Lecture 2) Finite Difference Approximations

By

Prof. Dinshaw S. Balsara (dbalsara@nd.edu)
Les Houches Summer School in Computational Astrophysics http://www.nd.edu/~dbalsara/Numerical-PDE-Course

2.1) Introduction

We have seen that several PDEs have a combination of hyperbolic, parabolic and elliptic terms. Example : Navier-Stokes equations.

Many of the PDEs are also strongly non-linear. The non-linear aspect will be tackled later on. Here we focus on the linear problem.

We study how to approximate PDEs on a mesh. This is known as a Finite Difference Approximation (FDA). It is truly an approximation!

Even within the context of linear PDEs, convergence to the physical solution is not always guaranteed. Obtaining such guarantees is the topic of this Chapter.

We understand what makes an approximation consistent.
Then we study stability of linear parabolic equations and linear hyperbolic equations.

An interesting deficiency emerges for linear hyperbolic equations, which will only be resolved in the next Lecture.

Problems studied here are initial boundary value problems. They require specification of boundary conditions. We begin that study here.

2.2) Meshes and Discretization on a Mesh

To solve problems on a computer we need to represent the physical data. This entails allocating storage, I.e computer memory, I.e. bytes in RAM, to represent the physical variables.

Say we have a rectangular physical problem. We can subdivide our computational domain, which covers physical space, to obtain a computational mesh. The subdivisions can be labeled to obtain zones. For instance, we can talk of the $(3,2)^{\text {th }}$ zone of a two-dimensional mesh.

We can then assign physical data to each of the zones of the mesh. Eg. For a fluid flow problem we would assign density, momentum density and energy density to each zone.

We expect that as the number of zones is increased by further subdivision of the mesh, the accuracy with which we represent the physical problem will increase. Eg., A 10X10 or 100X100 zone mesh would be more accurate than the 5 X 5 mesh shown in the figure.

Notice that the fluid variables evolve in time in response to their own spatial gradients. This is often the case with most PDEs.

Question: So what makes the conservation form so special?
Answer: Gauss' Law.
Let's focus on the continuity equation and the figure below.

$$
\begin{aligned}
& \iiint_{\mathrm{V}}\left(\frac{\partial \rho}{\partial t}+\frac{\partial\left(\rho \mathrm{v}_{x}\right)}{\partial x}+\frac{\partial\left(\rho \mathrm{v}_{y}\right)}{\partial y}+\frac{\partial\left(\rho \mathrm{v}_{z}\right)}{\partial z}\right) d x d y d z=0 \Rightarrow \\
& \frac{\partial}{\partial t} \iiint_{\mathrm{V}} \rho d x d y d z+\iint_{A_{1}} \rho \mathrm{v}_{x} d y d z-\iint_{\mathrm{A}_{2}} \rho \mathrm{v}_{x} d y d z+\iint_{\mathrm{A}_{3}} \rho \mathrm{v}_{y} d x d z-\iint_{\mathrm{A}_{4}} \rho \mathrm{v}_{y} d x d z \\
& \quad+\iint_{\mathrm{A}_{5}} \rho \mathrm{v}_{z} d x d y-\iint_{\mathrm{A}_{6}} \rho \mathrm{v}_{z} d x d y=0
\end{aligned}
$$

When discontinuities/shocks

 are present, we have no hope of predicting the flow structure inside a zone in our computational mesh. However, the conservation form remains valid!

Data can be allocated (collocated) at different locations on the mesh; some examples, along with popular indexing schemes, are shown below.

Zone-centered collocation of data

$$
\mathrm{U}_{t}+\mathrm{F}_{x}+\mathrm{G}_{y}=0
$$

U: Zone-centered collocation; F: x-Face-centered collocation; G: y-Face-centered collocation

- Denotes locations where physical data is stored (collocated).

Question: What would the multi-dimensional array declarations be for the meshes shown above?

Question: Which of the collocations above are favored for a) Euler equations, b) MHD, c) Maxwell's equations and d) for the Poisson equation? Give reasons for your answers.

Question: A 3d mesh permits zone-centered, face-centered, edgecentered and vertex-centered collocations. Draw a zone of a 3d mesh and indicate the locations of these collocations. How many different facecentered and edge-centered collocations can you find?

The standard notation for labeling various locations in a zone are shown:

Question: For which different scientific problems would you use these different locations on a mesh?

There are two standard ways of thinking about the solution techniques:
Finite Difference Formulation: Each variable is a point value defined at whatever location it is defined. (Pros: Easier, Faster. Cons: Not so general; doesn't extend to complex geometries; can't do mesh refinement.)

Finite Volume Formulation : Each variable represents a spatial (or temporal) average over some portion of the zone. (Pros: Extends to complex geometries, can do adaptive mesh refinement. Cons: Slightly slower)

We go from time t^{n} to $t^{n}+\Delta t$ (see fig. on previous page)
$\mathrm{U}_{i, j}^{n+1}=\mathrm{U}_{i, j}^{n}-\frac{\Delta t}{\Delta x}\left(\mathrm{~F}_{i+1 / 2, j}^{n+1 / 2}-\mathrm{F}_{i-1 / 2, j}^{n+1 / 2}\right)-\frac{\Delta t}{\Delta y}\left(\mathrm{G}_{i, j+1 / 2}^{n+1 / 2}-\mathrm{G}_{i, j-1 / 2}^{n+1 / 2}\right)$

