
view

control
panel

Figure 4.6: The visual interface of SurfNet. In this example, the selected nodes are high-
lighted in both views. The unhighlighted surface parts are colored with light gray in the
surface view.
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4.1.5 Interface and Interaction

The screenshot in Figure 4.6 shows that our SurfNet interface includes two views:

surface view and projection view. Brushing and linking are used to connect both views.

Surface(s) in the original 3D space is shown in the surface view, and the projected points

in the 2D space are displayed in the projection view. Note that for node clustering, each

point in the projection view represents a node on the surface (node embedding). For rep-

resentative selection, each point represents a surface (surface embedding). The following

interactive functions are supported to explore the clustering and selection results.

• Clustering. The hyperparameters of DBSCAN (i.e., the maximum distance between
two node features in the 2D space and the minimum number of samples in one clus-
ter) can be tuned by users to produce different clustering results. Neighboring clus-
ters are drawn using different colors for differentiation. A black boundary is added
to the selected cluster for highlighting, and the corresponding surface parts or sur-
faces are displayed in the surface view. Multiple clusters in the projection view can
be chosen simultaneously by users. The relationships among them are examined in
the surface view. The unselected ones are colored with light gray.
• Representatives. To select the representative from one cluster, we follow FlowNet [51]

and define a cluster’s center as the point where the average distance is the shortest
between this point and all the other points in this cluster. The number of represen-
tatives can be manually changed based on user preferences. The selected represen-
tatives are displayed in the surface view, and the corresponding points are shown in
the projection view.
• Neighborhood. Following FlowNet [51] , we define the distance between two clus-

ters as the distance between their centers. Users can select one cluster and expand
to its neighborhood to explore the neighboring clusters. Users can also go through
these clusters according to their distances to the selected one. They can check the
similarities and differences among the clusters in the neighborhood.

4.2 Results and Discussion

4.2.1 Data Sets and Network Training

We experimented with vector and scalar data sets shown in Tables 4.2 and 4.3, re-

spectively. We used two multivariate data sets (combustion and ionization), and the rest

of the data sets have a single variable. We implemented SurfNet using PyTorch [113]
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TABLE 4.2

DIMENSION AND TRAINING EPOCHS OF VECTOR DATA SETS

data set dimension (x× y× z) epochs

Bénard flow 128×32×64 200

five critical points 51×51×51 200

solar plume 126×126×512 200

square cylinder 192×64×48 200

tornado 64×64×64 200

two swirls 64×64×64 200

and DGL [159]. The training and inference were run on an NVIDIA GTX 1080 Ti GPU.

In terms of optimization, we initialized SurfNet parameters following the suggestion of

He et al. [57] and employed the Adam optimizer [78] for parameter updates (β1 = 0.9,

β2 = 0.999). We set one training sample per mini-batch and the learning rate to 10−4. For

stream surfaces, we generated 2,000 surfaces. We used 1,000 surfaces for training and the

other 1,000 for inference. For isosurfaces, we uniformly selected 256 isovalues for train-

ing and sampled other isovalues for inference. We determined all these hyperparameters

empirically.

To evaluate SurfNet, we analyze different hyperparameter settings, including mesh

simplification, network depth, training stability, embedding strategy, embedding dimen-

sion, feature initialization, and training samples.

4.2.2 Node Clustering

Baselines. For node clustering, we compare SurfNet against both spectral and spectral-

free methods:
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TABLE 4.3

DIMENSION AND TRAINING EPOCHS OF SCALAR DATA SETS

data set variable dimension (x× y× z) epochs

combustion HR, MF, YOH 240×360×30 100

ionization H, He, PD 600×248×248 100

bonsai Intensity 204×204×204 100

lobster Intensity 301×324×56 300

• GMMConv [105] is a spectral method. It learns d-dimensional node embedding
through Gaussian mixture CNNs.
• EdgeConv [158] is a spectral-free method. It encodes each node into a d-dimensional

vector by aggregating its nearest neighbors.

Note that other works [80, 92, 93, 123, 137, 138, 155, 171, 173] are not suitable for learn-

ing node embedding without supervision since these architectures are tailored for mesh

generation, classification, and segmentation tasks. Additionally, MeshCNN [56] aims to

learn edge embedding, which cannot be optimized using the node-based loss.

For a fair comparison, we apply the same settings (i.e., the loss function, number

of training samples, optimizer, and epochs) for optimizing GMMConv, EdgeConv, and

SurfNet.

Similar to other node embedding approaches [2, 66, 71, 79], the 2D t-SNE projection

cannot completely represent relationships among different nodes.

Node feature validation. To verify the effectiveness of our node embedding, we apply

t-SNE to project node embeddings to a 2D space and then perform brushing and linking.

The results are shown in Figure 4.7. The t-SNE projection conveys the node’s positional

information and potentially the surface’s structural information. For example, for the tor-

nado (Figure 4.7 (a)), the orange points at the bottom-right corner of the projection view

correspond to the tail of the surface, and the green and red points correspond to the spiral.

53



Likewise, for the two swirls (Figure 4.7 (b)), the orange points in the projection view ex-

hibit a swirling pattern, which corresponds to the orange part of the surface. These brushing

and linking results demonstrate the meaningfulness of the learned features, indicating that

they can capture the nodes’ neighborhoods and their positional information.

(a) tornado (b) two swirls

Figure 4.7: Evaluation of node features via brushing and linking. The unselected nodes are
colored in gray.

Node clustering comparsion. In Figure 4.8, we qualitatively compare the node clus-

tering results generated by GMMConv, EdgeConv, and SurfNet. The same number of

clusters is used for the same data set. For the bonsai data set, GMMConv does not separate

the bonsai from the basin, while both EdgeConv and SurfNet can correctly separate the

two structures. For the lobster data set, both GMMConv and EdgeConv do not produce

acceptable clustering results, while SurfNet can detect the three main structures (i.e., the

claws, boy, and tail). The same conclusion can be drawn for the tornado data set, as only

SurfNet partitions the tornado into three spirals of different curvature ranges. For the two

swirls data set, GMMConv groups two spirals (refer to the green and orange parts) with
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(a) GMMConv (b) EdgeConv (c) SurfNet

Figure 4.8: Node clustering results of a single surface. Top to bottom: bonsai, lobster,
tornado, and two swirls. bonsai and lobster are isosufaces. tornado and two swirls are
stream surfaces. Smaller surface clusters are highlighted with arrows of the same colors.
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(a) (b) (c)

Figure 4.9: SurfNet node clustering results of a stream surface (top) using the five critical
points data set and an isosurface (bottom) using the bonsai data set. From (a) to (c), the
numbers of clusters for stream surfaces are 2, 3, and 4, and the numbers of clusters for
isosurfaces are 3, 4, and 5.

overlap. EdgeConv does not detect the two spirals. SurfNet can recognize the surface’s

structure correctly, i.e., two spirals (refer to the blue and green parts) and one bridge (refer

to the orange part). Overall, SurfNet outperforms GMMConv and EdgeConv by producing

satisfactory node clustering results.

In Figure 4.9, we adjust the number of clusters to show the results with different scales

(i.e., from coarse to fine) on a single stream surface and isosurface. All the results indi-

cate that SurfNet can produce meaningful node clustering results under different numbers

of clusters. For example, the clustering shows the basin’s top and bottom portions and

various parts of the bonsai. In Figure 4.10, we show more results with different data sets

using SurfNet for stream surface clustering. Each column shows node clustering results

for different surfaces of the same data set. These results further confirm the reliability of

SurfNet in clustering the nodes of stream surfaces. We found that for complex flows (e.g.,
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Figure 4.10: SurfNet node clustering results of a stream surface. Top to bottom: Bénard
flow, five critical points, solar plume, square cylinder, and two swirls.
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(a) five critical points (b) square cylinder

Figure 4.11: Loss convergence among GMMConv, EdgeConv, and SurfNet.

(a) joint training (b) separate training

Figure 4.12: SurfNet node clustering results of a stream surface using joint training and
separate training. We utilize the tornado and two swirls data set to jointly train SurfNet.

solar plume), the clustering results generated by SurfNet include some minor errors, but

the main surface structures can be detected correctly. In terms of training time, inference

time, and model size, SurfNet, GMMConv, and EdgeConv do not exhibit significant dif-

ferences, as shown in Table 4.4. The training time relies on the number of training samples

and the complexity of surfaces (e.g., the number of nodes and edges on surfaces). As for

the training time for isosurfaces, SurfNet only takes less than 10 seconds per epoch.

Baseline analysis. As shown in Figure 4.8, we observe that GMMConv does not pro-

duce acceptable node clustering results for all data sets, and EdgeConv only generates

acceptable results for simple surfaces (e.g., bonsai). This is because GMMConv only ap-
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(a) (b) (c)

Figure 4.13: Evaluation of surface features using the tornado (top) and combustion (YOH)
(bottom) data sets via brushing and linking. Surfaces corresponding to unselected points
are not displayed.

plies linear operations on the mesh Laplacian, which leads to slow convergence and poor

performance. To verify this, in Figure 4.11, we plot the loss curves among GMMConv,

EdgeConv, and SurfNet using the five critical points and square cylinder data sets. We can

see that SurfNet and EdgeConv converge faster and exhibit more stable training compared

with GMMConv. EdgeConv has limited capability to detect complex node patterns. It does

not produce satisfactory clustering results for the lobster and two swirls data sets.

Performance degradation on boundary. As node clustering results show in Fig-

ures 4.8 and 4.10, the performance of node clustering degrades on the boundary of two

structures. We give three explanations for such inaccurate boundary results. (1) ambigu-

ity: The transition from one structure to another is a gradual change. This means that the

shortest-path distance between two nodes located in two different patterns could be small,

letting SurfNet treat the two nodes as similar. (2) difficulty: Detecting the boundary ac-

curately in an unsupervised fashion is challenging since current deep learning frameworks

require node annotations (e.g., experts label each node on the mesh) to delineate the bound-
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(a) five critical points (b) tornado (c) square cylinder (d) two swirls

Figure 4.14: Representative stream surface selection results. Top row: FlowNet. Bottom
row: SurfNet.

(a) (b) (c)

Figure 4.15: Customized SurfNet representative stream surface selection results using the
Bénard flow data set. The numbers of representative surfaces are 4, 4, and 8, respectively,
from (a) to (c).

ary [56, 158]. Even with these annotations, the boundary could still be inaccurate due to

the uncertainty and error introduced by the annotations [185]. (3) amplification: The simi-

larity of nodes located in two structures could be close. After several graph convolutions,

the similarity could be amplified due to the weight-sharing mechanism and node propa-

gation and aggregation in GCN, which hinders SurfNet from detecting a clear boundary

between two structures.

