
Further coarray features
John Reid, ISO Fortran Convener,

JKR Associates and
 Rutherford Appleton Laboratory

1

Items removed in 2008
In February 2008, it was decided to move the following
features into a Technical Specification (a mini Standard)
on Additional Parallel Features in Fortran
• Teams and features that require teams.
• The collective intrinsic subroutines.
• The notify and query statements.
• File connected on more than one image, unless

preconnected to the unit specified by
output_unit or error_unit.

2

The Technical Specification (TS)
In 2011, it decided that the choice of features should be
reviewed while not altering the overall size of the
addition.
This choice was made during the 2012 WG5 meeting and
modified during the 2013 WG5 meeting.
I will describe the set of additional features now
proposed. As voting takes place, there may be more
changes.

3

Teams
Needed for independent computations on subsets of
images.
Code that has been written and tested on whole machine
should run on a team.

• Therefore, image indices need to be relative to team.
• Collective activities and syncs, need to be relative to

team.

4

team_type and form team

The intrinsic module iso_fortran_env contains a
derived type team_type. A scalar object of this type
identifies a team of images.

The same form team statement must be executed on
all images of a team to form subteams
 form team(id,new_team)
The images with the same value of id form the new
team.
All images of the current team synchronize.
 5

change team construct
change team (team)
 : ! Block executed as a team
 if(team_id()==1) then ! New intrinsic
 : ! Code for team 1
 else
 :
end team
The new teams synchronize at the change team and
end team statements.
Changing teams is likely to be costly – avoid doing it
frequently.

6

 Example

This code splits images into two teams.

use iso_fortran_env
integer :: i,ne
ne = num_images()
type(team_type),save :: team
i = 2
if (this_image()<=ne/2) i = 1
form team(i,team)
change team (team)
 :
end team

7

Accessing sibling team
 :
real, save :: a(n)[*]
type(team_type) :: initial, block
me = this_image()
initial = get_team() ! New intrinsic
i = ...
form team(i,block)
change team (block)
 :
 sync team(initial) ! New statement
 a(k) = a(1)[initial::me+1]
end team
 8

Collectives
The collective subroutines are reduced in number,
but a general reduction is added. They are
co_broadcast, co_max, co_min,
co_sum, co_reduce.

Invoked by the same statement on all images of the
team and involve synchronization within them, but
not at start and end.

9

co_broadcast and co_max

call co_broadcast (source, source_image)
Copy source from source_image to all images of
the current team.

call co_max (source)
On all images, replace source by maximum value of
source on all images of the current team.

call co_max (source, result_image)
On result_image, replace source by maximum value
of source on all images of the current team.

10

co_min, co_sum, co_reduce

co_min and co_sum are just like co_max.

co_reduce is also just like co_max but has extra argument
call co_reduce (source,operator) or
call co_reduce (source, operator, &
 result_image)
operator is a pure function with two arguments of the
same type as source. Applied just like max, min, sum.

11

Keeping source for collectives

If you want to retain the source, it is easy:

 result = source
 call co_max (result)

12

End of first half of lecture

13

	Further coarray features
	Items removed in 2008
	The Technical Specification (TS)
	Teams
	team_type and form team
	change team construct
	Slide Number 7
	Accessing sibling team
	Collectives
	co_broadcast and co_max
	co_min, co_sum, co_reduce
	Keeping source for collectives
	End of first half of lecture

