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Chapter 1: Overview of Partial Differential Equations of Relevance to 

Science and Engineering 
 

1.1) Introduction 

 

 Scientists, engineers and applied mathematicians have always seen the value of 

obtaining precise solutions to the problems that they work on. Because of the 

deterministic nature of physical laws, the solution of many of these problems is governed 

by partial differential equations. While there is still great value attached to an exact, 

analytical solution to a problem in engineering or science, it is well-recognized that only 

a limited number of problems are amenable to analytical solution. The easy availability of 

high performance computers has made it attractive to obtain numerical solutions to the 

plethora of problems for which analytic solutions are too difficult to arrive at. Matching 

this explosion in computer power, the last few decades have also seen the emergence of 

applied and computational mathematics as disciplines unto themselves. This has resulted 

in the advent of stable, reliable numerical methods for solving the problems that scientists 

and engineers usually have to confront. These methods enable us to solve problems with 

increasing complexity in the physics they represent or in solving problems with complex 

geometric configurations. In this book we focus on the most frequently occurring partial 

differential equations (PDEs) that engineers or scientists might have to solve numerically 

in the course of their work. The emphasis throughout this book will not be on 

mathematical rigor but rather on intuitive understanding that is later supported by several 

detailed examples that help one develop a practical knowledge of the solution techniques. 

In this chapter we introduce some of the partial differential equations, understand how 

they arise and show that they fall into certain familiar categories. By the end of this book, 

the reader will have mastered several powerful solution techniques for numerically 

solving the PDEs of interest. Since part of the emphasis in this book is on the broad 

algorithmic ideas that apply to general classes of PDEs, the knowledge acquired here will 

stand the reader in good stead when tackling newer classes of PDEs that may not even be 

contained in this book.  
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 Computational scientists have always placed equal emphasis on theory and 

technique. As a result, the text comes with an associated website. The website contains 

several codes that relate to the computational exercises that are contained at the end of 

each chapter. By the end of the book, the reader who has done the analytical problems as 

well as the computational exercises should develop a very sophisticated understanding of 

how big simulation codes are assembled and the algorithms that make them work. 

 

  The PDEs that interest us can be divided into some simple classes that go under 

interesting names such as: hyperbolic, parabolic and elliptic. We quickly explain these 

new names with some pedestrian definitions and familiar examples. A more sophisticated 

understanding will be built up as this chapter progresses. Hyperbolic PDEs are those that 

enable information to propagate as waves. For example, the propagation of sound waves 

in a fluid, water waves, oscillations in a solid structure and electromagnetic radiation all 

take place due to the existence of hyperbolic terms in certain PDEs that govern those 

processes. Parabolic PDEs, on the other hand, permit information to travel through a 

diffusive process. Thus the flow of heat in solids, the propagation of water or pollutants 

in porous media such as sand beds and the propagation of photons deep within the sun’s 

interior are all represented by parabolic terms in PDEs. Elliptic PDEs that we normally 

encounter do not have temporal propagation and yet they convey the effects of one object 

on others around it. Examples include Newtonian gravity which we all experience on 

earth and various examples from electrostatics and magnetostatics. The Poisson equation, 

which appears in self-gravitating problems as well as problems in electrostatics, is a very 

prominent example of an elliptic equation. In practice, one or more of these types of 

terms could be present in the PDEs that we wish to solve. Understanding the operation of 

these terms in isolation will eventually enable us to assemble methods for several classes 

of PDEs. The contents of this chapter will show us how to identify the various terms in a 

PDE and classify them as hyperbolic, parabolic or elliptic. In subsequent chapters we will 

develop powerful solution methods for these PDEs. 

 

 It is worth mentioning that not all classes of PDEs that are of interest to engineers 

and scientists can be neatly divided into the above classification, yet many of them can be 



 3 

viewed as such. Furthermore, not all research problems may be amenable to treatment via 

PDEs. There is a vast literature on particle methods and also on hybrid methods that 

combine particle methods with PDE methods. A full discussion of all such methods 

would be out of scope for this book.  

 

 When embarking on a study of PDE techniques one needs a set of equations that 

might serve as a touchstone with which to motivate further examples. We prefer to use 

the Navier Stokes equations as our motivating example because it is a PDE system of 

great practical value to large numbers of engineers, space scientists, geophysicists, 

meteorologists, astronomers and applied mathematicians. For that reason, the next section 

demonstrates how the fluid equations arise from an underlying model which assumes that 

atoms are in frequent collision – the fluid approximation. Sections 1.3 and 1.4 deal with 

the Euler and Navier-Stokes equations respectively. Section 1.5 shows us how to classify 

PDEs and is rather important to the later chapters in the book. The remaining sections of 

this chapter introduce various PDEs that are important to engineers and scientists. 

Solution methods will be developed for them during the course of the book. The reader 

can read the sections according to need and interest. Sections 1.6 and 1.7 introduce the 

equations for incompressible flow and the shallow water equations. Sections 1.8 and 1.9 

introduce Maxwell’s equations and the magnetohydrodynamic equations respectively. 

Section 1.10 discusses the equations of flux limited diffusion radiation hydrodynamics. 

Section 1.11 does the same for the radiative transfer equation. Section 1.12 introduces the 

equations of linear elasticity. Section 1.13 discusses relativistic hydrodynamics and 

magnetohydrodynamics. Section 1.14 underscores the importance of scientific 

visualization in computational problems. 

 

1.2) Derivation of the Fluid Equations 

 

 This section is divided into several sub-sections. In Sub-section 1.2.1 we start by 

explaining the importance of frequent collisions between particles in obtaining a fluid 

approximation. Sub-sections 1.2.2 and 1.2.3 explain how the continuum description of a 

fluid can be derived by averaging over the collisional Boltzmann equation. Sub-sections 
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1.2.4, 1.2.5 and 1.2.6 then derive the mass, momentum and energy conservation 

equations that govern the dynamics of fluids. This section enables us to relate the PDEs 

that arise on the macroscopic scales to the dynamics of atoms and molecules on the 

microscopic scales, yielding insights that are valuable throughout the book. However, the 

reader who wants to avoid this level of detail can skip directly to Section 1.3. 

 

1.2.1) The Role of Collisions 

 

 Our daily experience gives us an intuitive knowledge that fluids are made up of 

things that flow from one place to another. Air and water are good examples of fluids. 

We are interested in the dynamical equations that govern their motion. The air in a typical 

sized room consists of about 1028 molecules, each having a position vector x  and a 

momentum vector p . The six-dimensional space formed by the vectors x  and p  forms 

the phase space. For any finite temperature, the air molecules will have a certain random 

velocity with respect to each other. While air is a mixture of molecules, we simplify the 

problem by considering a fluid with a single type of molecule. It could in principle be 

specified by a distribution function ( ), ,f tx p  so that ( ) 3 3, ,   f t d x d px p  gives us the 

number of molecules within a six-dimensional infinitesimal volume in phase space, 
3 3 d x d p , centered about ( ),x p at a time t. If these molecules were to coast freely without 

interactions with one another, one would indeed have to solve the dynamical equations 

for each of them, resulting in a very difficult problem in a six-dimensional phase space. 

Fortunately, in most systems of interest, collisions occur quite readily between the 

molecules, atoms or ions that make up the system. These collisions, along with the laws 

of statistical mechanics and thermodynamics, enable us to make an immense 

simplification.  

 

 Let us focus on collisions first. All interacting particles present a certain 

collisional cross section, σ , to other particles. This cross section can be crudely thought 

of as the amount of area presented by the particle in question to another particle that is 

headed towards it. For the very simple example of identical interacting particles that are 
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modeled as hard spheres, the cross section is simply the area of a disk having a radius that 

is twice as large as the radius of the spheres in question. Fig. 1.1 provides a schematic 

representation of such a collision. For more complicated inter-particle interactions, the 

cross section depends on the inner structure of the particles as well as the details of their 

relative momenta. The details of the interactions are not as important to us as the fact that 

the interactions are indeed frequent. One way of characterizing the frequency of 

interactions is to say that each particle travels but a short distance, l , before it has another 

interaction. Thus if the number density of particles is given by n , we can assert that the 

mean free path is given by ( )1l nσ . Furthermore, if all the particles in a parcel of gas 

have a characteristic relative speed given by Tw with respect to one another, we can assert 

that the mean time between collisions is given by Tl wτ  . A fluid approximation is 

then said to prevail if we want to understand the dynamics of the different parcels of gas 

on characteristic length scales L that are much larger than the collision length l  and, 

furthermore, if we only wish to track the dynamics over a characteristic time scale T  that 

is much larger than the collision time τ .  

 
 Fortunately, a fluid approximation is easy to justify in several systems. For 

example, consider the air in the room you are sitting in. It has 1910n   particles/cm3 , 
1510σ −

  cm2 and 43 10Tw ×  cm/sec, which gives us 410l −
 cm and 93 10τ −× sec. 

Thus over length and time scales larger than 410− cm and 93 10−× sec respectively the air 

in the room can be modeled very nicely as a fluid. The fluid approximation also applies 
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quite well to some of the largest systems that we might wish to model. For example, the 

gas that permeates our Galaxy has 1n   particles/cm3 and  58 10Tw ×  cm/sec, yielding 
1510l  cm and 91.3 10τ × sec 42  years. These might seem like colossal distances and 

times at first blush, except for the fact that astronomers are only interested in Galactic 

phenomena that take place on length scales and time scales that are significantly larger 

than the ones quoted above. Thus a fluid approximation is again justified for Galactic 

scale gas dynamics. We have simplified our example about Galactic gas dynamics by 

assuming that the cross section is the same as the one we used for our terrestrial example. 

However, the gas that makes up the Galaxy is a partially ionized plasma. The ions and 

electrons that make up such a plasma can have long range, screened Coulombic 

interactions, resulting in increased cross sections. Particles can also be scattered in 

plasmas due to collective effects, i.e. via interactions with collective oscillations that 

occur in the plasma. The latter examples in this paragraph are, therefore, meant to 

reinforce the viewpoint that a fluid approximation, while often readily justified in many 

systems of interest, should indeed be carefully examined. Astrophysicists and space 

physicists will find further discussions along these lines in the texts by Spitzer (1978) and 

Shu (1992). 

 

 It is worth noting that a fluid approximation is not justified in certain situations. 

Prominent examples include the study of plasmas in certain terrestrial fusion 

experiments, the earth’s magnetosphere, the sun’s corona and the magnetospheres of 

compact stars. The interaction of radiation with matter presents another interesting case 

study. When radiation causes the electrons in an atom to undergo transitions across 

energy levels, the matter usually presents a large cross section to the radiation. However, 

any patch of matter, even if it is electrically neutral, will always have electrons. The 

Thompson scattering of a photon with an electron yields a cross section of 240.67 10−×  

cm2 . Thus a photon gas will always have some interaction with the matter that surrounds 

it. However, comparing the Thompson cross section to the cross section between 

molecules that we quoted in the previous paragraph we realize that the former is 

substantially smaller by several orders of magnitude. As a result, photon mean free paths 

can be substantially larger than molecular and atomic mean free paths. Even so, equations 
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for radiation hydrodynamics, i.e. a fluid-like approximation for the radiation field, can be 

built (Mihalas & Weibel-Mihalas 1999, Castor 2004). However the validity of that 

approximation has to be examined more carefully on a case by case basis. 

 

 Having understood the role of collisions, let us now focus on what statistical 

mechanics tells us about systems that have frequent collisions. The fundamental postulate 

of statistical mechanics then tells us that any isolated system in equilibrium will populate 

all its accessible microstates with equal probability (Reif 2008, Huang 1963). The 

collisions perfectly scramble any initial velocity distribution in a fluid and this 

equilibrating process takes place within a few collision times. Once equilibrium is 

established, and we have seen that it is established rapidly, all configurations of phase 

space that are energetically permitted are accessed with equal probability. Thus for a 

parcel of gas at rest, statistical mechanics tells us that there is a single number, the 

temperature of the gas, that specifies the entire velocity distribution of particles in that 

parcel. If the particles in a gas can be treated classically, their velocities will follow a 

Maxwell-Boltzmann distribution. If quantum mechanical effects need to be included, 

fermions and bosons will acquire a Fermi-Dirac or Bose-Einstein velocity distribution 

respectively. Thus if a parcel of gas is viewed from its local rest frame, the velocity 

distribution of the particles is indeed simple. This simplicity can always be exploited to 

relate the thermodynamic variables of a gas. For example, the pressure of the gas “P” can 

be related to its temperature “T” and density ρ , giving rise to one possible equation of 

state. Similarly, the random motions of the molecules or atoms that make up a parcel of 

gas at any finite temperature endow the parcel with a certain internal energy density “e”. 

This internal energy density can again be related to the pressure and density of the gas, 

yielding another possible equation of state. In principle, statistical mechanics makes it 

possible for us to obtain such equations of state though, in practice, the derivation might 

be very involved. To take but a simple example for a thermally ideal gas, one can write 

 

TP Rρ
µ

=           (1.1) 
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where R  is the gas constant and µ  is the reduced mass of the gas being considered. 

Similarly, for a calorically ideal gas one has 

 

Pe
1

=
Γ −

          (1.2) 

 

where “e” is the internal energy density and Γ  is the polytropic index of the gas being 

considered. 

 

 Our eventual goal is to describe the dynamics of parcels of fluid. The previous 

paragraph has shown that the velocity distribution of a parcel of fluid is indeed quite 

simple when viewed in its rest frame. Furthermore, if the local thermodynamic properties 

of that parcel of fluid can be specified then the local velocity distribution of molecules, 

viewed in the parcel’s own rest frame, is indeed specified. This suggests that instead of a 

six-dimensional space in which the distribution ( ), ,f tx p  is specified, one might indeed 

be able to specify the problem in a three dimensional space given by the position vector 

x . For example, it is intuitively obvious that the local density of the fluid, as measured in 

gm/cm3 or Kg/m3 , can be determined by integrating over the space of all possible 

particle momenta. Thus we have 

 

( ) ( ) 3,  , ,  t m f t d pρ ≡ ∫x x p         (1.3) 

 

where m  is the mass of the fluid particles, all of which are assumed to have identical 

masses for the sake of simplicity. As the fluid flows, ( ), tρ x changes from one location to 

another. Thus we wish to obtain an evolutionary equation for ( ), tρ x . We are helped in 

this endeavor by the fact that the number of particles is a conserved quantity, at least 

when a gas is not undergoing ionization or nuclear reactions. 
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 To obtain the dynamics of individual particles as well as assemblages of particles 

one needs to apply Newton’s second law to them.  Recall though that Newton’s second 

law needs to be applied to the same set of particles. If the particles could stream freely 

without copious collisions, we would not be in a position to keep the same set of particles 

physically contiguous from one time to a slightly later time. However, the fluid 

approximation, with its implicit assumption of plentiful collisions, ensures that a particle 

that is part of a parcel of particles does not get too far away from the parcel a very short 

time later. I.e., as shown in Fig. 1.2, the fluid element may deform as it moves, but the 

particles that make up the fluid element can be identified a short time later. This permits 

us to specify a mean fluid velocity, ( ), t=v v x , with which the fluid element moves. 

Because the fluid has a finite temperature, every particle also has a certain random 

velocity, w , with respect to the mean motion of the fluid element. Thus the velocity of 

any particle can be specified as = +u v w , i.e. it is comprised of a mean velocity and a 

random fluctuation about the mean. We can then write the momentum density as 

 

( ) ( ) ( ) 3, ,  , ,  t t f t d pρ ≡ ∫x v x p x p        (1.4) 

 

We will presently see that the evolutionary equation for the velocity field ( ), tv x  is an 

exact expression of Newton’s second law as applied to a parcel of fluid. 
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 Energy conservation is another very important principle of physics. A fluid can 

contain internal thermal energy due to the random motion of its molecules. It can also 

have bulk energy due to the overall motion of the fluid element. Thus we can define the 

total energy density of a fluid as 

 

( ) ( )
2

3,  , ,  
2

t f t d p
m

ε ≡ ∫
px x p         (1.5) 

 

Based on our intuition, we would expect the total energy density ( ), tε x  to consist of a 

bulk kinetic energy when the fluid is in motion as well as an internal (thermal) energy 

density. The bulk kinetic energy should evolve in conformance with Newton’s second 

law. If there are no internal or external sources of heat acting upon the fluid, the first law 

of thermodynamics dictates that the internal energy of a parcel of fluid should change in 

response to the mechanical work done by the external pressure as the parcel is 

compressed or as it expands. We will presently see that the evolutionary equation for 

( ), tε x  can be shown to express the first law of thermodynamics. It should also be noted 

that the internal energy of real fluids can change in response to ionization, recombination 

or chemical and nuclear reactions. External sources of radiation and thermal conduction 

from a boundary can also change the internal energy of a fluid. 

 

 A simple example drawn from the above three paragraphs can now be provided. 