Cross data set evaluation. To evaluate the cross data set generalization of SurfNet,

we perform joint training using the tornado and two swirls data sets. Both joint training
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(a) YOH (b) H (c) YOH→ HR (d) YOH→MF (e) H→ He (f) H→ PD

Figure 4.16: Representative isosurface selection results. Top row: ISM. Bottom row:
SurfNet. (a), (c), and (d): combustion. (b), (e), and (f): ionization. For SurfNet, (a)
and (b) show same-variable inference results, while (c) to (f) show difference-variable in-
ference results. The numbers of representative surfaces are 3, 3, 4, 3, 3, and 4, respectively,
from (a) to (f).

and separate training take the same number of epochs for training. The surface clustering

results are shown in Figure 4.12. For the two swirls data set, both ways of training can

isolate the two swirls on the corresponding surfaces; however, separate training can also

isolate the “bridge” connecting the two swirls. Therefore, we prefer using separate training.

4.2.3 Surface Selection

Baselines. For representative selection, we compare SurfNet against two surface se-

lection methods:

• FlowNet [51] is a deep learning solution for representative stream surface selection.
It encodes each surface into a latent feature and leverages t-SNE for dimensionality
reduction and DBSCAN for surface clustering.
• Isosurface similarity maps (ISM) [16] is constructed by computing the mutual in-

formation between isosurfaces. The representative isosurfaces are selected based on
ISM.

Note that we optimize SurfNet and FlowNet with the same number of samples (i.e., 1,000

stream surfaces) and epochs for a fair comparison. Please refer to the accompanying videos

for the frame-to-frame comparison of node clustering and representative selection results.
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TABLE 4.4

TIME AND MODEL SIZE COMPARISON 1.

data set method training inference model size

five critical points

FlowNet 333 1.87 541

GMMConv 19.18 0.005 0.83

EdgeConv 14.84 0.006 0.84

SurfNet 17.40 0.009 0.93

solar plume

FlowNet 1,001 2.42 1,228

GMMConv 61.14 0.028 0.83

EdgeConv 54.56 0.030 0.84

SurfNet 50.85 0.034 0.93

square cylinder

FlowNet 255 1.83 791

GMMConv 18.79 0.005 0.83

EdgeConv 17.42 0.006 0.84

SurfNet 18.36 0.009 0.93

Surface feature validation. To verify our surface embedding approach’s effectiveness,

we leverage t-SNE to project surface embeddings to a 2D space and then perform brushing

and linking of these surfaces. The results are shown in Figure 4.13. The t-SNE projec-

tion conveys the surface’s positional and shape information. For the tornado data set, the

points on the left/right side of the projection view correspond to the surfaces shown at the

top/bottom part of the surface view. For the combustion (YOH) data set, the points from

right to left correspond to the isosurfaces with increasing isovalues. Thus, these brushing

1Average training time per epoch (in second) with 1,000 surface samples for training, average inference
time (in second), and model size (MB). Note that FlowNet is designed for learning surface embedding, not
node embedding.
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and linking results demonstrate the meaningfulness of these surface features.

Representative selection. In Figure 4.14, we compare representative stream surface

selection results between SurfNet and FlowNet [51]. Both methods allow users to handpick

representative stream surfaces via a two-step process. Both methods pick the same number

of representatives from the same set of stream surfaces for fair comparisons. We can see

that compared to FlowNet, SurfNet chooses a subset of surfaces that better covers the

domain to reveal more interesting flow features and patterns.

In Table 4.4, we report the average training time per epoch, average inference time,

and the model size of FlowNet and SurfNet. SurfNet only needs 17 to 50 seconds to train

1,000 samples per epoch, while FlowNet requires 200 to 1,000 seconds. As for the infer-

ence time, SurfNet is still faster than FlowNet. Besides, SurfNet only needs 0.93 MB to

store model parameters, while FlowNet needs 710 MB on average. This is because SurfNet

is independent of the surface resolution, while FlowNet depends on the resolution of the

vector field data. Another advantage of SurfNet is that it requires fewer training samples

(i.e., 1,000) for optimization since graph convolution operations are permutation invariant,

and SurfNet utilizes both Euclidean and geodesic distances and a node’s neighborhood in-

formation when producing embeddings. In contrast, FlowNet requires 2,000 samples to

train for most of the vector field data sets because convolutional operations are not permu-

tation invariant, and FlowNet only considers neighborhood information when learning the

feature representation.

In Figure 4.15, we can see that SurfNet can flexibly represent the underlying vector

field with selected stream surfaces at different levels of detail. Users can determine the

suitable number of representatives empirically as they adjust interactively.

In Figure 4.16 (a) and (b), we compare our representative isosurface selection results

against those selected by ISM [16]. For fair comparisons, both methods select the same

number of representatives from the same pool of isosurfaces. We can see that both methods

can capture important isosurface features. Furthermore, in Figure 4.16 (c) to (f), we com-
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pare the representative isosurface selection results through different-variable inference. In

this case, we use variable YOH of the combustion data set for training and apply the net-

work to HR and MF for inference. For the ionization data set, we use variable H for

training and He and PD for inference. We can observe that these representative isosurfaces

also exhibit comparable results as ISM.

4.2.4 Discussion

Although SurfNet produces coarser results in 3D shape compared with the existing

solutions [134], SurfNet still has two advantages. (1) Generalizability: Once converged,

SurfNet can group nodes on unseen surfaces, while traditional shape analysis approaches

for meshes need to be rerun for producing new results. (2) Diversity: SurfNet can handle

different kinds of surfaces while shape analysis algorithms are typically used to process

closed meshes (e.g., 3D objects) but not open ones (e.g., stream surfaces). Also, SurfNet

can handle node clustering and surface selection, while shape analysis only focuses on

node-level rather than surface-level analysis. In addition, we believe it is a good start in

unsupervised geometric learning for surface analysis and has great potential to improve in

the future by incorporating domain knowledge into graph convolutional operations.

4.3 Conclusions

I have presented SurfNet, a new solution for clustering and selecting stream surfaces

and isosurfaces. Based on the GCN, SurfNet can learn permutation-invariant node features

from surfaces in an unsupervised manner, drawing a big difference from other works that

learn node embeddings from labels and use different frameworks to solve surface cluster-

ing and selection separately. These node features encode their neighborhood information

rather than purely physical information (e.g., position, normal). By projecting these em-

beddings into a 2D space, we provide an interactive visual interface for user exploration.

Meaningful clustering and selection results are yielded under different clustering hyperpa-
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rameters. These node embeddings produced from SurfNet preserve spatial proximity and

geometric similarity.

I validate SurfNet on various vector and scalar field data sets of different patterns and

compare the clustering and selection results derived from the learned node embeddings

with those produced using other state-of-the-art methods. Compared with FlowNet, train-

ing SurfNet is 10 to 20 times faster per epoch and inferring is 70 to 170 times faster while

the model’s storage-saving is 300 to 1,300 folds (Table 4.4). Qualitative results show that

SurfNet generates better node clustering results than those generated by GMMConv and

EdgeConv. Qualitative and quantitative results show that SurfNet suggests comparable or

better representative selection results than those generated by FlowNet (stream surfaces)

and ISM (isosurfaces).
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CHAPTER 5

V2V: A DEEP LEARNING APPROACH TO VARIABLE-TO-VARIABLE SELECTION

AND TRANSLATION FOR MULTIVARIATE TIME-VARYING DATA

5.1 V2V

5.1.1 Overview

Let us denote Vvar = {Vvar1,Vvar2, · · · ,Vvarm} as a set of variables in the given MTVD,

and Vvari = {Vvari
1 ,Vvari

2 , · · · ,Vvari
n } as the temporal sequence of variable i, where m is the

number of variables and n is the number of time steps. Vvari[1 : k] is a subset of Vvari , which

has the first k time steps (n� k). Vvari[1 : k] is also the samples I take to train our deep

learning model. VT and VS denote, respectively, the ground truth (GT) and synthesized

variables from V2V. Fvari
j is the feature of variable i at the jth time step. Finally, let L, H,

and W be the spatial dimensions of Vvar.

Our goal is to learn a mapping function T from one variable sequence Vvara to another

variable sequence Vvarb , namely, Vvarb = T (Vvara). As sketched in Figure 5.1 (a), our

approach consists of three stages: feature learning, translation graph construction, and

variable translation. At the feature learning stage, I collect the available time steps from all

variables of the given MTVD and utilize a U-Net [126] to learn their latent features. Then I

leverage t-SNE [151] for dimensionality reduction where the latent feature of per variable

and per time step is projected onto a 2D space. The t-SNE projection helps us analyze and

understand the similarities and differences among these variables, which provide us hints

on whether or not a given pair of variables is transferable. Among all the variables, I select

a transferable variable group (e.g., {Vvar1 , · · · ,Vvarp}), where p ≤ m. As an example, the
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Figure 5.1: (a) Overview of V2V. For feature learning, a U-Net is applied to extract features
from variables and t-SNE is used to project the features for estimating variable similarity. A
translation graph is constructed based on the learned variable features. For variable trans-
lation, variable pairs are selected and V2V is trained for learning the translation mapping.
(b) Training and testing data from the volume sequence.
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transferable variable group for the example shown in Figure 5.1 is {H, H+, He, He+}.

At the translation graph construction stage, given the transferable variable group, I es-

timate the transferable difficulty of variable b conditioned on variable a, and construct a

translation graph G based on the computed transferable difficulty among different vari-

ables. Then, the source variable and target variable are selected from G .

At the variable translation stage, I train a V2V network to learn the mapping between

the two variable sequences (i.e., Vvara→Vvarb) based on the translation graph result. Our

V2V includes one generator (G) and one discriminator (D). G consists of three modules:

feature extraction, feature translation, and variable translation. The feature extraction

module extracts rich semantic information from the input variable. The feature translation

module translates the features from the source variable to the target variable at different

scales. The variable translation module translates the refined features to the target variable

domain. As shown in Figure 5.1 (b), in our experiments, the training data consist of early

time steps of Vvara and Vvarb , and the testing data consist of later time steps of Vvara and

Vvarb .

For U-Net training, I utilize the mean squared error (MSE) as the loss function to

compute the difference between the reconstructed and GT variables. For V2V training,

I leverage adversarial, volumetric, and feature losses to optimize the network. Next, I

describe our approach in detail, including the network architectures of feature learning and

variable translation, as well as the algorithm for constructing the translation graph.

5.1.2 Feature Learning

At the feature learning stage, I leverage a U-Net that takes the available time steps of all

variables from the same MTVD as input and outputs feature descriptors per variable and

per time step. U-Net also allows the reconstruction of a variable at a time step from the

corresponding feature descriptor. Skip connections in U-Net can bridge different semantic

features of the same scale, avoiding information loss during reconstruction.
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In general, U-Net is composed of an encoding path and a decoding path. There are four

convolutional (Conv) layers in the encoding path and four composites of deconvolutional

(DeConv) layers and Conv layers in the decoding path. In the encoding path, each of the

first three Conv layers reduces the input’s dimension by half. The feature maps start with

64 and double in the following Conv layers. Then, I apply one Conv layer to transform

the learned features into a 1D vector with 512 components. In the decoding path, DeConv

layers are utilized to upscale the feature back to the original dimension, and the following

Conv layers are utilized to fuse and refine feature maps. To keep the information flowing

smoothly and avoid information loss, I concatenate the feature maps from the Conv layer in

the encoding path and the feature maps from the DeConv layer as input for the consecutive

Conv layer for refinement. The feature maps start with 256 and reduce by half in the

following DeConv layers. I keep the same feature maps in each Conv layer followed by

each DeConv layer. Note that the concatenation happens at the corresponding scale (i.e.,

these two tensors have the same resolution). Rectified linear unit (ReLU) [107] is utilized

after each Conv or DeConv layer to help the network learn faster and perform better. After

the final Conv layer, tanh(·) is applied for normalization (in the range of [−1,1]).