Example: Obtain the Finite Volume formulation for the same PDE. Now we have to integrate the PDE over the space-time domain $[-\Delta x / 2, \Delta x / 2] \times[-\Delta y / 2, \Delta y / 2] \times\left[t^{n}, t^{n}+\Delta t\right]$
$\overline{\mathrm{U}}_{i, j}^{n+1}=\overline{\mathrm{U}}_{i, j}^{n}-\frac{\Delta t}{\Delta x}\left(\overline{\mathrm{~F}}_{i+1 / 2, j}^{n+1 / 2}-\overline{\mathrm{F}}_{i-1 / 2, j}^{n+1 / 2}\right)-\frac{\Delta t}{\Delta y}\left(\overline{\mathrm{G}}_{i, j+1 / 2}^{n+1 / 2}-\overline{\mathrm{G}}_{i, j-1 / 2}^{n+1 / 2}\right)$
i.e. the solution is only available in terms of averages (Question: Why might that be desirable?):
$\overline{\mathrm{U}}_{i, j}^{n} \equiv \frac{1}{\Delta x \Delta y} \int_{y=-\Delta y / 2}^{y=\Delta y / 2} \int_{x=-\Delta x / 2}^{x=\Delta x / 2} \mathrm{U}\left(x, y, t^{n}\right) d x d y ;$
$\overline{\mathrm{F}}_{i+1 / 2, j}^{n+1 / 2} \equiv \frac{1}{\Delta t \Delta y} \int_{t=t^{n}}^{t=t^{n+1}} \int_{y=-\Delta y / 2}^{y=\Delta y / 2} \mathrm{~F}(\Delta x / 2, y, t) d y d t ;$
$\overline{\mathrm{F}}_{i-1 / 2, j}^{n+1 / 2} \equiv \frac{1}{\Delta t \Delta y} \int_{t=t^{n}}^{t=t^{n+1}} \int_{y=-\Delta y / 2}^{y=\Delta y / 2} \mathrm{~F}(-\Delta x / 2, y, t) d y d t ;$ $t^{n+1}=t^{n}+\Delta t$
$\overline{\mathrm{G}}_{i, j+1 / 2}^{n+1 / 2} \equiv \frac{1}{\Delta t \Delta x} \int_{t=t^{n}}^{t=t^{n+1}} \int_{x=-\Delta x / 2}^{x=\Delta x / 2} \mathrm{G}(x, \Delta y / 2, t) d x d t$;
$\overline{\mathrm{G}}_{i, j-1 / 2}^{n+1 / 2} \equiv \frac{1}{\Delta t \Delta x} \int_{t=t^{n}}^{t=t^{n+1}} \int_{x=-\Delta x / 2}^{x=\Delta x / 2} \mathrm{G}(x,-\Delta y / 2, t) d x d t$

10

2.3) Taylor Series and Accuracy of Discretizations. Truncation Error.

We have seen that as we subdivide the mesh we expect the solution to become more and more accurate. But we want to quantify this notion of accuracy. We expect accuracy to depend on the size " $\Delta \mathrm{x}$ " of the zones that make up a mesh.

The concept of Taylor series gives us a way to make that quantification.
The solution is available as a mesh function at discrete locations. Say, for simplicity, that those locations are evenly spaced.

Let us, therefore, take the origin at the $\mathrm{j}^{\text {th }}$ mesh point of a 1 d mesh. The $(\mathrm{j}+1)^{\text {th }}$ mesh point is located at " $\Delta \mathrm{x}$ " ; the $(\mathrm{j}-1)^{\text {th }}$ mesh point is located at "- $\Delta \mathrm{x}$ ". At each of those discrete locations, we have a mesh function : $u_{j}=u(0), u_{j+1}=u(\Delta x)$ and $u_{j-1}=u(-\Delta x)$, see figure.

$\mathrm{u}_{\mathrm{j}+1}=\mathrm{u}(\Delta \mathrm{x})=\mathrm{u}(0)+\mathrm{u}_{\mathrm{x}}(0) \Delta \mathrm{x}+\frac{1}{2} \mathrm{u}_{\mathrm{xx}}(0) \Delta \mathrm{x}^{2}+\frac{1}{6} \mathrm{u}_{\mathrm{xxx}}(0) \Delta \mathrm{x}^{3}+\frac{1}{24} \mathrm{u}_{\mathrm{xxxx}}(0) \Delta \mathrm{x}^{4}$ $\mathrm{u}_{\mathrm{j}}=\mathrm{u}(0)$
$\mathrm{u}_{\mathrm{j}-1}=\mathrm{u}(-\Delta \mathrm{x})=\mathrm{u}(0)-\mathrm{u}_{\mathrm{x}}(0) \Delta \mathrm{x}+\frac{1}{2} \mathrm{u}_{\mathrm{xx}}(0) \Delta \mathrm{x}^{2}-\frac{1}{6} \mathrm{u}_{\mathrm{xxx}}(0) \Delta \mathrm{x}^{3}+\frac{1}{24} \mathrm{u}_{\mathrm{xxxx}}(0) \Delta \mathrm{x}^{4}$
Subtract 3rd equation from 1st to get: $\mathrm{u}_{\mathrm{j}+1}-\mathrm{u}_{\mathrm{j}-1}=\mathrm{u}_{\mathrm{x}}(0)(2 \Delta \mathrm{x})+\frac{1}{3} \mathrm{u}_{\mathrm{xxx}}(0) \Delta \mathrm{x}^{3}$
or $\quad \mathrm{u}_{\mathrm{x}}(0)=\frac{\mathrm{u}_{\mathrm{j}+1}-\mathrm{u}_{\mathrm{j}-1}}{2 \Delta \mathrm{x}}-\frac{1}{6} \mathrm{u}_{\mathrm{xxx}}(0) \Delta \mathrm{x}^{2}$

First derivative

$$
\mathrm{u}_{\mathrm{x}}(0)=\frac{\mathrm{u}_{\mathrm{j}+1}-\mathrm{u}_{\mathrm{j}-1}}{2 \Delta \mathrm{x}}-\frac{1}{6} \mathrm{u}_{\mathrm{xxx}}(0) \Delta \mathrm{x}^{2}
$$

Higher order terms. These carry the truncation error. The truncation error shows us that our FDA is second order accurate.
Finite difference approximation of first derivative
We can do a similar one for the second derivative to get:

Finite difference approximation of second derivative Notice: the above discretizations are second order accurate.