Consider a monoatomic, ideal gas where the particles satisfy a Maxwell-Boltzmann 

velocity distribution in the fluid’s rest frame. As before, the atoms have a mass m  so that 

the local number density can be written as ( ), t mρ x . The fluid has a local velocity 

given by ( ), tv x  and a local temperature ( )T , tx . Notice from eqns. (1.1) and (1.2) that 

the temperature is related to the internal energy density of the fluid. Furthermore, the 

fluctuating part of each particle’s momentum, i.e. the part that does not contribute to the 

mean momentum density, is then given by ( )( )   ,m t−p v x . Since the Maxwell-

Boltzmann velocity distribution is specified with respect to the fluid’s rest frame, it can 
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be written in terms of the fluctuating part of each particle’s momentum. We can then 

write the distribution function as 

 

( ) ( )
( )( )

( )( )
( )

2   ,
 

2   T ,
3/2

, 1, ,   e
 2    T ,

m t
m k tt

f t
m m k t

ρ

π

−
−

=
p v x

xx
x p

x
    (1.6) 

 

where k is the Boltzmann constant. It is very easy to show that the distribution function 

from eqn. (1.6) satisfies eqn. (1.3). It is only a slight bit more involved to show that the 

above distribution function satisfies eqn. (1.4). Substituting eqn. (1.6) in eqn. (1.5) 

eventually allows us to show that  

 

( ) ( ) ( ) ( )2P , 1,      ,  ,
1 2
t

t t tρε = +
Γ −

x
x x v x       (1.7) 

 

where 5 / 3Γ =  in the above equation and ( )P , tx  is the local pressure in the fluid. Notice 

that ( ) ( )P , 1t Γ −x  can be identified as the internal energy density while 

( ) ( )2,  , 2t tρ x v x  can be identified as the kinetic energy density. These identifications 

can be strengthened if one draws on relations from statistical mechanics that allow us to 

identify the pressure ( )P , tx  and thermal energy density ( )e , tx  as 

 

( ) ( )( ) ( )

( ) ( )( ) ( )

2

3

2

3

   ,1P ,     , ,   ;  
3

   ,
e ,    , ,  

2

m t
t f t d p

m
m t

t f t d p
m

−
≡

−
≡

∫

∫

p v x
x x p

p v x
x x p

     (1.8) 

 

Notice that the pressure and thermal energy density are defined in terms of the fluctuating 

part of the velocity. Eqn. (1.8) also enables us to identify 5 / 3Γ =  for a monoatomic 

ideal gas. It is also worth noting that eqn. (1.6) is only valid at the lowest order of 

approximation. It would not, for example, enable us to deduce the existence of viscous 
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terms in the flow. In general, one can envision a sequence of higher order corrections to 

eqn. (1.6), see Chapman and Cowling (1961). 

 

1.2.2) The Boltzmann Equation 

 

 When collisions are absent, Liouville’s theorem tells us that a distribution of 

particles preserves the six-dimensional volume of phase space that it occupies. The 

particles can in fact respond to external body forces. For the sake of simplicity, let us call 

those forces F  in this sub-section. Examples of such body forces include gravity or 

forces produced by electric and magnetic fields. We then have an evolutionary equation 

for the distribution function ( ), ,f tx p  given by 

 

   0  +    +    
   

    +    +    = 0
   

df f d f d f
dt t dt dt

f f f
t m

∂ ∂ ∂
= = ⇒

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

x p
x p

p F
x p

 

 

      (1.9) 

 

The reader might find it instructive to write the above equation out in component form to 

see that it simply causes the particles to evolve in phase space. Introducing collisions 

makes the above equation much more interesting. When collisions are present, and when 

the duration of the interparticle scattering is much shorter than the mean interval between 

scatterings, we can think of the scattering as providing a non-zero right hand side in eqn. 

(1.9). Thus one gets 

 

c

     +    +    = 
    
f f f f
t m t

δ
δ

∂ ∂ ∂  
 ∂ ∂ ∂  

p F
x p

        (1.10) 

 

where the right hand side in eqn. (1.10) represents the effect of collisions. 

 

 Collisions can change the particles’ momentum transferring the particles from one 

part of phase space to the other. Thus consider an incident particle with momentum p  
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that is entering into an elastic collision with a target particle with momentum 1p . After 

the collision, the incident particle has momentum /p  while the target particle has 

momentum /
1p , see Fig. 1.1. As a result of collisions, new particles may get scattered into 

a part of phase space around ( ),x p  resulting in an increase in the local distribution 

function ( ), ,f tx p . Likewise, particles that originally had a momentum p  at the location 

x  might get scattered by collisions so as to have a different momentum, thereby resulting 

in a decrease in the local distribution function ( ), ,f tx p . Momentum and energy 

conservation still hold so that we have 

 

( ) ( ) ( ) ( )2 22 2 / /
11/ /

1 1 +   +    ;    +   + 
2 2 2 2m m m m

= =
p pp p

p p p p     (1.11) 

 

The above equations provide four constraints on the outgoing momenta, /p  and /
1p . This 

leaves two degrees of freedom, and those are mediated by the details of the interaction. 

The actual scattering cross section depends on the physics of the interaction. We will not 

study the details of such interactions here. We just quote the result that the collisional 

cross section for the interaction ( ) ( )/ /
1 1, ,→p p p p  is given by ( )/ /

1 1, | ,σ p p p p . Roughly 

speaking, the collision cross section gives us the probability of a certain pair of output 

momenta ( )/ /
1,p p  being favored in the collision for a given pair of input momenta 

( )1,p p . All pairs of output momenta also have to satisfy the momentum and energy 

constraints in eqn. (1.11). The number of particles scattering out of the distribution 

function ( ), ,f tx p  within a unit spatial volume per unit of time is given by 

 

( ) ( ) ( )13 3 / / 3
1 1 1 1

c; sink

 d p  , ,  d p  , | ,  d  , ,  d p 
 
f f t f t
t m

δ σ
δ

−  = Ω 
 ∫ ∫

p p
x p p p p p x p  (1.12) 

 

where dΩ  represents the infinitesimal solid angle into which the incident particle is 

scattered. Eqn. (1.12) can be thought of as a collisional sink term. The reader can check 
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that eqn. (1.12) is dimensionally correct. There will also be particles scattering into the 

region of phase space being considered, yielding a source term from collisions. The 

source term is given by 

 

( ) ( ) ( )
/ /

13 / 3 / / / / 3 /
1 1 1 1

c; source

 d p  , ,  d p  , | ,  d  , ,  d p  
 
f f t f t
t m

δ σ
δ

−  = Ω 
 ∫ ∫

p p
x p p p p p x p  (1.13) 

 

The total number of particles being scattered within a unit spatial volume per unit of time 

is then the source terms from eqn. (1.13) with the sink terms from eqn. (1.12) subtracted 

from them. 

 

 There are indeed some further constraints on the interaction terms. For our 

purposes it suffices to state that the interaction should be time-reversible so that 

 

( ) ( )/ / / /
1 1 1 1, | , , | ,σ σ=p p p p p p p p        (1.14) 

 

 Similarly, it can be shown that the collision should preserve volume in momentum phase 

space so that we have 

 
3 / 3 / 3 3

1 1d p  d p  d p d p=          (1.15) 

 

Utilizing eqns. (1.14) and (1.15) enables us to write the net effect of collisional sources 

and sinks as 

 

( ) ( ) ( ) ( ) ( )13 / / / / 3
1 1 1 1 1

c

 d p  , | ,  , ,  , ,  , ,  , ,  d  d p  
 
f f t f t f t f t
t m

−   = − Ω    ∫ ∫
p p

p p p p x p x p x p x pδ σ
δ

           (1.16) 

Eqn. (1.10) along with the collisional terms in eqn. (1.16) constitute the Boltzmann 

equation. More rigorous derivations of the Boltzmann equation have been presented in 

Uhlenbeck and Ford (1963) for fluids and in Montgomery and Tidman (1964) for 
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plasmas. Eqn. (1.10) gives us the evolutionary equation for all the particles that make up 

a fluid in a six-dimensional phase space. We seldom need that level of detail and eqns. 

(1.3) to (1.5) already suggest to us that the fluid variables and their time-evolution might 

be obtained via suitable moments of the Boltzmann equation. We study that next. 

 

1.2.3) Moments of the Boltzmann Equation 

 

 Using our intuition and a few insights from statistical mechanics, we have seen 

how eqns. (1.3), (1.4) and (1.5) connect the intuitively obvious density, momentum 

density and total energy density variables for a fluid to the distribution function. Notice 

that eqns. (1.3), (1.4) and (1.5) indeed represent successively higher moments of the 

distribution function with respect to the particle momentum p . Eqn. (1.10) is an 

evolutionary equation for the distribution function. Comparing eqn. (1.10) to the 

definitions in eqns. (1.3) to (1.5), we realize that taking the first three moments of eqn. 

(1.10) would give us evolutionary equations for the fluid density, momentum density and 

energy density. Thus define ( )ψ p  to be a function of particle momentum which can be 

convolved with eqn. (1.10) to obtain the evolutionary equations for the fluid variables. 

We then choose 

 

( ) ( ) ( )
2

   ;       ;    
2

m
m

ψ ψ ψ= = =
pp p p p       (1.17) 

 

Eqn. (1.11) along with mass conservation shows that ( )ψ p is conserved in collisions. 

Speaking intuitively, we are just stating that collisions conserve mass, momentum and 

energy.  Multiplying our evolutionary eqn. (1.10) with ( )ψ p  and integrating over the 

range of permitted momenta then yields 

 

( ) ( ) ( ) ( )3 3

c

      +     +      =   
    
f f f fd p d p
t m t

δψ ψ ψ ψ
δ

 ∂ ∂ ∂  
   ∂ ∂ ∂   
∫ ∫

pp p p F p
x p

   (1.18) 
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A problem at the end of this chapter enables one to show that the right hand side of eqn. 

(1.18) integrates to zero. The physical reason for this stems from the fact that collisions 

do not contribute to the time rate of change of a conserved quantity. This simplifies our 

treatment of eqn. (1.18). 

 

 To make further progress we define momentum-averaged quantities as 

 

( ) ( ) ( )3 31     , ,       ;      , ,  f t d p n f t d p
n

ψ ψ≡ ≡∫ ∫p x p x p    (1.19) 

Here n  is the local number density of fluid particles. Recall that ( ) 3, ,f t d px p  has units 

of a number density, so the division by n makes the previous equation dimensionally 

consistent. We would like to write eqn. (1.18) in a form where its structure as a PDE 

becomes readily apparent. Realize from eqn. (1.18) that the first two terms on the left 

hand side are easily manipulated so as to move the partial derivatives outside the 

integrals. Quite simply, the terms ( )ψ p  and ( ) mψ p p  in eqn. (1.18) do not depend on t  

or on x  with the result that the partial derivatives slip out of the integral. Manipulating 

the third term on the left hand side of eqn. (1.18) requires us to carry out an integration by 

parts. Thus we have 

 

( ) ( )( ) ( )( )

( ) ( )

3 3 3      =            
 

,
                                   =     

f d p f d p f d p

t
m

ψ ψ ψ

ρ
ψ

∂
∇ − ∇

∂

− ∇

∫ ∫ ∫p p

p

p F p F p F
p

x
F p

  



 (1.20) 

 

Notice that ∇p  denotes a gradient over the momentum vector. Gauss’s Law can be used 

in momentum space to show that the first integral on the right hand side of the first line in 

eqn. (1.20) is zero. This is ensured as long as the distribution function tends to zero as the 

momentum approaches infinity. Obtaining the second line in eqn. (1.20) requires us to 

assume that the ith component of the force F  does not depend on the ith component of the 

momentum p . (Notice that the Lorentz force, which has a special type of velocity-
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dependence, satisfies this requirement.) Eqn. (1.19) can now be written in a form that 

makes its structure as a PDE evident as follows 

 

( ) ( ) +         = 0
 

n n n
t m

ψ ψ ψ∂  
∇ − ∇ ∂  

p
p F p      (1.21) 

 

In deriving eqn. (1.21) we have had to further assume that F  is, in general, not a 

velocity-dependent body force. In the next three sub-sections we will make a detailed 

study of eqn. (1.21). 

 

 The theory that we have presented in this sub-section goes under the name of 

Chapman-Enskog theory for fluids. The hierarchy of moments that we have considered 

here is often referred to as the BBGKY hierarchy where each letter in the nomenclature 

stands for one of the contributors (Bogoliubov 1947, Born & Green 1946, Kirkwood 

1947, Yvon 1935). Notice that in this section we have only taken the first three moments 

of the Boltzmann equation. Furthermore, the second moment was built using the scalar 
2p  because the cross-correlation in the local particle velocities is zero up to leading 

order. It is very reasonable to ask whether the first three moments will suffice. It turns out 

that for dense enough fluids, with a high collision rate between particles, the answer is in 

the affirmative. It also turns out that in dilute magnetized plasmas where the electron 

gyroradius around the magnetic field is small enough, one can make a similar 

approximation. It is, however, important to be forewarned that for dilute gases the first 

three moments are insufficient. In such gases, the local velocity distribution can display a 

substantial departure from the Maxwell-Boltzmann distribution with the result that higher 

moments need to be retained. Such examples arise frequently when studying the fluid 

dynamics around space reentry vehicles and in certain kinds of tenuous space plasmas. 

 

1.2.4) The Continuity Equation 

 

 Setting ( ) mψ =p  in eqn. (1.21) and then using the eqns. (1.3), (1.4) and (1.19) 

gives us the continuity equation 
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( ) ( )   +   v  = 0         +     = 0
   i

it x t
ρ ρρ ρ∂ ∂ ∂

⇔ ∇
∂ ∂ ∂

v     (1.22) 

 

In keeping with the Einstein summation convention, a repeated index implicitly denotes 

summation over that index. The above equation is an expression of mass conservation in 

a simple non-reacting fluid. For a reacting fluid, we would have similar equations for the 

mass fractions of each of the reactants along with source terms on the right hand sides. 

The source terms on the right hand side would then specify how one species reacts to 

form another species. I.e., the molecules in the fluid undergo chemical reactions to form 

other molecules and the mass fractions keep track of how the reactions are progressing. 

With or without source terms, eqn. (1.22) shows that the density changes in response to 

local variations in the flow variables, a property shared by all hyperbolic PDEs. 

Variations in the flow variables that take place far away from the point of interest do not 

affect the density at the point of interest instantaneously fast. The conservative nature of 

eqn. (1.22) will be discussed in great depth in the next section.  

 

 Eqn. (1.22) can also be written in the form 

 

  +    =    
 t
ρ ρ ρ∂

∇ − ∇
∂

v v          (1.23) 

 

It shows that without any compression or rarefaction in the flow (i.e. when 0∇ =v ), the 

density is constant along the streamlines traced out by the velocity. See Fig. 1.3 for a 

pictorial depiction of streamlines around a (highly idealized) mountain range as well as a 

strategy for obtaining streamlines from a given velocity field. Compressions in the flow, 

denoted by   0∇ <v , can cause an increase in the local density. Rarefactions in the flow, 

denoted by   0∇ >v , can cause an decrease in the local density. The differential terms  

 

    +   
 

D
Dt t

∂
≡ ∇

∂
v           (1.24) 
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occurring on the left hand side have a special structure that recurs very often in fluid 

dynamics. As a result, it carries a special name, the Lagrangian derivative or the material 

derivative. It measures the variation in a flow variable as measured in a local frame of 

reference that moves with the instantaneous velocity of the fluid, i.e. along the 

streamlines shown in Fig. 1.3. In physics, such a frame is referred to as a Lagrangian 

frame of reference, hence the name. To develop an intuitive understanding of fluid 

dynamics, the reader is urged to view the beautiful images in Van Dyke (1982). 

 
 

1.2.5) The Momentum Equation 

 

 Setting ( ) ( ) + m= =p p v wψ  in eqn. (1.21) gives us the momentum equation for 

a fluid. Recall that the vector v denotes the mean velocity of the flow whereas the vector 

w denotes the fluctuation in the velocity relative to the mean; consequently the 

momentum equation has three components. Thus for the ith component we get 

 

( ) ( )( )( )v  + v w v w  =  a
  i i i j j i

jt x
ρ ρ ρ∂ ∂

+ +
∂ ∂

     (1.25) 

 

where m=a F  is the acceleration due to external body forces.  
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 We realize that we might achieve considerable simplification if we could relate 

( )( )v w v wi i j j+ +  to well-known quantities. To that end, we write 

 

( )( )v w v w  v v  + w wi i j j i j i j+ + =       (1.26) 

 

The fluctuating part of one component of a particle’s velocity is unlikely to have much of 

a correlation with the fluctuating part of another of its components. As a result, we would 

expect only the diagonal part of the tensor w wi j  to be dominant. Furthermore, due to 

the random and isotropic nature of the collisions, we would expect all the diagonal 

elements of w wi j  to have almost the same value. This allows us to extract the 

dominant parts of w wi j  and write the sub-dominant part as ijπ . The dominant part 

reveals itself to be the isotropic fluid pressure. Thus we get 

 

2 21 1w w  P      ;   P    ;     w w
3 3i j ij ij ij ij i jρ δ π ρ π ρ δ= − ≡ ≡ −w w   (1.27) 

 

where ijδ is the Kronecker delta. For general enough flows we would expect the tensor 

ijπ  to have some non-zero contribution. We refer to it as the viscous tensor. The final 

form of the momentum equation can now be written as 

 

( ) ( )v  + v v  + P    =  a
  i i j ij ij i

jt x
ρ ρ δ π ρ∂ ∂

−
∂ ∂

     (1.28) 

 

We see that the momentum density, viρ , responds to variations in the advective stresses, 

v vi jρ , the pressure stresses, P ijδ , and the viscous stresses, ijπ . It also responds to the 

body forces. The three stresses taken together give us the momentum fluxes. The viscous 

terms can sometimes be negligible. The above equations without the viscous terms are 
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referred to as the Euler equations. With the viscous terms, they yield the Navier-Stokes 

equations. As with the continuity equation, eqn. (1.28) displays a conservation form 

which is very valuable for numerical solution. 