Loss function. In order to ensure that the synthesized variables are close to the GT

variables, I use MSE as the loss function to train U-Net. The MSE loss is defined as

L =
u

∑
j=1
||V̂ j−V j||2, (5.1)

where V j and V̂ j are, respectively, the GT and synthesized variables of the jth training

sample, u = k×m is the number of training samples, and || · ||2 is L2 norm.

5.1.3 Translation Graph Construction

After the transferable variable group (e.g., {Vvar1, · · · ,Vvarp}) is determined, I define
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Algorithm 1: Translation graph construction.
Require: A set of variables: {Vvar1,Vvar2, · · · ,Vvarp}.

initialize a translation graph G with var1, · · · ,varp as nodes and no edge
for i = 1 · · · p do

for j = 1 · · · i do
if E (Fvari,Fvar j)< ε then

Compute TD(Vvar j ||Vvari) and TD(Vvari||Vvar j)
if TD(Vvar j ||Vvari) < TD(Vvari||Vvar j) then

add an edge from vari to var j to G
else

add an edge from var j to vari to G
end if

end if
end for

end for
return G

the transferable difficulty (TD) of Vvar j conditioned on Vvari as follows

TD(Vvar j ||Vvari) =
1
k

k

∑
t=1

KL(Fvar j
t ||Fvari

t ), (5.2)

where Fvar j
t is the feature of variable j at time step t, KL(·||·) is Kullback-Leibler diver-

gence, and k is the total available time steps. The transferable order for the variable pair i

and j is given by

min{TD(Vvar j ||Vvari),TD(Vvari||Vvar j)}. (5.3)

A translation graph G can be constructed based on the calculation of TDs between different

variable pairs. The process is described in Algorithm 1. Given a pair of variables, I first

compute the Euclidean distance of these two variables in the feature space. The distance

determines whether or not these two variables are transferable. If the distance is less than a

threshold ε , then I compute TD for the two variables, and determine the transferable order

based on Equation 5.3.
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Figure 5.2: Network architecture of V2V. (a) G contains eight Conv layers, four DeConv
layers, and three transformation blocks. (b) D includes four Conv layers, four SN layers,
and one GAP layer.

5.1.4 Variable Translation

Generator. G consists of three modules. The feature extraction module utilizes four

Conv layers to extract the features from the input variable. Each Conv downscales the

input by half, and a ReLU is followed to accelerate the training and improve model perfor-

mance. The feature translation module leverages three transformation blocks to translate

the features from the source variable to the target variable at different scales and feed into

the variable translation module. Each transformation block includes two paths. One path

contains three Conv layers, and the other path contains one Conv layer. Finally, these two

paths are connected by addition. The variable translation module utilizes four DeConv

layers and four Conv layers followed by ReLU to map the feature to the output variable

domain. Each DeConv upscales the input twice. In addition, after each DeConv layer, I

stack the outputs from DeConv and the feature translation stage together and feed into a

Conv layer. The two stacked outputs share the same scale, and the Conv layer does not

change the scale of the input. Note that I only use tanh(·) in the final Conv layer. The

architecture of G is sketched in Figure 5.2 (a).

Discriminator. D includes four Conv layers, four spectral normalization (SN) [104]

layers, and one global average pooling (GAP) [90] layer. Each Conv downscales the input

by half, and SN is followed by Conv to normalize the weights in Conv for training stabi-

lization. Leaky ReLU activation (α = 0.2) is applied after each Conv layer. Finally, one

GAP is leveraged to squeeze the output into a tensor with 1× 1× 1× 1. No activation

function is added after GAP. The architecture of D is sketched in Figure 5.2 (b).
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Loss function. As suggested by Han and Wang [46], I apply adversarial, volumetric,

and feature losses to optimize V2V so that the synthesized variables are close to the GT

variables. The adversarial loss is defined as

min
θG

LG = EV∈VS
[
(D(G(V ))−1)2], (5.4)

min
θD

LD =
1
2
EV∈VS

[
D(V )

]
+

1
2
EV∈VT

[
(D(G(V ))−1)2], (5.5)

where θG and θD are the learnable parameters in G and D, and E[·] denotes the expectation

operation.

The volumetric loss is defined as

LV = EV ′∈VS,V∈VT
[
||G(V ′)−V ||2

]
, (5.6)

where || · ||2 denotes the L2 norm.

The feature loss is defined as

LF = EV ′∈VS,V∈VT

N

∑
k=1

1
Nk

[
||Fk(G(V ′))−Fk(V )||1

]
, (5.7)

where N is the total number of Conv layers in D, Nk is the number of elements in the kth

Conv layer, and Fk(·) denotes the feature representation at the kth Conv layer.

The overall loss for G is the combination of the three losses

min
θG

LG = λ1
(
EV∈VT

[(
D(G(V ))−1

)2])
+λ2LV +λ3LF , (5.8)

where λ1, λ2, and λ3 are weights, each in the range of [0,1].

Note that adversarial, volumetric, and feature losses serve different purposes in V2V

training. Adversarial loss aims to judge the realness of the synthesized volumes from the

generator. Volumetric loss seeks to ensure that the synthesized volumes are close to the GT
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volumes. Feature loss aims to stabilize the training process and enhance the visual quality.

TABLE 5.1

THE VARIABLES AND DIMENSIONS OF EACH DATA SET

data set variables dimension (x× y× z× t)

climate SALT, TEMP 360×66×27×200

combustion CHI, HR, MF, YOH 480×720×120×100

ionization H, H+, He, He+, H2, PD, T 600×248×248×100

5.2 Results and Discussion

5.2.1 Data Sets and Network Training

I experimented with our approach using the data sets listed in Table 5.1. I implemented

V2V based on PyTorch [113] and used a single NVIDIA TESLA P100 GPU for training.

For feature learning, I used the bicubic kernel with a downscaling factor of four to down-

scale combustion and ionization data sets for fast training. For variable translation, I used

the original resolution for training; however, for each epoch, I randomly crop the volumes.

This cropping mechanism can reduce training cost and GPU memory consumption. I point

out that V2V can be applied to volumes of arbitrary size because it is fully convolutional. I

scaled the range of Vvar to [−1,1]. All learnable parameters in U-Net and V2V are initial-

ized using He et al. [57] and the Adam algorithm [78] is applied for parameter update. I set

one training sample per mini-batch. For training U-Net, the learning rate is set to 10−4. For

training V2V, different learning rates for G and D are set as suggested by Roth et al. [128].
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The learning rates for G and D are 10−4 and 4×10−4, respectively. β1 = 0.0, β2 = 0.999.

λ1 = 10−3, λ2 = 1, and λ3 = 5×10−1. I trained U-Net and V2V for 50 and 150 epochs for

all data sets, respectively. I sampled the first 40% time steps for training and the rest for

inference. All these hyperparameters are determined based on experiments.

5.2.2 Results

Baselines. I compare one baseline solution for variable selection:

• Biswas et al. [13]: It is an information-theoretic approach for variable grouping.
Once grouped, users can select representative variables for further exploration. I
leverage this solution to select variable pairs as the input to the V2V translation task.

Note that Biswas et al. is a solution for variable selection only, and not for variable trans-

lation. For translation comparison, I implement three baseline solutions for the V2V trans-

lation task:

• Histogram matching (HM) [129]: HM is a traditional approach for translating one
data set to another one conditioned on the content and style of the data. I apply
HM to translate variable j at time step k conditioned on variable i at time step k and
variable j at time step k−1.

• Pix2Pix [69]: Pix2Pix is the first paired image-to-image translation framework. The
original Pix2Pix architecture is leveraged for the V2V translation task.

• CycleGAN [187]: CycleGAN is a deep learning solution for unpaired image-to-
image translation. Since the variables are paired in our V2V translation task, I re-
place the identity loss in CycleGAN with the volumetric loss in V2V.

For a fair comparison, I use the same loss functions (i.e., adversarial, volumetric, and

feature losses) designed for V2V to train Pix2Pix and CycleGAN.

Unless otherwise stated, I display all visualization results using the inferred volumes

(refer to Figure 5.1 (b) for an example). The same settings for lighting, viewing, transfer

function (for direct volume rendering), and isovalue (for isosurface rendering) are applied
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to all visualization results for the same data set. With respect to the GT, I compare our

V2V results with those of HM, Pix2Pix, and CycleGAN.

Evaluation metrics. For quantitative evaluation, I compute, between the synthesized

variables and GT variables, the peak signal-to-noise (PSNR) at the data level, structural

similarity index (SSIM) at the image level, and isosurface similarity (IS) [46] at the feature

level.

TABLE 5.2

AVERAGE PSNR AND SSIM VALUES

data set (v1→v2) method PSNR (dB) SSIM

climate (SALT→TEMP)

HM 13.12 0.642

Pix2Pix 21.39 0.695

CycleGAN 20.78 0.616

V2V 31.69 0.797

combustion (MF→YOH)

HM 12.96 0.291

Pix2Pix 20.46 0.585

CycleGAN 20.56 0.351

V2V 28.73 0.776

ionization (H→H+)

HM 19.62 0.668

Pix2Pix 40.58 0.887

CycleGAN 37.59 0.812

V2V 45.75 0.951
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(a) climate (SALT→TEMP) (b) combustion (MF→YOH) (c) ionization (H→H+)

Figure 5.3: PSNR (top row) and SSIM (bottom row) of synthesized variables (TEMP,
YOH, and H+) under HM, Pix2Pix, CycleGAN, and V2V.

Quantitative and qualitative analysis. In Figure 5.3, I show the data (PSNR) and

image (SSIM) level results using HM, Pix2Pix, CycleGAN, and V2V. At the data level,

for the climate (SALT→TEMP) data set, all four curves exhibit a periodic pattern since

each time step denotes the temperature for each month and 12 time steps are for one year.