2.4) Finite Difference Approximations and their Consistency

Note, therefore, that there is a difference between the differential form of an equation and its finite difference approximation. The truncation error quantifies this difference!

Differential Form : $\mathrm{u}_{\mathrm{t}}=\sigma \mathrm{u}_{\mathrm{xx}}$

Finite Difference Approximation:

$$
\frac{\mathrm{u}_{\mathrm{i}}^{\mathrm{n}+1}-\mathrm{u}_{\mathrm{i}}^{\mathrm{n}}}{\Delta \mathrm{t}}=\sigma\left(\frac{\mathrm{u}_{\mathrm{i}+1}^{\mathrm{n}}-2 \mathrm{u}_{\mathrm{i}}^{\mathrm{n}}+\mathrm{u}_{\mathrm{i}-1}^{\mathrm{n}}}{\Delta \mathrm{x}^{2}}\right)
$$

Question: What is the spatial and temporal order of accuracy of the above finite difference approximation? What is the truncation error for the above finite difference approximation of the parabolic equation?

Notice from the above example that truncation errors can be of different orders in space and time!

The stencil for the explicit heat conduction equation is shown:Identify the numerical domain of dependence and range of influence for the FDA.

Compare contrast with the same for the differential form of the PDE.

$$
\mathrm{u}_{\mathrm{t}}=\sigma \mathrm{u}_{\mathrm{xx}} \quad \mathrm{v} / \mathrm{s} \quad \frac{\mathrm{u}_{\mathrm{i}}^{\mathrm{n+1}}-\mathrm{u}_{\mathrm{i}}^{\mathrm{n}}}{\Delta \mathrm{t}}=\sigma\left(\frac{\mathrm{u}_{i+1}^{\mathrm{n}}-2 \mathrm{u}_{\mathrm{i}}^{\mathrm{n}}+\mathrm{u}_{\mathrm{i}-1}^{\mathrm{n}}}{\Delta \mathrm{x}^{2}}\right)
$$

Question: Draw stencils for each of the the following Finite
Difference Approximations:

$$
\begin{array}{ll}
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=\sigma\left(\frac{u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}}{\Delta x^{2}}\right) & \leftarrow \text { Fully Explicit } \\
\frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t}=\sigma\left(\frac{u_{i+1}^{n+1}-2 u_{i}^{n+1}+u_{i-1}^{n+1}}{\Delta x^{2}}\right) & \leftarrow \text { Fully Implicit }
\end{array}
$$

$$
\frac{\mathrm{u}_{\mathrm{i}}^{\mathrm{n}+1}-\mathrm{u}_{\mathrm{i}}^{\mathrm{n}}}{\Delta \mathrm{t}}=\alpha \sigma\left(\frac{\mathrm{u}_{i+1}^{\mathrm{n}}-2 \mathrm{u}_{\mathrm{i}}^{\mathrm{n}}+\mathrm{u}_{\mathrm{i}-1}^{\mathrm{n}}}{\Delta \mathrm{x}^{2}}\right)+(1-\alpha) \sigma\left(\frac{\mathrm{u}_{\mathrm{i}+1}^{\mathrm{n}+1}-2 \mathrm{u}_{\mathrm{i}}^{\mathrm{n}+1}+\mathrm{u}_{\mathrm{i}-1}^{\mathrm{n}+1}}{\Delta \mathrm{x}^{2}}\right)
$$

$$
(0 \leq \alpha \leq 1)
$$

of the Differential Form : $\mathrm{u}_{\mathrm{t}}=\sigma \mathrm{u}_{\mathrm{xx}}$
Question: What are the stencils, domains of dependence and ranges of influence of the above schemes? (Hint: Look at the stencils and ask which points will influence the solution at which other points?)

Consistency of a numerical scheme.

In the previous sections we have seen how we can use the concept of "discretization error" to produce "finite difference approximation" (FDA) to a "partial differential equation" (PDE) that is "good enough".

But what really determines "good enough"? Certainly, we want the computed solution from a finite difference approximation to approximate the solution of the PDE up to some specified (and specifiable) discretization error.

Formally speaking, we say that the finite difference approximation provides a consistent approximation to the PDE if the finite difference approximation tends to the PDE in the limit where $\Delta \mathrm{t} \rightarrow 0$ and $\Delta \mathrm{x} \rightarrow 0$.
Question: Is the finite difference approximation

$$
\frac{\mathrm{u}_{\mathrm{i}}^{\mathrm{n+1}}-2 \mathrm{u}_{\mathrm{i}}^{\mathrm{n}}}{\Delta \mathrm{t}}=\sigma\left(\frac{\mathrm{u}_{\mathrm{i}+1}^{\mathrm{n}}-2 \mathrm{u}_{\mathrm{i}}^{\mathrm{n}}+\mathrm{u}_{\mathrm{i}-1}^{\mathrm{n}}}{\Delta \mathrm{x}^{2}}\right)
$$

a consistent approximation of the PDE : $\mathrm{u}_{\mathrm{t}}=\sigma \mathrm{u}_{\mathrm{xx}}$?

We realize, therefore, that an accurate enough finite difference approximation will produce a consistent approximation of the PDE. But will the physics always be correctly represented if all we have is a consistent approximation? In other words, is a consistent finite difference approximation sufficient for correctly representing the physics? Answer : NO! It is possible to have consistent approximations to a PDE that will not represent the physics correctly!

We need one more thing at a very minimum. That thing is stability!
In other words, we can usually have multiple, consistent approximations to a PDE. Stability provides a further criterion by which we can winnow out several useless finite difference approximations. We only wish to retain the few consistent finite difference approximations to a PDE that pass the further test of stability.

2.5) The Stability of Finite Difference Approximations

Bridges, boats, cars and planes can fail if the natural oscillations that they are liable to experience from the wind, road or water cause them to jostle too much. Avoiding such situations plays a great role in the design of bridges, boats, cars and planes .

Even the slightest spurious effect can excite such oscillations - the butterfly effect!

The fact that computers have finite precision means that discretization errors can, in and of themselves, excite such spurious oscillations in a numerical method. Other sources of unwanted oscillations can be imperfectly specified initial conditions, non-linearly large fluctuations in the solution itself, source terms, discretization error and imperfect specification of boundary conditions, to name but a few. In other words, "Whatever can go wrong will go wrong". \leftarrow Murphy’s law.

Our goal is to protect our solution process against all such errors.

A car should have a low enough center of gravity so that it does not turn turtle, a stable aircraft should want to fly right side up! A numerical code should, likewise, by virtue of its very design, want to produce the right physical solution.

It turns out that one can use the same "linear stability analysis" that one uses for cars and aircraft to also analyze the stability of a numerical scheme. Such a stability is known as Von Neumann Stability Analysis.

Von Neumann Stability is, in general, only necessary for stability. But by

 itself, it is not sufficient for stability in all cases.A convergent scheme is one whose numerical solution tends to the solution of the PDE as $\Delta \mathrm{t} \rightarrow 0$ and $\Delta \mathrm{x} \rightarrow 0$.

Lax-Richtmeyer Theorem (see pgs 45-48 and 179 of Richtmeyer and Morton for proof) : Given a properly posed linear initial-boundary value problem and a finite difference approximation to it that satisfies the consistency condition, stability is a necessary and sufficient condition for convergence. (Mnemonic: consistency + stability \rightarrow convergence)

Note the word "linear" in the theorem above. Questions:Are the Euler equations linear? Identify some physically useful linear PDE's?

2.6) von Neumann Stability Analysis for Linear Parabolic Equations

The Lax-Richtmeyer theorem strictly applies to any linear PDE. But any PDE can be linearized about some local state; so it is also necessary (though not sufficient) in guaranteeing physical solutions for non-linear PDEs.

2.6.1) Stability Analysis for Time-explicit Linear Parabolic Equations

For now we focus on the linear parabolic PDE :
$\mathrm{u}_{t}=\sigma \mathrm{u}_{x x}$ with constant σ discretized on an infinite mesh (i.e. to avoid boundary conditions) with zone size Δx and timestep Δt. Mesh points: $x_{j}=j \Delta x . t^{n+1}=t^{n}+\Delta t$

Time-explicit scheme: $\frac{\mathrm{u}_{j}^{\mathrm{n}+1}-\mathrm{u}_{j}^{\mathrm{n}}}{\Delta \mathrm{t}}=\sigma\left(\frac{\mathrm{u}_{\mathrm{j}+1}^{\mathrm{n}}-2 \mathrm{u}_{j}^{\mathrm{n}}+\mathrm{u}_{j-1}^{\mathrm{n}}}{\Delta \mathrm{x}^{2}}\right) \Rightarrow$
$\mathrm{u}_{j}^{n+1}=\mathrm{u}_{j}^{n}+\mu\left(\mathrm{u}_{j+1}^{n}-2 \mathrm{u}_{j}^{n}+\mathrm{u}_{j-1}^{n}\right) \quad$ where $\mu \equiv \frac{\sigma \Delta t}{\Delta x^{2}}$
$\mathrm{u}_{j}^{n}=\mathrm{U}_{\mathrm{k}}^{n} \mathrm{e}^{i k x_{j}} ; \mathrm{u}_{j}^{n+1}=\mathrm{U}_{\mathrm{k}}^{n+1} \mathrm{e}^{i k x_{j}} \Rightarrow \mathrm{u}_{j+1}^{n}=\mathrm{U}_{\mathrm{k}}^{n} \mathrm{e}^{i k x_{j}+i \mathrm{k} \Delta x}$ and $\mathrm{u}_{j-1}^{n}=\mathrm{U}_{\mathrm{k}}^{n} \mathrm{e}^{i k x_{j}-i \mathrm{k} \Delta x}$

It is worth demonstrating how this goes once:

$$
\begin{aligned}
\mathrm{U}_{\mathrm{k}}^{n+1} & =\mathrm{U}_{\mathrm{k}}^{n}\left[1+\mu\left(\mathrm{e}^{i \mathrm{k} \Delta x}-2+\mathrm{e}^{-i \mathrm{k} \Delta x}\right)\right]=\mathrm{U}_{\mathrm{k}}^{n}[1+\mu 2(\cos (\mathrm{k} \Delta x)-1)] \\
& =\mathrm{U}_{\mathrm{k}}^{n}\left[1-4 \mu \sin ^{2}(\mathrm{k} \Delta x / 2)\right] \leftarrow \text { Recall amplification factors? }
\end{aligned}
$$

For the FDA we have : $\lambda_{\mathrm{FDA}}(\mathrm{k}) \equiv \frac{\mathrm{U}_{\mathrm{k}}^{n+1}}{\mathrm{U}_{\mathrm{k}}^{n}}=1-4 \mu \sin ^{2}(\mathrm{k} \Delta x / 2)$
For the PDE we have : $\lambda_{\text {PDE }}(\mathrm{k}) \equiv \frac{\mathrm{U}_{\mathrm{k}}^{n+1}}{\mathrm{U}_{\mathrm{k}}^{n}}=\mathrm{e}^{-\sigma \mathrm{k}^{2} \Delta t}=\mathrm{e}^{-(\mathrm{k} \Delta x)^{2}\left[\frac{\sigma \Delta t}{\Delta x^{2}}\right]}=\mathrm{e}^{-\mu(\mathrm{k} \Delta x)^{2}}$

Notice that $\left|\lambda_{\text {PDE }}(\mathrm{k})\right| \leq 1$ for all $\Delta t \Rightarrow$ PDE is unconditionally stable However, $\left|\lambda_{\text {FDA }}(\mathrm{k})\right| \leq 1$ for $\mu \leq 1 / 2$ or $\Delta t \leq \Delta x^{2} /(2 \sigma)$
$\Rightarrow F D A$ is conditionally stable
We say that the FDA approximates the PDE well when $\lambda_{\text {гпр }}(\mathrm{k}) \rightarrow \lambda_{\text {пог }}(\mathrm{k})!$

$$
\frac{\mathrm{u}_{j}^{\mathrm{n}+1}-\mathrm{u}_{j}^{\mathrm{n}}}{\Delta \mathrm{t}}=\sigma\left(\frac{\mathrm{u}_{\mathrm{j}+1}^{\mathrm{n}}-2 \mathrm{u}_{j}^{\mathrm{n}}+\mathrm{u}_{j-1}^{\mathrm{n}}}{\Delta \mathrm{x}^{2}}\right) \Rightarrow \mathrm{u}_{j}^{n+1}=\mathrm{u}_{j}^{n}+\mu\left(\mathrm{u}_{j+1}^{n}-2 \mathrm{u}_{j}^{n}+\mathrm{u}_{j-1}^{n}\right) \text { with } \mu \equiv \frac{\sigma \Delta t}{\Delta x^{2}}
$$

$\mathrm{u}_{j}^{n}=\mathrm{U}_{\mathrm{k}}^{n} \mathrm{e}^{i \mathrm{k} x_{j}} \quad ; \quad \mathrm{u}_{j}^{n+1}=\mathrm{U}_{\mathrm{k}}^{n+1} \mathrm{e}^{i \mathrm{k} x_{j}} \Rightarrow$
$\mathrm{u}_{j+1}^{n}=\mathrm{U}_{\mathrm{k}}^{n} \mathrm{e}^{i \mathrm{k} x_{j}+i \mathrm{k} \Delta x}=\mathrm{U}_{\mathrm{k}}^{n} \mathrm{e}^{i \mathrm{k} x_{j}} \mathrm{e}^{i \mathrm{k} \Delta x}$ and $\mathrm{u}_{j-1}^{n}=\mathrm{U}_{\mathrm{k}}^{n} \mathrm{e}^{i \mathrm{k} x_{j}-i \mathrm{k} \Delta x}=\mathrm{U}_{\mathrm{k}}^{n} \mathrm{e}^{i \mathrm{k} x_{j}} \mathrm{e}^{-i \mathrm{k} \Delta x}$
Question: Why do we want $-\pi \leq k \Delta x \leq \pi$?
$\mathrm{u}_{j}^{n+1}=\mathrm{u}_{j}^{n}+\mu\left(\mathrm{u}_{j+1}^{n}-2 \mathrm{u}_{j}^{n}+\mathrm{u}_{j-1}^{n}\right) \Rightarrow$
$\lambda_{\mathrm{FDA}}(\mathrm{k}) \equiv \frac{\mathrm{U}_{\mathrm{k}}^{n+1}}{\mathrm{U}_{\mathrm{k}}^{n}}=1-4 \mu \sin ^{2}(\mathrm{k} \Delta x / 2)$
$\lambda_{\mathrm{PDE}}(\mathrm{k})=\mathrm{e}^{-\sigma \mathrm{k}^{2} \Delta t}=\mathrm{e}^{-(\mathrm{k} \Delta x)^{2}\left[\frac{\sigma \Delta t}{\Delta x^{2}}\right]}=\mathrm{e}^{-\mu(\mathrm{k} \Delta x)^{2}}$

The amplification factors are shown for $\mu=0.25,0.5,1.5$.

Dashed curve : FDA
 Solid curve : PDE

Question: What do you see?

Evolution of Square Pulse:
$\mu=0.4$

Dashes : $\mathrm{t}=0.01$
Dots : $\mathrm{t}=0.05$

$\mu=0.5008$

2.6.2) Stability Analysis for Time-Implicit and Semi-Implicit Linear

 Parabolic PDEsTime-Implicit Scheme:

$$
\frac{\mathrm{u}_{j}^{\mathrm{n}+1}-\mathrm{u}_{j}^{\mathrm{n}}}{\Delta \mathrm{t}}=\sigma\left(\frac{\mathrm{u}_{\mathrm{j}+1}^{\mathrm{n}+1}-2 \mathrm{u}_{j}^{\mathrm{n}+1}+\mathrm{u}_{j-1}^{\mathrm{n}+1}}{\Delta \mathrm{x}^{2}}\right) \Rightarrow
$$

$\mathrm{u}_{j}^{n+1}-\mu\left(\mathrm{u}_{j+1}^{n+1}-2 \mathrm{u}_{j}^{n+1}+\mathrm{u}_{j-1}^{n+1}\right)=\mathrm{u}_{j}^{n}$
We get

$$
\lambda_{\mathrm{FDA}}(\mathrm{k})=\frac{\mathrm{U}_{\mathrm{k}}^{n+1}}{\mathrm{U}_{\mathrm{k}}^{n}}=\frac{1}{\left[1+4 \mu \sin ^{2}(\mathrm{k} \Delta x / 2)\right]} \quad \underset{\text { telling you about stability? }}{\leftarrow}
$$

The amplification factors are shown for $\mu=0.25,0.5,10.0$. Dashed curve : FDA Solid curve : PDE Question: What do you see?

Evolution of Square Pulse:
 Dashes : $\mathrm{t}=0.01$
 Dots : $\mathrm{t}=0.05$

2.7) von Neumann Stability Analysis of Linear Hyperbolic Equations

Even the simplest 1 d PDE : $\mathrm{u}_{t}+\mathrm{a}_{x}=0$ has much to teach us.
On infinite domains, the initial conditions $\mathrm{u}_{0}(x)$ evolves as $\mathrm{u}(x, t)=$ $\mathrm{u}_{0}(x-a t)$, as shown in the figure below.

Shape is preserved; characteristics are straight lines in space-time.

Question: On finite domains, we need more. What do we need?

How do we specify the boundaries of the domain?

Fig. 2.13 showing the time-evolution of the advection equation $\mathrm{u}_{t}+\mathrm{a} \mathrm{u}_{x}=0$. The red lines show the characteristics in the x, t plane while the blue curves represent the solution " u " and its evolution in time.

First analyze amplification factor for PDE, $\mathrm{u}_{t}+\mathrm{a}_{x}=0$,

using Fourier modes $\mathrm{u}_{j}^{n}=\mathrm{U}_{\mathrm{k}}^{n} \mathrm{e}^{i \mathrm{k} x_{j}} \Rightarrow \mathrm{u}_{j}^{n+1}=\mathrm{U}_{\mathrm{k}}^{n+1} \mathrm{e}^{i \mathrm{k} x_{j}}=\mathrm{U}_{\mathrm{k}}^{n} \mathrm{e}^{i \mathrm{k}\left(x_{j}-\mathrm{a} \Delta t\right)} \quad:-$
$\lambda_{\text {PDE }}(\mathrm{k})=\frac{\mathrm{U}_{\mathrm{k}}^{n+1}}{\mathrm{U}_{\mathrm{k}}^{n}}=\mathrm{e}^{-i \mathrm{ak} \Delta t}=\mathrm{e}^{-i(\mathrm{k} \Delta x)\left[\frac{\square \Delta t}{\Delta x}\right]}=\mathrm{e}^{-i \mu(\mathrm{k} \Delta x)}$
where we define $\mu \equiv \frac{\mathrm{a} \Delta t}{\Delta x} \leftarrow$ Courant number!
$\left|\lambda_{\text {PDE }}(\mathrm{k})\right|=1 \forall \mathrm{k}$
\Rightarrow PDE is not dissipative -- none of the waves are damped!
$\theta_{\text {PDE }}(\mathrm{k}) \equiv \tan ^{-1}\left\{\frac{\operatorname{Im}\left[\lambda_{\text {PDE }}(\mathrm{k})\right]}{\operatorname{Re}\left[\lambda_{\text {PDE }}(\mathrm{k})\right]}\right\}=-\mathrm{k} \mathrm{a} \Delta t$
\Rightarrow PDE is not dispersive -- all waves with all wavelengths propagate with the same speed!

2.7.1) Forward Euler (Never Used)

The forward Euler scheme is an example of an unconditionally unstable scheme that should never be used. It is only meant to illustrate that it is easy to do something that seems "reasonable" and arrive at a bad scheme.
$\frac{\mathrm{u}_{j}^{n+1}-\mathrm{u}_{j}^{n}}{\Delta t}=-\mathrm{a}\left(\frac{\mathrm{u}_{j+1}^{n}-\mathrm{u}_{j-1}^{n}}{2 \Delta x}\right) \Leftrightarrow \mathrm{u}_{j}^{n+1}=\mathrm{u}_{j}^{n}-\frac{\mu}{2}\left(\mathrm{u}_{j+1}^{n}-\mathrm{u}_{j-1}^{n}\right) \quad \mu \equiv \frac{\mathrm{a} \Delta t}{\Delta x}$
$\lambda_{\mathrm{FDA}}(\mathrm{k})=\frac{\mathrm{U}_{k}^{n+1}}{\mathrm{U}_{k}^{n}}=1-i \mu \sin (\mathrm{k} \Delta x) ;\left|\lambda_{\mathrm{FDA}}(\mathrm{k})\right|>1 \quad \forall \mathrm{k} \Rightarrow$ unconditionally unstable!

Set $\mathrm{u}_{j}^{n}=\mathrm{U}_{\mathrm{k}}^{n} \mathrm{e}^{i \mathrm{k} x_{j}}$ and $\mathrm{u}_{j}^{n+1}=\mathrm{U}_{\mathrm{k}}^{n+1} \mathrm{e}^{i \mathrm{k} x_{j}}$ to derive amplification factor.

2.7.3) Lax-Wendroff Scheme

The Lax-Friedrichs scheme was first order and very dissipative. So we try to build a second order scheme. Resort to Taylor series expansion.

The Lax-Wendroff procedure shown here is, in fact, a common building block for numerical schemes, even though the Lax-Wendroff scheme designed here is seldom used.
$\mathrm{u}\left(x_{j}, t^{n}+\Delta t\right)=\mathrm{u}\left(x_{j}, t^{n}\right)+\Delta t \mathrm{u}_{t}\left(x_{j}, t^{n}\right)+\frac{1}{2} \Delta t^{2} \mathrm{u}_{t t}\left(x_{j}, t^{n}\right)+\ldots$

Now use the governing equation: $\mathrm{u}_{t}+\mathrm{a} \mathrm{u}_{x}=0$ to get : $\mathrm{u}_{t}=-\mathrm{a} \mathrm{u}_{x}$ and $\mathrm{u}_{t t}=-\mathrm{a} \mathrm{u}_{x t}=-\mathrm{a} \mathrm{u}_{t x}=\mathrm{a}^{2} \mathrm{u}_{x x}$. Substituting one gets: $\mathrm{u}\left(x_{j}, t^{n}+\Delta t\right)=\mathrm{u}\left(x_{j}, t^{n}\right)-\mathrm{a} \Delta t \mathrm{u}_{x}\left(x_{j}, t^{n}\right)+\frac{1}{2} \mathrm{a}^{2} \Delta t^{2} \mathrm{u}_{x x}\left(x_{j}, t^{n}\right)$ Which yields:

$$
\begin{aligned}
& \frac{\mathrm{u}_{j}^{n+1}-\mathrm{u}_{j}^{n}}{\Delta t}=-\mathrm{a}\left(\frac{\mathrm{u}_{j+1}^{n}-\mathrm{u}_{j-1}^{n}}{2 \Delta x}\right)+\frac{1}{2} \Delta t \mathrm{a}^{2}\left(\frac{\mathrm{u}_{j+1}^{n}-2 \mathrm{u}_{j}^{n}+\mathrm{u}_{j-1}^{n}}{\Delta x^{2}}\right) \Leftrightarrow \\
& \mathrm{u}_{j}^{n+1}=\mathrm{u}_{j}^{n}-\frac{\mu}{2}\left(\mathrm{u}_{j+1}^{n}-\mathrm{u}_{j-1}^{n}\right)+\frac{\mu^{2}}{2}\left(\mathrm{u}_{j+1}^{n}-2 \mathrm{u}_{j}^{n}+\mathrm{u}_{j-1}^{n}\right)
\end{aligned}
$$

$\mathrm{u}\left(x_{j}, t^{n}+\Delta t\right)=\mathrm{u}\left(x_{j}, t^{n}\right)+\Delta t \mathrm{u}_{t}\left(x_{j}, t^{n}\right)+\frac{1}{2} \Delta t^{2} \mathrm{u}_{t t}\left(x_{j}, t^{n}\right)+\ldots$
Use Lax-Wendroff procedure (switch time derivatives with spatial derivatives) using $\mathrm{u}_{t}+\mathrm{a} \mathrm{u}_{x}=0$

$$
\begin{aligned}
& \mathrm{u}\left(x_{j}, t^{n}+\Delta t\right)=\mathrm{u}\left(x_{j}, t^{n}\right)-\mathrm{a} \Delta t \mathrm{u}_{x}\left(x_{j}, t^{n}\right)+\frac{1}{2} \mathrm{a}^{2} \Delta t^{2} \mathrm{u}_{x x}\left(x_{j}, t^{n}\right) \\
& \frac{\mathrm{u}_{j}^{n+1}-\mathrm{u}_{j}^{n}}{\Delta t}=-\mathrm{a}\left(\frac{\mathrm{u}_{j+1}^{n}-\mathrm{u}_{j-1}^{n}}{2 \Delta x}\right)+\frac{1}{2} \Delta t \mathrm{a}^{2}\left(\frac{\mathrm{u}_{j+1}^{n}-2 \mathrm{u}_{j}^{n}+\mathrm{u}_{j-1}^{n}}{\Delta x^{2}}\right) \leftarrow \text { Forward Euler }+ \text { What? }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{u}_{j}^{n}=\mathrm{U}_{\mathrm{k}}^{n} \mathrm{e}^{i k x_{j}} ; \quad \mathrm{u}_{j}^{n+1}=\mathrm{U}_{\mathrm{k}}^{n+1} \mathrm{e}^{i k x_{j}} \Rightarrow \\
& \mathrm{u}_{j+1}^{n}=\mathrm{U}_{\mathrm{k}}^{n} \mathrm{e}^{i k x_{j}+i k \Delta x}=\mathrm{U}_{\mathrm{k}}^{n} \mathrm{e}^{i k x_{j}} \mathrm{e}^{i k \Delta x} \text { and } \mathrm{u}_{j-1}^{n}=\mathrm{U}_{\mathrm{k}}^{n} \mathrm{e}^{i k x_{j}-i k \Delta x}=U_{k}^{n} \mathrm{e}^{i k x_{j}} \mathrm{e}^{-i k \Delta x} \\
& \mathrm{u}_{j}^{n+1}=\mathrm{u}_{j}^{n}-\frac{\mu}{2}\left(\mathrm{u}_{j+1}^{n}-\mathrm{u}_{j-1}^{n}\right)+\frac{\mu^{2}}{2}\left(\mathrm{u}_{j+1}^{n}-2 \mathrm{u}_{j}^{n}+\mathrm{u}_{j-1}^{n}\right)
\end{aligned}
$$

$$
\lambda_{\mathrm{FDA}}(\mathrm{k})=\frac{\mathrm{U}_{k}^{n+1}}{\mathrm{U}_{k}^{n}}=1-i \mu \sin (\mathrm{k} \Delta x)-2 \mu^{2} \sin ^{2}(\mathrm{k} \Delta x / 2)
$$

$$
\lambda_{\mathrm{FDA}}(\mathrm{k})=\frac{\mathrm{U}_{k}^{n+1}}{\mathrm{U}_{k}^{n}}=1-i \mu \sin (\mathrm{k} \Delta x)-2 \mu^{2} \sin ^{2}(\mathrm{k} \Delta x / 2)
$$

$$
\left|\lambda_{\mathrm{FDA}}(\mathrm{k})\right|=\sqrt{1-4 \mu^{2}\left(1-\mu^{2}\right) \sin ^{4}(\mathrm{k} \Delta x / 2)} \quad \leftarrow \text { Scheme is stable for CFL number }|\mu| \leq 1
$$

$$
\frac{\theta_{\mathrm{FDA}}(\mathrm{k})}{\theta_{\mathrm{PDE}}(\mathrm{k})}=\frac{1}{\mu(\mathrm{k} \Delta x)} \tan ^{-1}\left\{\frac{\mu \sin (\mathrm{k} \Delta x)}{1-2[\mu \sin (\mathrm{k} \Delta x / 2)]^{2}}\right\}
$$

Questions: What can you say about advection of long wavelength modes? What can you say about advection of short wavelength modes?

Fig 2.17a and 2.17b show the solution from the Lax-Wendroff scheme for the scalar advection equation with initial conditions given by a Gaussian profile and a top-hat profile respectively. The times in Fig. 2.17a are $t=0$ (solid line), $t=1$ (dashed line) and $t=2$ (dotted line). The times in Fig. 2.17b are $t=0$ (solid line), $t=0.25$ (dashed line) and $t=0.75$ (dotted line).
The above figures show advection of a Gaussian and a top-hat profile. The Gaussian is almost perfect The top hat profile is very oscillatory, non-positive.
Question: Relate the deficiencies that you see in these simulations to the above dispersion analysis. What will a non-positive method do at shocks?

If the square pulse represented a pulse of fluid density, the LaxWendroff scheme would produce negative densities, a very undesirable situation.

The ability of an advection scheme to evolve a solution so that positive initial conditions remain so for all time is called the positivity property.

To see it, rewrite the scheme and observe the negative coefficients below:

$$
\mathrm{u}_{j}^{n+1}=\left(1-\mu^{2}\right) \mathrm{u}_{j}^{n}-\frac{\mu}{2}(1-\mu) \mathrm{u}_{j+1}^{n}+\frac{\mu}{2}(1+\mu) \mathrm{u}_{j-1}^{n}
$$

A rather pessimistic theorem by Godunov says that all linear positivitypreserving schemes are condemned to be first order accurate!

2.7.4) Two-Stage Runge-Kutta Scheme

We try to build a second order scheme by resorting to second order Runge-Kutta in time and centered fluxes in space.

Nice thing here is that we can split the spatial operator from the temporal operator, making the resulting scheme easy to implement

The Runge-Kutta time stepping shown here is, in fact, a popular building block for numerical schemes, even though the Runge-Kutta scheme designed here is seldom used.

The scheme shares many strengths and weakness with Lax-Wendroff.
$\mathrm{u}_{j}^{n+1 / 2}=\mathrm{u}_{j}^{n}-\frac{\Delta t}{2 \Delta x}\left(\mathrm{f}_{j+1 / 2}^{n}-\mathrm{f}_{j-1 / 2}^{n}\right)$ with $\mathrm{f}_{j+1 / 2}^{n}=\frac{1}{2} \mathrm{a}\left(\mathrm{u}_{j+1}^{n}+\mathrm{u}_{j}^{n}\right) \leftarrow$ Predictor Stage
$\mathrm{u}_{j}^{n+1}=\mathrm{u}_{j}^{n}-\frac{\Delta t}{\Delta x}\left(\mathrm{f}_{j+1 / 2}^{n+1 / 2}-\mathrm{f}_{j-1 / 2}^{n+1 / 2}\right)$ with $\mathrm{f}_{j+1 / 2}^{n+1 / 2}=\frac{1}{2} \mathrm{a}\left(\mathrm{u}_{j+1}^{n+1 / 2}+\mathrm{u}_{j}^{n+1 / 2}\right) \leftarrow$ Corrector Stage

Fig 2.18a and 2.18b show the solution from the two-stage Runge-Kutta scheme for the scalar advection equation with initial conditions given by a Gaussian profile and a top-hat profile respectively. The times in Fig. 2.18a are $t=0$ (solid line), $t=1$ (dashed line) and $t=2$ (dotted line). The times in Fig. 2.18b are $t=0$ (solid line), $t=0.25$ (dashed line) and $t=0.75$ (dotted line).

The ability of an advection scheme to evolve a solution so that positive initial conditions remain so for all time is called the positivity property. The Lax-Wendroff and Runge-Kutta schemes clearly lack such a property.

2.7.5) First Order Upwind Scheme

Realize that information always flows from the upwind direction in the advection equation. We try to build that intuition into our scheme in the simplest way.
For $\mathrm{a}>0$ we have: $\frac{\mathrm{u}_{j}^{n+1}-\mathrm{u}_{j}^{n}}{\Delta t}=-\mathrm{a}\left(\frac{\mathrm{u}_{j}^{n}-\mathrm{u}_{j-1}^{n}}{\Delta x}\right)$
The scheme is also called the donor cell scheme. It is positivity preserving.

Fig 2.19a and 2.19b show the solution from the first order upwind scheme for the scalar advection equation with initial conditions given by a Gaussian profile and a top-hat profile respectively. The times in Fig. 2.19a are $t=0$ (solid line), $t=1$ (dashed line) and $t=2$ (dotted line). The times in Fig. 2.19b are $t=0$ (solid line), $t=0.25$ (dashed line) and $t=0.75$ (dotted line).
Gaussian shows dissipation because of first order accuracy.
However, the top-hat profile is oscillation-free! We wish to retain this desirable trait.

2.7.6) Section Summary for Hyperbolic Systems

Second order schemes did very well for smooth profiles, like the Gaussian.

They are deficient for discontinuous profiles, like the top-hat profile.
First order upwind scheme did the best of all for discontinuous profiles.
Desirable to combine the best traits of both: In smooth regions, retain full second order accuracy; at discontinuities, use elements of the first order solution. Positivity at discontinuities is an important issue.

Within the confines of linear schemes (even for linear PDEs) the Godunov theorem tells us that this is not possible.

The only way out is to resort to non-linear hybridization (even for linear PDEs). We will find a way to pick the second order solution in regions of smooth flow while backing away from it locally at discontinuities.