 

 It is also useful to rewrite eqn. (1.28) in another format, especially because it 

enables us to make contact with Newton’s laws. Using eqn. (1.22) in eqn. (1.28) one can 

write the previous equation as 

 

 v  P  =   +  a  + 
   

i
i ij

i j

D
D t x x

ρ ρ π∂ ∂
−

∂ ∂
       (1.29) 

 

Notice that  v  iD D t  is the acceleration of the fluid as measured in its own Lagrangian 

frame of reference. Thus the left hand side of eqn. (1.29) measures the time rate of 

change of momentum in a fluid element that tracks the same underlying fluid particles. 

The right hand side of eqn. (1.29) just sums up the contribution from the pressure forces, 

the body forces and the viscous forces. Consequently, eqn. (1.29) is an expression of 

Newton’s second law for a fluid element. Eqn. (1.29) is often referred to as the primitive 

form of the momentum equation and it shows itself to be very useful for analytical work 

with the fluid equations. 

 

1.2.6) The Energy Equation 

 

 Using eqns. (1.5), (1.7) and (1.2) we can write a general expression for the total 

energy density of a fluid as 

 

21  e    
2
ρε = + v          (1.30) 

 

Setting ( ) ( ) ( )22 2  + 2m m= =p p v wψ  in eqn. (1.21) gives us the energy equation for a 

fluid, which is an evolutionary equation for the total energy density ε . We get 
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( )( )2  + v w  +  =  v  a
  2 i i i i

it x
ρ ρε∂ ∂  + ∂ ∂  

v w      (1.31) 

 

Notice that the right hand side of eqn. (1.31) is effectively the dot product of a force and a 

velocity. Thus the right hand side gives us the amount of power provided by the external 

body forces per unit volume as the fluid moves. 

 

 As with the momentum equation, we undertake a careful examination of the 

second term on the left hand side of eqn. (1.31). Thus we have 

 

( )( )2 2 2 21 1v w  +  =   v  +    v  +  w  w  v  +  w   
2 2 2 2i i i i i j j i
ρ ρ ρ ρ ρ+ v w v w w  

           (1.32) 

Each of the terms in the above equation has an interesting physical interpretation. Recall 

that 2 2ρ v  and 2 2ρ w  can be identified as the kinetic and internal energy densities 

of the fluid. Thus the first two terms on the right hand side of eqn. (1.32) can be 

interpreted as a flux of those energy densities. The w  wi j  part in the third term on the 

right hand side of eqn. (1.32) intimates to us that we should use eqn. (1.27) to write it as 

the sum of a pressure and a viscous stress term. Only the last term, 2 w  2iρ w , in eqn. 

(1.32) is new to us. But notice that 2 2w  within the angular brackets indicates that we 

are dealing with a particle thermal energy while the w i  term within the angular brackets 

indicates that this thermal energy is being propagated via random motions. This is exactly 

what heat transport does – it causes thermal energy to flow through a material due to the 

random walk of the energy-bearing particles. Thus we identify the conduction heat flux as  

 

21F  w   
2

cond
i iρ≡ w         (1.33) 

 

We can now write our total energy equation using terms that have physical meaning as 
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( )( )  +   P  v    v   + F  =  v  a
  

cond
i j ji i i i

it x
π ρε ε∂ ∂

+ −
∂ ∂

    (1.34) 

The viscous and thermal conduction terms are often referred to as non-ideal terms. We 

will see in the next couple of sections that their inclusion changes the character of the 

equations from hyperbolic to parabolic. Without the non-ideal terms eqn. (1.34) is part of 

the Euler equations; with the non-ideal terms it makes up the equation set that is referred 

to as the Navier-Stokes equations. As with the mass and momentum conservation 

equations, eqn. (1.34) has a conservation form that is very useful for numerical codes. 

 

 Just as the momentum equation was shown to be consistent with Newton’s laws, 

we can also demonstrate that the energy equation is consistent with the first law of 

thermodynamics. After multiplying eqn. (1.28) with the velocity vi  and using eqn. (1.22) 

we get the work equation  

 

2 2    P  +   v  =  v  a   v  + v
 2  2   

ij
i i i i i

i i jt x x x
πρ ρ ρ

∂∂ ∂ ∂    −   ∂ ∂ ∂ ∂   
v v    (1.35) 

 

Subtracting the above equation from eqn. (1.34) gives us an equation for the evolution of 

the internal (thermal) energy density as 

 

( )  v  F  v e  + e v  =  P    + 
     

cond
i i i

i ij
i i i jt x x x x

π∂ ∂ ∂∂ ∂
− −

∂ ∂ ∂ ∂ ∂
     (1.36) 

 

Just as we would expect, we see that the internal energy density does not change due to 

external body forces. Compression or rarefaction of the fluid can change its energy 

density as shown by the first term on the right hand side in eqn. (1.36). Similarly, the 

existence of thermal conduction or viscosity can change the energy density. Since the 

first law of thermodynamics is most easily recognized in terms of specific variables, i.e. 

variables that are defined per unit mass, we obtain an equation for the specific energy 

from the above equation as 
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 vD e P 1 1  =           +  
D  

cond i
ij

jt x
π

ρ ρ ρ ρ
  ∂

− ∇ − ∇  ∂ 
v F      (1.37) 

 

Since the continuity equation gives us ( )1  D Dtρ ρ−∇ =v  , we realize that   ρ∇ v  is 

just the rate of change of volume occupied by a unit mass.  Thus eqn. (1.37) tells us that 

the rate of change of specific energy is given by the P dV  work done on the fluid 

element when the non-ideal terms associated with thermal conduction and viscosity are 

neglected. Thus we see that eqn. (1.37) is an expression of the first law of 

thermodynamics.  

 

 We can also establish an interesting connection with the second law of 

thermodynamics. Using eqn. (1.2) in eqn. (1.37) we can also show that  

 

 vs T     + 
 

cond i
ij

j

D
Dt x

ρ π ∂
= − ∇

∂
F         (1.38) 

 

Here “s” is the specific entropy so that we realize that the entropy remains constant along 

each individual Lagrangian fluid element when the non-ideal terms are ignored. We 

should, however, note that the entropy is not constant when a fluid element goes through 

a shock because the rapid variation in velocity across a shock implicitly causes an 

increase in the viscous terms in the vicinity of the shock. It can also be shown that the 

contribution of the viscous terms on the right hand sides of eqns. (1.37) and (1.38) is 

always positive. Consequently, whenever viscosity is present, it will always cause an 

increase in the internal energy as well as the entropy. This gives us our first glimpse of 

the fact that the presence of shocks always introduces an irreversible process in the fluid 

dynamics. 

 

1.3) The Euler Equations 
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 While all real fluids do have a certain amount of viscosity and heat conduction, a 

very useful idealization arises when the viscous and heat conduction terms are ignored in 

eqns. (1.28) and (1.34). The complete set of equations then becomes 

 

( )

( ) ( )

( )( )

  +   v  = 0
  

v  + v v  + P  = 0
  
  +   P  v  = 0
  

i
i

i i j ij
j

i
i

t x

t x

t x

ρ ρ

ρ ρ δ

ε ε

∂ ∂
∂ ∂
∂ ∂
∂ ∂

∂ ∂
+

∂ ∂

      (1.39) 

 

where 2  e   2ρε = + v  and the body forces have been dropped. As stated, eqn. (1.39) 

is a system of five PDEs with six unknowns. In order to be able to solve the system we 

need an extra relationship, one that relates the internal energy “e” to the density ρ  and 

pressure “P”. As discussed in sub-section 1.2.1, such a constitutive relationship comes 

from thermodynamics, or alternatively statistical mechanics, and goes under the name of 

an equation of state. For an ideal gas, eqn. (1.2) constitutes such an equation of state. 

 

 Notice that the system in eqn. (1.39) has a very interesting structure. It says that 

the flow variables change in time by responding to local, spatial variations in the flow 

variables themselves. By focusing on the continuity equation, we see that the mass 

density ρ  changes in response to the flux of mass given by   ρ v . A flux is formed by 

multiplying a density with a velocity. The flux of any quantity has dimensions of that 

quantity times a speed. This concept extends to momentum and energy densities and their 

fluxes. We also see that the momentum density and total energy densities change in 

response to fluxes of momentum and energy respectively.  

 

 Eqn. (1.39) is in conservation form. Let us study the consequences of having a 

conservation form. Consider a small three-dimensional cuboidal volume “V” and say that 

we integrate the continuity equation over that volume. See Fig. 1.4 where we denote the 
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upper and lower x-faces by A1 and A2 , the upper and lower y-faces by A3 and A4 and the 

upper and lower z-faces by A5 and A6 . Fig. 1.4 only labels the visible faces. We have 

 

( ) ( ) ( )
V

 v v  v           = 0
    

yx z dx dy dz
t x y z

ρρ ρρ ∂∂ ∂∂ + + +
 ∂ ∂ ∂ ∂ 

∫∫∫    (1.40) 

 

Integrating the above equation by parts or, equivalently, by using Gauss’s Law, we get 

 

1 2 3 4
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V A A A A
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     +  v      v    +  v      v   
 

                                                                                    +  v      v   
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ρ ρ ρ ρ ρ

ρ ρ

∂
− −

∂

−

∫∫∫ ∫∫ ∫∫ ∫∫ ∫∫

∫∫
6A

 = 0∫∫
           (1.41) 

Eqn. (1.41) makes it evident that the density integrated over the volume “V” is only 

changed by fluxes flowing in through the boundaries. Such a form for representing a PDE 

is called the flux form or the conservation form for the PDE. Similar conservative forms 

can be written for the momentum and energy equations. In the course of this book we 

will study hyperbolic PDEs, like the Euler equations above, that can admit discontinuous 

solutions. When such discontinuities develop, we lose our ability to precisely predict the 

structure of the flow within a volume that is being overrun by the discontinuity. In those 

situations, the conservation form of the equations, as shown by eqn. (1.39) and 

discretized by eqn. (1.41), continues to remain valid. As a result, if a conservative form is 

available for a PDE, there is a strong motivation to retain a discrete version of the 

conservation form in our numerical algorithms. 
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 We see that the density, velocities and pressure (or, alternatively, the internal 

energy density) are the physically meaningful variables for the Euler equations. We call 

these the primitive variables. The Euler equations assume their simplest form when they 

are written in primitive variables. Analytic manipulations of the Euler equations are 

almost always performed in primitive variables. Using eqns. (1.22), (1.29) and (1.36) we 

obtain evolutionary equations for these variables as 

 

( )

 =    

 v  P    = 0
  

D e   =  e + P    
D 

i

i

D
Dt

D
D t x

t

ρ ρ

ρ

− ∇

∂
+

∂

− ∇

v

v





        (1.42) 

 

As with eqn. (1.39), eqn. (1.42) can be written in a tensor notation which makes it 

possible to write the Euler equations in any geometry, see Aris (1989). Excellent 

introductions to fluid mechanics are available in texts by Landau and Lifshitz (2000), 

Batchelor (2000) and Clarke and McChesney (1976). The text by Courant and Friedrichs 

(1948) is a classic on the physics of supersonic flow and shock waves. 

 

 The Euler equations form a hyperbolic system and indeed that demonstration will 

be furnished later in this chapter. The primitive variables prove very useful when making 

that demonstration. We will show that eqns. (1.39), or equivalently (1.42), permit several 

families of waves to propagate. Some of those waves propagate with the fluid velocity 

whereas others propagate with the speed of sound relative to the local flow velocity. It is 

important to realize that these waves constitute features that propagate in the flow. We 

will see that the Euler equations can be discretized and evolved in time on a one, two or 

three-dimensional lattice of cuboidal cells as was done in eqn. (1.41). Such a lattice of 

cells is called a mesh or a grid. The individual cells are referred to as the zones of the 

computational mesh. It is important to realize that none of the significant flow features 

should propagate from one zone of the mesh to another in less than a timestep. A timestep 

is the discrete unit of time over which the solution that is present on the computational 
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mesh is evolved. To ensure the retention of all the significant information on the mesh, it 

makes intuitive sense that a flow feature should not propagate by more than one zone size 

in one timestep. This concept will be further developed in the next chapter. 

 

1.4) The Navier-Stokes Equations 

 

 The Navier-Stokes equations result from retaining the viscous and/or heat 

conduction terms. In conservation form they are obtained by drawing on eqns. (1.22), 

(1.28) and (1.34) to get 

 

( )

( ) ( )

( )( )

  +   v  = 0
  

v  + v v  + P    = 0
  
  +   P  v    v   + F  = 0
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+ −
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     (1.43) 

 

where 2  e   2ρε = + v  and the body forces have been dropped. As with the Euler 

equations, the equation of state helps close the system. The above equations can be 

written in primitive form by using eqns. (1.22), (1.29) and (1.34) to obtain 
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 =    

 v  P      = 0
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     (1.44) 

 

Comparing eqns. (1.43) and (1.44) to eqns. (1.39) and (1.42) we realize that the Navier-

Stokes equations retain all the same hyperbolic terms that were present in the Euler 

equations. However, they do have additional terms which change their character. The 

viscous and conduction terms have the property that they diffuse any crisp flow profile 
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that develops. In other words, they are represented by parabolic operators. As a result, the 

Navier-Stokes equations have hyperbolic and parabolic terms. Since the parabolic terms 

have the highest spatial derivatives, we say that the overall character of the Navier Stokes 

equations is parabolic. 

 

 Examination of eqns. (1.27) and (1.33) suggests that it ought to be possible to 

derive the viscous and heat conduction operators from first principles by using gas kinetic 

theory. In practice, the structure of these operators as well as the coefficients that go into 

defining them are determined by a combination of theory and experiment. The viscous 

tensor ijπ  is taken to be proportional to the deformation rate tensor in a fluid, denoted by 

ijD . The latter measures the extent to which local shearing motions are present in the 

flow. Thus we have 

 

( )
 v v 2         ;                 

  3
ji

ij ij ij ij
j i

D D
x x

π µ δ
∂∂

≡ ≡ + − ∇
∂ ∂

v    (1.45) 

 

Here µ  is the coefficient of shear viscosity and is usually determined experimentally 

though its value can be estimated from gas kinetic theory. Notice that ijD  is a traceless, 

symmetric tensor. An exercise at the end of the chapter shows that such a structure for 

ijD  is sufficient to ensure that the viscous terms always cause the internal energy and 

entropy to increase. Eqn. (1.45) is valid for a monoatomic gas where we do not expect 

isotropic compressions or rarefactions to contribute to the viscosity. In practical situations 

one needs an extra bulk viscosity term so that the viscous stress tensor is given by 

 

( )
 v v 2    +       

  3
ji

ij b ij
j ix x

π µ µ µ δ
 ∂∂  ≡ + − ∇    ∂ ∂   

v     (1.46) 

 

where bµ  is the coefficient of bulk viscosity. The thermal conduction vector condF  is taken 

to be proportional to the gradient of the temperature. We therefore have 
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  Tcond κ≡ − ∇F          (1.47) 

 

Here κ  is the coefficient of thermal conductivity. The parabolic nature of the thermal 

conduction operator is easily seen by inserting eqn. (1.47) in eqn. (1.44) and realizing that 

for static fluids it yields a heat conduction equation for the temperature. The parabolic 

nature of the viscous term can is also revealed by inserting eqn. (1.45) in eqn. (1.44) and 

simplifying the resulting expressions. 

 
 It is possible to make the transport coefficients intuitively obvious. Fig. 1.5 shows 

a shearing flow in a section of a channel. The x-velocity profile of the flow is shown on 

the left. We see that vx has a steep variation in the y-direction at the location of the shear, 

with the result that 2 2
xv y∂ ∂  is large. The momentum equation in eqn. (1.44) shows that 

this results in viscous stresses being applied to the x-velocity in the vicinity of the shear. 

The channel, along with the particles and their velocities, is shown in an idealized sense 

to the right. The fluid moves faster on the top and slower at the bottom of the channel. 

The middle of the channel is shown by the dashed line. We assume that the upper and 

lower walls of the channel are moving with the local velocity of the fluid. When a faster 

moving particle crosses over into the lower half of the channel and a slower moving 

particle crosses over into the upper half of the channel, as shown in Fig. 1.5, x-

momentum is exchanged across the dashed surface resulting in viscous momentum 
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transfer. The upper fluid loses a little bit of its x-momentum while the lower fluid gains 

some x-momentum. Substituting eqn. (1.45) in eqn. (1.44) we see that the viscous 

coefficient µ  should have units of density times a square of the length divided by time. 

Since the viscosity-driven momentum transfer is mediated by particle collisions, the only 

physical length and time scales that govern this process are given by the mean free path l  

and the collision time τ . Thus µ  must scale as 2 lρ τ . Using our study of the fluid 

approximation in Sub-section 1.2.1 we see that µ ρ  scales as Tw l  . Any classical fluid 

must, therefore, have some viscosity. 

 

 A shock, by the same token, can be envisioned as a faster moving stream of 

particles colliding with a slower moving set of particles as shown in Fig. 1.6. The x-

velocity varies along the x-direction and is shown in the plot on the top of that figure. At 

the location of the shock we have strongly compressive motion, i.e. xv x∂ ∂  assumes a 

large negative value. (The divergence of the velocity is often used in numerical codes as a 

diagnostic for the existence of a shock.) The one-dimensional channel along which the 

planar shock moves, known as a shock tube, is shown at the bottom. The dashed line 

shows the location of the shock. At the point of their interaction the streams 

interpenetrate over a short distance, of the order of a few mean free paths. This produces 

large viscous stresses at the location of the shock, resulting in substantial energy being 

imparted by the faster moving particles to the slower moving particles. From the upper 

panel in Fig. 1.6 we see that vx has a steep variation in the x-direction at the location of 

the shock, with the result that 2 2
xv x∂ ∂  is large. The momentum equation in eqn. (1.44) 

shows that this results in large viscous stresses being applied to the x-velocity in the 

vicinity of the shock, which is how the unshocked gas is slowed down at the shock. The 

pile up of molecules at the shock, just like the pile up of cars in a car crash, causes the 

density and internal energy of the shocked molecules to be higher than the corresponding 

variables of the unshocked molecules.  
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 The above two paragraphs have shown us that any shear layer or shock will have 

a finite thickness due to the operation of the non-ideal parabolic terms in the Navier 

Stokes equations. The Euler equations ignore these parabolic terms. Consequently, they 

can in principle support discontinuous solutions that have infinitely thin shear layers or 

shocks. The discussion above has shown, however, that any interpretation of these 

discontinuities that arise from the Euler equations has to rely on the conceptual 

underpinning provided by the Navier Stokes equations. 