The PSNR values of V2V outperform those of HM, Pix2Pix, and CycleGAN. For the

combustion (MF→YOH) data set, PSNR values decrease as time step goes. This is be-

cause, at the later time steps, the temporal behavior becomes more turbulent and complex,

making the prediction more difficult. Again, V2V still outperforms HM, Pix2Pix, and Cy-

cleGAN. For the ionization (H→H+) data set, it is clear that V2V achieves the highest

PSNR values for each time step. At the image level, V2V can still produce higher SSIM

values compared with HM, Pix2Pix, and CycleGAN. It is the clear winner for the climate

(SALT→TEMP), combustion (MF→YOH), and ionization (H→H+) data sets. For the

combustion (MF→YOH) data set, due to the increase of visual content, the SSIM values

decrease as time step goes. In Table 5.2, the average PSNR and SSIM values for HM,

Pix2Pix, CycleGAN, and V2V are reported. Again, V2V achieves the best PSNR and

SSIM values. Note that the PSNR and SSIM curves of HM suddenly decrease after time
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(a) HM (b) Pix2Pix (c) CycleGAN (d) V2V (e) GT

Figure 5.4: Comparison of volume rendering results. Top to bottom: the climate
(SALT→TEMP), combustion (MF→YOH), and ionization (H→H+) data sets. Displayed
here are the renderings of TEMP at time step 159, YOH at time step 65, and H+ at time
step 70, respectively.

step 40 for the combustion and ionization data sets since I only use 40% data for training.

The error accumulates when predicting the later time steps. Since the climate data set is

periodic, the PSNR and SSIM curves of HM do not exhibit a similar pattern as that of the

other two data sets.

In Figure 5.4, the volume rendering results of the volumes synthesized by HM, Pix2Pix,

CycleGAN, and V2V are shown. For the climate (SALT→TEMP) data set, the rendering

results synthesized by Pix2Pix and CycleGAN contain artifacts. The result generated by

HM cannot well capture the main structure, while the result produced by V2V is much

smoother and similar to the GT. For the combustion (MF→HR) data set, V2V produces

finer details with respect to GT, while HM and CycleGAN fail to recover the volume well.

Pix2Pix generates some artifacts and is unable to recover the content around the volume

boundary. For the ionization (H→H+) data set, V2V achieves the best result compared

with HM, Pix2Pix, and CycleGAN. For example, for the Pix2Pix result, there are fewer

details at the top part, and there are some artifacts at the bottom layer. For the CycleGAN

result, it produces more orange content at the bottom part and fails to accurately recover
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the top part. For the HM result, it generates more purple and yellow content at the top part.

(a) HM (b) Pix2Pix (c) CycleGAN (d) V2V (e) GT

Figure 5.5: Comparison of isosurface rendering results of the climate (SALT→TEMP)
data set at time step 167. The chosen isovalues are v =−0.4 (top row) and v = 0.3 (bottom
row).

(a) HM (b) Pix2Pix (c) CycleGAN (d) V2V (e) GT

Figure 5.6: Comparison of isosurface rendering results of the combustion (MF→YOH)
data set at time step 53. The chosen isovalues are v = −0.9 (top row) and v = −0.55
(bottom row).

In Figures 5.5, 5.6, and 5.7, the isosurface rendering results of the volumes synthesized

by HM, Pix2Pix, CycleGAN, and V2V using the climate (SALT→TEMP), combustion

(MF→YOH), and ionization (H→H+) data sets are displayed. For each data set, I choose
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(a) HM (b) Pix2Pix (c) CycleGAN (d) V2V (e) GT

Figure 5.7: Comparison of isosurface rendering results of the ionization (H→H+) data set
at time step 92. The chosen isovalues are v =−0.96 (top row) and v =−0.9 (bottom row).

one time step and two isovalues to render the isosurfaces. For the climate (SALT→TEMP)

data set, it is evident that V2V can generate the highest quality isosurfaces compared with

HM, Pix2Pix, and CycleGAN. HM fails to construct the isosurfaces close to GT, and the

isosurfaces extracted from Pix2Pix and CycleGAN are filled with noises and artifacts.

Similar observations can be made for the combustion (MF→YOH) data set where V2V

generates the highest quality isosurfaces compared with HM, Pix2Pix, and CycleGAN. For

the ionization (H→H+) data set, V2V produces the highest quality isosurfaces. Pix2Pix

and CycleGAN fail to construct the isosurface at the top part, and HM synthesizes fake

features compared with the GT results. Furthermore, the average IS values for these three

data sets are reported in Table 5.3. The average IS values also demonstrate that V2V

achieves the best quality. Moreover, among Pix2Pix, CycleGAN, and V2V, CycleGAN

has almost the worst performance in terms of PSNR, SSIM, and IS. This is because, unlike

image-to-image translation, where the translation is symmetric (e.g., day to night), in V2V

translation, the translation is asymmetric (e.g., it is more challenging to translate from CHI

to MF compared with translating from MF to CHI). Therefore, adding cycle consistency

will hurt the translation performance. As for Pix2Pix, this architecture is too simple to

capture the complex structure changes between the variables.
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TABLE 5.3

AVERAGE IS VALUES AT CHOSEN ISOVALUES

HM Pix2Pix CycleGAN V2V

data set (v1→v2) v =−0.4 v = 0.3 v =−0.4 v = 0.3 v =−0.4 v = 0.3 v =−0.4 v = 0.3

climate (SALT→TEMP) 0.12 0.15 0.83 0.85 0.73 0.79 0.92 0.91

v =−0.9 v = 0.65 v =−0.55 v =−0.9 v =−0.55 v =−0.9 v =−0.9 v =−0.55

combustion (MF→YOH) 0.23 0.19 0.72 0.69 0.47 0.49 0.82 0.84

v =−0.96 v =−0.9 v =−0.96 v =−0.9 v =−0.96 v =−0.9 v =−0.96 v = 0.9

ionization (H→H+) 0.32 0.41 0.82 0.84 0.79 0.81 0.92 0.95
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(a) LC [86, 87] (b) V2V (c) GT

Figure 5.8: Isosurface rendering results using the combustion (CHI) data set at time step
60. The chosen isovalues are v =−0.7 (top row) and v = 0.3 (bottom row).

In Table 5.4, I report the total training time (in hour), the average inference time (in

second), and model size for Pix2Pix, CycleGAN, and V2V, respectively. As I can see,

CycleGAN takes the longest training time since it needs to go through the network six

times in one iteration (i.e., two discriminators, one cycle of X→Y→X, and another cycle

of Y→X→Y). Pix2Pix and V2V only need to go through the network twice in one iteration

(i.e., one discriminator and one generator). As for the inference time, there is no significant

difference. In terms of model size, V2V needs 14MB to store parameters.

Comparison against compression. In Figure 5.8, I compare V2V and an advanced

lossy compression (LC) method [86, 87] using isosurface rendering results. This LC

method can achieve a high compression rate while producing less data distortion. To

achieve a fair comparison, I set a similar PSNR value (i.e., 29.5 dB) for both approaches.

As I can see, the isosurfaces generated by LC include significant noises and artifacts com-

pared with those produced by V2V.

Evaluation of variable selection.

81



TABLE 5.4

TIME AND MODEL SIZE COMPARISON 1

training training inference model

data set method epochs time time size

climate

Pix2Pix 150 6.79 3.52 6

CycleGAN 200 56.44 4.63 26

V2V 150 15.36 4.01 14

combustion

Pix2Pix 150 31.21 187.45 6

CycleGAN 200 169.08 220.36 26

V2V 150 53.14 194.72 14

ionization

Pix2Pix 150 21.43 122.39 6

CycleGAN 200 125.46 130.93 26

V2V 150 40.76 129.07 14

To show the effectiveness of the proposed variable selection solution, I compare V2V

against Biswas et al. [13]. I only use Biswas et al. to choose transferable variable pairs,

as it does not perform variable translation. Once the pairs are selected from either V2V or

Biswas et al. I apply the same solution (i.e., V2V) for translation. The training time of the

variable selection stage for the combustion and ionization data sets is 1.86 and 2.14 hours,

respectively. The training time depends on the number of variables and the dimension of

the data set. In Figure 5.9, I show clustered graphs and translation graphs of the combustion

and ionization data sets using Biswas et al. and V2V, respectively. Note that the clustered

graphs of Biswas et al. are fully-connected and undirected, while the translation graphs

of V2V are partially-connected and directed. For the combustion data set, Biswas et al.

1Total training time (in hour), average inference time (in second), and model size (MB) under Pix2Pix,
CycleGAN, and V2V.
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TABLE 5.5

PERFORMANCE COMPARISON FOR VARIABLE TRANSLATIONS

USING BISWAS ET AL. [13] AND V2V

data set variable pair approach PSNR (dB) SSIM

combustion
YOH→CHI Biswas et al. 24.76 0.607

MF→CHI V2V 35.76 0.829

ionization
T→H+ Biswas et al. 33.41 0.827

H→H+ V2V 45.75 0.951

demonstrates that YOH and CHI are more similar compared with MF and CHI, while V2V

leads to the opposite conclusion. For the ionization data set, Biswas et al. demonstrates

that T and H+ are similar, while H and H+ are distinguishable; however, V2V gets the

opposite results.

To evaluate the effectiveness of these two variable selection approaches, I choose two

pairs from Biswas et al. (i.e., YOH→CHI and T→H+) and two from V2V (i.e., MF→CHI

and H→H+) for the translation task. The results are shown in Figures 5.10 and 5.11. As

I can see, for Biswas et al. YOH→CHI and T→H+ are not successfully judged from

both volume and isosurface rendering results. For example, the volume rendering of CHI

and H+ cannot exhibit a good visual quality compared with GT. As for the variable pairs

selected by V2V, the translation results are satisfactory. Table 5.5 reports the average

PSNR and SSIM values under these two variable translation schemes. Overall, based on

the chosen source and target variables, V2V achieves higher PSNR and SSIM values in the

translation task. These results indicate that, unlike V2V, variable pairs selected according

to Biswas et al. may not be suitable for variable translation.

To further evaluate the effectiveness of the variable selection process, I use the ioniza-

tion data set, choose H as the source variable, and translate it to H+, He, He+, and PD. In
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(a) Biswas et al. [13] (b) V2V

Figure 5.9: Comparison of clustered graphs (left column) and translation graphs (right
column). Top row: combustion. Bottom row: ionization. For both graphs, the distance
between two variables in the 2D graph indicates their similarity.

(a) Biswas et al. [13] (b) V2V (c) GT

Figure 5.10: Comparison of variable selection approaches via volume rendering. Vari-
able pairs selected by Biswas et al. are YOH→CHI (top row) and T→H+ (bottom row).
Variable pairs selected by V2V are MF→CHI (top row) and H→H+ (bottom row). The
displayed time steps are 80 and 50 for CHI and H+, respectively.

84



(a) Biswas et al. [13] (b) V2V (c) GT

Figure 5.11: Comparison of variable selection approaches via isosurface rendering. Vari-
able pairs selected by Biswas et al. are YOH→CHI (top row) and T→H+ (bottom row).
Variable pairs selected by V2V are MF→CHI (top row) and H→H+ (bottom row). The
chosen isovalues are v =−0.6 (top row) for CHI and v =−0.1 (bottom row) for H+. The
displayed time steps are 80 and 50 and for CHI and H+, respectively.

(a) H+ (b) He (c) He+ (d) PD

Figure 5.12: Comparison of volume rendering results of the ionization data set at time step
60. H is chosen as the source variable. Top row: V2V. Bottom row: GT.
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(a) H+ (b) He (c) He+ (d) PD

Figure 5.13: Comparison of isosurface rendering results of the ionization data set at time
step 60. H is chosen as the source variable. Top row: V2V. Bottom row: GT.

Figure 5.12, I show the volume rendering results. For H→H+, H→He, H→He+, the syn-

thesized results are similar to GT. However, for H→PD, V2V fails to recover the details of

PD, particularly, the structure of the top part is not captured. This failure may be explained

by a large distance between H and PD shown in the translation graph (Figure 5.9 (b)). The

isosurface rendering results are shown in Figure 5.13. For H→H+ and H→He, the isosur-

faces generated by V2V are close to GT and almost exhibit the same volumetric features.

For H→He+, V2V can still recover the isosurfaces but miss some details. For example, the

detailed surface features at the top part are missing in the isosurface synthesized by V2V.

For H→PD, V2V fails to generate high-quality isosurface compared with the GT isosur-

face. For example, the isosurface generated by V2V consists of noises and artifacts, and

details are missing at the bottom layer. I also report the average PSNR and SSIM values

in Table 5.6. The quantitative results also confirm the difficulty of translating H to PD.

Based on the proposed solution, for the combustion set, scientists can save 60 time steps

for the variables YOH and CHI if MF is the source variable, and 18.53GB storage is saved

in total. As for the ionization, 21.05GB can be saved if H is the source variable since these

variables (H+, He, and He+) are only stored 40 time steps.
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TABLE 5.6

PERFORMANCE COMPARISON FOR DIFFERENT V2V TRANSLATIONS

OF THE IONIZATION DATA SET 2

target variable PSNR (dB) SSIM

H+ 45.75 0.951

He 37.44 0.837

He+ 39.99 0.874

PD 31.68 0.616

(a) V2V (b) GT (c) V2V (d) GT

Figure 5.14: Evaluation of translation order using the combustion data set via isosurface
rendering at time step 72. Top row: MF→CHI (TD = 7.10). Bottom row: CHI→MF (TD
= 8.07). The chosen isovalues are v = −0.6 (1st and 2nd columns) and v = 0.5 (3rd and
4th columns).

Evaluation of variable order. To verify that the translation order does impact the

translation performance, I use the combustion data set and choose two translations, MF→CHI

and CHI→MF. The results are demonstrated in Figure 5.14. As I can see, CHI→MF is un-

2H is the source variable.
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(a) V2V w/o FTM (b) V2V (c) GT

Figure 5.15: Comparison of volume rendering results under different architectures using
the combustion (MF→CHI) data set at time step 70.

satisfactory since the synthesized isosurfaces fail to capture the interesting features com-

pared with GT. However, MF→CHI is successful since the generated isosurfaces are very

close to GT. This asymmetric translation is likely because the essential information in MF

is richer than that in CHI, which makes MF→CHI easier than CHI→MF.

Feature translation module. To study what influences the visual quality of the vol-

umes generated by V2V, I conducted such an experiment that trains V2V without using

the feature translation module (FTM), i.e., the three purple transformation blocks shown in

Figure 5.2 (a). The results are shown in Figure 5.15. I can see that more green content and

less yellow content are rendered from the volume generated by V2V without FTM. I spec-

ulate that FTM serves the role of refining and filtering the features extracted at different

scales during variable translation, improving translation quality.

5.3 Conclusions

I have presented V2V, a new deep learning solution for selecting variables and trans-

lating variable sequences for MTVD analysis and visualization. Leveraging GAN, V2V

can map one variable sequence to another variable sequence while achieving better visual

quality of direct volume rendering and isosurface rendering than HM and two other deep

learning solutions (Pix2Pix and CycleGAN). Besides qualitative comparison, quantitative

evaluation results using PSNR (data-level), SSIM (image-level), and IS (feature-level) also
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confirm the effectiveness of our approach.

V2V can work in the in situ visualization setting. In this scenario, at simulation time, I

store the complete sequence for one variable (i.e., all the time steps) while saving the rest

of variable sequences sparsely (i.e., only the early time steps) for storage saving. During

postprocessing, these reduced variable sequences are synthesized back to their original

sequences with high fidelity.
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CHAPTER 6

STNET: AN END-TO-END GENERATIVE FRAMEWORK FOR SYNTHESIZING

SPATIOTEMPORAL SUPER-RESOLUTION VOLUMES

6.1 STNet

6.1.1 Notation

Let VL = {VL
1 ,V

L
2 ,V

L
3 , · · · ,VL

n} and VH = {VH
1 ,V

H
2 ,V

H
3 , · · · ,VH

n } be low-resolution and

high-resolution time-varying volumetric sequences, respectively, where n denotes the num-

ber of time steps. VL
′

= {VL
1 ,V

L
2+t ,V

L
3+2t , · · · ,VL

n} is a sparsely sampled low-resolution

time-varying volumetric sequence, where t denotes the number of intermediate time steps

and t ′ = t + 1 is the temporal upscaling factor (i.e., the sequence is upscaled t ′ times

at the temporal dimension). VL
′

is also the pre-training data in STNet (Figure 6.1 (a)).

VT = {(VL
1 ,V

H
1 ),(V

L
2 ,V

H
2 ), · · · ,(VL

k ,V
H
k )} is a sequence used for fine-tuning STNet (Fig-

ure 6.1 (b)), where k is the total training samples. In this chapter, we set k = 0.2n. VS =

{VS
1,V

S
2,V

S
3, · · · ,VS

n} is a super-resolution time-varying volumetric sequence that we aim

to generate via STNet. Namely, VH ≈ VS = STNet(VL
′
). s is the spatial upscaling fac-

tor (i.e., each volume is upscaled s times at each spatial dimension). Note that we pur-

posefully refer to the synthesized data as super-resolution data and the original data as

high-resolution data for differentiation.

6.1.2 Overview

As shown in Figure 6.2, given two-ending low-resolution volumes VL
i+t and VL

i+1+2t ,

STNet first leverages t +1 FEI modules to learn features of the intermediate and the two-

90



 

time

…

V
L
1 V

L
2+t V

L
3+2t V

L
n

V
L’training data

(a)

inference data

example of inferred
time step (e.g., Fig. 7)

time

……

…

V
L
1

V
H
1

V
L
2

V
H
2

V
L
k

V
H
k

20% 80%

V
L
k+1+t V

L
k+2+2t V

L
k+i+it V

L
n

V
S
k+1

…

V
S
k+2 V

S
k+3 V

S
k+i+it

…

V
S
nV

S
k+1+t

…

V
Ttraining data

(b)

Figure 6.1: Illustration of STNet’s training and inference data at (a) pre-training and (b)
fine-tuning stages.

ending volumes. One FEI module is tailored for representing the two-ending volumes,

and additional t modules are for learning the t intermediate volumes. Once the features

are learned, a FU module transforms the spatiotemporal features into a high-dimensional

space for generating high-fidelity super-resolution volumes. To discern the spatial and

temporal realness of these synthesized volumes, we apply a spatiotemporal discriminator

(D) based on convolutional long short-term memory (ConvLSTM) [46]. D accepts a vol-

ume sequence as input and scores each volume’s realness through its spatial (the volume

itself) and temporal (its previous time steps) information. To optimize STNet, we propose

a two-stage pre-training and fine-tuning algorithm. During pre-training, we only utilize

the low-resolution volumes (i.e., VL
′
) to optimize STNet using cycle loss. This stage aims

to furnish a proper parameter initialization for STNet, which can boost its generalization

ability. During fine-tuning, we use VT as training samples to fine-tune STNet for perfor-

mance improvement. In the following, we discuss the criteria and rationales for designing
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Figure 6.2: Overview of STNet. The network consists of several feature extraction and
interpolation (FEI) modules for representing spatiotemporal features and one feature up-
scaling (FU) module for generating super-resolution volumes. After that, a spatiotemporal
discriminator is utilized to discern the spatial and temporal realness.

spatial and temporal modules. Then, we provide optimization details for the pre-training

and fine-tuning stages.

6.1.3 Framework

STNet follows a post-upsampling architecture for spatial upscaling and performs in-

terpolation in the feature space for temporal upscaling. The rationales are provided as

follows.

Why choose post-upsampling for SSR? Considering SSR architectures, the most

widely used ones are pre-sampling and post-upsampling frameworks [159]. Pre-sampling

applies common upscaling approaches (e.g., bicubic and trilinear) for upscaling and fol-

lows a series of Conv layers to refine the upscaled data. In contrast, post-sampling lever-

ages Convs to represent low-resolution data and upscales the representations to super-

resolution data using deconvolutional or shuffle layers. Compared with pre-sampling, post-
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sampling brings two benefits: speed and performance. First, since most operations perform

in the low-dimensional space and only a few operations occur in the high-dimensional

space in post-sampling, the computational cost is low. Second, Convs cannot completely

eliminate the noises and artifacts introduced by common upscaling approaches in pre-

upsampling, while post-upsampling has no such issue in upscaling because Convs already

distill data in the low-dimensional space.

Why perform feature-space temporal interpolation? For TSR architectures, two

common options are performing interpolation in the feature or data (super-resolution)

space. The feature space refers to the hidden representations of low-resolution volumes,

which CNNs usually extract. The data space refers to the space composed of the original

volumes. The examples are sketched in Figure 6.3. For feature-space interpolation, give

two time steps at both ends, we leverage feature extraction and interpolation to generate

the feature of each intermediate time step and the two-ending time steps individually. We

then use a FU module to generate the super-resolution volumes from these features. For

data-space interpolation, a unified representation is learned from all intermediate and the

two-ending time steps. Then the feature is upscaled and interpolated in the data (super-

resolution) space. Taking into account the involvement of SSR, feature interpolation is

a more suitable solution due to the following reason. Applying data-space interpolation

requires a powerful FEI module to learn a representation with rich spatiotemporal infor-

mation for all intermediate and the two-ending volumes. It also demands a powerful FU

module to transform one feature into t + 2 time steps. This would be difficult, especially

in a low-dimensional space, since the information in low-resolution data is limited. For

feature-space interpolation, the difficulties of extracting spatiotemporal information and

the FU module’s demanding capability are mitigated through interpolating multiple fea-

tures.

Generator. The core of generator lies in the feature extraction and interpolation

(FEI) and feature upscaling (FU) modules. The FEI module comprises four dense blocks
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Figure 6.3: Illustration of two different temporal interpolation options.

(DBs) [65]. As shown in Figure 6.4 (a), in each DB, it includes three Conv layers. Each

Conv accepts all previous outputs stacked together as input. In particular, we utilize t +1

FEI modules to interpolate features of the intermediate and the two-ending volumes. One

module accepts the low-resolution volumes as input and produces the corresponding fea-

tures. The rest of the t modules take the two ending volumes as input and interpolate t

features of the intermediate volumes. As sketched in Figure 6.4 (b), in the FU module, we

first separate the input into two branches. In each branch, one voxel shuffle (VS) layer [46]

is used to upscale the input. Then in the second branch, after VS, a Conv and a sigmoid ac-

tivation function follow. This result is multiplied by the output from the first branch. After

merging, two Conv layers and skip connection [65, 126] are utilized to produce the final

output [23, 110]. The motivation of using this two-branch-based FU module is that the

network can estimate the importance of each neuron in the feature maps, and the more im-

portant neurons will offer a larger weight in the following convolution computation. This
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design forces the network to pay more attention to interesting volumetric regions instead

of treating interesting (e.g., features) and uninteresting (e.g., background) regions equally.

We have only a FU module in the generator, which upscales the intermediate features of

all time steps. Note that for generating STSR volumes, we need t + 1 FEI modules: one

for representing the two-ending volumes and t for the t intermediate volumes. Rectified

linear unit (ReLU) [107] is applied after each Conv layer except the final output layer. No

activation function follows after the output layer. Adding tanh or sigmoid will significantly

hurt the performance for some specific data sets (e.g., supercurrent) since tanh will saturate

at the tails of −1 and 1 and sigmoid will saturate at the tails of 0 and 1, which could kill

the gradient and prevent the network from continuous learning.

(a)(b)

real/
fake

(c)

Conv VS ConvLSTM GAPdata flow

real/
fake

! ! !

Figure 6.4: Architectures of (a) dense block, (b) FU module, and (c) spatiotemporal dis-
criminator.

Spatiotemporal discriminator. We build a spatiotemporal discriminator to judge the

spatial and temporal realness of the volumes generated by STNet. As displayed in Fig-

ure 6.4 (c), two Conv layers are utilized to extract spatial information from the input vol-

umes. Each Conv decreases the dimension by half while doubling the channels. Then,
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temporal coherence is evaluated by incorporating ConvLSTM that accepts the features of

the previous and current time steps as inputs. Finally, a Conv and global average pooling

(GAP) [90] layer compresses the feature into a single value, which scores the realness of

the input volume. ReLU is picked as the activation function, excluding the ConvLSTM

and GAP layers.

6.1.4 Optimization

To optimize STNet, we design a two-stage training algorithm: pre-training and fine-

tuning. Pre-training offers an appropriate starting point for training STNet and provides the

network with better generalization ability during inference. Fine-tuning fits the network in

the downstream STSR task.

desired 

minimum

parameter space

random 

initialization

optimization

desired 

minimum

parameter space

random 

initialization

pre-training

fine-tuning

(a) w/o pre-training (b) w pre-training

Figure 6.5: Illustration of how learnable parameters change (a) without and (b) with pre-
training.

Why pre-training? A straightforward optimization is to randomly initialize the learn-

able parameters in STNet and directly use low-resolution and high-resolution pairs to train

STNet, as sketched in Figure 6.5 (a). Although random initialization can promote the net-

work to a local minimum, it could not improve further to the desired one since it would

overfit the training data. However, adding pre-training can promote the randomly initial-
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ized parameters to a local minimum based on the pre-training task, which can be utilized

in the downstream task. Then, based on this new starting point, the network can better fit

the data, as shown in Figure 6.5 (b). The pre-training stage can guide the learning process

towards the minima to support better generalization from the training data [30]. In the con-

text of STSR, pre-training can help STNet see the inference data in the low-dimensional

space, preventing the network from overfitting in the training data and enhancing the net-

work’s generalization ability in the inference data.

Pre-training. To pre-train in an unsupervised fashion, we leverage cycle loss to opti-

mize STNet. The cycle loss for VS
i is defined as

Lcyc = ||D(VS
i )−VL

i ||2, (6.1)

where D denotes a downsizing operation (e.g., trilinear) and || · ||2 is L2 norm. The rationale

for designing this loss is that once the super-resolution volumes are generated and if we

downsize them again to the low-dimensional space, the downsized version (i.e., D(VS
i ))

should be consistent with the original low-resolution volumes (i.e., VL
i ).

Fine-tuning. To fine-tune STNet in the STSR task, we leverage volumetric loss for the

closeness to high-resolution volumes, and adversarial loss for the realness, to train STNet.

The volumetric loss for VS
i is defined as

L G
vol = ||V

S
i −VH

i ||2. (6.2)

The adversarial losses of generator G and discriminator D for {VS
i , · · · ,VS

i+t+1} are

defined as

L G
adv =

t+1

∑
j=0

1−D
(

VS
i+ j|VS

i+ j−1, · · · ,VS
i

)
, (6.3)
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L D
adv =

t+1

∑
j=0

D
(

VS
i+ j|VS

i+ j−1, · · · ,VS
i

)
+

t+1

∑
j=0

1−D
(
VH

i+ j|VH
i+ j−1, · · · ,VH

i
)
.

(6.4)

Considering both volumetric and adversarial losses, we define the total loss of G as

L G = λvolL
G

vol +λadvL
G

adv, (6.5)

where λvol and λadv control the weights of these two losses.

The training algorithm of STNet is listed in Algorithm 1. In the pre-training stage,

we first use the sparsely sampled low-resolution sequence VL
′
, as sketched in Figure 6.1

(a), to train STNet. After training TP epochs, we begin to fine-tune STNet using the low-

resolution and high-resolution pairs at the early time steps VT , as shown in Figure 6.1

(b). Following Wang et al. [157], the fine-tuning stage contains two steps. First, only

volumetric loss is applied to optimize STNet for training stabilization and computational

cost reduction. Second, the spatiotemporal discriminator D is involved in the training

procedure for enhancing spatial and temporal coherence.

6.2 Results and Discussion

6.2.1 Data Sets and Network Training

We tested STNet using the data sets reported in Table 6.1. Note that half-cylinder is

an ensemble data set with different Reynolds numbers (i.e., 320, 640, and 6,400). Py-

Torch [113] was used for implementation. Training and inference were performed on an

NVIDIA TESLA V100 GPU. The low-resolution data were obtained by applying bicubic

kernel with reflection padding. We scaled the range of VL and VH to [−1,1]. We initialized

parameters following He et al. [57] for optimization and utilized the Adam optimizer [78]
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Algorithm 2: STNet training algorithm.
Require: initial parameters θG and θD for G and D, number of training epochs in pre-training and

fine-tuning stages: TP, TF1 , and TF2 , learning rates αG and αD for G and D, respectively.
/* pre-training stage */
for j = 1 · · ·TP do

sample low-resolution data from VL
′
;

compute Lcyc according to Equation 6.1;
update θG;

end for
/* fine-tuning stage 1: only using volumetric loss to optimize STNet */
for j = 1 · · ·TF1 do

sample low-resolution and high-resolution data pairs from VT ;
compute L G

vol according to Equation 6.2;
update θG;

end for
/* fine-tuning stage 2: taking temporal coherence into consideration */
for j = 1 · · ·TF2 do

sample low-resolution and high-resolution data pairs from VT ;
compute L D

adv according to Equation 6.4;
update θD;
compute L G according to Equation 6.5;
update θG;

end for

for parameter update. In each mini-batch, one training sample is used. The learning rates

for G and D are 10−4 with β1 = 0.9, β2 = 0.999. λvol = 1 and λadv = 10−3. TP, TF1 , and TF2

are set to 200, 400, and 50 epochs, respectively, for all data sets. All these hyperparameter

settings are determined based on experiments.

6.2.2 Results

Baselines. We compare STNet with three baseline solutions:

• BL: Bicubic interpolation is used for SSR and linear interpolation for TSR. BL
stands for bicubic+linear interpolation.
• SSR+TSR: SSR [45] is a GAN solution for time-varying data SSR, and TSR [46] is

a recurrent generative solution for TSR. We train SSR for 400 epochs and TSR for
400 epochs.
• STD: STD is a variant of STNet. Instead of performing temporal interpolation in

the feature space, STD directly interpolates the volumes in the data space. Namely,
given two volumes at both ends, STD leverages a FEI module to simultaneously
learn spatiotemporal features of all intermediate and the two-ending time steps and
applies a FU module to generate super-resolution volumes.
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TABLE 6.1

VARIABLES AND DIMENSION OF EACH DATA SET

data set variables dimension (x× y× z× t)

five jets intensity 128×128×128×100

ionization H, H+, He, He+ 600×248×248×100

half-cylinder [125] velocity magnitude 640×240×80×100

supercurrent rho 256×128×32×200

Tangaroa [116] velocity magnitude 300×180×120×150

vortex vorticity magnitude 128×128×128×90

Note that existing STSR works [106, 133, 135, 141] are not suitable for 3D data since

they could not capture complicated spatiotemporal patterns. As for Xiang et al. [166], it

leverages deformable Conv for spatiotemporal super-resolution. However, it is difficult to

extend this architecture to handle 3D data sets for two reasons. First, deformable Conv

needs to learn offsets to perform Convs, which requires additional parameters and mem-

ories. Second, the offsets are learned from the whole data, not a subregion. Thus, the

computational cost is extremely high when the volume is large.

For the same data set, all visualization results follow the same rendering parameters

for lighting, viewpoint, transfer function (used in volume rendering), and isovalue (used

in isosurface rendering). Except for the GT results, all results from STNet and baseline

solutions are rendered using inferred data from a later time step (refer to Figure 6.1 (b)).

Evaluation metrics. We utilize three metrics, including data-level peak signal-to-

noise (PSNR), image-level structural similarity index (SSIM), and feature-level isosurface

similarity (IS) [16], for quantitative evaluation.

Quantitative and qualitative analysis. Figure 6.6 shows volume rendering results

produced from BL, SSR+TSR, STD, STNet, and GT using the five jets, half-cylinder (640),
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TABLE 6.2

PERFORMANCE AND TIME COMPARISON

data set method PSNR SSIM training time

five jets

BL 27.96 0.751 —

SSR+TSR 27.30 0.685 64.024

STD 40.00 0.892 24.662

STNet 39.63 0.901 43.702

supercurrent

BL 26.92 0.812 —

SSR+TSR 44.54 0.995 87.258

STD 44.74 0.995 31.443

STNet 44.71 0.995 66.285

half-cylinder (640)

BL 28.12 0.864 —

SSR+TSR 24.15 0.792 66.187

STD 35.60 0.907 27.884

STNet 36.84 0.944 45.580

Tangaroa

BL 21.85 0.853 —

SSR+TSR 26.96 0.858 96.037

STD 30.07 0.879 37.964

STNet 33.26 0.892 65.568

ionization (H)

BL 33.52 0.862 —

SSR+TSR 43.05 0.908 68.123

STD 40.67 0.892 28.556

STNet 43.19 0.913 44.781

vortex

BL 29.78 0.749 —

SSR+TSR 23.89 0.576 57.622

STD 31.12 0.693 24.573

STNet 32.73 0.720 39.329101



(a) BL (b) SSR+TSR (c) STD (d) STNet (e) GT

Figure 6.6: Comparison of volume rendering results. Top to bottom: five jets, half-cylinder
(640), and vortex.

and vortex data sets. For the five jets data set, both BL and SSR+TSR produce more cyan

parts at the cap, and the rendering results are overly smooth at the legs. STD and STNet

generate similar results, but taking a close comparison, STNet synthesizes finer details at

the green part (refer to the zoom-ins on the left) and the legs (refer to the zoom-ins on

the right). For the half-cylinder (640) data set, both BL and SSR+TSR do not produce

high-quality rendering results. STD generates the result with tiny noises and artifacts at

the front (refer to the zoom-ins on the left) and more purple parts (refer to the zoom-ins

on the right). As for the vortex data set, BL, SSR+TSR, and STD produce more blue and

red parts over the whole volume. STNet generates closer results compared with GT. For
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(a) BL (b) SSR+TSR (c) STD (d) STNet (e) GT

Figure 6.7: Comparison of isosurface rendering results. Top to bottom: five jets, ionization
(H), Tangaroa, and supercurrent. The chosen isovalues are 0, 0.5, 0, and −0.2 , respec-
tively.

the quantitative results, we report average PSNR and SSIM values in Table 6.2. In general,

STNet achieves the best performance among these four solutions, except for the average

SSIM for the vortex data set and the average PSNR for the five jets and supercurrent data

sets. The model sizes of SSR+TSR, STD, and STNet are 74.0MB, 138MB, and 62.5MB,

respectively. As for the training time, STD requires the shortest time for optimization,

and SSR+TSR needs the longest time. This is because SSR has one generator and two

discriminators, and TSR has a recurrent generator and one discriminator. SSR+TSR needs

to optimize two generators and three discriminators to go through one training data sample,

incurring an expensive computational cost. Since STNet has more FU modules than STD
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(t +1 vs. 1), it demands more time to compute gradients and optimize. However, there is

no significant difference for the inference time.

Figure 6.7 shows isosurface rendering results among BL, SSR+TSR, STD, STNet, and

GT using the five jets, ionization (H), Tangaroa, and supercurrent data sets. For each

data set, we pick one isovalue for comparison. For the five jets data set, both BL and

SSR+TSR do not capture the isosurface details (refer to the zoom-ins on the right), and the

lighting on the isosurface generated by STD shifts too much compared with GT (refer to

the zoom-ins on the left). For the ionization (H) data set, STNet can capture finer structures

(refer to the zooms-in on the right) compared with other solutions. For the Tangaroa data

set, both BL and SSR+TSR do not produce isosurfaces with fine details. In addition, the

isosurfaces generated by SSR+TSR contain noticeable noises and artifacts. For STD and

STNet, both can synthesize similar isosurfaces compared with GT. However, STNet can

extract more details. For example, it produces close isosurfaces at two corners (refer to the

zoom-ins). For the supercurrent data set, BL does not extract close isosurfaces compared

with GT, while SST+TSR, STD, and STNet produce similar results, and all of them are

comparable to GT. In terms of quantitative comparison, Table 6.3 reports the average IS

score for BL, SSR+TSR, STD, and STNet. STNet achieves the best performance for all

data sets. Note that for the five jets and supercurrent data sets, STD and STNet achieve

similar performance. This is because the overall content does not change too much over

different time steps for these two data sets (i.e., the training and inference data are similar),

which means data-space interpolation could lead to satisfactory results. But to achieve

similar performance, STD needs around 36 million parameters while STNet requires about

16 million.

Comparison with baselines. As shown in Figures 6.6 and 6.7, STNet outperforms

SSR+TSR and STD in terms of visual quality and achieves better quantitative scores for

most data sets compared with STD. The potential reasons are as follows. SSR+TSR di-

rectly uses two networks to perform SSR and TSR, respectively. It forces the latter network
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TABLE 6.3

AVERAGE IS VALUES AT CHOSEN ISOVALUES

data set (isovalue) BL SSR+TSR STD STNet

five jets (v = 0) 0.78 0.80 0.88 0.88

half-cylinder (640) (v = 0.2) 0.62 0.60 0.74 0.79

ionization (H) (v =0.5) 0.71 0.78 0.79 0.81

supercurrent (v =−0.2) 0.23 0.96 0.96 0.96

Tangaroa (v = 0) 0.57 0.59 0.73 0.75

vortex (v =−0.2) 0.82 0.79 0.84 0.86

(i.e., TSR) to complete two tasks, i.e., TSR and denoising, since the results generated from

the former network (i.e., SSR) are not GT, and they contain unobservable noises. These

noises could be sensitive [61, 179] when synthesizing high-quality volumes. This explains

why the rendering results produced by SSR+TSR contain noises and artifacts. We try to

add a denoising module into the TSR framework to clean up these noises, but the results

are not satisfactory. For STD, it achieves comparable PSNR values for simple data sets

(e.g., supercurrent) but cannot generate high fidelity results for complex data sets (e.g.,

half-cylinder). This is because extracting a global spatiotemporal representation for all in-

termediate and the two-ending time steps is extremely difficult for these volumes whose

patterns change dynamically. We point out that the number of parameters in STD is twice

of those in STNet. The reason is as follows. Ideally, to achieve a fair comparison between

STD and STNet, we need to set the same number of parameters in both STD and STNet.

However, under the model size of 62.5MB, STD cannot generate satisfactory STSR vol-

umes. Therefore, we expand the width (i.e., the number of channels) of STD.

Comparison with state-of-the-art compression. Figure 6.8 shows volume rendering

results obtained from the upscaled volumes generated by STNet and the volumes com-
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TABLE 6.4

COMPARISON OF TTHRESH AND STNET 1

data set method compression ratio SSIM

half-cylinder (640)
TTHRESH 1745.33 × 0.902

STNet 162.62 × 0.944

data set method PSNR SSIM

ionization (H)
TTHRESH 49.37 0.906

STNet 43.19 0.913

pressed then decompressed using TTHRESH [5]. We choose TTHRESH, a tensor com-

pression solution, because it smoothly degrades the data, leads to errors smaller than other

state-of-the-art algorithms, and requires a low cost for compression and decompression.

We consider two scenarios: (1) keeping the same PSNR (i.e., 36.84 dB) for the half-

cylinder (640) data set and (2) controlling the same compression ratio (i.e., 206.74×) for

the ionization (H) data set. To achieve a fair comparison against TTHRESH, we include

the model size in the computation of compression ratio. We utilize a lossless compression

algorithm [91] to further reduce the storage of the saved model and data. For the first

scenario, as shown in Figure 6.8 (a), the image rendered by TTHRESH contains fewer

cyan parts. It also produces noticeable noises in the rendering image. The top part of Ta-

ble 6.4 reports the compression ratios and average SSIM values for both methods. Under

the same PSNR, although TTHRESH achieves a higher compression ratio, which is about

10 times compared with that of STNet, STNet achieves a higher SSIM value for the syn-

1Top: average SSIM under the same PSNR of 36.84 dB. Bottom: average PSNR (dB) and SSIM under
the same compression ratio of 206.74×.

106



thesized volumes than those recovered from TTHRESH. For the second scenario, as shown

in Figure 6.8 (b), TTHRESH generates more red parts. The bottom part of Table 6.4 gives

average PSNR and SSIM values for both methods. Under the same compression ratio,

although TTHRESH produces a higher PSNR value, STNet achieves a higher SSIM value

and better visual quality.

(a) TTHRESH (b) STNet (c) GT

Figure 6.8: Volume rendering results. Top and bottom: half-cylinder (640) and ionization
(H).

Evaluation of ensemble and multivariate data sets. In Figures 6.9 and 6.10, we com-

pare volume and isosurface rendering results from the synthesized volumes given by BL

and STNet on ensemble and multivariate data sets to evaluate the generalization ability. We

use an ensemble parameter (variable) XS of a data set for training, while another ensemble

parameter (variable) XT of the same data set is used for inference (i.e., XS→XT ). For the

half-cylinder data set, we test two cases: 640→ 320 and 640→ 6,400. The complexity

increases as the Reynolds number gets large. For 640→ 320, compared with the result gen-
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erated by BL, STNet produces better visual results in the purple and cyan parts of volume

rendering results and extracts finer details of isosurfaces as shown in isosurface rendering

results. For 640→ 6,400, STNet synthesizes more detailed rendering results. For exam-

ple, the cyan part’s lighting and the isosurfaces at the middle and right corners are closer

to GT results. As for H→ H+ of the ionization data set, BL produces fewer details at the

bottom of the ionization for both rendering results. For instance, for volume rendering, the

image generated by BL shows more purple color. For isosurface rendering, the lighting

at the bottom generated by BL is inconsistent with that of GT. As for quantitative results,

STNet also outperforms BL in terms of PSNR and SSIM, as shown in Table 6.5.

(a) BL (b) STNet (c) GT

Figure 6.9: Variable and ensemble volume rendering results. Top to bottom: half-cylinder
(320), half-cylinder (6,400), and ionization (H+).

Evaluation of s and t. To analyze the performance of STNet with different s and

t, we set s = 4 and s = 8 with different t using the five jets and supercurrent data sets,

respectively. As shown in the top rows of Figures 6.11 and 6.12, t = 3 achieves the best

108



(a) BL (b) STNet (c) GT

Figure 6.10: Variable and ensemble isosurface rendering results. Top to bottom: half-
cylinder (320), half-cylinder (6,400), and ionization (H+). The chosen isovalues are −0.2,
0, and −0.2, respectively.

quality. However, all of them can capture the overall shape and details of the five jets, and

the main difference is the size of the cyan cap. For the supercurrent data set, the rendering

results are shown in the bottom rows of Figures 6.11 and 6.12. All produce similar results

compared to GT for volume and isosurface rendering. But taking a close comparison,

under t = 10, the isosurface is broken into two parts at the top-left corner (refer to the

red arrow). Besides, average PSNR and SSIM values are shown in Figure 6.13. STNet

significantly outperforms BL for the five jets and supercurrent data sets under different

settings of s and t.

Based on the above results, our suggestions for choosing s and t for different data sets

are as follows.

• With s = 4, the appropriate value for t could be large for simple data sets (e.g., five
jets and supercurrent), where the patterns change slowly over time. The suitable
value is determined by the total sample time steps. With sufficient samples, t could
be 9 for the supercurrent data set (200 time steps), while with limited samples, t
could be 5 for the five jets data set (100 time steps).
• With s = 4, for complex data sets (e.g., half-cylinder and vortex) where the patterns
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TABLE 6.5

PERFORMANCE COMPARISON FOR ENSEMBLE AND MULTIVARIATE

DATA SETS

data set (XS→XT ) method PSNR SSIM

half-cylinder (640→ 320)
BL 30.01 0.886

STNet 35.26 0.951

half-cylinder (640→ 6,400)
BL 26.47 0.857

STNet 33.86 0.926

ionization (H→H+)
BL 33.53 0.867

STNet 42.99 0.910

could evolve rapidly in neighborhood time steps, 3 is a proper value for t.
• With s = 8, it is almost infeasible with the current architecture for upscaling these

data sets (e.g., half-cylinder and vortex), where the spatial structures are complex.
• For data sets (e.g., five jets and supercurrent) where the shapes are simple and less

complicated, s = 8 could still work.

Temporal coherence. To compare how well temporal coherence is preserved using BL

and STNet, we show five consecutive time steps using the half-cylinder (320) data set. As

shown in Figure 6.14, STNet can better capture temporal coherence compared with BL as

BL does not produce meaningful intermediate time steps. This is because BL only assumes

that features evolve linearly, which is not the case for most data sets.

6.2.3 Network Analysis

To analyze STNet, we study the impact of pre-training and loss function. A detailed

discussion is as follows.

Evaluation of pre-training. To investigate the effectiveness of adding pre-training, we

train STNet with and without pre-training. Table 6.6 gives the average PSNR and SSIM
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s = 4, t = 7 s = 4, t = 5 s = 4, t = 3 GT

s = 8, t = 10 s = 8, t = 6 s = 8, t = 2 GT
(a) (b) (c) (d)

Figure 6.11: Volume rendering results under different s and t. Top and bottom: five jets
and supercurrent.

under these two training schemes. As we can see, the pre-training can improve about 1dB

and 0.01 for the average PSNR and SSIM values, respectively. Moreover, we plot the

PSNR curves over the whole sequence, as shown in Figure 6.15. The curves indicate that

pre-training can boost the PSNR value at almost every time step. As for visual quality,

volume rendering results are shown in the top row of Figure 6.16. Clearly, using pre-

training can generate results closer to GT (refer to the yellow ellipse). These quantitative

and qualitative analysis results confirm the usefulness of the pre-training algorithm.

Evaluation of volumetric loss. Cycle and volumetric losses serve a similar role in

optimization while constraining the volumes in the low-dimensional and high-dimensional

spaces, respectively. So, would it still work if we only leverage one loss to train the net-

work? To answer this question, we optimize the network with and without considering vol-

umetric loss. Note that training without cycle loss means removing pre-training, which has
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s = 4, t = 7 s = 4, t = 5 s = 4, t = 3 GT

s = 8, t = 10 s = 8, t = 6 s = 8, t = 2 GT
(a) (b) (c) (d)

Figure 6.12: Isosurface rendering results under different s and t. Top and bottom: five jets
and supercurrent. The chosen isovalues are 0.4 and −0.2, respectively.
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Figure 6.13: Average PSNR and SSIM under different s and t. Top and bottom: five jets
with s = 4 and supercurrent with s = 8.
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(a) 94 (b) 95 (c) 96

Figure 6.14: Volume rendering results of the half-cylinder (320) data set with five time
steps (94 to 96). Top to bottom: BL, STNet, and GT.

— w/o pre-training

— w pre-training

(a) Tangaroa (b) vortex

Figure 6.15: PSNR curves with and without pre-training.

been discussed. As shown in Table 6.6, without volumetric loss, average PSNR and SSIM

values drop significantly. As for rendering quality, we display volume rendering results in

Figure 6.16. Using cycle loss only captures the overall shape of the five jets but could not

preserve fine details. This is because different data samples in the high-dimensional space

can be downsized to the same data in the low-dimensional space with the same downsizing

function (e.g., bicubic) [101]. Constrained only in the low-dimensional space, the network

could jump into an undesired local minimum in the high-dimensional space.

Evaluation of adversarial loss. To study the impact of adversarial loss, we optimize

STNet with and without adversarial loss. Table 6.6 reports the average PSNR and SSIM

under these two optimizations. Although we can achieve a higher PSNR value without ad-
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w/o cyc loss w cyc loss GT

w/o vol loss w vol loss GT

w/o adv loss w adv loss GT
(a) (b) (c)

Figure 6.16: Volume rendering results under different loss settings. From top to bottom:
Tangaroa, five jets, and ionization (H).
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TABLE 6.6

PERFORMANCE COMPARISON UNDER DIFFERENT SETTINGS

data set method PSNR SSIM

Tangaroa
w/o pre-training 32.26 0.883

w pre-training 33.26 0.892

vortex
w/o pre-training 31.75 0.709

w pre-training 32.73 0.720

five jets
w/o volumetric loss 22.11 0.621

w volumetric loss 39.63 0.892

half-cylinder (640)
w/o volumetric loss 20.62 0.888

w volumetric loss 36.84 0.944

ionization (H)
w/o adversarial loss 43.80 0.904

w adversarial loss 43.19 0.913

versarial loss, adding adversarial loss improves SSIM values (i.e., the image-level metric).

Moreover, the rendering images also confirm that adversarial loss can boost perceptual

quality, as shown in Figure 6.16. For example, without adversarial loss, the rendering im-

age produces more red parts at the ionization’s head. Therefore, these results demonstrate

the usefulness of adversarial loss in improving visual quality.

6.3 Conclusions

I have presented STNet, a novel generative solution for producing STSR volumes for

time-varying data analysis and visualization. Leveraging post-upsampling and feature in-

terpolation, STNet can synthesize high fidelity super-resolution sequence given two low-

resolution volumes at both ends as input. Compared to BL, SSR+TSR, and STD, STNet
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produces time-varying sequences of better visual quality, both qualitatively and quantita-

tively. We also compare STNet with TTHRESH to verify its effectiveness.

STNet can be applied to the in-situ scenario: at simulation time, scientists can store

the early time steps for STNet training while saving the later time steps sparsely for stor-

age saving. For example, they can keep one time step for every ten time steps simulated

and downsize these time steps by 4 at each spatial dimension. During postprocessing,

the network is trained with the early time steps only. Once trained, they can recover the

super-resolution intermediate time steps with high fidelity, given the sparsely output low-

resolution time steps.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

In this dissertation, I have presented several deep learning solutions for scientific data

representation and generation. In scientific data representation, first, I proposed an unsu-

pervised representation learning framework for extracting both streamline and stream sur-

face information in high dimensional space. In particular, I developed an encoder decoder

structure to learn hidden representations through reconstruction. Further, I established

a visual interface to allow users to explore the relationship between the objects and the

corresponding hidden representations and understand what information is encoded in the

representations. Second, I extended surface representation learning to node representation

learning by developing graph convolutional neural network. I studied different unsuper-

vised objective functions and discovered that geodesic distance-based loss can help graph

convolutional network learn the most meaningful node representations. I validated the

learned representations on node clustering and surface selection tasks and the proposed so-

lution can significantly reduce the training cost compared with convolution-based methods

without sacrificing performance. In scientific data generation, I developed a three-stage

pipeline for multivariate data selection and translation. Specifically, representation learn-

ing is leveraged to estimate the similarity among different variables, translation graph is

constructed to determine source and target variables, and generative adversarial network

is applied to translate source variable to target variable. This proposed solution can allow

domain scientists to partly simulate scientific data while providing a comprehensive in-
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sight. Moreover, I proposed an end-to-end generative framework for spatiotemporal super-

resolution volume generation. Through sparsely sampled scientific data in both spatial

and temporal space, my solution can recover these low-resolution data into high-resolution

ones with high quality. Furthermore, inspired by recent pre-training techniques in image

classification and segmentation, I designed a pre-training algorithm to improve network

generalization during inference stage through cycle loss. This solution can upscale data

with 64 or even 512 times in spatial dimension and 3 or even 11 times in temporal dimen-

sion, which offers scientists an option to reduce data storage.

7.2 Future works

Although deep learning has achieved impressive results in many fields, such as com-

puter vision and natural language processing, it is not deeply explored in scientific visu-

alization. In the future, there are several open research directions in deep learning for

scientific visualization.

Lightweight model. The deep learning models in scientific visualization are built

with tens or hundreds of layers to guarantee quality. However, this could result in a large

model size and inefficient inference. In the machine learning community, researchers have

already studied different techniques (e.g., weight quantization [54, 55, 89] and knowledge

distillation [33, 62, 84, 188]) to build a lightweight model from a heavyweight one. For

instance, Han et al. [55] pruned the network, quantized parameters and compressed them

using Huffman coding. Li et al. [84] applied neural architecture search to find efficient

architectures through combining the knowledge of multiple intermediate features extracted

from the heavyweight model. The opportunity to incorporate these techniques into deep

learning models could significantly improve training efficiency for large-scale scientific

data analysis and visualization.

Disentangled learning. The introduced representation learning works are distributed

learning, e.g., a network architecture is designed to extract unified features through spe-
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cific constraints (e.g., reconstruction). However, the possibility of disentangled learning

is still unexplored. In computer vision, Huang et al. [67] built two encoders to learn the

content (e.g., shape) and style (e.g., texture and pose) of an image, respectively. After

that, fixing the content feature while switching different style features can render arbitrary

images with the same content in different styles. Although it is not as intuitive as images

to explicitly define content and style for SciVis data. But it still have great potential capa-

bility in ensemble data generation. For example, given an ensemble fluid flow simulation,

the content could be invariant information (e.g., vortices). The style could be the pattern

(e.g., the number, size, and location of vortices) extracted by simulation output under vary-

ing Reynolds numbers, which indicate how turbulent the flow is. Following this direction,

Disentangled learning can play an important role in controlling and understanding the en-

semble simulation process.

Physics-informed. The proposed data generation works for scientific data genera-

tion are purely data-driven without considering the underlying physics properties in net-

work training. Recently, researchers in computational fluid dynamics and fluid simulation

have extensively investigated physics-informed deep learning solutions [75, 146]. For in-

stance, Raissi et al. [121] introduced a physics-informed neural network for solving super-

vised learning tasks involving nonlinear partial differential equations. Using differentiable

physics and physics-informed deep learning can integrate data and the governing physical

laws to produce predictions conforming to the underlying physics.

Federated learning. The success of deep learning models heavily relies on a large

amount of data. However, due to practical issues such as confidentiality and privacy, sci-

entific data are often not publicly available. This prevents the deep learning models from

gaining a strong learning capability from different sources. Instead of requiring data sets,

researchers can release the trained models. Federated learning [74] can produce a shared

model by collaborating with local models trained on different data sets. The shared model

does not need to access the trained data sets. Techniques in federated learning include

119



weight averaging [100], momentum update [64], Bayesian non-parametric match [154],

and model contrast [85]. The possibilities of designing new approaches when multiple

local models are available need to be investigated.

Interpretable DL. In scientific visualization community, researchers treat the deep

learning models as black boxes. This makes it difficult to interpret or modify the model

results when the predictions are inaccurate or do not meet particular constraints (e.g., the

cell size in medical images and physical properties in simulation data). Interpretable deep

learning [178] aims to study the role of each neuron in a deep leearning model and un-

derstand the decision process. Recent works [7–10] investigated the importance of each

neuron in image classification and generation tasks (e.g., identifying the neurons that can

control the generation or classification of church). Through this interpretation, researchers

can manipulate the model behavior to generate the desired results. For example, by elim-

inating the sofa neurons, a GAN model can produce images without a sofa. In scientific

data generation tasks, we need to identify and discovering the neurons with different roles,

controlling specific neurons, and rewriting the neurons to produce customized results when

different transfer functions are designed.

Generalization cross tasks. Most of existing deep learning models are tailored for

a single task. This design prevents the model learning knowledge from other tasks and

generalizing to various tasks. Generalization across tasks aims to design a model that

can learn multiple tasks without changing model architecture. In the future, how to build

such model could be an interesting and important direction in deep learning for scientific

visualization since such a framework can be easily deployed with less effort when domain

scientists need to handle different tasks rather than switching to a different deep learning

model for each task.
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