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4.1) Introduction

We have seen that monotonicity preserving reconstruction and Riemann 
solvers are essential building blocks for numerically solving a linear 
hyperbolic system.

While the same remains true for a non-linear system of conservation 
laws, the emphasis shifts.

For non-linear systems, the Riemann solver and the reconstruction
problem become more complicated. 

The presence of non-linearity introduces additional complications – the 
presence of shocks and rarefactions. We study them for the simplest 
scalar case:
ut + f(u)x = 0

Need to focus on df(u)/du , the wave speed, and d2f(u)/du2 , convexity.2



With f(u) = u2 / 2 we get Burgers equation. Interesting because it can 
produce prototypes of many of the shocks and rarefactions we will study 
later.

Conceptual simplification if f//(u) does not change sign, i.e. eqn. is 
convex. Then the wavespeed either monotonically increases or decreases 
with “u”. Burgers eqn. is convex. Euler system can also be shown to be 
convex.

For hyperbolic conservation laws we will see that: 
Convexity + strict hyperbolicity several advantages in designing 
numerical solution methods.

If f//(u) does change sign, the eqn. is non-convex. When the PDE is non-
convex, we are not on very firm ground. Examples, multiphase flow, 
non-linear elasticity equations, MHD.
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4.2) A Gentle Introduction to Rarefaction Waves and Shocks
4.2.1) A Mechanistic Model for Rarefaction Waves and Shocks
The idea here is to study a very simple model to develop intuition.

Simple model for rarefaction waves: Imagine skiers going downhill. 
Linear number density n0 skiers per meter wait at the ski ramp, moving 
to the starting point with a speed v0 .

( )
( ) ( ) ( )
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v x v g x

n v n x v x n x n v v g x

θ

θ

= +

= ⇒ = +

Skiers keep changing, shape of 
rarefaction wave stays fixed. 
Analogously, atoms move through a 
rarefaction, but the shape of a 
rarefaction wave remains fixed.

Structure of rarefaction is determined 
entirely by the form of the flux function 4



Simple model for shock waves: Skiers reaching downhill with a high 
speed vb run into a tree. They approach the bottom with number density 
nb . At the pileup they will again be closely packed, number density n0 . 

The point where the pile-up occurs moves to the left with a speed “s”. 
This is the shock front moving with a speed “s” to the left.

( )

( )
0

0

Locate yourself in the frame of the shock. Flux of skiers coming in from left : 
Flux of skiers leaving the plane of the shock to the right :   
The two fluxes must balance:    

b b
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n v s
n s

n v s n s

−

−

− = −
As before, we use a conservation law.

Location of shock is not pinned to 
any one skier. Skiers, like 
atoms in a fluid shock, 
move through the shock.

Form of shock depends on flux 
function. 5



4.2.2) The Formation of Shocks and Rarefaction Waves
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Similarity: Both equations tell us that the solution at any space-time point 
(x,t) is obtained by following the characteristic through this point 
backward in time to the x-axis.

Difference: Characteristics are parallel for advection equation, not so for 
Burgers. Characteristics are solution-dependent for Burgers equation. 
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4.2.3) Shock and Rarefaction Wave Solutions from Burgers Equation
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This figure shows the characteristics in space-
time. Notice compressional (converging 
characteristics) and rarefaction (diverging 
characteristics) waves

The shock forms when the characteristics 
intersect. The position of the shock is shown by 
the thick line at which the characteristics intersect. 

We also observe that the characteristics diverge at the location of the 
rarefaction wave.

Think of the characteristics carrying information. The information is 
destroyed when the characteristics flow into a shock. I.e., if we try to 
retrieve initial conditions, we can’t! different initial conditions can give 
rise to the same shock. Information destruction  entropy generation.

This can also be seen in hydrodynamic shocks where there is a clearly 
available entropy function.

Availability of entropy function is very useful for designing schemes.
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( ) ( )
( ) ( )
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4.2.4) Simple Wave Solutions of the Burgers Equation
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Notice, characteristics from either side are flowing into (converging to) 
the initial discontinuity

Discontinuity is form-preserving, i.e. self-similar. Self-similarity will 
become a very important concept later in this chapter. Known as isolated 
shock wave. 

Their propagation speed depends on the form of the flux function. 

