
Other features

1

Coarray components
A derived type may have allocatable coarray components:

type glob

 real, allocatable :: a(:)[:], b(:)[:]

end type glob

type (glob),save :: dat

allocate (dat%a(n)[*], dat%b(n)[*])

An object with a coarray component must not be an array
or a coarray.

 2

Coarray subobjects

3

A subobject of a coarray is a coarray if it has no
cosubscripts, vector subscripts, or allocatable
component selection.

Has the corank and cobounds of the whole coarray.
real,save :: a(10)[*] ! A coarray
type comp
 integer size
 real, allocatable :: comp(:)
end type
type(comp),save :: var[*] ! A coarray
var%size ! A coarray
a(1:10:2) ! A coarray

Coarray subobjects that are
not coarrays

integer :: index(5)=[7,5,3,1,4]
real,save :: a(10)[*] ! A coarray
type comp
 integer size
 real, allocatable :: comp(:)
end type
type(comp),save :: var[*] ! A coarray
a(:)[11] ! Cosubscript
a(index) ! Vector subscript
var%comp ! Allocatable component
 4

Actual argument corresponding
to coarray dummy argument

• Must be a coarray
• If the dummy is of explicit shape, e.g.
 real :: a(m)[*]
the actual must be simply contiguous (can be
seen at compile time always to be contiguous).

5

Coindexed actual argument

The dummy must not be a coarray, of course.
Example:
 real :: a(m)[*], b(m)
 b(:) = sin(a(:)[i])
Almost certainly, a local copy is made and
passed to the procedure.

Assignment statement corrected – for clarity, whole array notation
not allowed with a cosubscript.

6

Functions with coarray results

Functions are not allowed to have coarray results.
This is because they would create temporary coarrays
and synchronization would be needed within a
statement.

7

Number of subscripts
and cosubscripts

Total number of subscripts and cosubscripts
is limited to 15.

8

Pointer components

integer, target :: i
type comp
 integer, pointer :: p
end type comp
type (comp),save :: a[*]
a%p => i ! OK
a[7] = a ! a[7]%p becomes undefined

9

More on locks

 use :: iso_fortran_env

 logical :: success

 integer :: st

 type(lock_type),save :: lock_var[*]

 lock(lock_var[6],acquired_lock=success,stat=st)

 if (st/=0) error stop

 if (success) then

 p[6] = p[6] + 1

 unlock(lock_var[6])

 else

 : ! Do something else

10

Atomics

call atomic_define(atom, value)
 Defines atom atomically with the value of value
call atomic_ref (value, atom)
 Defines value atomically with the value of atom

atom must be integer or logical with kind
atomic_int_kind or atomic_logical_kind from
the intrinsic module iso_fortran_env and value must
be of the same type but need not be of same kind.

 11

Sync memory

sync_memory is a local statement that
subdivides a segment into two smaller
segments.

The compiler is aware that the ordering of
the parts may differ. For example, must not
keep remote data in registers.

Typical use is for the spin-wait loop.

12

 Spin-wait loop

use iso_fortran_env
logical(atomic_logical_kind),save :: atom[*]=.true.
logical :: value=.true.

Image i

do while (value)
 call atomic_ref &

 (value, atom)

end do

sync memory

 : ! Segment B

 ! Follows segment A

Image j

: ! Segment A

sync memory

call atomic_define &

 (atom[j], .false.)

13

Advantages of coarrays
• References to local data are obvious as such.
• Easy to maintain code - more concise than MPI and easy to

see what is happening
• Integrated with Fortran - type checking, type conversion on

assignment, ...
• The compiler can optimize communication
• Local optimizations still available
• Does not make severe demands on the compiler, e.g. for

coherency.

14

References
ISO/IEC (2010). Information technology - Programming
languages - Fortran -Part 1: Base language. ISO/IEC 1539-
1:2010(E), ISO, Geneva.

Metcalf, M., Reid, J., and Cohen, M. (2011). Modern
Fortran Explained. OUP, Oxford.

The sides and the codes associated with these lectures are
available on the web site :
http://www.nd.edu/~dbalsara/Numerical-PDE-Course
 15

	Other features
	Coarray components
	Coarray subobjects
	Coarray subobjects that are not coarrays
	Actual argument corresponding to coarray dummy argument
	Coindexed actual argument
	Functions with coarray results
	Number of subscripts and cosubscripts
	Pointer components
	More on locks
	Atomics
	Sync memory
	 Spin-wait loop ��use iso_fortran_env�logical(atomic_logical_kind),save :: atom[*]=.true.�logical :: value=.true.
	Advantages of coarrays
	References

