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Chp 1 : Overview of PDEs of 
Relevance to Science and 

Engineering
By

Prof. Dinshaw S. Balsara
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1.1) Introduction

Precise solutions needed for problems in science, engineering and 
applied math. 

Many of these problems governed by partial differential equations 
(PDEs).

Analytical solutions to PDEs, few and limited.

Very effective numerical solution techniques are now available.

Powerful computers make it possible to obtain solutions to large, real-
world problems.

Algorithms make it happen. They apply to broad classes of PDEs, not 
to a specific PDE. Learn general classes of algorithms and you can 
solve broad classes of PDEs. Emphasis on theory and technique. 3
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Broad classes of PDEs of interest (with pedestrian introductions):

Hyperbolic PDEs : Enable information to propagate as waves.
Examples: Water waves, sound waves, oscillations in a solid structure 
and electromagnetic radiation.

Parabolic PDEs : Enable information to travel as diffusive processes.
Examples: heat transfer, mass diffusion in the ground, diffusion of 
photons out of the sun.

Elliptic PDEs : Don’t have time variation, convey action at a distance.
Examples: Gravitational field, electrostatics.

We first study solution techniques for these PDEs piecemeal and then 
learn how to assemble them together for more complex PDEs.

Since we all have most direct experience with fluids, we will use the 
Navier Stokes equations as our motivating example. Several other PDEs 
of practical interest are also introduced in this chapter.
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1.2) Derivation of the Fluid Equations

While this topic is well-known to some and not at all to others, it helps to 
bring everyone up to speed. Navier Stokes equations will serve as our 
touchstone system because it has all the ingredients that we want to study.

We do not dwell on details; we just provide as much intuitive background 
as is needed for understanding the nature of the PDEs.

Continuum behavior on the macroscopic scales arises from discrete 
molecular dynamics on the microscopic scales. Gives insight into PDEs.

1.2.1) Importance of Collisions
There are about 1019 molecules of air in a 1 cm3 volume of air in this 
room. Simplifying assumption – single type of molecule.

Each molecule would minimally have a position vector x and a 
momentum vector p . Describe by a distribution function f(x,p,t) . 
(Note f(x,p,t) d3p has units of number of particles per unit volume.) 
Problem: The degrees of freedom are too large;would soon overwhelm us.
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Molecules make very frequent collisions with one another. The collisions 
totally scramble the initial momentum of the colliding particles. 
Important Question: How quickly does this scrambling take place?

Fortunately, once collisions have acted, statistical mechanics enables us 
to make a profound simplification.

Let n be the number density of molecules and σ be their cross section. 
The mean free path, l, is the distance each molecule can coast before it 
collides with another:  l ~ 1/(nσ)  ;  l ~ 10-4 cm for air in this room.
a~ 10-8 cm, σ ~ 10-15 cm2 for molecules.

Disk showing collision cross 
section. Radius of  “spherical” 
molecule is “a”  Area of disk is 
σ=π (2a)2.

a

a 2a
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Particles in a gas move with a velocity that is comparable to the speed 
of sound in the gas. 

Let the particle speed be wT . For air in this room , wT ~ 3×104 cm/sec.

The time between collisions is given by τ ~ l/ wT . Again for air in this 
room we have τ ~ 3×10-9 sec.

The fluid approximation then holds if the length of the system L >> l
and the timescales over which we observe the system are T >> τ .

In all systems where the gas meets this scaling, we may easily use the 
fluid approximation. It is easily met for air in this room.

The fluid approximation then guarantees that the local velocity 
distribution of the molecules is almost Gaussian (recall statistical 
mechanics). This is a tremendous simplification in our distribution 
function : f(x,p,t) . The temperature and density then govern this 
distribution as just two independent parameters in the fluid’s rest frame.
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Mass conservation and the fact that molecules are neither created or 
destroyed enable us to write an expression for the density:

The frequent collisions ensure that molecules that form a parcel of gas 
do not stray too far from each other. This enables us to define a concept 
of bulk fluid velocity, v (check these equations for dimensional 
consistency):

Thus the total velocity u of a particle is made up of its mean velocity v
plus its fluctuation from the mean, w . I.e. u = v + w .

v ∆t

( ) ( ) 3,  , ,  t m f t d pρ ≡ ∫x x p

( ) ( ) ( ) 3, ,  , ,  t t f t d pρ ≡ ∫x v x p x p

Frequent collisions keep particles 
bunched up.

Availability of control volume 
permits us to apply Newton’s law 
to the same particles.

( ) 3 Remember , ,  has units of 
     number d e .nsity

f t d p← x p
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The energy of a single particle of mass m is then given by p2/(2m) . 
Thus we write the total energy density as:

Since the fluctuating velocity satisfies a Maxwell-Boltzmann 
distribution up to a reasonable approximation (though not valid for non-
ideal effects), we can write the distribution function as:

The total energy density can now be shown to be a sum of the internal 
energy density and the kinetic energy density:

Thermodynamics then gives equation of state : 

( ) ( )
2

3,  , ,  
2

t f t d p
m

ε ≡ ∫
px x p

( ) ( )
( )( )

( )( )
( )

2   ,
 

2   T ,
3/2

, 1, ,   e
 2    T ,

m t
m k tt

f t
m m k t

ρ

π

−
−

=
p v x

xx
x p

x

( ) ( ) ( ) ( )2P , 1,      ,  ,
1 2
t

t t tρε = +
Γ −

x
x x v x

T PP    ;   e
1

Rρ
µ

= =
Γ −

Notice: we are in the local 
rest frame of the fluid.
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1.2.2) The Boltzmann Equation

Without collisions, particles coast along their original trajectories, while 
responding to external forces F . The dynamics is quite uninteresting:

With collisions, we introduce a very interesting dynamics:

How a collision can scramble the phase space is constrained by 
momentum and energy conservation, consider the constraints in the 
diagram below. Question: How many degrees of
freedom does the collision have?