Similarity: Shocks are analogues of the simple waves studied in the 
previous chapter on linear hyperbolic systems. 

Difference: However, the speed of propagation has become solution-
dependent in the non-linear case. This is an important point of difference 
between linear and non-linear hyperbolic conservation laws.

Question: When considering linear hyperbolic systems: If the strength of 
a simple wave changed, did that also cause a change in its speed?
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Notice, characteristics from either side are flowing away from (diverging 
from) the initial discontinuity.

Discontinuity is form-preserving, i.e. self-similar. Known as isolated 
rarefaction fan. Their propagation also depends on the form of the flux 
function. 

Similarity: Isolated rarefaction fans are analogues of the simple waves
studied in the previous chapter on linear hyperbolic systems. 

Difference: However, the structure of the rarefaction has become 
solution-dependent in the non-linear case. This is an important point of 
difference between linear and non-linear hyperbolic conservation laws.

We get the important insight that : Piecewise constant initial conditions 
with a single discontinuity in them can give rise to isolated shocks or 
rarefaction fans (self-similar simple waves) depending on whether the 
characteristics converge into the discontinuity or diverge away from it. 
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4.3) Isolated Shock Waves 
4.3.1) Shocks as Weak Solutions of a Hyperbolic Equation

We have seen in the previous chapter that treating discontinuities, i.e. 
obtaining weak solutions, requires working with the PDE in integral 
form. The self-similarity of the problem ensures that the discontinuity 
follows a linear, self-similar, trajectory in space-time.
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We define the jumps as : [u] = uR− uL and [f(u)] = f(uR)− f(uL)

The above equations are known as the Rankine-Hugoniot jump 
conditions. Even hyperbolic systems of conservation laws have similar 
jumps.

We have now proved that the form of the shock speed depends on the 
flux function.

Now see that the inviscid shock speed for Burgers equation is (uL+uR)/2

( ) ( ) ( )f u  f u  s u uR L R L− = −



17

4.4) Isolated Rarefaction Fans
4.4.1) The Structure of an Isolated Rarefaction Fan

From previous examples, we see that other forms of self-similar 
solutions are possible – the rarefaction fans.

Two important properties about our rarefaction fan solutions : A) They 
are self-similar(depend on x/t). B) inside a rarefaction fan (i.e. excluding 
its end points), the solution is differentiable.
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( ) ( )

( ) ( ) ( )
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Start with Initial Conditions: u  = u   for 0;   u  = u   for 0

Consider a convex flux with  f u f u
Assert a self-similar solution that is centered at the origin: 
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4.4.2)The Role of Entropy in Arbitrating the Evolution of Discontinuities
Question: But what extra bit of physics determines which discontinuity 
becomes a shock and which one becomes a rarefaction?

Surely, we can assert a shock jump condition and a shock speed for any 
initial discontinuity. Or would we be violating some other principle?

( ) ( )
( ) ( )

0 0

/ /

Consider left and right states with : u 0 for < 0.25 ; u 0.5 for 0.25

f 0 0  ,  f 0.5 0.5  characteristics flow away from initial discontinuity. s=0.25.
Which of the plots below is physical?

x x x x= − = > −

= = ⇒
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The physical principle here is entropy generation.

Characteristics carry information about the solution. (Think of 
information entropy.) 

The shock solution to the right is called a rarefaction shock. New 
information is generated at the rarefaction shock, because characteristics 
come out of it. This is unphysical.

Nature provides a physical entropy for the Euler equations, and several 
other systems. 

The solution to the left satisfies an entropy condition. The solution to the 
right does not. We call the one to the left an entropy-satisfying physical 
solution. We want numerical schemes  that find the physical solution.

For equations like Burgers or Buckley-Leverett, mathematicians have to 
formulate entropy conditions, also known as admissibility conditions.
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( ) ( )/ /

Lax showed that in order for a discontinuity to be physical for a scalar
conservation law with a convex flux, we have the entropy condition:

f u f u

This is  .'     

L R

Lax s entropy condition for convex f s

s

luxe

> >

 !
Lax's entropy condition closely parodies the flow of characteristics into
a hydrodynamical shock as we will see in the next chapter.

Qu

Excludes entropy violating shocks

estion: Can you apply it to the previous two plots to pick out the one
that is physical? I.e. show that rarefaction shocks are unphysical.
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4.5) The Entropy Fix and Approximate Riemann Solvers

This section is all about obtaining a numerical flux and doing it in the 
simplest/fastest way possible without relinquishing physical solutions.

