
Introduction to
Fortran Coarrays

John Reid, ISO Fortran Convener,
JKR Associates and

 Rutherford Appleton Laboratory

1

Abstract
This talk will
• explain the objectives of coarrays,
• give a quick summary of their history,
• introduce the coarray features in Fortran 2008, and
• say something about the further coarray features

that we are planning.

I will assume some knowledge of Fortran but not
that you know it all.
I will remind you about features as you meet them
for the first time.

2

Design objectives
Coarrays are the brain-child of Bob Numrich (Minnesota
Supercomputing Institute, formerly Cray) and date from his work
in the mid 1990s.
The original design objectives were for
• A simple extension to Fortran
• Small demands on the implementors
• Retain optimization between synchronizations
• Make remote references apparent
• Provide scope for optimization of communication
Coarrays has been implemented by Cray for more than ten years.
Intel now includes them and they are being added to gfort.

3

Summary of coarray model
• SPMD - Single Program, Multiple Data
• Replicated to a number of images (probably as executables)
• Number of images fixed during execution
• Each image has its own set of variables
• Coarrays are like ordinary variables but have second set of

subscripts [] for access between images
• Images mostly execute asynchronously
• Synchronization: sync all, sync images, stop, lock, unlock,
allocate, deallocate, move_alloc, critical construct

• Intrinsics: this_image, num_images, image_index

4

 Examples of coarray syntax

real,save :: r[*], s[0:*] ! Scalar coarrays
real,save,codimension[*] :: x(n) ! Array coarray
type(u),save :: u2(m,n)[np,*]
 ! Coarrays always have assumed cosize
 ! (equal to number of images)
real :: t ! Local variable
integer p, q, index(n) ! Local variables
:
t = s[p]
x(:) = x(:)[p]
! Reference without [] is to local object
x(:)[p] = x(:)
u2(i,j)%b(:) = u2(i,j)[p,q]%b(:)

5

Implementation model
• Usually, each image resides on one core.
• However, several images may share a core (e.g. for debugging)

and one image may execute on a cluster (e.g. with OpenMP).
• A coarray has the same set of bounds on all images, so the

compiler may arrange that it occupies the same set of
addresses within each image (known as symmetric memory).

• This allows each image to calculate the memory address of an
element on another image.

6

Synchronization

With a few exceptions, the images execute asynchronously.
If syncs are needed, the user supplies them explicitly.
Barrier on all images sync all
Wait for others sync images(image-set)
Need not be same statement on the images involved.
Limit execution to one image at a time
 critical
 block
 end critical

7

Limit execution in a more flexible way

 use :: iso_fortran_env
 type(lock_type),save :: lock_var[*]

 lock(lock_var[6])

 p[6] = p[6] + 1

 unlock(lock_var[6])

The synchronization statements are known as image control
statements

8

The sync images statement
Example: make other images to wait for image 1:

if (this_image() == 1) then
 ! Set up coarray data for other images
 sync images(*)
else
 sync images(1)
 ! Use the data set up by image 1
end if
Correction: lines reordered in else block.

9

Execution segments
On an image, the statements executed up to the first image control
statement or after one and up to the next is known as a segment.
For example, this code reads a value on image 1 and broadcasts it.

real,save :: p[*]
 : ! Segment 1
sync all ! Segment 1
if(this_image()==1)then ! Segment 2
 read (*,*) p ! :
 do i = 2, num_images()! :
 p[i] = p ! :
 end do ! :
end if ! :
sync all ! Segment 2
 : ! Segment 3 10

Execution segments (cont)
The normal rules of statement execution on a single
image and the synchronization statements together
ensure a partial ordering of all the segments.
Important rule: if a variable is defined in a segment,
it must not be referenced, defined, or become
undefined in a another segment unless the segments
are ordered.
It is up to the programmer to ensure this.

11

	Introduction to �Fortran Coarrays
	Abstract
	Design objectives
	Summary of coarray model
	 Examples of coarray syntax
	Implementation model
	Synchronization
	Limit execution in a more flexible way
	The sync images statement
	Execution segments
	Execution segments (cont)