Remaining d.o.f. governed by scattering
cross-section : 

    +    +    = 0
   
f f f
t m

∂ ∂ ∂
∂ ∂ ∂

p F
x p

 

c

     +    +    = 
    
f f f f
t m t

δ
δ

∂ ∂ ∂  
 ∂ ∂ ∂  

p F
x p

 

1pp

/p

/
1p( )/ /

1 1, | ,σ p p p p

Write it out in component form 
     to make sure you understand it.
←
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Let incident particle be p and target particle be p1 . Number density of 
particles that scatter out of phase space (x,p) in a unit time is given by:

cm/sec         #/cm3 cm2 #/cm3

Number density of particles that scatter into phase space (x,p) per unit 
time is given by: 

Thus the total effect of the collision terms gives us the final Boltzmann 
equation (Question: Can you dimensionally analyze the RHS?)

( ) ( ) ( ) ( ) ( )1 / / / / 3
1 1 1 1 1

    +    +    =
   

           , | ,  , ,  , ,  , ,  , ,  d  d p  

f f f
t m

f t f t f t f t
m

σ

∂ ∂ ∂
∂ ∂ ∂

−  − Ω ∫

p F
x p

p p
p p p p x p x p x p x p

 

( ) ( ) ( )13 3 / / 3
1 1 1 1

c; sink

 d p  , ,  d p  , | ,  d  , ,  d p 
 
f f t f t
t m

δ σ
δ

−  = Ω 
 ∫ ∫

p p
x p p p p p x p

( ) ( ) ( )
/ /

13 / 3 / / / / 3 /
1 1 1 1

c; source

 d p  , ,  d p  , | ,  d  , ,  d p  
 
f f t f t
t m

δ σ
δ

−  = Ω 
 ∫ ∫

p p
x p p p p p x p



12

1.2.3) Moments of the Boltzmann Equation

Consider the definitions: 

We see that they are just moments of the distribution function. Boltzmann 
equation gave us dynamics, but not quite in the variables we need.

Consequently, to obtain time-evolutionary equations of the above fluid 
variables, take the following moments of the Boltzmann equation:

We get

Derivatives and integrals can be interchanged for the first two terms. 
The third term requires a little bit of deft manipulation, as we will show.
Question: Why does the last term, i.e. RHS, integrate to zero?

( ) ( ) ( ) ( ) ( )

( ) ( )

3 3

2
3

,  , ,    ;  , ,  , ,    ;

,  , ,  
2

t m f t d p t t f t d p

t f t d p
m

ρ ρ

ε

≡ ≡

≡

∫ ∫

∫

x x p x v x p x p

px x p

( ) ( ) ( )
2

   ;       ;    
2

m
m

ψ ψ ψ= = =
pp p p p

( ) ( ) ( ) ( )3 3

c

      +     +      =   
    
f f f fd p d p
t m t

δψ ψ ψ ψ
δ

 ∂ ∂ ∂  
   ∂ ∂ ∂   

∫ ∫
pp p p F p

x p
 
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( ) ( ) ( )3 31     , ,       ;      , ,  f t d p n f t d p
n

ψ ψ≡ ≡∫ ∫p x p x p

We have the following supporting definition for the averaging process:



14( ) ( ) +         = 0
 

n n n
t m

ψ ψ ψ∂  
∇ − ∇ ∂  

p
p F p 

( ) ( ) ( ) ( )3 3

c

      +     +      =   
    
f f f fd p d p
t m t

δψ ψ ψ ψ
δ

 ∂ ∂ ∂  
   ∂ ∂ ∂   

∫ ∫
pp p p F p

x p
 
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The net result is

The averages in the above equation require the supporting definitions :

This is known as Chapman-Enskog theory for fluids or the BBGKY 
hierarchy.

( ) ( ) +         = 0
 

n n n
t m

ψ ψ ψ∂  
∇ − ∇ ∂  

p
p F p 

( ) ( ) ( )3 31     , ,       ;      , ,  f t d p n f t d p
n

ψ ψ≡ ≡∫ ∫p x p x p
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1.2.4) The Continuity Equation

Set ψ(p) = m in 

to get :

Notice, very importantly, that this is a conservation form. Question: Can 
you think of other equations in conservation form? What does an equation 
in conservation form tell us? What are the units of mass flux?

An equivalent non-conservative, i.e. primitive, form :

Question: When is the primitive form useful? What is the import of the 
RHS?

( ) ( )   +   v  = 0         +     = 0
   i

it x t
ρ ρρ ρ∂ ∂ ∂

⇔ ∇
∂ ∂ ∂

v

   +    =              +    =    
  

D
t Dt t

∂ ∂
∇ − ∇ ⇔ ≡ ∇ − ∇

∂ ∂
v v v v   

ρ ρ ρρ ρ ρ ρ

( ) ( ) +         = 0
 

n n n
t m

ψ ψ ψ∂  
∇ − ∇ ∂  

p
p F p 
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( ) ( ) ( ) +         = 0     with 
 

n n n m
t m

ψ ψ ψ ψ∂  
∇ − ∇ = ∂  

p
p F p p 

( )  +     = 0
 t
ρ ρ∂

∇
∂

v



The Lagrangian derivative / material derivative, shown above, has a 
form that occurs very often in fluid dynamics: 

It is very important to intuitively understand the Lagrangian derivative . 
Question: What is it tracing?

18Mountain range

Wind flow
Velocity vectors

Mountain range

Wind flow
streamlines

Connect the wind 
velocity vectors to
obtain streamlines 
of the velocity field

    +   
 

D
Dt t

∂
≡ ∇

∂
v 
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1.2.5) The Momentum Equation

Set ψ(p) = p = m (v + w) (v == mean velocity;w == fluctuation) to get:

Notice now that :

Question: What can we say about the correlation between the fluctuating 
parts of the velocity? Describe situations where you might expect a 
correlation.