4.5.1) The Entropy Fix

Consider the Godunov scheme that is schematically shown below. To find 
the numerical flux at the zone  boundaries, we first need to obtain the 
resolved state that overlies the zone boundary. Question: How do we 
obtain the resolved state at zone boundaries i−3/2, i−1/2, i+1/2 and i+3/2?

At zone boundary i+1/2 we have to do something special. We have to 
solve for the interior structure of the rarefaction fan. While this is 
inexpensive for Burgers equation, 
this can in general be quite 
expensive. We wish to find 
inexpensive alternatives.
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When the boundary is not straddled by a rarefaction fan, the resolved 
state, and numerical flux, are easy to find.

We’d like to cut corners with the one case that is difficult – the case where 
the rarefaction straddles the zone boundary. But can we cut corners?

Our first attempt: Replace the rarefaction fan by a rarefaction shock.

Big Question: Does the numerical scheme still produce physical results?

RS with Rarefaction shocks (unphysical) RS with rarefaction fans(physical)
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Thus our first attempt fails. It is not possible to replace a rarefaction 
wave with a rarefaction shock!

The Riemann solver must build in some knowledge that the rarefaction 
fan opens up. 

The fix that is introduced into a Riemann solver to enable it to recognize 
the presence of a rarefaction fan that straddles a zone boundary is called 
the entropy fix.

The solution of the exact Riemann problem becomes increasingly 
difficult as the system becomes larger and/or more complicated.

In all such situations we wish to build approximate Riemann solvers.

The approximate Riemann solvers must also incorporate some notion of 
an entropy fix.
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4.5.2) Approximate Riemann Solvers
Realize that the Riemann problem is a self-similar solution. Thus we can 
replace the actual wave structure by a wave model. This is a proxy for 
the actual, self-similar wave structure in a Riemann problem.

We still wish to avoid a complete and exact solution of the internal 
structure of a rarefaction fan. 
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( ) ( ) ( ) ( )
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The HLL Riemann solver, detailed above, extends naturally to systems. 
It is a standard ingredient of the computationalist’s toolkit.

It is always good to have it as one of the options for a Riemann solver in 
any code for solving hyperbolic conservation laws.

We have still to specify the extremal speeds that need to be used:

By analogy with Euler flow, when SL and SR have same sign, we call it 
supersonic. When the signs are opposite, it is a subsonic situation.

Question: How would we prove that the HLL flux is consistent?

Question: Can you show that the above choice always gives us properly 
upwinded fluxes in the supersonic situations?
How does the HLL RS generates dissipation at subsonic rarefaction fans?

( )( ) ( )( )/ /S  = min f u , ,  0         S  = max f u , ,  0L L R Rs s



For the subsonic case, we can write the HLL flux as:

Question: What is the real insight we gain from writing it this way?

This form of the flux is known as a flux vector splitting.  Question: Why 
is this name appropriate.

Flux vector splittings can also be obtained for systems of conservation 
laws.

Another useful form of numerical flux is obtained from the Rusanov or 
local Lax-Friedrichs (LLF) flux:

Question: Compare and contrast the HLL and LLF numerical fluxes.
31
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4.7) Numerical Methods for Scalar Conservation Laws

Lax-Wendroff theorem : The problem should be discretized on a 
computational mesh using a consistent, stable and conservative method 
if weak solutions (i.e. shocks and rarefactions) are to be convergent as 
the mesh is refined. 

Runge-Kutta methods go over exactly as before:

Step 1: We have to obtain the undivided differences of the conserved 
variables.

Step 2: Obtain the left and right states at the zone boundary.

Step 3: Treat the Riemann solver as a machine that accepts two states 
and spits out a flux. Feed the above left and right states into the 
Riemann solver and obtain a properly upwinded flux.
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Predictor-Corrector methods also go over much as before:

Step 1: We have to obtain the undivided differences of the conserved 
variables.

Step 2: Obtain the left and right predicted states at the zone boundary.

Step 3: Treat the Riemann solver as a machine that accepts two states 
and spits out a flux. Feed the above left and right states into the 
Riemann solver and obtain a properly upwinded flux.

