
Events
Events are useful if one or more images need to do
something before another image can continue.

For example, in the multifrontal method for
factorizing a sparse matrix, work at a node of the
assembly tree has to wait for all the work at its
child nodes to be completed.

1

Event variable
An event variable is a scalar coarray of type event_type.
It contains a count which increases by 1 each time the
event is “posted”.

use iso_fortran_env

type(event_type), save :: event[*]

 :

event post(event[i])

 :

event wait(event) ! Wait until count >= 1

 ! then decreases it by 1 and continue

2

Wait for count

Can wait until count reaches given value:
event wait(event,until_count=value)

 ! Waits until count >= value and

 ! then decreases it by value

Useful if a number of images need to perform their
actions before the executing image can continue.

3

Query count value

call event_query (event, count)
Sets count to the count value of event.

It is an intrinsic subroutine that is atomic.

4

Direct-access parallel i/o
A direct-access file has records all of the same
length and each can be accessed directly. We used
to have the possibility of opening such a file on a
team of images.

If an image writes a record, no other image can
access it unless
• the writing image executes a flush statement for

the file and
• the access is in a segment that follows the

segment containing the flush statement.

 5

Failed images

The probability of a particular image failing is
small, but if the number of images is huge, the
probability that one or more fails is significant.

Hence the concept of continuing execution in the
presence of failed images.

If an image is considered to be failed, it remains
so for the rest of the program execution.

6

failed_images
intrinsic function

failed_images()
Returns an integer array holding image indices
of failed images in the current team.

failed_images(team)
Returns an integer array holding image indices
of failed images in team.

7

Testing for failed image
use :: iso_fortran_env
 :
change team (team_a)
 :
 sync_all(stat=st)
 if (st==stat_failed_image) exit
end team
sync_all(stat=st)
if (st==stat_failed_image) then
 : Deal with failure
end if

8

fail_image statement

The statement
 fail_image
causes an image to behave as failed.
It may be needed for debugging.

9

Knock-on failures
If the statement
 a = b[image]
is executed and image has failed, the executing image
will stall and will eventually be regarded as failed.
Should there be a way to get this image back into use?
One possibility is that it should exit the change team
construct.
Do we need another state? Stalled?

10

More intrinsic
atomic subroutines

The intrinsic subroutines
 atomic_add
 atomic_and
 atomic_cas
 atomic_or
 atomic_xor
have been added.

11

Summary of features in TS

• Teams
• Collective intrinsic subroutines
• Events
• Failed images
• More atomics

12

Reference
The draft TS that was current at the time of this talk is
visible here
ftp://ftp.nag.co.uk/sc22wg5/N2001-N2050/N2007.pdf

13

ftp://ftp.nag.co.uk/sc22wg5/N2001-N2050/N2007.pdf

Acknowledgement

I would like to thank Dinshaw Balsara for providing
these video facilities and for his patience while I was
recording these lectures.

The sides and the codes associated with these lectures
are available on the web site :
http://www.nd.edu/~dbalsara/Numerical-PDE-Course

14

	Events
	Event variable
	Wait for count
	Query count value
	Direct-access parallel i/o
	Failed images
	failed_images intrinsic function
	Testing for failed image
	fail_image statement
	Knock-on failures
	More intrinsic atomic subroutines
	Summary of features in TS
	Reference
	Acknowledgement