 Similar considerations from the kinetic theory of gases also allow us to claim that 

V  C  κ µ where VC  is the specific heat at constant volume for the gas. An exercise at 

the end of the chapter illustrates this concept. 

 

1.5) Classifying and Understanding PDEs 

 

 The previous two sections have shown us that PDEs can take various forms which 

influence their function. It is, therefore, interesting to understand how a PDE can be 

analyzed with a view to understanding what it does. We do that in the next three Sub-

sections. The first Sub-section motivates our study. The second Sub-section formalizes 

our understanding by introducing us to the eigenmodal analysis of the Euler equations. 

The second Sub-section also introduces us to the concept of domain of dependence and 

range of influence for hyperbolic PDEs. The third Sub-section generalizes these ideas so 

that they may be applied to any hyperbolic PDE. 



 33 

 

1.5.1) Motivation 

 

 Let us motivate our study by understanding the behavior of simple, model PDEs. 

These can be thought of as arising from smaller portions of the PDEs that we have 

studied. For example, consider the following scalar PDE 

 

    + a  + b  = 0
   t x y
ρ ρ ρ∂ ∂ ∂

∂ ∂ ∂
        (1.48) 

 

which can be thought of as a special case of the continuity equation, eqn. (1.22), when the 

velocity is constant. Since the left hand side of eqn. (1.48) can be interpreted as a 

Lagrangian derivative, it is easy to realize that the above equation tells us that density 

features are being propagated, i.e. advected, with speeds “a” and “b” in the x and y-

directions respectively. We therefore do not need any further mathematical analysis to 

realize that eqn. (1.48) is hyperbolic. However, it is useful to find a formal way of 

demonstrating that this PDE is hyperbolic, with the hope that the process can be 

generalized to more complicated PDEs. Let us, therefore, try the formal solution 

 

( ) ( )       
0 1, ,  =  +  e x yi k x k y tx y t ωρ ρ ρ + −        (1.49) 

 

which consists of a constant part with a wave-like fluctuation. In other words, we 

improve our chance of proving that eqn. (1.48) is hyperbolic by positing a solution that 

has a wave-like character. Substituting eqn. (1.49) in eqn. (1.48) then gives us  

 

( ) ( ) ( )    a     b 
0 1   a +  b     ;      , ,  =  +  e x yi k x t k y t

x yk k x y tω ρ ρ ρ  − + − =    (1.50) 

 

The traveling wave nature of the solution is readily apparent. We see that only certain 

real values of “ω ” were allowed. Thus the PDE serves to restrict the wave-speeds of the 

wave-like solution that we substituted into it as our initial conjecture. The acceptable 



 34 

solutions that arise when a harmonic ansatz, like that in eqn. (1.49), is made are called the 

eigenmodes of the PDE. Thus in eqn. (1.50) the coefficient of 1ρ  is the eigenmode of the 

hyperbolic PDE. The acceptable values of the wave-speeds are called the eigenvalues of 

the hyperbolic PDE. 

 

 Now consider the temperature variation in a static, thermally conducting, two-

dimensional medium. From the last equation in eqn. (1.44) we realize that the 

evolutionary equation for the temperature is parabolic and is written as 

 
2 2

2 2

 T  T  T =   +  
   t x y

κ
 ∂ ∂ ∂
 ∂ ∂ ∂ 

        (1.51) 

 

If we now pattern a conjectured solution for the temperature after eqn. (1.49) we get 

 

( ) ( )       
0 1T , ,  = T  + T  e x yi k x k y tx y t ω+ −        (1.52) 

 

Substituting eqn. (1.52) into eqn. (1.51) then yields 

 

( ) ( ) ( ) ( )2 2        2 2
0 1 =       ;   T , ,  = T  + T  e x y x yi k x k y k k t

x yi k k x y t κ
ω κ

+ − +
− +    (1.53) 

 

We see that the PDE restricts “ω ” to imaginary values. Furthermore, eqn. (1.53) shows 

that the harmonic initial conditions decay as a function of time without any wave-like 

propagation. Thus eqn. (1.51) is parabolic with the coefficient of 1T  in eqn. (1.53) being 

the eigenmode of the parabolic PDE. 

 

 Having studied eqns. (1.48) and (1.51) in isolation it is now possible to see how 

they might be combined together to yield a scalar advection-diffusion equation as follows 
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2 2

2 2

      + a  + b  =    + 
     t x y x y
ρ ρ ρ ρ ρκ

 ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 

     (1.54) 

 

Systems of such equations are often used in computational biology to model the transport 

of chemicals in tissues. The chemicals might react with one another resulting in the 

inclusion of stiff source terms on the right hand side of eqn. (1.54) and yielding systems 

of advection-diffusion-reaction equations. Such equations play a very important role in 

chemo-taxis problems from mathematical biology. In such problems, the evolution of 

chemical concentrations at any location in a biological system depends on their values 

and their spatial gradients. 

 

1.5.2) Characteristic Analysis of the Euler Equations 

 

 We can now generalize the ideas that were developed in the previous Sub-section. 

The generalization in the case of hyperbolic PDEs is especially interesting. Thus let us 

consider the Euler equations. We suppress variation in the other two directions and only 

consider variations in the x-direction. To further simplify the analysis, let us restrict 

attention to variations in the density, x-velocity and pressure. Eqn. (1.42) can then be 

written in an elegant matrix notation as 

 

x

x x x

x

v 0
 1  v  + 0 v  v  = 0

P P
0  P v

t x

ρρ ρ

ρ

 
    

∂ ∂    
    ∂ ∂       Γ 

      (1.55) 

 

The 3×3 matrix in the above system is referred to as the characteristic matrix and the 

above system is often referred to as a 3×3 system.  

 

 It turns out that several of the wave-propagation properties of eqn. (1.55) can be 

understood by understanding the eigenvalues and eigenvectors of the characteristic 
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matrix. The eigenvalues of a characteristic matrix are also called its characteristic values. 

To that end, let us parody eqn. (1.50) for systems of equations by writing 

 

( )
( )
( )

0 1
 ( k x   t)

x x0 x1

0 1

,
v ,   v  + v  e 
P , P P

i

x t
x t
x t

ω

ρ ρ ρ
−

     
     =     

         

      (1.56) 

 

To understand eqn. (1.56) first realize that the characteristic matrix in eqn. (1.55) is not a 

constant but rather depends on the solution. Eqn. (1.56) then tells us that the variables 

that have been subscripted with a “1” make a small fluctuation about the original, 

physically realizable, constant state. This constant state has variables that are subscripted 

with a “0”. (To be physically realizable, the constant state should at least have positive 

values for density and pressure.) Consequently, the time derivative as well as the spatial 

derivative in eqn. (1.55) will be proportional to the vector ( )1 x1 1, v ,P Tρ . However, the 

terms in the 3×3 matrix in eqn. (1.55) will, for the most part, depend on the constant state 

given by the vector ( )0 x0 0, v ,P Tρ . Thus disregarding the small fluctuations, we can use 

the constant state to approximate the terms in the 3×3 matrix. In technical terms, we have 

linearized the hyperbolic system that was originally non-linear. Putting eqn. (1.56) in the 

linearized version of eqn. (1.55) gives us 

 

x0 0
1 1

x1 x0 x1
0

1 1
0 x0

v 0
1  v  +  k 0 v  v  = 0

P P
0  P v

i i

ρρ ρ
ω

ρ

 
    
    −             Γ 

     (1.57) 

 

Defining kλ ω≡  and realizing that it has units of speed allows us to write the following 

eigenvalue problem. 
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x0 0
1

x0 x1
0

1
0 x0

v 0
10 v  v  = 0

P
0  P v

λ ρ ρ
λ

ρ
λ

 −
  
  −         Γ − 

      (1.58) 

 

The determinant of the above characteristic matrix yields the characteristic equation 

which can in turn be solved for the eigenvalues. For the Euler system we see that the 

three permitted eigenvalues form an ordered set given by 

 

1 2 3 0
x0 0 x0 x0 0 0

0

 P = v   c     ;      = v     ;      = v   c     ;     c   λ λ λ
ρ
Γ

− + ≡   (1.59) 

 

Here 0c  is the sound speed in the gas, 1λ  is the eigenvalue corresponding to the left-

going sound wave, 2λ  is the eigenvalue corresponding to the entropy wave and 3λ  is the 

eigenvalue corresponding to the right-going sound wave. Fig. 1.7 traces out these three 

waves and their propagation in a space-time diagram for the case where x0v  is positive 

and smaller than the sound speed 0c  , i.e. for subsonic flow. (When x0 0v c>  we call the 

flow supersonic.) Because we only consider small fluctuations about a constant state, the 

waves propagate as straight lines in space-time. The curves that trace out the propagation 

of waves in space-time are called characteristic curves. In a more general situation, i.e. if 

the non-linearity inherent in the hyperbolic system is reintroduced, the characteristic 

curves need not be straight lines. 
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 Corresponding to each of the three eigenvalues in eqn. (1.59), the matrix in eqn. 

(1.58) admits three linearly independent right eigenvectors and a corresponding number 

of left eigenvectors. We can write out the right eigenvectors explicitly as 

 

0 0
1 2 3

0 0
2 2

0 0 0 0

1
 =  c     ;      = 0     ;      = c

 c 0  c
r r r

ρ ρ

ρ ρ

     
     −     
     
     

     (1.60) 

 

The right eigenvectors give us some very useful information about the waves that are 

supported in the fluid. We see that for a right-going sound wave, which corresponds to 

the eigenvector 3r  in eqn. (1.60), the ratios between the fluctuations in the density, x-

velocity and pressure must be given by 2
1 x1 1 0 0 0 0: v : P  = :c :  cρ ρ ρ  . We see, therefore, that 

an increase in the x-velocity in a right-going sound wave also causes a simultaneous 

increase in the density and the pressure. Thus sound waves are compressive waves, i.e. 

they propagate by introducing a sequence of alternating compressions and rarefactions in 

the gas, see Fig. 1.8. It is this fluctuating pressure that gives our ears the sensation of 

sound. Compressive waves are also referred to as longitudinal waves. In such waves the 

material motion is in the direction of wave propagation. Such waves should be contrasted 

with the transverse waves that propagate, say for instance, on a taut string. In transverse 

waves the material motion is orthogonal to the direction of propagation. Fluids do not 

have any tensional force between molecules. Consequently, they cannot support the 

propagation of transverse waves, though we will soon see examples of systems that can 

sustain transverse waves. By examining the second eigenvector in eqn. (1.60) we also see 

that the entropy wave only generates fluctuations in the density without causing changes 

in the x-velocity or pressure. In doing so, it causes a change in the entropy of the gas, 

hence its name. The entropy wave is also called a contact discontinuity because it can 

result in a jump in the density variable without having a jump in the pressure or the 

normal velocity. The reader can analyze the remaining, i.e. first, eigenvector in eqn. 

(1.60) to see that it is also a sound wave. 
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 The linear independence of the right eigenvectors is a very useful property 

because it ensures that any general, small fluctuation around any constant initial state of 

the fluid can be projected into the space of right eigenvectors, i.e. the eigenspace of the 

characteristic matrix is complete. To instantiate this using Fig. 1.7, if a small perturbation 

of any sort is introduced at ( ) ( ), 0,0x t =  then that perturbation can be viewed as a linear 

combination of right and left-going sound waves as well as an entropy wave. For 0t >  

the waves propagate away from the origin in Fig. 1.7 with amplitudes that are set by the 

initial perturbation and speeds that are given by eqn. (1.59). This is a very useful property 

and we will see later on that this property is very helpful in designing some very elegant 

schemes. When projecting variables into the right eigenspace of any matrix, it is very 

advantageous to have an orthonormal set of left eigenvectors. For the 3×3 Euler system, 

the orthonormalized left eigenvectors are given by 

 

1 2 3
2 2 2

0 0 0 0 0 0 0

1 1 1 1 1 = 0    ;    = 1 0    ;    = 0
2 c 2  c c 2 c 2  c

l l l
ρ ρ

     −
−     

     
 (1.61) 
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This completes our introduction of the eigensystem for the 3×3  Euler equations.  

 

 Let us now demonstrate exactly how a small perturbation propagates. Thus 

imagine an initial condition that is made up of a constant state plus a small Gaussian 

fluctuation as follows 

 

( )
( )
( )

2 2
0 1

x x0 x1 0 1

0 1

, 0
v , 0   v  + v  e  = V  + V  e 
P , 0 P P

x x

x t
x t
x t

ρ ρ ρ
− −

=     
     = =     

    =     

    (1.62) 

 

Thus 0V  in the above equation denotes the constant state and 1V  is the amplitude of the 

small Gaussian fluctuation. Notice that 1ρ , x1v  and 1P  can have any reasonably small 

values one desires and their ratios are not constrained. We can now project this initial 

state into the space of right eigenvectors by first obtaining the eigenweights. In other 

words, we wish to write 1 1 2 2 3 3
1V r r rα α α= + + , which we can do if we can find 1α , 2α , 

and 3α . The physical motivation for making this projection is that we know the dynamics 

of the eigenvectors, i.e. based on the Euler equations we know that each of the 

eigenvectors has a simple wave-like evolution in time. Thus the eigenweights are 

obtained by using the left eigenvectors as follows 

 

( ) ( ) ( )1 1 2 2 3 3 1 1 2 2 3 3
1 1 1 1=   V  ;  =   V  ;  =   V  which gives us Vl l l r r r= + +  α α α α α α  

           (1.63) 

 

The time evolution of the initial state in eqn. (1.62) can now be specified as follows 

 

( )
( )
( )

( ) ( ) ( )22 2
31 2

0 0 0
1 2 3

x x0 0 0
2 2

0 0 0 0 0

, 1
v ,   v  +  c  e  + 0  e  + c  e 
P , P  c 0  c

x tx t x t

x t
x t
x t

λλ λ

ρ ρ ρ ρ
α α α

ρ ρ

− −− − − −

         
         = −         

                 

 

           (1.64) 
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I.e. the initial Gaussian pulse propagates away as three Gaussian pulses with amplitudes 

given by the eigenweights and speeds given by the eigenvalues. (Our assumed 

linearization ensures that the waves propagate in a non-dispersive fashion. In other 

words, the group velocity is equal to the phase velocity, ensuring that the width of the 

Gaussian in this example is preserved as time evolves.) We see that eqn. (1.64) will 

remain valid as long as our linearization in eqn. (1.55) remains valid and the fluctuations 

remain small and smoothly varying. The situation is depicted in Fig. 1.9 where the left 

panel shows the propagation of the Gaussians when the flow is subsonic. The right panel 

shows the same thing as a space-time diagram. It tells us that a small fluctuation 

introduced at the origin only influences the shaded region that is bounded by the 

characteristic curves associated with the two extremal eigenvalues 1λ  and 3λ  . Such a 

shaded region is called the range of influence. It tells us that a perturbation introduced at 

a certain location can only influence that portion of space-time that lies within the range 

of influence associated with that location. 

 

 
 The Euler equations are strongly non-linear. However, as long as we accept the 

linearization in eqn. (1.55) and only consider very small fluctuations about a constant 
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state, we can gain yet another very interesting insight. Fig. 1.9 has shown us that each 

small localized fluctuation only influences a restricted region of space-time. Thus if there 

are small fluctuations seeded along the x-axis then we may well ask how much of the 

original information along the x-axis influences a given space-time point at some future 

time? Consider the point ( ),x t  with 0t >  in Fig. 1.10. Realize that information only 

travels at a finite speed in a hyperbolic system. As a result, only points along the x-axis 

that can send information to the point of interest can influence the dynamics at that point. 

We see, therefore, that we have to propagate the characteristics backward in time from 

the point of interest to find the domain along the x-axis that influences it. This domain, 

which is bounded by the two extremal characteristic curves, is called the domain of 

dependence. Within the context of our linearization, the characteristic curves are straight 

lines and so this is easy to do. The shaded region in Fig. 1.10 identifies the domain of 

dependence for the point ( ),x t  when the flow is subsonic. We see that the leftmost point 

in the domain of dependence for the point ( ),x t  is obtained by tracing the fastest 

characteristic curve back in time. Likewise, the rightmost point in the domain of 

dependence for the point ( ),x t  is obtained by tracing the slowest characteristic curve 

back in time. 

 
1.5.3) Generalized Definition of a Hyperbolic PDE 

 

 In this text we will take the Euler system as a prototypical hyperbolic system. The 

previous Sub-section has shown us that a study of the characteristic matrix of the Euler 
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system yields rich insights into its workings. It is, therefore, interesting to generalize 

those insights so that we may be in a good position to understand any hyperbolic system. 