Step 4: Make a single step corrector update.
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∆
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A Brief Introduction to the Riemann Problem for Systems
(Hydrodynamics as an example)
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A mechanical instantiation of the problem considered by Riemann 
consists of a shock tube. Such shock tubes are routinely used to study 
flows with shocks and the physics of shock waves. A shock tube consists 
of a long slender tube with a diaphragm in the middle. Initially, the 
volume to the left of the diaphragm is filled with gas having density and 
pressure ρ1L and P1L respectively while the right of the gas is filled with 
gas having density and pressure ρ1R and P1R respectively. At some point, 
the diaphragm is suddenly removed and we want to know the subsequent 
flow features that develop in the tube. A schematic fig. is provided below

We readily see that, but for permitting arbitrary velocities vx1L and vx1R to 
the left and right, the problem that interested Riemann is very similar to 
the problem that interests us. We call the problem of determining the 
resolved state arising from such discontinuous initial conditions the 
Riemann Problem in honor of Riemann.

ρ1L , P1L ρ1R , P1R

Diaphragm
Shock tube
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Riemann’s ingenious realization was that even though the problem 
involved strong jumps in density, pressure and possibly velocity, the 
resolution of the discontinuity would bear some imprint of the linearized 
problem with some important differences!

From Chp. 1 we already know that the linearized problem with very 
small fluctuations (i.e. say a very small jump in flow variables across the 
diaphragm) that are localized at a point along the x-axis would resolve 
itself into:

i) a right-going sound wave, 
ii) a left-going sound wave
iii) an entropy wave between them. 
The entropy wave may well have an additional shear across it. The shear 
is brought on by the fact that vy1L may differ from vy1R and similarly for 
vz1L and vz1R .

Question: Can you recall the properties of scalar conservation laws with 
convex fluxes?
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Riemann realized that the fully non-linear problem (i.e. with arbitrary 
jumps in flow variables across the diaphragm) would resolve itself into:

i) a right-going shock wave or rarefaction fan, 
ii) a left-going shock wave or rarefaction fan
iii) an entropy pulse which may well have an additional shear in the 
transverse velocities.

The connection between the linearized problem and the fully non-linear 
problem can be made very concrete by realizing that : 

i) a finite amplitude right-going sound wave can self-steepen into a 
right-going shock or open out to become a right-going rarefaction wave, 

ii) finite amplitude left-going sound wave can self-steepen into a left-
going shock or open out into a left-going rarefaction wave,

iii) an entropy wave, being linearly degenerate, can have any entropy 
jump across it. When the entropy jump across an entropy wave becomes 
large, the wave becomes an entropy pulse.
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Uncompressed low-
density, low-pressure gas

Right-going shockCompressed 
post-shock 
gas

Contact discontinuity

Compressed high-
density, high-pressure 
gas

Rarefaction fan
rarefied post-

rarefaction 
gas

x

t

A schematic representation in the x-t plane of a Riemann problem with 
a right-going shock, a left-going rarefaction fan and a contact 
discontinuity between the two is shown below. (An entropy pulse is also 
often referred to as a contact discontinuity.)
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(vx1R, P1R)

(vx1L, P1L)

(vx*, P*)

S→

R→

S←

R←

Fig. a Right-going shock, left-going rarefaction
vx*

P*

Fig. 5.15a) left to right: density, pressure and x-velocity for RP with right-going shock and left-
going rarefaction

ρ P vx
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Fig. b Right-going rarefaction, left-going shock

(vx1R, P1R)

(vx1L, P1L)

(vx*, P*)

S→

R→

S←

R←

vx*

P*

Fig. 5.15b) left to right: density, pressure and x-velocity for RP with left-going shock and right-
going rarefaction

ρ P vx
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(vx1R, P1R) (vx1L, P1L)

(vx*, P*)

S→

R→

S←

R←

Fig. c Right-going shock, left-going shock
vx*

P*

Fig. 5.16a) left to right: density, pressure and x-velocity for RP with right- and left-going shocks

ρ P vx
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(vx1R, P1R)

(vx1L, P1L)

(vx*, P*)

S→

R→

S←

R←

Fig. d Right-going rarefaction, left-going rarefaction
vx*

P*

Fig. 5.16b) left to right: density, pressure and x-velocity for RP with right- and left-going 
rarefaction fans

ρ
P vx
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