Using our definition of pressure : 
we get:

( ) ( )( )( )v  + v w v w  =  a
  i i i j j i

jt x
ρ ρ ρ∂ ∂

+ +
∂ ∂

( )( )v w v w  v v  + w wi i j j i j i j+ + =

( ) ( )( ) ( )
2

3 2
2

   ,1 1P   ,  , ,   
3 3

m t
t f t d p

m
ρ ρ

−
≡ ≡∫

p v x
x x p w

21w w  P      ;     w w    viscous stress
3i j ij ij ij ij i jρ δ π π ρ δ= − ≡ − ←w
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( ) ( ) ( ) ( ) +         = 0     with 
 

n n n m
t m

ψ ψ ψ ψ∂  
∇ − ∇ = = ∂  

p
p F p p p v + w 

( ) ( )( )( )v  + v w v w  =  a
  i i i j j i

jt x
ρ ρ ρ∂ ∂

+ +
∂ ∂
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The final momentum equation in conserved form then becomes:

Here ai is an acceleration, a = F/m .

It is an interesting trick to learn how to find the corresponding primitive 
form of the momentum equation: 

Question: Which one of Mr. Newton’s 3 laws are you reminded of?

With viscous terms, this is known as the Navier Stokes equations; 
without the viscous terms, we call it the Euler equations.

( ) ( )v  + v v  + P    =  a
  i i j ij ij i

jt x
ρ ρ δ π ρ∂ ∂

−
∂ ∂

 v  P  =   +  a  + 
   

i
i ij

i j

D
D t x x

ρ ρ π∂ ∂
−

∂ ∂
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1.2.6) The Energy Equation

Set ψ(p) = m (v + w)2 / 2 to get an equation for the total energy density
. We get:

Question: Can you interpret the RHS intuitively? On dimensional 
grounds, what does it tell you?

As before, we have to interpret the angled brackets as follows:

2  e   2ρε = + v

( )( )2  + v w  +  =  v  a
  2 i i i i

it x
ρ ρε∂ ∂  + ∂ ∂  

v w

( )( )2 2 2 21 1v w  +  =   v  +    v  +  w  w  v  +  w   
2 2 2 2i i i i i j j i
ρ ρ ρ ρ ρ+ v w v w w

Kinetic
Energy
Density

Thermal
Energy
Density

P   
pressure &
viscous stresses

ij ijδ π−
Question: 
What is this 
term?



23

( ) ( ) +         = 0
 

n n n
t m

ψ ψ ψ∂  
∇ − ∇ ∂  

p
p F p 

( )( )2  + v w  +  =  v  a
  2 i i i i

it x
ρ ρε∂ ∂  + ∂ ∂  

v w
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The energy equation in conservation form is then given by:

A little bit of work (i.e. subtracting off the kinetic energy density) gives 
us an equation for the internal energy density in primitive form as:

Questions: Interpret each of the terms on the RHS in the equation above. 
What is the connection with the first law of thermodynamics?

One can make connection with the second law of thermodynamics as:

( )( )  +   P  v    v   + F  =  v  a  
  

cond
i j ji i i i

it x
π ρε ε∂ ∂

+ −
∂ ∂

( )  v  F  v e  + e v  =  P    + 
     

cond
i i i

i ij
i i i jt x x x x

π∂ ∂ ∂∂ ∂
− −

∂ ∂ ∂ ∂ ∂

 vs T     +    What does this equation do at shocks?
 

cond i
ij

j

D
Dt x

ρ π ∂
= − ∇ ←

∂
F

2 21 1with      F  w     .         Also recall,  .
2 2

cond
i i e≡ = +w vρ ρε
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1.3) The Euler Equations

Notice that we have 6 variables (density, 3 velocities, internal energy and 
pressure) but only 5 equations. This is called the closure problem. The 
equation of state helps close the system, i.e. provides the one extra 
equation needed to get the number of equations == number of unknowns.

Question: How do the dimensions of the fluxes relate to the dimensions 
of the conserved variables? Interpret your answer physically?

Primitive form is v. useful for analytic work; conserved form for 
computation (especially when discontinuities present). Question : Why?

( )

( ) ( )

Conservation form:                                                Primitive form:
  +   v  = 0                                         =    
  

v  + v v  + P  = 0        
  

i
i

i i j ij
j

D
t x Dt

t x

ρ ρρ ρ

ρ ρ δ

∂ ∂
− ∇

∂ ∂

∂ ∂
⇔

∂ ∂

v

( )( ) ( )

 v  P        = 0
  

 D e  +   P  v  = 0                                =  e + P    
  D 

i

i

i
i

D
D t x

t x t

ρ

ε ε

∂
+

∂

∂ ∂
+ − ∇

∂ ∂
v 2  e   2ρε = + v
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Notice that the fluid variables evolve in time in response to their own 
spatial gradients. This is often the case with most PDEs.

Question: So what makes the conservation form so special? 
Answer: Gauss’ Law. 
Let’s focus on the continuity equation and the figure below.

When discontinuities/shocks
are present, we have no hope of
predicting the flow structure 
inside a zone in our computational mesh. 
However, the conservation form 
remains valid!

x

z
y

A1A4

A5

 vxρ

 vzρ

 v yρ

( ) ( ) ( )

1 2 3 4

V

V A A A A

A

 v v  v           = 0     
    

     +  v      v    +  v      v   
 

                              +  v   

yx z

x x y y

z

dx dy dz
t x y z

dx dy dz dy dz dy dz dx dz dx dz
t

dx dy

ρρ ρρ

ρ ρ ρ ρ ρ

ρ

 ∂∂ ∂∂ + + + ⇒
 ∂ ∂ ∂ ∂ 

∂
− −

∂

∫∫∫

∫∫∫ ∫∫ ∫∫ ∫∫ ∫∫

5 6A

   v    = 0z dx dyρ−∫∫ ∫∫
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x

z
y

A1A4

A5

 vxρ

 vzρ

 v yρ

( ) ( ) ( )
V

 v v  v           = 0
    

yx z dx dy dz
t x y z

ρρ ρρ ∂∂ ∂∂ + + +
 ∂ ∂ ∂ ∂ 

∫∫∫

1 2 3 4

5 6

V A A A A

A A

     +  v      v    +  v      v   
 

                              +  v      v    = 0

x x y y

z z

dx dy dz dy dz dy dz dx dz dx dz
t

dx dy dx dy

ρ ρ ρ ρ ρ

ρ ρ

∂
− −

∂

−

∫∫∫ ∫∫ ∫∫ ∫∫ ∫∫

∫∫ ∫∫

( )
V

V

     = 
 

 v
    = 

 
x

dx dy dz
t

dx dy dz
x

ρ

ρ

∂
∂

∂
∂

∫∫∫

∫∫∫
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x

y

(3,2)

1 2 3 4 5

5

4

3

2

1

Introducing concepts of a mesh, zones and timestep.

Role of timestep in conveying information.

Value of conservation form on a mesh.
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1.4) The Navier Stokes Equations

As before, the equation of state helps close the system. 

Notice though, that we now have extra terms for the viscosity and heat 
flux. Theory alone cannot specify these terms; experiments are needed. 
We have the following stress-strain relation for the viscous stresses:

For the thermal conduction we have: parabolic
terms

( )

( )

Conservation form:                                                         Primitive form:
  +   v  = 0                                                  =    
  

v  + v v  + 
  

i
i

i i j
j

D
t x Dt

t x

ρ ρρ ρ

ρ ρ

∂ ∂
− ∇

∂ ∂

∂ ∂
∂ ∂

v

( )

( )( ) ( )

 v  PP    = 0                 = 0
   

 v D e  +   P  v    v   + F  = 0             =  e + P        + 
  D  

i
ij ij ij

i j

cond cond i
i j ji i ij

i j

D
D t x x

t x t x

δ π ρ π

π πε ε

∂ ∂
− ⇔ + −

∂ ∂

∂∂ ∂
+ − − ∇ − ∇

∂ ∂ ∂
v F 

( )
 v v 2         ;                 

  3
ji

ij ij ij ij
j i

D D
x x

π µ δ
∂∂

≡ ≡ + − ∇
∂ ∂

v

  Tcond κ≡ − ∇F
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Intuitive introduction to viscosity for shear flow:

x-momentum equation shows us that µ must scale as ρ l2 / τ .

x

y

vx

y

2 2
xv  is large.y∂ ∂

 vIt can be shown that  is always positive.
 

Question: What is the physical import of the above statement?

i
ij

jx
π ∂

∂
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Intuitive introduction to shocks; a fast-moving stream of fluid collides 
with a stationary/slow-moving stream:

Questions: Can you make a traffic-flow
analogy to this situation?

Which has higher density, shocked
or unshocked gas? Explain using the
continuity equation.

What about entropy?
Explain your answer via entropy equation.

What is the role of the viscous terms?

Can one have shocks form without
having the viscous terms dominate at
small scales? (Multiple answers possible.)

22
x xv   0 and v  is large at the shock.x x∂ ∂ ∂ ∂

x

x

vx

Unshocked Gas:
Density low
Mean velocity high
RMS velocity low

Shocked Gas:
Density high
Mean velocity low
RMS velocity high
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1.5) Classifying and Understanding PDEs
(Or How to read a PDE like a book)
1.5.1) Motivation

Let’s start simple with scalar PDEs. Consider our first example:

Analyzing a PDE is same as bringing out its character. Since the above 
PDE has a wave character, i.e. it is hyperbolic, we try harmonic modes:

The harmonic modes take on a time-evolution that is purely multiplicative 
with no change in the amplitude. Such modes are called the eigenmodes
of the PDE. “ω” is the eigenvalue associated with that eigenmode.
So here we started with a PDE that we knew to be hyperbolic and divined 
its mathematical character.

    + a  + b  = 0      What does it remind you of? How does  move in 2d?
   t x y
ρ ρ ρ ρ∂ ∂ ∂

←
∂ ∂ ∂

( ) ( )

( ) ( ) ( )

      
0 1

    a     b 
0 1

, ,  =  +  e    Substitution in the PDE gives :    a +  b  

 , ,  =  +  e      Propagating wave-like modes.

x y

x y

i k x k y t
x y

i k x t k y t

x y t k k

x y t

ωρ ρ ρ ω

ρ ρ ρ

+ −

 − + − 

=

⇒ ←
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( ) ( )      
0 1

   Substitute , ,  =  +  e   in  + a  + b  = 0 
   

x yi k x k y tx y t
t x y

ω ρ ρ ρρ ρ ρ + − ∂ ∂ ∂
∂ ∂ ∂

( ) ( ) ( )    a     b 
0 1, ,  =  +  e  with    a +  b  x yi k x t k y t

x yx y t k kρ ρ ρ ω − + −  =
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Consider the heat equation in 2d with constant coefficients:

Again, let us put in harmonic modes to bring out the character of this 
well-known parabolic PDE:

Such modes are called the eigenmodes of the PDE. “ω” is the eigenvalue
associated with that eigenmode.
So here we started with a PDE that we knew to be parabolic and divined 
its mathematical character.

Now the ideas can be combined. -- A super simple chemo-taxis example:

2 2

2 2

 T  T  T =   +  
   t x y

κ
 ∂ ∂ ∂
 ∂ ∂ ∂ 

( ) ( ) ( )
( ) ( ) ( )2 2

       2 2
0 1

       
0 1

T , ,  = T  + T  e    Substitution in the PDE gives :  =   

 T , ,  = T  + T  e      A -  solution

x y

x y x y

i k x k y t
x y

i k x k y k k t

x y t i k k

x y t time decaying

ω

κ

ω κ+ −

+ − +

− +

⇒ ←

2 2

2 2

      + a  + b   +  =  s
     t x y x y
ρ ρ ρ ρ ρκ

 ∂ ∂ ∂ ∂ ∂
−  ∂ ∂ ∂ ∂ ∂ 
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( ) ( ) 2 2
       

0 1 2 2

 T  T  TSubstitute T , ,  = T  + T  e  in   =   +  
   

x yi k x k y tx y t
t x y

ω κ+ −  ∂ ∂ ∂
 ∂ ∂ ∂ 

( ) ( ) ( ) ( )
2 2       2 2

0 1T , ,  = T  + T  e  with  =   x y x yi k x k y k k t
x yx y t i k kκ

ω κ
+ − +

− +



36

1.5.2) Characteristic Analysis of the Euler Equations

Let us write the 1d Euler equations in a matrix form:

We think of the variables with subscript “0” as the constant values 
around which we introduce small fluctuations, i.e. the variables with 
subscript “1”. This has the advantage that it freezes the matrix. We get:

Notice that for systems we have to analyze the above characteristic 
matrix. Its determinant yields the characteristic equation with solutions:

( )
( )
( )

x
0 1

 ( k x   t)
x x x x x0 x1

0 1
x

v 0 ,
 1  v  + 0 v  v  = 0 .  Try the wave-like solution : v ,   v  + v  e 

P P P , P P
0  P v

i

x t
x t

t x
x t

ω

ρρ ρ ρ ρ ρ

ρ
−

 
         

∂ ∂           =         ∂ ∂                 Γ 

x0 0 x0 0
1 1 1

x1 x0 x1 x0 x1
0 0

1 1 1
0 x0 0 x0

v 0 v 0
1 1  v  +  k 0 v  v  = 0 . Use  to get : 0 v  v  = 0

P P P
0  P v 0  P v

i i k

ρ λ ρρ ρ ρ
ω λ ω λ

ρ ρ
λ

   −
        
        − ≡ −                        Γ Γ −   

1 2 3 0
x0 0 x0 x0 0 0

0

 P = v   c    ;     = v    ;     = v   c    ;    c     speed of soundλ λ λ
ρ

Γ
− + ≡ ←
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 vv 0  ;  
   

 v  v  Pv 0  ;  
   

 v  v e  e Pv e  + P 0  with e = 
    1

x
x

x x
x

x x
x

t x x

t x x

t x x x

ρ ρ ρ

ρ

∂∂ ∂
+ + =

∂ ∂ ∂
∂ ∂ ∂ + + = ∂ ∂ ∂ 

∂ ∂∂ ∂
+ + =

∂ ∂ ∂ ∂ Γ −

x

x x x

x

v 0
 1  v  + 0 v  v  = 0

P P
0  P v

t x

ρρ ρ

ρ

 
    

∂ ∂    
    ∂ ∂       Γ 
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x0 0
1 1

x1 x0 x1
0

1 1
0 x0

v 0
1  v  +  k 0 v  v  = 0   with 

P P
0  P v

i i k

ρρ ρ
ω λ ω

ρ

 
    
    − ≡            Γ 

1 2 3 0
x0 0 x0 x0 0 0

0

 P = v   c    ;     = v    ;     = v   c    ;    c   λ λ λ
ρ

Γ
− + ≡

Equations linearized about a constant state:  ( )0 0 0,  v ,  Pxρ
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We can use a space-time diagram 
to trace the waves. The lines are 
called characteristic curves.
Question: Identify sub-sonic and 
supersonic flow situations by drawing 
space-time diagrams for them. Are the characteristic curves always 
straight lines?
Analysis of the right eigenvectors yields a lot of further insight:

x

t
1

x0 0 = v cλ − 2
x0 = vλ

3
x0 0 = v cλ +

0 0
1 2 3

0 0
2 2

0 0 0 0

1
 =  c     ;      = 0     ;      = c

 c 0  c
r r r

ρ ρ

ρ ρ

     
     −     
     
     

3 2
1 x1 1 0 0 0 0Observe from  that the fluctuations have to have the ratios:- : v : P  = :c :  c

I.e. the ratios are preset and all these fluctuations produce  in the velocity and
pressure fluctuati

r
compressions

ρ ρ ρ

3

2
1 x1 1

ons  these are -    (see the eigenvalue ).

Observe from  that the fluctuations have to have the ratios:- : v : P  = 1:0:0
I.e. no pressure or velocity fluctuations; only changes

right going sound waves

r

λ

ρ

⇒

2

 in the density  these are 
  (see the eigenvalue ). They are  with the fluid velocity.entropy waves advectedλ

⇒
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The right eigenvectors form a complete basis set in a 3-d vector space.
There exists an orthonormal set of left eigenvectors. They are:

1 2 3
2 2 2

0 0 0 0 0

1 1 1 1 1 = 0    ;    = 1 0    ;    = 0
2 c 2  c c 2 c 2  c

l l l
ρ ρ

     −
−     

     

t=0

t=1

t=2

t=3

t=4

t=5

Wave propagation can be via longitudinal or transverse fluctuations. 
Question: Which one is which in the figure below? Which one 
represents sound waves?
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1 2 3
2 2 2

0 0 0 0 0

1 1 1 1 1 = 0    ;    = 1 0    ;    = 0
2 c 2  c c 2 c 2  c

l l l
ρ ρ

     −
−     

     

( )
x0 0

1 x1 1 x0
0

0 x0

1 2 3
x0 0 x0 x0 0

v 0
1v P 0 v   = 0

0  P v

 = v   c    ;     = v    ;     = v   c    ;

λ ρ

ρ λ
ρ

λ

λ λ λ

 −
 
 − 
  Γ − 

− +
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How is all this machinery of eigenvalues and eigenvectors useful?

Imagine you have a mean fluid state and you impose a small Gaussian 
pulse, i.e. a perturbation. How do you predict its time-evolution?

We know that each right eigenvector is a pure wave that travels with a 
preset speed. So use the left eigenvectors to find out what fraction of 
the initial perturbation contributes to each of the waves. This is given to 
us by the eigenweights:

The time-evolution of the Gaussian perturbation is then given by:

( )
( )
( )

2 2
0 1

x x0 x1 0 1

0 1

, 0
v , 0   v  + v  e  = V  + V  e 
P , 0 P P

x x

x t
x t
x t

ρ ρ ρ
− −

=     
     = =     

    =     

( ) ( ) ( )
1 1 2 2 3 3 1 2 3

1

1 1 2 2 3 3
1 1 1

. . in order to write V  we need to find , , and .

=   V     ;    =   V     ;    =   V

i e r r r

l l l

α α α α α α

α α α

= + +

  

( )
( )
( )

( ) ( ) ( )22 2
31 2

0 0 0
1 2 3

x x0 0 0
2 2

0 0 0 0 0

, 1
v ,   v  +  c  e  + 0  e  + c  e 
P , P  c 0  c

x tx t x t

x t
x t
x t

λλ λ

ρ ρ ρ ρ
α α α

ρ ρ

− −− − − −

         
         = −         

                 



43

t =0

t =1

t =2

t =3

t =4

x

t
3

x0 0 = v cλ +

2
x0 = vλ

1
x0 0 = v cλ −

The initial Gaussian pulse propagates away as three Gaussian pulses with 
amplitudes given by the eigenweights and speeds given by the 
eigenvalues.

The shaded region in the space-time diagram shows the range of 
influence. I.e. it gives us the portions of space-time that get influenced 
by the initial perturbation.
Notice that the extremal wave speeds, λ1 and λ3 , determine the range of 
influence.
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x

t

3
x0 0 = v cλ +

2
x0 = vλ

1
x0 0 = v cλ −

Say that the x-axis is seeded 
with small fluctuations at t=0. 
Question: If we pick a space-time point 
(x,t) with t>0, which points on the 
original x-axis will influence 
its evolution?

Realize that information travels 
at a finite speed in a hyperbolic 
system.

Since the characteristics curves are straight lines, in our linearized 
system, it is easy to find that domain by propagating the characteristics 
backward. Again, the extremal wave speeds, λ1 and λ3 , are very useful 
in identifying this domain.

The shaded region shows the domain of dependence in space-time.
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1.5.3) Generalized Definition of a Hyperbolic PDE

Many, though not all, hyperbolic systems can be written in conservation 
form:

“U” is the vector of “M” conserved variables and “F”, “G” and “H” are 
the flux vectors. “S” is the vector of source terms. One can then obtain 
the characteristic matrices “A”, “B” and “C”, which are all M×M :

The hyperbolic property then depends on the eigenstructure of the 
characteristic matrices.

Often times, as with Euler eqns., it is easier to analyze the hyperbolic 
system in terms of primitive variables V : 

( ) ( ) ( ) ( )U  F U  G U  H U S Ut x y z
+ + + =

( ) ( )( )
( ) ( ) ( )

,U  A(U) U  B(U) U  C(U) U S U    In component form A(U) F U U

F U G U H U
with A(U)  ; B(U)  ; C(U)  

U U U

t x y z i j i j+ + + = ≡ ∂ ∂

∂ ∂ ∂
≡ ≡ ≡

∂ ∂ ∂

U VU  V ; V  U
V U

δ δ δ δ∂ ∂   = =   ∂ ∂   
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Any general hyperbolic system can then be written as:

( )
( )

V  A(V) V  B(V) V  C(V) V S V  

F UV U Vwith A(V)      ;  S(V)  S(U) if it is in conservation form.
U U V U

t x y z+ + + =

∂∂ ∂ ∂     ≡ ≡     ∂ ∂ ∂ ∂     

The system is then said to be hyperbolic if each of the matrices “A”, 
“B” and “C” admit “M” real eigenvalues and a complete set of “M” 
right eigenvectors. This also ensures the existence of orthonormal left 
eigenvectors. I.e. solutions are wave-like when propagating in all 
directions.

Above definition gives us the useful properties that :

1) Waves can propagate in any direction.

2) Any small initial fluctuation can be evolved forward in time for at 
least a short amount of time. It enables us to do dynamics.
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( ) ( ) ( ) ( ) ( )U  F U  G U  H U S U     U  A(U) U  B(U) U  C(U) U S Ut t x y zx y z
+ + + = → + + + =

( )U VU  V ; V  U      V  A(V) V  B(V) V  C(V) V S V  
V U t x y zδ δ δ δ∂ ∂   = = → + + + =   ∂ ∂   
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Let us now focus on the 1d case. We assume that the characteristic 
matrix “A” is frozen about some constant state V0 . For small 
fluctuations V1 about that constant state, we have

1 1

1 2

V V A 0   

where A admits an ordered set of  real eigenvalues: ...

We have  left and right eigenvectors of A 
so that :   A   ;   A      =1,..,

M

m m m m m m

t x
M

M
r r l l m M

λ λ λ

λ λ

∂ ∂
+ =

∂ ∂
≤ ≤ ≤

= = ∀

Let the left and right eigenvectors be orthonormalized w.r.t. each other.

When the eigenvalues are degenerate we use Gram-Schmidt 
orthonormalization to obtain linearly independent eigenvectors.
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The next three steps are purely formal but yields a very compact and 
useful notation that is used over and over in this field:
1) Let “R” be a matrix of right eigenvectors whose mth column is given 
by       . 
2) Let “L” be the matrix of left eigenvectors whose mth row is given 
by      . We want L R = I  , i.e. L is left inverse of R.
3) Define                                      .
We then have:

The whole purpose of the formal build-up so far is so that we can do 
dynamics. I.e. , given a constant state V0 and a small initial fluctuation 
V1(x) about it, we wish to predict the time-evolution of V1(x) .

mr

ml
{ }1 2Λ diag , ,..., Mλ λ λ≡

A  =  Λ     ;        A  Λ    ;     A  = Λ    ;     A =  Λ R R L L L R R L=

1 1

1 2 2 2

       0 0
       0 0

  ;  ; =

   0 0

M

M M

l
r r r l

R L

l

λ
λ

λ

    
    
    = = Λ
    
    

     








       




Fig. schematically shows 
the structure of the 
matrices R, L and Λ . 



Left-multiply the evolution equation to get:

For the mth component of W we have:
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Now say that we start with initial conditions V0 + V1(x) at t = 0. 

The fluctuation in the mth eigenweight at t=0 is given by:

At a later time, t > 0, in light of its evolution equation, the eigenweight
is given by:

The time-dependent solution for t > 0 is given by:

V. Imp. Question:Why is the material in this Sub-section so very useful? 

( ) ( )1  Vm mw x l x≡ 

( )m mw x tλ−

( ) ( )0
1

V ,  = V  +   
M

m m m

m
x t w x t rλ

=

−∑

( )1 1
1

V V   A   0                   + Λ  = 0     with   Vt xL L R L W W W L
t x

∂ ∂
+ = ⇒ ≡

∂ ∂

0    for 1,...,m m m
t xw w m Mλ+ = =
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1 1
1

V V A 0                   + Λ  = 0     with   Vt xW W W L
t x

∂ ∂
+ = → ≡

∂ ∂

( ) ( )10    for 1,...,         with     V  at 0m m m m m
t xw w m M w x l x tλ+ = = ≡ =
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1.5.4) Analysis of the Navier Stokes Equation
Having studied parabolic scalar equations, let’s study the Navier Stokes equations as a 
system of parabolic equations. 

Viscous and conductive terms involve higher spatial derivatives – make equation set 
parabolic. Question: For the Navier Stokes equations, can you identify a good set of 
primitive variables?

Equations in 1D:-

Linearize about a constant state:-

( ) ( ) ( )

x
x

2
x x x

x 2

2 2
x x

x 2

 v  v   0

 v  v  v T T 4  v          0
 3

4 1  1   v  vT T T  v  + 1  T      0
3 

t x x
R R

t x x x x

t x x R x R x

ρ ρ ρ

ρ µ
µ ρ µ ρ

µ µ κ µ

∂∂ ∂
+ + =

∂ ∂ ∂
∂ ∂ ∂∂ ∂

+ + + − =
∂ ∂ ∂ ∂ ∂

Γ − Γ −∂ ∂∂ ∂ ∂ + Γ − − − = ∂ ∂ ∂ ∂ ∂ 

( )
( )
( )

0 1
 ( k x   t)

x x0 x1

0 1

,
v ,   v  + v  e 
T , T T

i

x t
x t
x t

ω

ρ ρ ρ
−

     
     =     

         
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( ) ( )

x
x

2
x x x

x 2

2
x x

x

 v  v   0

 v  v  v T T 4  v          0
 3

4 1   v  vT T  v  + 1  T    0     Setting =0
3 

t x x
R R

t x x x x

t x x R x

ρ ρ ρ

ρ µ
µ ρ µ ρ

µ µ
κ

∂∂ ∂
+ + =

∂ ∂ ∂
∂ ∂ ∂∂ ∂

+ + + − =
∂ ∂ ∂ ∂ ∂

Γ −∂ ∂∂ ∂  + Γ − − = ∂ ∂ ∂ ∂ 

( )

x0 0
1

0
x0 x1

0 0
1

0 x0

v 0
T 4v  k v 0

3
T

0 1 T v

R Ri

λ ρ ρ
µλ

µρ ρ µ
λ

 −
  
  − − =  
    Γ − − 
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( )

x0 0
1

0
x0 x1

0 0
1

0 x0

v 0
T 4v  k v 0   ; no thermal conduction -- =0

3
T

0 1 T v

R Ri

λ ρ ρ
µλ κ

µρ ρ µ
λ

 −
  
  − − =  
    Γ − − 
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Let us simplify by setting κ = 0. The resulting eigenvalues are:

Questions: What happens to the eigenvalues for the sound waves? Interpret 
real and imaginary parts physically.

Generalizing: We see that the equations become parabolic because of the extra 
presence of a gradient of the solution in the fluxes. We can write the general 
form as:

Note though that we do need to have solutions that are decaying in time.

When spatial derivatives with third and higher order are present, analyze on a 
case-by-case basis. General-purpose numerical methods not available yet.

2 2
2 2 2 2

1 x0 0 2 x0 3 x0 02 2
0 0 0 0

4 2 4 2v c  k   k    ;   v     ;   v + c  k   k 
9 3 9 3

i iµ µ µ µλ λ λ
ρ ρ ρ ρ

= − − − = = − −

( ) ( ) ( ) ( ) ( ) ( ) ( )U  F U  G U  H U F U, U  G U, U  H U, U S Ut ni ni nix y z x y z
+ + + + ∇ + ∇ + ∇ =
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1.6) Incompressible Flow Equations

Sound speed in water ~ 2000 m/s. A v. fast speedboat goes ~ 20 m/s. If the 
sound waves are to be captured numerically in a code, the code’s time step 
would drop by a factor of 100! Thus we really desire an approximation tha  
can make the sound waves drop out of the system.

Liquids, like water, are almost incompressible – ρ remains constant.

The sound waves drop out of the system when that approximation is made  
Recall that to sustain a sound wave, we do need density fluctuations.

The continuity equation then gives   = 0  there is no eqn for density evolution.

 1The momentum equation gives  +     =   P
 t

Taking its divergence gives an elliptic equation for the press
ρ

∇ • ⇒

∂
∇ − ∇

∂

v

v v v

( )2

ure : 
 P =         no need for an evolutionary eqn for thermal energy.ρ∇ − ∇ ∇ ⇒v v 
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1.7) Shallow Water Equations

Water in lakes and oceans forms a very thin layer of incompressible fluid
on the earth’s surface. We want to treat it like a 2d problem. 

We simplify the problem by considering a flat patch in the (x,y) plane. 
Details of the z-velocity are not important to us. 

However, zbottom = − h(x,y) changes with position. We care about ztop = 
η(x,y,t) because it determines waves/tsunamis etc.

The gravitational potential drives the evolution of such waves. Thus, 
even though we neglect z-velocity, we have to keep track of the 
geopotential : φ(x,y,t) = g (η(x,y,t) + h(x,y) ) .

x

z

zbottom = − h(x,y) 

ztop = η(x,y,t)
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x y
2 2

x x x y
2 2

y x y y

 v  v 0
 v  +  v 2  +  v  v  =   
 v  v  v  v 2   

 Source terms unavoidable when we have varying bathymetry.

In primitive form, 

x

y

g h
t x y

g h

φ φ φ
φ φ φ φ φ
φ φ φ φ φ

       
∂ ∂ ∂       + ∂       ∂ ∂ ∂       + ∂       

⇒

x y

x x x y x

y x y y y

we have:

v 0 v 0 0
v  + 1 v 0  v  + 0 v 0  v  =  
v 0 0 v v 1 0 v v  

The characterisitic analysis of these equations is easy enough

x

y

g h
t x y

g h

φ φ φ φ φ          
∂ ∂ ∂           ∂          ∂ ∂ ∂           ∂          

1 2 3
x x x

 and yields:

v   ;  v   ;  v     Question: Interpret these waves.λ φ λ λ φ= − = = + ←
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1.8) Maxwell’s Equations

Useful in non-linear optics, designing fiber optic cables. Also needed for 
designing stealth technology.

Written as:

   0                 Faraday's Law

    4       Generalized Ampere's Law

  4                         Gauss's Law
   = 0                               Divergence-Free Co

c
t

c
t

∂
+ ∇× = ←

∂
∂

− ∇× = − ←
∂

∇ = ←
∇ ←

B E

D H J

D
B




π

π ρ
nstraint

Closure only obtained by constitutive relationships:-
Relate magnetic induction to magnetic field :               =  
Relate displacement vector to the electric field :          =  
Assume 

B H
D E

µ
ε

simple, linear scalar relations (material media require tensorial relationships).
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   0

4      

4    

   = 0      Constraint can be important to the fidelity of the solution process
Methods have also been developed to sweep any magnetic divergence of

c
t

c
t

µ
π

ε ε
π ρ

ε

∂
+ ∇× =

∂
∂

− ∇× = −
∂

∇ =

∇ ←

H E

E H J

E

B





x

y

z

x

y

z

f the mesh.

For now, we write the linear equations in a form that it designed to reveal the
characteristic matrix:

E 0 0 0 0 0 0
E 0 0 0 0 0
E 0 0 0 0 0

 + 
B 0 0 0 0 0 0
B 0 0 0 0 0
B 0 0 0 0 0

c
c

t
c

c

ε
ε

µ
µ

  
  
  
   −∂
  

∂   
   −
  

 

x

y

z

x

y

z

E
E
E

  = 0
B
B
B

Question: What are the eigenvectors of this system telling us?

x

 
 
 
  ∂
 

∂  
 
     

  
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1.9) The Magnetohydrodynamic Equations

Very useful in terrestrial fusion expts., interiors of stars, solar wind, 
magnetospheres of stars and planets. Needed: large system + lo resistivity

When gas it hot enough, it becomes partially/fully ionized. Charged 
particles gyrate around magnetic fields  matter and field are tightly 
coupled. Magnetohydrodynamics (MHD) is the simplest approximation.

Viewed over large enough length scales, plasma is neutral  local charge 
imbalances are v. rapidly neutralized in plasma’s rest frame.

Viewed over large enough time scales, i.e. longer than plasma waves 

The B-field is locked in the plasma  Lorenz-force acts in momentum 
eqn:

0t∂ ∂ =D

( ) 1  =   P +  +      Recall: current needed to sustain B-field!
 

D
D t c

ρ π− ∇ × ∇ ←
v J B


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/ /

We also need an evolutionary equation for B field :

   0      Faraday's Law;       =      Ampere's Law
4 

In the fluid's (primed) rest frame we have Ohm's law:  

Lorenz Transform to

cc
t π

σ

−
∂

+ ∇× = ← ∇× ←
∂

=

B E J B

J E

( )/ /

/ /

1 the fluid's rest frame to get :      ;       + 

Ohm's Law in the Eulerian frame of reference then gives:
1 1                    =    +  

4
This gives us our

c

c
c c

σ σ
πσ

= = ×

 = ⇒ = + × ⇒ − × ∇× 
 

J J E E v B

J E J E v B E v B B

( )

( ) ( ) ( )

2
2

2

     -  : 

   +  
4

1 1 1Write the Lorenz force as :    =    +    
4 8 4

evolutionary equation for the B field
c

t

c

πσ

π π π

∂
= ∇× × ∇

∂

 
× = − × ∇× − ∇ ∇ 

 

B v B B

BJ B B B B B

Question: Interpret these 2 terms
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( )

( )

( )

2 1The momentum equation then gives :    =  P +  +     + 
 8 4

The full set of ideal MHD equations in Conservation form can then be written as:

  +   v  = 0
  

v  + 
  

i
i

i

D
D t

t x

t

ρ π
π π

ρ ρ

ρ

 
− ