
Dynamic coarrays
Only dynamic form: the allocatable coarray.
real, allocatable :: a(:)[:], s[:,:]

 :

allocate (a(n)[*], s[-1:p,0:*])

The bounds, cobounds, and length parameters must
not vary between images.
All images synchronize at the same allocate,
deallocate or call move_alloc statement so
that they can all perform their allocations and
deallocations in the same order.

1

Coarray dummy arguments
A dummy argument may be a coarray.
It may be of explicit shape, assumed size, assumed shape,
or allocatable:
subroutine subr(n,w,x,y,z)

 integer :: n

 real,save :: w(n)[n,*] ! Explicit shape

 real,save :: x(n,*)[*] ! Assumed size

 real,save :: y(:,:)[*] ! Assumed shape

 real, allocatable :: z(:)[:,:]

2

Coarray dummy arguments (cont)
subroutine subr(n,w,x,y,z)

 integer :: n

 real,save :: w(n)[n,*] ! Explicit shape

 real,save :: x(n,*)[*] ! Assumed size

Where the bounds or cobounds are declared, there is no
requirement for consistency between images. The local
values are used to interpret a remote reference. Different
images may be working independently.

There are rules to ensure that copy-in copy-out of a coarray
is never needed.

3

Coarrays and save

Unless allocatable, a coarray that is local to a
procedure must be given the save attribute.
This is to avoid such an coarray going out of scope
on return from a procedure, which would require
synchronization.
Not required for allocatables because of their use
in recursive procedures.

4

Structure components

Coarray not allowed to be a pointer but may be of a
derived type with allocatable or pointer components.
Provides a simple but powerful mechanism for cases
where the size varies from image to image, avoiding
loss of optimization.
Pointers must have targets in their own image:
 q => z[i]%p ! Not allowed

 allocate(z[i]%p) ! Not allowed

5

Program termination
Normal termination (stop or end) occurs in three
steps: initiation, synchronization, and completion.
Data on an image is available to the others until
they all complete execution and synchronize.

Error termination occurs if any image hits an error
condition or executes an error stop statement. All
other images that have not initiated error
termination do so as soon as possible.

6

Input/output
Default input (*) is available on image 1 only.
Default output (*) and error output are available on every
image. The files are separate, but their records will be
merged into a single stream or one for the output files and
one for the error files.
The open statement connects a file to a unit on the executing
image only.
Whether a file on one image is the same as a file with the
same name on another image is processor dependent.

7

Optimization
Most of the time, the compiler can optimize as if the
image is on its own, using its temporary storage such as
cache, registers, etc. (even for remote data).
There is no coherency requirement while unordered
segments are executing.
The programmer is required to follow the rule: if a
variable is defined in a segment, it must not be
referenced, defined, or become undefined in another
segment unless the segments are ordered.
The compiler also has scope to optimize communication.

8

Planned extensions

The following features are planned for a Technical
Specification on Additional Parallel Features in Fortran:
• Teams - subdivide the images into sets that execute

independently.
• Collective intrinsic subroutines for the operations CO_ADD,
CO_MAX, CO_MIN, CO_REDUCE, CO_BROADCAST.

• One-sided synchronization using tagged events that may be
posted, tested or waited for.

• Failed images – continue execution in the face of failed
images.

9

A comparison with MPI
A colleague (Ashby, 2008) converted most of a large code, SBLI,
a finite-difference formulation of Direct Numerical Simulation
(DNS) of turbulance, from MPI to coarrays.
Since MPI and coarrays can be mixed, he was able to do this
gradually, and he left parts of the code in MPI.
Most of the time was taken in halo exchanges and the code
parallelizes well with 64 processors. The speeds were very
similar.
The code clarity (and maintainability) was much improved. The
code for halo exchanges, excluding comments, was reduced
from 176 lines to 105 and the code to broadcast global
parameters from 230 to 117.

10

Advantages of coarrays
• References to local data are obvious as such.
• Easy to maintain code - more concise than MPI and easy to

see what is happening
• Integrated with Fortran - type checking, type conversion on

assignment, ...
• The compiler can optimize communication
• Local optimizations still available
• Does not make severe demands on the compiler, e.g. for

coherency.

11

References
Ashby, J.V. and Reid, J.K (2008). Migrating a scientific
application from MPI to coarrays. CUG 2008 Proceedings.
RAL-TR-2008-015, see
http://www.numerical.rl.ac.uk/reports/reports.shtm
ISO/IEC (2010). Information technology - Programming
languages - Fortran -Part 1: Base language. ISO/IEC 1539-
1:2010(E), ISO, Geneva.
Metcalf, M., Reid, J., and Cohen, M. (2011). Modern
Fortran Explained. OUP, Oxford.

12

http://www.numerical.rl.ac.uk/reports/reports.shtm

	Dynamic coarrays
	Coarray dummy arguments
	Coarray dummy arguments (cont)
	Coarrays and save
	Structure components
	Program termination
	Input/output
	Optimization
	Planned extensions
	A comparison with MPI
	Advantages of coarrays
	References