 

 Several, although not all, hyperbolic systems can be written as an “M” component 

vector of conserved variables whose time-evolution is governed by similar vectors for the 

fluxes. Thus we can write any general system of conservation laws in a formal notation 

that will come handy later on as 

 

( ) ( ) ( ) ( )U  F U  G U  H U S Ut x y z
+ + + =       (1.65) 

 

Where “U” is the vector of conserved variables, “F”, “G” and “H” are flux vectors in the 

x, y and z-directions and “S” is the vector of source terms. For any such system we can 

always derive characteristic matrices “A”, “B” and “C” in the conserved variables so that 

we may write the above system as 

 

( )
( ) ( ) ( )

U  A(U) U  B(U) U  C(U) U S U    

F U G U H U
with   A(U)     ;   B(U)     ;   C(U)

U U U

t x y z+ + + =

∂ ∂ ∂
≡ ≡ ≡

∂ ∂ ∂

   (1.66) 

 

To provide an example, the (i,j)th element of the matrix A(U)  is given by ( )F U Ui j∂ ∂  

where ( )F Ui  is the ith component of the flux and U j  is the jth component of the vector of 

conserved variables. As we will see presently, the hyperbolic property can be formulated 

in terms of the eigenvalues and eigenvectors of characteristic matrices defined above. 

Note though that a PDE can be hyperbolic even if it cannot be expressed in conservation 

form. 

 

As with the Euler equations it often so happens that there is another set of “M” 

variables, called the primitive variables “V”, which help simplify the system of PDEs. 

When that happens, there exists an invertible Jacobian matrix U V∂ ∂ which can be used 
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to relate any fluctuation Uδ  to a fluctuation in the primitive variables Vδ  . Thus we 

have 

 

U VU  V     ;     V  U
V U

δ δ δ δ∂ ∂   = =   ∂ ∂   
      (1.67) 

 

The characteristic matrices and source terms in eqn. (1.66) can now be written in terms of 

the primitive variables as 

 

( ) ( )

( )

F U G UV U V UA(V)     ;   B(V)     ;  
U U V U U V

H UV U VC(V)     ;  S(V)  S(U)
U U V U

∂ ∂∂ ∂ ∂ ∂       ≡ ≡       ∂ ∂ ∂ ∂ ∂ ∂       
∂∂ ∂ ∂     ≡ ≡     ∂ ∂ ∂ ∂     

  (1.68) 

 

so that the hyperbolic system can be written in primitive form as 

 

( )V  A(V) V  B(V) V  C(V) V S Vt x y z+ + + =       (1.69) 

 

The system in eqn. (1.65) can usually be analyzed more easily if it is formulated in 

primitive variables. 

 

 Even when a conservation form is not available for a hyperbolic system, it can 

always be written in a form given by eqn. (1.69). The vector “V” has “M” components, 

making eqn. (1.69) an “M×M” system. We then say that eqn. (1.69) is a hyperbolic 

system if each of its characteristic matrices “A”, “B” and “C” admits “M” real 

eigenvalues and a complete set of “M” right eigenvectors. Furthermore, we require that 

all linear combinations of “A”, “B” and “C” with real coefficients should also have “M” 

real eigenvalues and a complete set of “M” right eigenvectors. The latter property ensures 

that waves can propagate in any direction, not just along the directions that are aligned 

with the x, y and z-coordinates. The fact that a complete set of “M” right eigenvectors is 

available ensures that an orthonormal set of left eigenvectors is also available. As in the 
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example with the Euler system in the previous Sub-section, this ensures that any one-

dimensional fluctuation can be projected into the space of right eigenvectors. 

Consequently, our mathematical definition ensures the important physical property that 

small fluctuations can at least be evolved forward for a short time in a dynamically 

consistent, wave-like fashion.  

 

 The previous Sub-section provided us with an extensive example drawn from the 

one-dimensional Euler system. It is interesting to make the connection between the Euler 

system and a general one-dimensional hyperbolic system. Ignoring the source term in 

eqn. (1.69), and retaining only the variations in the x-direction, we then have  

 

V  A V 0t x+ =           (1.70) 

 

where “A” in the above equation can be solution-dependent but is taken to be frozen at 

some physically realizable constant state 0V  so that we have ( )0A  A V≡ . This process 

of freezing the characteristic matrix can be carried out for any hyperbolic system even if 

it is initially non-linear and is referred to as linearizing the hyperbolic system. Eqn. (1.70) 

is analogous to eqn. (1.55). We then consider fluctuations about that constant state. The 

eigenvalues of the characteristic matrix can be written as an ordered sequence so that we 

have 

 
1 2 ... Mλ λ λ≤ ≤ ≤          (1.71) 

 

These eigenvalues are analogous to eqn. (1.59) for the Euler case. Analogously to eqns. 

(1.60) and (1.61) we can now find the right and left eigenvectors of “A”. Consequently, 

we have the mth right eigenvector of “A” which satisfies A  m m mr rλ=  and the mth left 

eigenvector of “A” which satisfies  Am m ml l λ=  for all m = 1,..,M . The definition of the 

next three matrices is purely formal but yields a very useful notation that is routinely used 

in the study of hyperbolic systems. Fig. 1.11 schematically illustrates the structure of 

these three matrices. First, let “R” be a matrix of right eigenvectors whose mth column is 
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given by mr . Because of the hyperbolic condition, “R” is invertible. Thus let “L” be the 

matrix of left eigenvectors whose mth row is given by ml . Second, let the left eigenvectors 

be orthonormalized with respect to the right eigenvectors so that we have   = L R I  where 

“I” is the identity matrix. ( If the eigenvalues are degenerate, we can always resort to 

Gram-Schmidt orthogonalization.) By defining our third matrix to be 

{ }1 2Λ diag , ,..., Mλ λ λ≡  we have 

 

A  =  Λ     ;     A  Λ     ;        A  = Λ    ;     A =  Λ R R L L L R R L=    (1.72) 

 

The first equation in eqn. (1.72) is usually hardest for the student to comprehend and we 

urge the reader to verify it explicitly for each eigenvector in the matrix “R”. I.e., go ahead 

and explicitly verify that the first column in A R  is just 1A r  ; then verify that the first 

column of  R Λ  is just 1 1 rλ  . Do the same for the remaining columns.  It is an expression 

of the fact that the columns of “R” consist of an ordered set of right eigenvectors of “A” 

where the ordering is consistent with eqn. (1.71), see Fig. 1.11. The second equation in 

eqn. (1.72) follows from a similar consideration of the left eigenvectors, also see Fig. 

1.11. The remaining two equations in eqn. (1.72) follow from the first two and the 

orthonormality of the left eigenvectors.  

 
 

 The dynamics, i.e. the time-dependent evolution, of the hyperbolic system in eqn. 

(1.70) is obtained by first assuming a constant state V0 along with small fluctuations V1 

about the constant state. The constant state satisfies eqn. (1.70) trivially by virtue of its 

constancy; eqn. (1.70) for the fluctuations becomes ( ) ( )1 1V  A V 0
t x
+ = . Consider the 

vector of eigenweights defined by 1   VW L≡  and take the matrix L to be a constant, 

consistent with our assumption of linearization. It is easiest to find a time-evolutionary 
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equation for the vector of eigenweights “W” and then relate it to the time evolution of V1. 

Toward that goal, left multiply eqn. (1.70) by “L” to get 

 

( )1 1V V   A   0                   + Λ  = 0t xL L R L W W
t x

∂ ∂
+ = ⇒

∂ ∂
    (1.73) 

 

Because Λ  is diagonal, each component of  + Λ  = 0t xW W  evolves independently of the 

other. Thus denoting the mth component of “W” by mw , we get an evolutionary equation 

for the mth eigenweight that is given by 

 

0    for 1,...,m m m
t xw w m Mλ+ = =        (1.74) 

 

The above equation gives us the useful insight that the eigenweight associated with each 

wave family propagates with the corresponding eigenvalue.  

 

 Say that we are given initial conditions at 0t =  that are specified by a general 

position-dependent vector ( )0 1V V x+ , where ( )1V x  is a very small fluctuation about the 

constant state 0V . We can define the spatial variation of its mth eigenweight at 0t =  by 

( ) ( )1  Vm mw x l x≡  . These eigenweights are analogous to eqn. (1.63). The mth 

eigenweight evolves according to eqn. (1.74) so that at a slightly later time 0t >  it is 

given by ( )m mw x tλ−  . The entire time-dependent solution at a slightly later time can 

now be written as 

 

( ) ( )0
1

V ,  = V  +   
M

m m m

m
x t w x t rλ

=

−∑        (1.75) 

 

The above equation should be compared to eqn. (1.64). In fact, this Sub-section closely 

mirrors the previous one, casting the development in general terms for any hyperbolic 

problem. Please note that in writing eqn. (1.75) we have implicitly assumed that the 
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system is not dispersive, i.e. the wave speed mλ  does not vary with the wavelength of the 

impressed fluctuations. For a non-linear hyperbolic PDE we have to assume a 

linearization around a constant state to obtain this non-dispersive property. When non-

linearities are included, eqn. (1.75) only holds for an infinitesimally short time after 0t =  

and we additionally have to assume that ( )1V x  is a smooth function. The theory leading 

up to eqn. (1.75) is important though because it is a very useful building block in many 

numerical schemes for solving hyperbolic PDEs. 

 

 As in the previous Sub-section, the extremal eigenvalues can be used to define the 

range of influence and domain of dependence for the PDE in space-time. The next 

several sections will give us numerous examples of PDEs, many of which have 

predominantly hyperbolic terms. 

 

1.5.4) Analysis of the Navier Stokes Equations 

 

 Section 1.5.2 showed us how the wave modes of the Euler equations can be 

analyzed. We have seen that the Navier Stokes equations have non-ideal terms which 

make them parabolic. The non-ideal terms, like the viscosity and thermal conduction 

operators, have second derivatives in space, which changes their character. For a general 

PDE, the character of the eigenmodes that it will support has to be analyzed on a case-by-

case basis. In this section we show how the eigenvalues and eigenvectors can be used to 

reveal the parabolic nature of the Navier Stokes equations.  

 

 As before, we restrict our focus to one dimension. We also assume that the 

coefficients of viscosity and thermal conduction are constant. A polytropic gas is also 

assumed, see eqn. (1.2). The density and x-velocity are our first two primitive variables 

and are governed by one-dimensional specializations of eqns. (1.22) and (1.29). The 

viscous tensor is given by eqn. (1.46) with the bulk viscosity set to zero. Because the flux 

of thermal conduction is written in terms of the temperature in eqn. (1.47), we prefer to 

use the temperature as our third primitive variable. Eqn. (1.37) gives us the evolution of 
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the temperature. The resulting one-dimensional equations for the evolution of density, x-

velocity and temperature then become: 
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(1.76) 

 

Analogous to eqn. (1.56), we linearize the above system about a constant state as follows 
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,
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x t
x t
x t
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      (1.77) 

 

Notice that the viscosity is quadratic in the velocity gradient for the third equation in eqn. 

(1.76). Consequently, after linearization, the viscosity does not contribute to that 

equation. As before, we define kλ ω≡ . When eqn. (1.77) is substituted in eqn. (1.76) 

the linearized system becomes  
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    Γ −
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   (1.78) 

 

As before, setting the determinant of the previous matrix to zero gives us the eigenvalues 

of the system. We see though that when the viscosity and conductivity are both non-zero, 

the equation for the eigenvalues is a cubic. While the cubic is easily solved by using a 
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symbolic manipulation package, we prefer to focus on the somewhat simpler case where 

0κ =  because it is equally instructive. The eigenvalues are now given by 

 

2 2
2 2 2 2

1 x0 0 2 x0 3 x0 02 2
0 0 0 0

4 2 4 2v c  k   k    ;   v     ;   v + c  k   k 
9 3 9 3

i iµ µ µ µλ λ λ
ρ ρ ρ ρ

= − − − = = − −  

           (1.79) 

The above equations show us that for a real value of the wavenumber “k”, the angular 

frequency “ω ” of the sound waves will have a real and imaginary part. From the real part 

of “ω ” we observe that the sound waves have become dispersive; i.e., the propagation 

speed depends on the wavenumber. This is a trend that we usually find when non-ideal 

terms are included. As the wavelength decreases, i.e. as the wavenumber increases, the 

viscous stresses begin to dominate. Eqn. (1.79) therefore shows that short wavelength 

sound waves propagate slower than long wavelength sound waves. When the wavelength 

becomes comparable to the mean free path of molecules in the gas, the waves stop 

propagating. More importantly, we observe that the above eigenvalues for the sound 

waves have an imaginary part. The imaginary part of “ω ” shows us that the waves in 

eqn. (1.77) decay in time due to the effect of the viscous stresses. The inclusion of 

parabolic terms in the system case is quite analogous to their effect in the scalar eqns. 

(1.51) and (1.54). 

 

 Realize from the above discussion that the fluxes for the Navier Stokes equations 

include gradients of the flow variables. Contrast this with the fluxes for the Euler 

equations which did not include such gradients. In order to generalize the idea, we can 

indicate that a system is parabolic by writing it as 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )U  F U  G U  H U F U, U  G U, U  H U, U S Ut ni ni nix y z x y z
+ + + + ∇ + ∇ + ∇ =  

           (1.80) 

We see that the non-ideal fluxes Fni  , Gni  and Hni  in general depend on the vector of 

conserved variables and its gradients. This renders the PDE parabolic, but only if the 

resulting system yields temporally decaying solutions on further analysis. 
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 In the most general situation, a PDE may have third or higher spatial derivatives 

of a physical variable. The dispersion and dissipation characteristics for such a system 

will then have to be studied on a case-by-case basis. It becomes difficult to provide 

general purpose numerical solution strategies for such situations. 

 

1.6) Incompressible Flow Equations 

 

 In several circumstances a fluid may be almost incompressible, i.e. the density is 

practically constant. For example, a liquid like water is incompressible to a very good 

approximation. Gases can also behave as if they are incompressible when they flow at 

speeds that are much smaller than their sound speed. In such situations, the role of sound 

waves is mainly to propagate rapidly and smooth out the density fluctuations that would 

otherwise arise. While such problems can indeed be solved by the Euler or Navier-Stokes 

equations, it is not economical to do so for the following reason. The numerical method 

has to capture the propagation of sound waves even though the only role of these waves 

is to ensure the incompressible nature of the flow. For such problems, capturing fast-

moving features, such as sound waves, only decreases the timestep in the computation 

thus making the overall computation more expensive. In such situations, it is very 

advantageous to resort to the incompressible approximation because the flow speed, and 

not the sound speed, limits the timestep in that approximation. We therefore formulate 

the equations for incompressible flow in the next paragraph. 

 

 Thus imagine a situation where the density does not vary in the Euler equations. 

The continuity equation then yields 

 

   = 0∇ v           (1.81) 

 

showing that we do not need an evolutionary equation for the density because the density 

is known. Recall that the propagation of sound waves requires density fluctuations. 

Consequently, when the density is set to a constant value, the sound waves cease to be 
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part of the wave structure that is supported by our equations. The incompressible 

approximation instead provides a constraint on the velocity field, see eqn. (1.81). The 

momentum equation becomes 

 

 1 +     =   P
 t ρ

∂
∇ − ∇

∂
v v v         (1.82) 

 

Taking the divergence of the above equation and using the incompressibility condition 

from eqn. (1.81) then yields an elliptic equation for the pressure 

 

( )2  P =       ρ∇ − ∇ ∇v v          (1.83) 

 

Thus the above equation tells us that the pressure satisfies an elliptic equation whose right 

hand side depends on the flow velocity. The left hand side of eqn. (1.82) forms a 

hyperbolic system with the gradient of the pressure providing a source term. Since the 

density is constant and the pressure is specified from eqn. (1.82) there is no particular 

need to evolve the thermal energy equation if one is solving a fluid dynamics problem 

without any sources of heat. Note, however, that depending on the boundary conditions, 

eqn. (1.83) may only provide a solution for the pressure up to a constant. If the problem 

involves reactive flow, where chemical reactions can generate energy, the internal energy 

equation can be evolved in conjunction with eqn. (1.82). In the simplest form of the 

incompressible flow equations discussed here, the energy equation drops out of the 

equation set and eqns. (1.82) and (1.83) are the only equations that need to be evolved. 

 

1.7) The Shallow Water Equations 

 

 The shallow water equations arise when treating geophysical flows in lakes and 

oceans. They have also been used for predicting the formation of tsunamis. The water in 

the oceans constitutes a thin layer of incompressible fluid on the earth’s surface. Thus it 

can be treated as a two-dimensional problem, which we study in the xy-plane for 

simplicity. Fig. 1.12 shows a schematic diagram showing the flow of water waves in a 
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lake with a spatially varying bottom. Because the problem is incompressible, we can 

ignore the energy equation for the simplest version of this problem. The equations have 

also been formulated in coordinate systems that can be mapped to a sphere but we keep 

things simple here. The bottom of the ocean varies in the xy-plane so that we represent 

the bottom as a two-dimensional surface ( ) h ,bottomz x y= −  which does not change with 

time. The top of the ocean’s surface is of interest to us so that we want to keep track of 

( ), ,topz x y tη=  which is allowed to change with time. The details of the z-velocity are 

not important to us though so that one can set the Lagrangian derivative of the z-velocity 

to zero along with suitable considerations for the z-velocity at the upper and lower 

boundary. This can be intuitively understood by realizing that the ebb and flow of tides in 

the ocean is a slow process and does not generate an appreciable z-velocity. As a result, 

the z-momentum equation drops out of the set of equations being evolved. Consequently, 

we are only interested in evolutionary equations for the x and y-velocities. Gravity acts in 

the z-direction with the result that there is a gravitational potential associated with the 

column of fluid. In geophysics, ( ) ( ) ( )( ), , , , ,x y t g x y t h x yφ η= + , which is referred to as 

the geopotential, becomes one of the variables of interest and an evolutionary equation 

can be derived for it. Here “g” is the gravitational acceleration. The details of the 

derivation can be found in the text by Faber (1995) and are not repeated here. The 

shallow water equation set can be written in flux conservative form as 
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   (1.84) 

 

The above equation shows that when the bottom of the lake or ocean is changing, i.e. 

when we have varying bathymetry, source terms are inevitable and we will have to 

develop methods that incorporate them.  
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 The shallow water equations can be written in primitive form as 
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  (1.85) 

 

The x-directional shallow water equations form a hyperbolic system with three waves. 

One of the waves propagates with the flow velocity xv  while the other two propagate 

with speeds given by  xv φ± . The waves that propagate with speeds φ±  relative to 

the fluid velocity are called gravity waves because they are driven by the hydrostatic 

pressure resulting from gravity.  

 

1.8) Maxwell’s Equations 

 

 The equations of electrodynamics, also known as Maxwell’s equations, govern the 

evolution of electric and magnetic fields in response to charges and currents. Their 

numerical solution is very useful when dealing with a diverse range of technological 

problems. These problems include nonlinear optics which is very useful when 

transmitting information over fiber optic cables. Numerical solution of Maxwell’s 

equations is also very important in electromagnetic scattering, which is used in designing 

stealth aircraft. An extensive discussion of Maxwell’s equations is given in the text by 

Jackson (1998).  

 

 In Gaussian units Maxwell’s equations can be written as 
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        (1.86) 

 

Here “c” is the speed of light in vacuum. We see that the charge density ρ  and the vector 

of current density J  provide the right hand side for these equations. As written, we see 

that only the first two equations for the magnetic induction vector B and the electric 

displacement vector D  are evolutionary whereas the magnetic field vector H  and 

electric field vector E  need further specification. The first, second and third of the 

equations in eqn. (1.86) are popularly referred to as Faraday’s law, the generalized 

Ampere’s law and Gauss’s law respectively. In vacuum we have =B H  and =D E  . In 

material media the three dimensional vectors B  and H  can be related via a 3×3 tensor 

which may be non-linear. Similarly, the three dimensional vectors D  and E  can also be 

related via a 3×3 tensor which may also be non-linear. In such situations Maxwell’s 

equations can develop strong non-linearities. We restrict ourselves to simple material 

media where the following simple constitutive relationship holds 

 

 =        ;      =  µ εB H D E         (1.87) 

 

where µ  is the magnetic permeability and ε  is the permittivity and both are often 

assumed to be constant scalars, for the sake of simplicity. In general, µ  and ε can be 

rank two tensors. 

 

 With the previous constitutive relationships, the first two of Maxwell’s equations 

become 
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We see from eqn. (1.88) that we can now evolve these equations for the electric and 

magnetic fields. However, we have also to pay attention to the latter two equations in 

eqn. (1.86). In particular, the magnetic field evolves according to    = 0∇ B  which 

means that the magnetic field starts off divergence-free and remains so forever. In other 

words, the components of the magnetic field are not unconstrained and, in fact, they have 

to satisfy a divergence-free constraint. Much attention has been devoted to satisfying this 

constraint in numerical codes, see Yee (1966). However, an alternative viewpoint has 

been to permit the divergence of the magnetic field to develop and to then sweep it out of 

the domain of interest using a modified form of the Maxwell’s equations, see Munz et al. 

(2000). 

 

 A few other points are worth making. First, in conducting media, the current 

density can be related to the electric field via a constitutive relation σ=J E  where the 

conductivity σ  is taken to be a constant for the sake of simplicity. Second, while the 

electric field is a vector, the magnetic field is a pseudovector. Amongst other things, this 

influences the selection of boundary conditions. The boundary conditions that are used in 

treating Maxwell’s equations can be quite different from those that are used in fluid 

dynamics and it is best to look up Jackson (1998) for details on boundary conditions. 

Lastly, when treating problems involving electromagnetic scattering it is traditional to 

split the waves into an incoming part, which is known, and an outgoing part, which has to 

be evolved. For such problems, the incoming part contributes further terms to the right 

hand side of eqn. (1.88), see Hesthaven and Warburton (2002). 

 

 Despite the above-mentioned complexities that one has to pay attention to, eqn. 

(1.88) is simple because it describes a linear system. Thus one does not need to deal with 

any of the difficulties associated with non-linearities. We can now study the x-directional 
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propagation of waves by writing eqn. (1.88) without source terms in a form that makes its 

characteristic matrix explicit. We have 
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   (1.89) 

 

The eigenvalues reveal a set of four waves, two of which propagate to the right with 

speed c εµ  and the other two propagate to the left with speed c εµ− . Notice, 

however, that two of the eigenvectors of eqn. (1.89) cannot be constrained simply by 

appeal to hyperbolic systems theory. The latter two non-evolutionary equations in eqn. 

(1.86) have to be drawn on to constrain these terms. It is also this freedom that is 

exploited in modifying Maxwell’s equations so that any divergence that builds up is 

convected away. 

 

 The propagating eigenvectors from eqn. (1.89) also have a very interesting 

structure. Without writing them out explicitly, it is worth mentioning that the electric and 

magnetic fields remain orthogonal to each other and also to the direction of propagation. 

I.e. electromagnetic waves are strictly transverse waves. See Fig. 1.8 for a definition of 

transverse waves and Fig. 1.13 for an illustration of a rightward-propagating 

electromagnetic wave. 
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1.9) The Magnetohydrodynamic Equations 

 

 Gases that are heated to high enough temperatures become fully or partially 

ionized. Examples include terrestrial fusion experiments, the interiors or stars, the solar 

wind and the magnetospheres of planets and stars. In many such situations, the object is 

large enough and the resistivity small enough that magnetic fields can thread through the 

ionized plasma. The magnetic field vector, which we denote here as B , then becomes a 

full participant in the fluid’s dynamics. Because the charged particles spiral around the 

magnetic field lines, the matter and the magnetic field often become tightly coupled. 

Various approximations then become possible, often depending on the level of isotropy 

in the pressure tensor. One of the simplest and most well-studied approximations is based 

on assuming an isotropic pressure tensor and is called magnetohydrodynamics (MHD). 

Because the MHD equations are of such great importance in nuclear fusion research, 

plasma physics, solar physics, space physics and astrophysics, we will present them here. 

While there are several excellent texts on MHD in each of these disciplines, the text that 

is closest to a hyperbolic systems approach is the one by Jefferey and Taniuti (1964). 

 

 When a plasma is treated in the MHD approximation, it is still represented as a 

fluid. Thus it should continue to have a continuative equation, eqn. (1.22). The first law 

of thermodynamics also continues to hold so that the internal energy equation, at least as 

it is represented by eqn. (1.36), also continues to hold. Remember though that thermal 

conduction can assume a considerably more complicated form in a dilute plasma. We 

assume that we are treating the plasma on large enough length scales that the plasma is 

electrically neutral in its rest frame. I.e., all local charge imbalances are rapidly 

neutralized. We also assume that we wish to study the plasma on large enough time 

scales so that the displacement current, the t∂ ∂D  term in eqn. (1.86) is negligible. 

Together these two assumptions yield the MHD approximation. We will see that the 

MHD approximation implicitly results in assuming that in the limit of infinite 

conductivity the electric field is effectively zero in the plasma’s rest frame. Because 

magnetic fields are strongly coupled to the fluid, which can indeed move, there will be a 

motional EMF. Consequently, the momentum equation will also be susceptible to body 
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forces stemming from the Lorentz force ( ) c×J B . Here J  is the current density and “c” 

is the speed of light. Modifying eqn. (1.29) to include the Lorentz force then gives us the 

momentum equation in the MHD approximation as 

 

( ) 1  =   P +  + 
 

D
D t c

ρ π− ∇ × ∇
v J B



       (1.90) 

 

Here the ith component of π∇


 is given by j ijπ∂  . We will see shortly that there is a more 

convenient form for the above equation once the MHD approximation is utilized. 

 

 We also need an evolutionary equation for the magnetic field. To that end, we 

modify Maxwell’s equations consistent with our previous description of the MHD 

approximation to get 
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         (1.91) 

 

All we need to close the system formed by eqns. (1.90) and (1.91) is a constitutive 

relation for the current J  . In the fluid’s rest frame, such a relation is provided by Ohm’s 

law which says that / / σ=J E . Here the primed quantities are the current density and 

electric field in the fluid’s rest frame. The non-relativistic transformation of the current 

density /J  and electric field /E  from the fluid’s rest frame to a frame where the fluid 

moves with a velocity v  can then be written as 

 

( )/ / 1     ;       + 
c

= = ×J J E E v B        (1.92) 

 

Ohm’s law, written in terms of the variables in an Eulerian frame of reference, then gives 
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where the second equation from eqn. (1.91) was used to obtain the last equation in (1.93). 

In the ideal limit, where the conductivity is infinite, we see that the electric field is just 

the motional term ( ) c− ×v B  . Consequently, in that same limit, the electric field in the 

plasma’s rest frame is exactly zero. Substituting the above electric field into Faraday’s 

law , the first equation in eqn. (1.91), then yields 
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which is the evolutionary equation for the magnetic field in a resistive plasma. 

 

 Now that the equations associated with the MHD approximation have been built 

up, we can obtain a further simplification of the momentum equation, eqn. (1.90). This is 

achieved by simplifying the Lorentz force term as follows 
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The momentum equation then yields 
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      (1.96) 

 

The above equation shows us that the magnetic energy density, 2 8πB , also contributes 

as a pressure term. However, the term ( )  4π∇B B  has the structure of a tensional 

term. Thus the magnetic fields can also exert tension forces along their length, quite the 

way a taut rubber band can. Fig. 1.14 illustrates how magnetic fields in a plasma can 
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provide pressure and tensional forces. Just as transverse waves can be set up in a taut 

rubber band, we can show that transverse waves, known as Alfven waves, can be set up in 

a magnetized plasma. A problem at the end of this chapter gives a mechanistic way of 

deriving the tension in the magnetic field and, from it, the speed of Alfven waves. In due 

time we will show that the Alfven speed can also be derived from rigorous characteristic 

analysis. 

 
 Eqns. (1.22), (1.96), (1.36) and (1.94) constitute the full set of MHD equations in 

primitive form. Without the viscous and resistive terms they form the equations of ideal 

MHD. The ideal MHD equations can be written as  
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The above equations can be cast into a form that looks very much like a conservation 

law. Here ε  is the total energy density and “P” is the pressure. For gas with a polytropic 

index Γ  we get 

 



 62 

( )
2

21 P = e +   +     with      e  
2 8 1
ρ

π
ε ≡

Γ −
Bv      (1.98) 

 

which shows that the magnetic energy density also contributes to the total energy density. 

The divergence-free constraint,    = 0∇ B , also holds and Faraday’s law, i.e. the last 

equation in eqn. (1.97) ensures that if it holds initially, it will hold forever. 

 

 The ideal MHD system can be shown to be hyperbolic. Its x-directional restriction 

yields seven waves: a left-going fast magnetosonic wave, a left-going Alfven wave, a 

left-going slow magnetosonic wave, an entropy wave, a right-going slow magnetosonic 

wave, a right-going Alfven wave and a right-going fast magnetosonic wave. The 

magnetosonic waves are longitudinal waves and cause compressions and rarefactions in 

the plasma. The Alfven waves are transverse waves and propagate without causing any 

change in the plasma density. The divergence-free constraint,    = 0∇ B , ensures that the 

x-component of the magnetic field does not evolve when variations are restricted to the x-

direction. We, therefore, see that the presence of a constraint reduces the number of 

waves in both Maxwell’s equations and the MHD equations. 

 

 One can also find eigenvectors associated with the eigenvalues of the MHD 

system. The eigenvectors prove to be very valuable for numerical work. However, it is 

worth pointing out that under certain conditions the eigenvalues can become degenerate. 

In such situations the eigenvectors provided in Jefferey and Taniuti (1964) are known to 

become singular, diminishing their value in numerical work. With an appropriate 

normalization, Roe and Balsara (1996) have shown that the eigenvector degeneracy can 

be rectified. As a result, powerful numerical methods have been developed for numerical 

MHD. 

 

1.10) Flux Limited Diffusion Radiation Hydrodynamics 

 

 There have been attempts to treat the radiation field that interacts with matter as a 

fluid that is made up of photons, leading to radiation hydrodynamics, see texts by 
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Mihalas and Wiebel-Mihalas (1999) and Castor (2004). The challenges inherent in 

formulating radiation hydrodynamics stem from the fact that in most systems of interest 

the photons can have a substantially longer mean free path than the atoms. In the 

radiation hydrodynamic equations, the radiation pressure tensor is obtained by taking the 

second moment of the radiation field, just as the gas pressure is obtained by taking the 

second moment of the distribution of material particles. For gases the small mean free 

path makes it easy to assume that the gas pressure is isotropic and to relate it to the other 

thermodynamic variables, leading to a closure in the Euler equations. Because the 

photons often do not have a small mean free path, the radiation pressure tensor ceases to 

be isotropic and it becomes difficult to relate the radiation pressure tensor to the other 

radiation variables. In other words, there is a difficulty in obtaining closure for the 

radiation hydrodynamics equations.  

 

 The flux limited diffusion approximation does not solve the above-mentioned 

problem. However, it does make the equations simpler and more tractable. As its name 

suggests, it works best when the photons diffuse through the material particles, i.e. when 

the photon mean free path is small compared to the system being studied. This limit is 

referred to as the optically thick regime and usually obtains when the matter density is 

large enough to obstruct the free streaming of the radiation. However, in many systems of 

interest, such as the atmosphere of a star, the matter density can transition over several 

orders of magnitude. Consequently, the photons begin to stream freely when the matter is 

not dense enough to hold them down. This limit, where the mean free path of the photons 

becomes comparable to or larger than the size of the system being studied, is called the 

optically thin regime. The flux limited diffusion approximation is certainly not valid in 

the optically thin regime. However, there are several systems where there is a great 

interest in understanding the diffusion of radiation in regions that are optically thick. In 

such systems the only requirement one might make for situations where the matter 

becomes optically thin is that the representation of the radiation field should graciously 

break down without doing any damage to the denser regions that are indeed of scientific 

interest. The flux limited diffusion approximation is designed to help us out in such 

situations. The utility of the approximation stems from the fact that there exist several 



 64 

systems where the point of scientific interest conforms to its limitations. A modern 

derivation of the flux limited diffusion radiation hydrodynamics has been provided in 

Krumholz et al. (2007) and we will not repeat it here. We simply state the equations with 

explanations. 

 

 The flux limited diffusion approximation consists of asserting that the radiation 

energy density, defined by “E”, is the primary quantity of interest. To define an equation 

that governs the dynamics of the radiation field one would, of course, need to define a 

radiation flux, labeled “F”, as well as a radiation pressure tensor, represented by “P”. The 

philosophy underlying the flux limited diffusion approximation is that the radiation flux 

in a fluid’s rest frame can be written as a gradient of the radiation energy density. 

However, photons that are trapped by a dense parcel of gas can also be advected along by 

the gas velocity v , providing another component to the radiation flux when it is 

measured in a frame that is not comoving with the fluid. Thus the flux vector is written as 

 

0

     E +  E +   
R

cλ
κ

= − ∇F v v P        (1.99) 

 

Here “c” is the speed of light and 0Rκ  is the Rosseland mean opacity and scales as the 

reciprocal of a mean free path for the photons. The pressure tensor P and the 

dimensionless quantity specified by the flux-limiter λ  have yet to be explained. 

Obtaining the symmetric, 3×3, radiation pressure tensor P from a scalar quantity 

associated with the radiation energy density E is a precarious business because it consists 

of extracting six pieces of information from one piece of information. The flux limiter λ  

tries to codify our best hunches for making this transcription. Thus for an optically thick 

medium we wish to have 1 3λ → whereas for an optically thin medium we want 1λ → . 

The Levermore and Pomraning (1981) flux limiter achieves this by setting 

 

0

 E1 1coth  R      ;    R = 
R R  ER

λ
κ
∇ = − 

 
      (1.100) 
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The only way to build a second rank radiation pressure tensor from a scalar is to use the 

gradient of the radiation energy density and assemble a physically suitable expression. 

This was done by Levermore (1984) to get 

 

( ) ( ) 2 2
2 2 2

E E =  1 R   + 3 R 1     ;   R    +  R   ;    =  
2 E

λ λ ∇
− − ⊗ = −   ∇

P I n n n  (1.101) 

 

Eqns. (1.99) to (1.101) lay out the approximations that are inherent in the flux limited 

diffusion approximation. 

 

 Now that we have expressions for the radiation flux and pressure tensor in terms 

of the radiation energy density, we are in a position to write out the evolution equations 

for the hydrodynamic variables as well as the radiation energy density. Thus we have 
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           (1.102) 

Here 0Pκ  is the Planck mean opacity and scales as the reciprocal of a mean free path for 

the photons and ( )4B =  a  T 4Rc π  is the frequency-integrated Planck function. The 

 Eλ ∇  source term in the momentum equation specifies the force imparted to the fluid by 

the radiation. The term ( )23 R E v 2i−  on the left hand side of the radiation energy 

equation represents the advective flux of radiation energy. The first term on the right 
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hand side of the radiation energy equation is a divergence of 0  E Rcλ κ∇ . As a result, 

0  E Rcλ κ∇  is the diffusive flux of radiation energy and its divergence gives us the 

diffusion of radiant energy through a material medium. The source term 

( )0 4  B   EP cκ π −  in the two energy equations shows how the temperature of the 

radiation field and matter come into equilibrium. The source term 

( )0 0 2   1    EP Rλ κ κ − ∇v   in the two energy equations specifies the work done by the 

radiation as it diffuses through the gas. The term proportional to 0 EP cκ  in the two 

energy equations represents a relativistic work term and pertains to the boosting of the 

flux from the comoving frame to the frame in which the dynamics is viewed. As one can 

see, the source terms in the two energy equations are equal and opposite, ensuring that 

the total energy is conserved. Except for the source terms we also see that the 

evolutionary equation for the radiation energy density is in a flux conservative form, 

which is very useful for its numerical solution.  

 

1.11) The Radiative Transfer Equation 

 

 The previous section has shown that it is possible to come up with an adequate 

treatment for radiation when photons diffuse through a medium. But there are several 

areas of science when flux limited diffusion might become a particularly inadequate 

approach for treating radiation. Examples include combustion physics, controlled 

thermonuclear fusion and astrophysics. In such problems the photons can have long path 

lengths in some parts of the matter. If the matter is tenuous, the radiation can propagate 

unimpeded over long, straight lines. The medium in which the photons propagate may 

not be homogenous or isotropic with the result that the direction of propagation of 

individual rays at any point does become important. Furthermore, photons can be 

absorbed by the medium, resulting in an absorption opacity. The medium can also emit 

photons, especially if it is sufficiently hot. Photons can also scatter off the atoms that 

make up the medium. Thus the physics of absorption, emission and scattering has to be 

adequately represented in our governing equations. The text by Modest (2003) shows that 

there is not a single method for treating the radiation field that is superior to all others, i.e. 
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each method for radiative transfer has its advantages as well as its drawbacks. We will 

not catalogue alternative methods here. Instead we will catalogue the discrete ordinates 

method which was first formulated by Chandrasekhar (1950) for describing radiative 

transfer. It was later developed by Lathrop and Carlson (1965, 1966) within the context 

of neutron transfer problems and the numerical solution of the Boltzmann equation, thus 

demonstrating its versatility. We will describe the discrete ordinates method here as it 

pertains to radiative transfer. 

 

 The radiative transfer equations in moving media have been written out in their 

most general form by Mihalas and Klein (1982). We specialize them to a static medium 

for simplicity. At any given location “x” we are interested in the amount of radiation that 

propagates in an angular direction Ω  , which we refer to as an ordinate direction. The 

ordinate direction is a unit vector. We are actually interested in the radiant energy that 

propagates in an infinitesimally small solid angle dΩ  that is centered around the 

direction Ω . Radiation is usually emitted or absorbed over a spectrum of frequencies ν  

so we say that we are interested in an infinitesimal range of frequencies dν  around the 

frequency ν . We then say that the amount of radiant energy propagating per unit time 

through an infinitesimal area dA  that is orthogonal to Ω  (and in the previously specified 

range of frequencies) is given by ( ), , ,    I t d dA dν νx Ω Ω . The function ( ), , ,I tνx Ω  is 

called the radiation intensity. Fig. 1.15 illustrates a vertically stratified atmosphere, 

shown by a grayscale that is varying in the vertical direction. The atmosphere could 

correspond to that of a star or a planet. Radiation usually propagates through such 

atmospheres. The arrows schematically depict the different ordinates that contribute to 

the radiation intensity at any point of interest. Because the magnitude of a photon’s 

momentum is proportional to its frequency, and also because its direction is specified by 

Ω , we see that the radiation intensity is analogous to a distribution function except that it 

applies to photons instead of particles. The evolution equation for the radiation intensity 

is often referred to as the radiative transfer equation. It is entirely analogous to the 

Boltzmann equation and is given by 
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           (1.103) 

 

Here “c” is the speed of light, ( ), , tκ νx is the absorption opacity, ( ), , tσ νx  is the 

scattering opacity , ( )/,Φ Ω Ω  is the scattering phase function and ( )( )T , ,bI t νx  is the 

blackbody intensity and depends on the temperature ( )T , tx . Eqn. (1.103) holds for each 

ordinate of interest and for each range of frequencies that are relevant to the scientific 

problem. The left hand side of the above equation is a Lagrangian derivative and clearly 

shows the hyperbolic character of the radiative transfer equation. The terms on the right 

hand side of eqn. (1.103) can be thought of as source terms with interesting physical 

interpretations. A medium at a finite temperature emits photons and the blackbody 

intensity characterizes the tendency of the medium to emit photons. The absorption 

opacity is a measure of the tendency of the material medium to absorb photons while the 

scattering opacity relates to the rate at which photons get scattered by the medium. Just as 

photons get scattered out of the ordinate Ω  of interest in eqn. (1.103), there are other 

photons that get scattered into this ordinate from several different directions. The integral 

on the right hand side of eqn. (1.103) is a measure of that process. In that integral, the 

scattering phase function ( )/,Φ Ω Ω  quantifies the tendency of the medium to take a 

photon that is propagating in the direction /Ω  and scatter it into the direction of interest, 

given by Ω . Notice that the temperature of the medium depends on the nature of the 

radiation field that it experiences. Likewise, the absorption and scattering opacities can 

depend on the medium’s chemical or atomic composition, its temperature as well as the 

radiation field. As a result, the radiative transfer equation is highly non-linear and 

extremely difficult to solve in its entirety. Judicious simplifications are, therefore, highly 

desirable. 
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 One possible simplification consists of realizing that the speed of light is much 

faster than the speed at which material objects move. Thus photons can propagate 

through the object several times and establish radiative equilibrium. Consequently, we 

will only be interested in the steady state version of eqn. (1.103), i.e. the time dependence 

can be dropped. The radiation field can also span a large range of frequencies. However, 

radiation that interacts strongly with matter can be shown to take on a frequency 

distribution that is given by the Planck function with a temperature that is characteristic 

of the matter it interacts with. We cannot always guarantee that the radiation interacts 

strongly with the matter but, as a working ansatz, we can integrate eqn. (1.103) over a 

small number of bins in frequency space. A more extreme assumption consists of 

integrating eqn. (1.103) over the entire range of frequencies. This assumption is called the 

gray approximation and is indeed used quite frequently. Since photons can propagate in 

any direction, there are an infinite number of ordinates in eqn. (1.103). The discrete 

ordinates method consists of picking a special, finite set of favored directions for the 

ordinates. The ordinates are usually chosen so that several of the lower moments of the 

radiative transfer equation are exactly represented. Fiveland (1991) and Balsara (2001) 

provide several useful quadrature sets. A quadratre set is usually labeled by an integer 

“N” which yields a set of ( )2N N +  ordinates ( ){ }| 1,..., 2i i N N= +Ω . The method of 

discrete ordinates methods is, therefore, also known as the NS  method. Along with the 

quadrature set, one is supplied a set of weights ( ){ }| 1,..., 2iw i N N= +  so that integrals 

appearing on the right hand side of eqn. (1.103) can be performed by using the weights. 

The radiative transfer equation is then discretized as 
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 (1.104) 

 

Notice that eqn. (1.104) represents a set of ( )2N N +  equations for each frequency bin 

centered around ν . The above equations are solved with boundary conditions that are 

tailored to the physical properties of the material boundary. We will learn more about 

solution techniques for the NS  method later in this book. 

 

1.12) The Equations of Linear Elasticity 

 

 The easiest way to get introduced to the equations of linear elasticity is to hold 

one end of a reasonably rigid spring and set it in oscillation. By stretching the spring 

along its long axis and releasing it abruptly, we see that we can set up longitudinal 

oscillations in the spring. In an idealized, infinite spring, these oscillatory waves can be 

made to propagate to the left or to the right. When the spring is stretched, Hooke’s law 

tells us that the restoring force is proportional to the extent by which the spring is 

stretched. As the spring is stretched, quite literally, the bonds between the atoms in the 

spring are also deformed. As long as the bonds remain intact, i.e. the spring does not 

break (or fracture), we will obtain a restoring force, suggestively called the stress, which 

is proportional to the deformation, suggestively referred to as the strain. The amount by 

which the atoms in a solid are stretched or compressed relative to one another has a 

technical name called the strain. Fig. 1.16b shows a solid lattice where the atoms are 

undergoing compression; the initial lattice is shown in Fig. 1.16a for comparison 

purposes. Hooke’s law simply asserts that this strain sets up a restoring force between the 

atoms, and this restoring force also has a technical name; it is called the stress.  
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 Notice that the spring in our example also has two directions that are transverse to 

its long axis. By plucking the spring in either of these two transverse directions, we can 

also set up wavelike oscillations in the spring. Keeping Fig. 1.8 in mind, realize that these 

are transverse oscillations. In an idealized, infinite spring, these transversely oscillating 

waves can be made to propagate to the left or to the right. Because we have two 

transverse directions, we realize that we have four transversely polarized waves. The 

amount of restoring force provided by the spring in response to a transverse deformation 

is proportional to the amount of the deformation. As before, the bonds between the atoms 

that make up a solid can also resist bending, just like the spring. Fig. 1.16c shows a solid 

lattice where the atoms are undergoing a transverse deformation. The amount of restoring 

force they can provide in the transverse direction, also called the stress, is proportional to 

the transverse deflection itself, also called the strain.  

 

 We see that depending on the direction of the original deformation, the strain can 

be of two types. Consider holding a solid at two points and applying deformations to it. If 

the deformation that we impart to the solid is along the line joining the two points, the 

strain can be referred to as extensional strain. If the deformation that we provide is 

transverse to the line joining the two points, the strain is called shear strain. Note though 

that rigid body rotations of the solid do not count as shear strains because they do not 

cause any relative motion between the atoms in the solid nor do they cause any 

deformation of the atomic bonds. The concept of strain can now be formalized as follows. 

Let ( ), ,x y z=x  be the original location of an atom in a solid and let 

( ) ( ) ( )( )X , , , ,Y , , , ,Z , , ,x y z t x y z t x y z t=X  be its location when it is deformed at a time 
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“t”. (Note that we are using the “atoms” as a proxy for point particles in a solid, without 

considering their thermal oscillations.) The displacement vector is then given by 

≡ −δ X x  . Fig. 1.17 illustrates a small part of a two-dimensional solid lattice. The 

undeformed structure is shown by the black square with black dots at its vertices.  The 

displacement vectors δ  are shown by the dashed black arrows. The deformed structure is 

shown in gray. Note that these displacements can include overall translations and 

rotations of the solid, i.e. translations and rotations that have it moving as a rigid body. 

Such displacements do not contribute to the deformation of the atomic bonds in the solid 

and, therefore, do not contribute to the strain in the solid. To get a measure of the 

deformation, let us therefore consider the 3×3 tensor ∂ ∂δ x . It is clearly insensitive to 

overall translations of the solid. It does not, however, eliminate overall rotations of the 

solid. Realize that a rotation is an anti-symmetric tensor, i.e. the rigid body rotation of the 

solid is proportional to ( ) ( ) 2T ∂ ∂ − ∂ ∂ δ x δ x . The strain should, therefore, be 

proportional to the symmetric part of the above 3×3 tensor. Defining the strain tensor as 

ε  we can define it as ( ) ( ) 2T ∂ ∂ + ∂ ∂ δ x δ x . This definition excludes solid body 

rotations. 

 
 We can now think about the elastic waves that are induced in a solid even before 

we lay out a mathematical theory for them. Our analogy to a spring is in fact quite a good 

one because we can set up exactly six families of propagating waves in a spring, two with 

longitudinal oscillations and four with transverse oscillations. At a microscopic level, the 

atomic bonds mimic the same kinds of tensional and shear forces that the spring provides 

at a macroscopic level. We will therefore see that when studying one-dimensional wave 

propagation in a solid, there are six families of propagating waves. Two of those waves 

are referred to as P-waves, because of their analogy with the longitudinally oriented 
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sound waves in a fluid. (The sound waves can also be loosely thought of as “pressure” 

waves.)  The other four waves are referred to as S-waves because they are transverse 

waves arising from shearing deformations in the solid. S-waves have no analogous wave 

structure in fluid dynamics because atoms in two shearing streams in a fluid do not form 

bonds and, hence, cannot set up restoring forces. However, note that electromagnetic 

waves arising from Maxwell’s equations as well as Alfven waves in 

magnetohydrodynamics provide us with examples of transverse waves that arise in other 

systems.  

 

 As long as the atoms undergo small displacements relative to their original 

locations, the atomic bonds will only be stretched/sheared by a small fraction of their 

original length. The relative displacements between the atoms should be small enough 

that the atomic bonds do not break. In such situations a linear stress-strain relation 

remains a good assumption; recall Hooke’s law for a spring. The stress-strain relation 

depends on the properties of the material being considered and can be viewed as a 

constitutive relationship that allows the equations of elasticity to form a closed set. Note 

that the linear relation between strain and stress that was assumed in the above discussion 

is just a simplifying assumption. It only holds as long as the atomic bonds are not broken. 

For large displacements the bonds could break permanently resulting in a fracture in the 

material. Alternatively, the atomic bonds could break and reform, as in plastic 

deformation. When the deformations become quite large, it is also possible to have a non-

linear relationship between strain and stress, giving rise to the possibility of shocks 

forming in the system, see Trangenstein and Pember (1991,1992). We restrict our 

considerations to the simpler, linear systems. 

 

 Several texts provide very good introductions to the equations of elastodynamics, 

see Landau and Lifshitz (1975) or Antman (1995). The text by Davis and Selvadurai 

(1996) provides an introduction that is well-suited for hyperbolic systems. The stress and 

strain tensors in the solid are denoted by σ  and ε  respectively. In response to the stresses 

the solid will respond with a velocity ( ) ( )x y zv ,v ,v X , Y , Zt t t≡ = ∂ ∂ ∂ ∂ ∂ ∂v . Let the 

solid have a constant density ρ . As per Newton’s second law, the stresses will cause 
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accelerations in the solid. Note though that our definition of the velocities and our 

definition of the strain tensor imply that there are consistency relationships between 

them. Thus we have 
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           (1.105) 

The dynamical equations for linear elasticity are given by 
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Notice from eqn. (1.105) that the first six of the above equations represent consistency 

conditions between the velocity and the strain. The last three, in turn, express Newton’s 

second law.  

 

 As given, eqn. (1.106) cannot be solved because there are more unknowns than 

there are evolution equations. The stress σ  can be related to the strain ε  via the 

following tensorial, constitutive relationship 
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Where Λ  and µ  are the Lamé parameters and can be related to the Young’s modulus “E” 

and the Poisson ratio “ν ” of the solid via the following relationships 
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       (1.108) 

 

After drawing on the constitutive relations provided by eqn. (1.107) the equations of 

linear elasticity can be written in their final form as 
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      (1.109) 

 

In the above form, the equations of elasticity can indeed be solved. Notice that all the 

coefficients in the above equations are constants and, as a result, the above equations are 

linear. 

 

 The above equations can be written in the form given by eqn. (1.69) and in that 

form they can be shown to be hyperbolic. Restricting attention to the x-direction we see 

that the characteristic matrix admits an ordered sequence of ten eigenvalues given by 

 
1 2 3 4 5 6 7 8 9 ;  ; 0 ;  ; P S S Pc c c cλ λ λ λ λ λ λ λ λ= − = = − = = = = = =    (1.05) 
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where Pc  is the propagation speed of the P-wave and Sc  is the propagation speed of the 

S-wave. These wave speeds are given by 

 

2   ;  P Sc cµ µ
ρ ρ

Λ +
= =         (1.06) 

 

The above two equations show that the P-waves always propagate faster than the S-

waves. A problem at the end of this chapter helps us with the derivation of the above 

eigenvalues. It is important to note that while the characteristic matrices resulting from 

eqn. (1.109) seem very large, they are mostly sparse. The problem of obtaining 

eigenvalues and eigenvectors of a 9×9 matrix, while daunting at first blush, can actually 

be handed off to a symbolic manipulation package. 

 

1.13) Relativistic Hydrodynamics and Magnetohydrodynamics 

 

 The equations of relativistic hydrodynamics and MHD are used to model high 

speed flows. While some nuclear collisions have been modeled by the equations of 

relativistic hydrodynamics, most of the applications derive from high energy 

astrophysics. These equations are primarily used to model phenomena that take place at 

speeds approaching the speed of light. Such speeds are reached in astrophysical settings, 

especially when considering flows around neutron stars and black holes. As a result, 

special and sometimes general relativistic effects have to be considered. For all other 

situations, the regular Euler and MHD equations prove to be very serviceable. Thus this 

section is primarily targeted towards astronomers. In studying this topic it is quite 

advantageous to arrive at it in gradual stages. For that reason, in this section we introduce 

the special relativistic form of the hydrodynamic and MHD equations. General relativistic 

effects, which incorporate the effects of a curved space-time, can be considered later. 

 

 The special relativistic hydrodynamic equations have been very nicely discussed 

in the text by Synge (1957) and the physics of relativistic shock waves arising from those 

equations have been nicely presented in Taub (1948). The first thing to realize about a 
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parcel of fluid that is moving with a velocity v  that is close to the speed of light “c” is 

that the parcel will experience length contraction when viewed in the frame of reference 

of a stationary observer, i.e. the lab frame. Thus in the lab frame, one considers the 

Lorentz contraction which is given by the Lorentz factor 2 21 1 / cγ ≡ − v . If the fluid 

has a density ρ  in its own rest frame, the rest frame density increases to a value of  ρ γ  

in the lab frame. The continuity equation is, therefore, an expression of the conservation 

of the total number of atoms and is given by 

 

( ) ( )   v 0i
it x

ρ γ ρ γ∂ ∂
+ =
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        (1.112) 

 

Fluids that are flowing at relativistic speeds can only be accelerated to these speeds by 

very energetic processes. As a result, they often have unusually large amounts of internal 

energy and pressure. That internal energy and pressure can also contribute to the fluid’s 

inertia. As a result, we define the specific enthalpy as ( )21  P 1h c≡ +Γ Γ −  which 

provides a further multiplicative contribution from the fluid’s internal energy to the rest 

mass. Here Γ  is the polytropic index of the gas, which is assumed to be ideal for the sake 

of simplicity. As a result, the fluid has   hρ γ  amount of mass density when viewed from 

the lab frame. The specific momentum of the fluid is given by  γ v  . The momentum 

density of the fluid is then given by 2   hρ γ v  and the equation that describes its 

evolution can be written as 

 

( ) ( )2 2   v  +    v  v  + P   = 0i i j ij
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The energy density of the fluid includes just the contribution of the internal energy to the 

fluid’s inertia and is therefore given by 2 2  Ph cρ γ −  . The equation for the energy 

density is then given by 
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− =
∂ ∂

      (1.114) 

 

Synge (1957) provides an extensive derivation of the relativistic continuity equation as 

well as the relativistic momentum and energy equations. Pons et al. (1998) have shown a 

very interesting connection between general and special relativistic hydrodynamics based 

on analyzing locally flat space-times. Aloy et al. (1999) have provided an extensive 

review of numerical methods for special and general relativistic hydrodynamics.  

 

 The parallels between eqns. (1.112) to (1.114) and the Euler equations are then 

easy to spot. Setting 1hγ = =  for the non-relativistic limit in eqns. (1.112) and (1.113) 

then gives back the continuity and momentum equations in eqn. (1.42). Reducing eqn. 

(1.114) to yield the last equation in eqn. (1.42)  is a little more subtle, because the rest 

mass of a particle contributes to the energy density when considering relativistic flows 

whereas that energy can be cleanly subtracted away for non-relativistic flows. The 

relativistic flow equations also form a hyperbolic set of equations and have the same 

foliation of waves as the Euler equations. While there are many parallels between the 

Euler equations and their relativistic extensions, there are two prominent points of 

difference. First, while it is quite easy to obtain the primitive variables from the 

conserved variables for Euler flow, doing so for relativistic flow involves solving a 

transcendental equation. Second, carrying out the eigenmodal analysis for relativistic 

flow is a lot harder. These two attributes, which make the relativistic flow equations 

harder to work with, also carry over to relativistic MHD. 

 

 The text by Anile (1989) provides an excellent introduction to relativistic MHD. 

Several excellent formulations for general relativistic MHD have recently been presented 

in the literature, see Komissarov (2004), McKinney (2006) and DelZanna et al. (2007). 

General relativists usually use a set of geometrized units where G= 1c =  and we use those 

units here in describing the equations of relativistic MHD. Here G is Newton’s constant 

and c is the speed of light. The factor of 4π  that we met in classical MHD is also 

absorbed via a redefinition of the magnetic field. We do not provide a detailed derivation 
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of the relativistic MHD equations, but we do give some information in order to build 

intuitive familiarity with the equations. All the same considerations that we made for 

relativistic hydrodynamics also have to be made here, with the result that the continuity 

equation is identical to eqn. (1.112). The introduction of a magnetic field B  also 

introduces a motional emf, thus resulting in an electric field in the plasma which is given 

by = − ×E v B  even in the relativistic limit. The Poynting flux ×E B  is a measure of the 

momentum flux density of the electromagnetic field and so it’s time evolution has also to 

be factored in when accounting for the total momentum density. The energy density of 

the electric and magnetic fields can also make a significant contribution to the 

magnetofluid’s pressure. Thus the momentum equation becomes 

 

( )( )

( )

2

2 2 2

   v  +  

1            +    v  v   E  E   B  B  + P +    = 0
2

i i

i j i j i j ij
j

h
t

h
x

ρ γ

ρ γ γ δ

∂
×

∂
∂   − − +  ∂   

E B

E B
 (1.115) 

Just as the magnetic energy contributed to the energy density for classical MHD, the 

electric and magnetic energy densities now contribute to the energy density of a 

magnetofluid. In electromagnetism, the Poynting flux also represents the flux of energy. 

Consequently, it makes a further contribution to the energy flux. The energy equation is 

therefore given by 

 

( ) ( )( )2 2 2 21   P +  +    v  + 0
2 i i

i

h h
t x
ρ γ ρ γ∂ ∂ − + × = ∂ ∂ 

E B E B    (1.116) 

 

Faraday’s law is already relativistically invariant. As a result, the evolution equation for 

the relativistic magnetic field is still given by 

 

( )  
t

∂
= ∇× ×

∂
B v B          (1.117) 

 

The magnetic field is still divergence-free, i.e. =0∇ B  . This completes our description of 

the special relativistic MHD equations. 
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 The above equations for relativistic MHD can be compared to the equations of 

classical MHD in eqn. (1.97). The parallels are easy to spot. The relativistic flow 

equations also form a hyperbolic set of equations and have the same foliation of waves as 

the classical MHD equations. The same eigenvector degeneracies that plague classical 

MHD also plague relativistic MHD. The degeneracies have been catalogued in Anile 

(1989) and a set of eigenvectors that are suitable for computational work has been 

catalogued in Komissarov (1999), Balsara (2001) and Anton et al. (2010). 

 

1.14) The Importance of Scientific Visualization, Symbolic Manipulation and 

Parallel Programming 

 

 The solution methods for the PDEs discussed in this book can yield some very 

appealing results. The results can be as scientifically illuminating as they can be visually 

stunning. There are few things as satisfying to a computationalist as solving a 

computational problem, visualizing the results and verifying that they conform with 

expectation. It is, therefore, important to have at least a small amount of working 

familiarity with scientific visualization. Several big software packages come with their 

in-built visualization capabilities and copious documentation for the same. There are also 

a few software packages that are devoted almost exclusively to scientific visualization. 

IDL is one of them, and scientific visualization using IDL is extensively discussed in 

Fanning (2000). MATLAB, which is widely used by mathematicians and engineers, also 

has visualization capabilities (Chapman 2007, Gander and Hřebíček 2004). At a very 

minimum, it is advantageous to have graphical capabilities for visualizing one-

dimensional and two-dimensional data using a commercially available, basic, graphical 

package. To that end, the computational exercises at the end of this chapter provide a few 

simple IDL scripts that give the reader ready-made access to a simple visualization 

capability. 

 

 Several modern numerical methods require rather detailed analysis before they 

can be implemented. Symbolic manipulation packages, such as Mathematica and Maple, 
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have become very proficient at carrying out such tasks for us. Web-based tutorials and 

videos have become available that can provide a gradual introduction to these packages. 

Both the packages can also be made to write Fortran or C++ code, with the result that 

after using them to design parts of a numerical scheme, they can also be made to write the 

associated code. They also come with a modicum of visualization capability that is pre-

programmed. Freeware packages like VisIt are also gaining popularity. 

 

 Most big applications codes run on parallel computers these days. The Message 

Passing Interface (MPI) and the OpenMP API provide industry-standard methods for 

using parallel machines. Several texts, like those of Karniadakis and Kirby (2003) or 

Gropp, Lusk and Skjellum (1999), provide introductions to MPI. An easy introduction to 

OpenMP is provided in the text by Chapman, Jost and van der Pass (2008).  For 

structured mesh applications there exist frameworked approaches that abstract away the 

details of MPI programming, see Colella et al. (2007) for the CHOMBO framework; 

MacNeice and Olson (2008) for the PARAMESH framework and Henshaw and 

Schwendeman (2008) for the OVERTURE framework. Several tools are also available 

for unstructured mesh applications, and several of them have been nicely encapsulated in 

the ZOLTAN framework from Sandia labs, see Boman et al. (2010). We therefore see 

that there is plenty of support on all fronts to make it easy for new people to enter this 

field. Welcome! 
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Problem Set 

 

1.1) Substitute eqn. (1.6) in eqns. (1.3) and (1.4) to verify that they are true. Use eqn. 

(1.6) along with the definitions in eqn. (1.8) to derive eqn. (1.7) for a monoatomic, ideal 

gas. Use 5 3Γ =  . Hint: Make a change of variables given by 

( )( ) ( )   , 2   T ,m t m k t= −q p v x x . 

 

1.2) Show that the collision terms on the right hand side of eqn. (1.18) average to zero 

when ( )ψ p  is given by eqn. (1.17). Do this using the following steps. First write the 

right hand side of eqn. (1.18) explicitly. Use eqn. (1.16) to help you do that. Realize, 

therefore, that p  and 1p  are dummy variables in the integral and may be interchanged. 

This allows us to make the transcription ( ) ( ) ( )( )1
1
2

ψ ψ ψ→ +p p p . Using time-

reversibility and the conservation of phase space, see eqns. (1.14) and (1.15), show that 

the right hand side of eqn. (1.18) can be written with the substitution  

( ) ( ) ( ) ( ) ( )( )/ /
1 1

1
4

ψ ψ ψ ψ ψ→ + − −p p p p p  . Because of conservation, eqn. (1.11), and 

the structure of ( )ψ p , it can now be shown that the right hand side of eqn. (1.18) 

averages to zero. 

 

1.3) The Lorentz force gives us the force on a charged particle that moves in a magnetic 

field. Thus we have  =  q ×F v B  where q  is the charge, v  is the velocity and B  is the 

magnetic field. Show that despite the Lorentz force being a velocity-dependent force, the 

second line of eqn. (1.20) may be legitimately obtained. 

 

1.4) The following problem explains why the stream of water in a waterfall becomes 

more tapered as it descends. Realize that water is almost incompressible. Imagine the 

stream of water starting with an initial downward speed 0v  and an initial cross section A0 

. Say the water descends a distance “d”. Write an expression for the velocity “v” of the 

water at the distance “d”. In steady state, what is conserved across an imaginary, 
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horizontal surface that intersects the stream of water? Hence, write an expression for the 

area of the stream of water as a function of the distance “d”. 

 

1.5) Past a certain radius, the solar wind moves at an almost constant velocity. Assuming 

that velocity to be a constant for the purposes of this simple problem, write an expression 

for the density of the solar wind as a function of its radius. 

 

1.6) This problem is designed to develop the reader’s familiarity in manipulating the 

equations of fluid dynamics. Use eqns. (1.22) and (1.28) to derive eqn. (1.29). Also use 

(1.22) and (1.28) to derive eqns. (1.35) and (1.36). Then use eqn. (1.36) along with (1.22) 

to derive eqns. (1.37) and (1.38). 

 

1.7) Notice from eqn. (1.45) that ijD  is a traceless, symmetric tensor. Consequently, 

show that such a structure for ijD  is sufficient to ensure that the viscous terms, when they 

are present, always cause the internal energy and entropy to increase in eqns. (1.36) and 

(1.38). 

 

1.8) In a fashion that is analogous to Figs. 1.5 and 1.6, draw a figure showing a gas 

kinetic model of a hot slab of gas abutting a cold slab of gas. Realize that there should be 

a temperature gradient between the two slabs. Just as we did for viscosity, substitute eqn. 

(1.47) into eqn. (1.44) and draw on eqns. (1.1) and (1.2) to obtain a dimensional scaling 

for κ . Now show that V  C  κ µ , where VC  is the specific heat at constant volume for 

the gas. 

 

1.9) Figs. 1.9 and 1.10 show the range of influence and domain of dependence for 

subsonic flow. Draw analogous figures for supersonic flow. 

 

1.10) By examining the matrices in eqn. (1.85) show that the x-directional variations in 

the shallow water equations form a hyperbolic system. Take the source terms to be zero. 
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1.11) In some situations a fluid’s temperature can equilibrate to a constant value. This 

usually happens when a fluid has an external source of heat which is balanced by 

radiative cooling of the fluid. The fluid’s temperature can then remain constant to a good 

approximation, leading to the isothermal equations. Because the temperature remains 

constant, the energy equation can be dispensed with. For variations that are restricted to 

the x-direction, show that the continuity and momentum equation for the Euler system 

then yields 

x
2 2
x 0x

 v
 +  = 0

 v  + c    vt x
ρρ

ρ ρρ
  ∂ ∂
  ∂ ∂   

 

Here 0c  is the constant, isothermal sound speed. The primitive variables may be taken to 

be [ ]x,  v Tρ . Obtain the characteristic matrices in primitive and conserved form. Show 

that one obtains the same eigenvalues in either form. Derive the orthonormalized right 

and left eigenvectors in primitive and conserved form. 

 

1.12) Consider the two-dimensional flow field for a fluid vortex. In the time-steady case, 

start with the velocities 

( )
( )
( )

( )2
x

0.5 1 2 2
y

z

v ,
v ,  =  e       ;     

2
v , 0

r
x y y
x y x r x y
x y

κ
π

−
−   

    ≡ +   
     

 

 

How are the streamlines oriented? Draw them. Assume that the density is constant at a 

value of 0ρ . Also assume that the pressure at r →∞ is given by a constant value P0 . By 

substituting the velocity field in the momentum equation, find the variation in the 

pressure as a function of radius “r”. Plot out the pressure as a function of radius and 

realize that the pressure gradient provides the centripetal force for the fluid’s rotation. 

This problem is most easily done by writing the Euler equations in cylindrical geometry. 

However, it can also be done very easily by realizing that it is cylindrically symmetric 

and, therefore, focusing on the variations along the x-axis. 
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1.13) This problem is a variant on the previous one. Assume the same velocity field as in 

the previous problem. However, this time, we drop the constant density assumption. 

Instead assume that the entropy of the flow is constant all over. Thus as r →∞  assume 

that the density and pressure tend to constant values given by 0ρ  and P0 respectively. 

However, at a general location, both the density and pressure terms can have fluctuations 

given by ( ),x yδρ  and ( )P ,x yδ  respectively. Because of cylindrical symmetry, these 

variations only vary as a function of radius “r”. Consistent with the isentropic 

assumption, we have 

( )( )
( )( )

0 0

00

P P Pr

r

δ
ρρ δρ

Γ Γ

+
=

+
 

Use the thermal energy along with the momentum equation to obtain the variation of 

density and pressure as a function of radius “r”. 

 

1.14) This problem provides an intuitive derivation of the Alfven speed. It does so by 

first reminding us that a string or rubber band with a force of tension “T” and mass per 

unit length µ  carries transverse oscillations with a speed T µ . Plasmas that are 

threaded by magnetic fields also experience a tension force. Of course, any compression 

of the plasma also causes a change in its pressure which will contribute as an extra force. 

Since we only want the tension force, we will make sure that we do not make any 

volumetric changes to the fluid that we consider in this problem. Thus consider the 

cylinder of magnetized fluid in the associated figure. Initially it has a cross-sectional area 

“A” and a length “l”. Let the cylinder be threaded by a longitudinal magnetic field with 

an initial value “B” as shown. Let the cylinder be squeezed in a volume-preserving 

fashion so that its cross-sectional area becomes “ A A−∆ ” and its length becomes 

“ l l+ ∆ ”. Because magnetic flux is conserved, the magnetic field increases to “ B+ B∆ ”. 

Assert volume conservation as well as flux conservation to show that B B l l∆ = ∆ . The 

change in the magnetic energy density is given by ( ) ( )2 2B+ B B 8mu π ∆ = ∆ −  . Let the 

tensional force provided by the magnetic field along the cylinder’s axis be denoted by 

“T”. The work-energy theorem then asserts that the total change in magnetic energy 
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( )mu Al∆  is equal to the work done by the tensional force provided by the magnetic field, 

 T l∆  . As a result, show that ( )2 B 4T A π= . If the plasma has density “ ρ ”, the linear 

mass density of the cylinder is given by Aµ ρ=  . Now, given the tensional force and the 

linear mass density, show that the Alfven wave speed in the plasma is given by 

Av  B 4πρ=  . Unlike sound waves or their analogues, the magnetosonic waves, 

Alfven waves can propagate through a plasma without introducing any compression or 

rarefaction. 

 
 

1.15) This problem describes a magnetized version of the vortex that was first presented 

in problem 1.12. Assume the same velocity field as in problem 1.12. However, also 

consider a magnetic field given by  

( )
( )
( )

( )2
x

0.5 1 2 2
y

z

B ,
B ,  =  e       ;     

2
B , 0

r
x y y
x y x r x y
x y

µ
π

−
−   

    ≡ +   
     

 

Assume that the vortex as a constant density 0ρ . Also assume that the pressure 

asymptotically tends to 0P  as r →∞ . Using the momentum equation, find the variation 

of the pressure as a function of radius. Notice that the presence of magnetic tension 

contributes to the pressure. Which way does it contribute and why? 

 

1.16) Write out the x-directional variations of eqn. (1.109) in the form u  + A u  = 0t x  . 

Realize that the matrix “A” is very sparse. Symbolic manipulation packages, such as 

Maple and Mathematica, have become very proficient at extracting eigenvalues and 
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eigenvectors of a given matrix. Each of those packages has extensive on-line 

documentation. Consequently, use a symbolic package to obtain the eigenvalues in eqns. 

(1.110) and (1.111). The problem illustrates that tasks that would have seemed daunting 

are now easily performed using the software tools that are available to us. 

 

Computational Exercises 

 

1.1) The CD-ROM associated with this book has an IDL script for making one-

dimensional plots along with some one-dimensional data. Obtain the plots using the 

script. 

 

1.2) The CD-ROM also has an IDL script for making two-dimensional plots along with 

some two-dimensional data. Visualize the data. 

 

1.3) Choose reasonable values for the constant state in eqn. (1.78). Then numerically 

solve for the eigenvalues and eigenvectors for some representative values of the wave 

number. Verify some of the statements that are made in the text that follows eqn. (1.79). 

 

 

 

 

 

 


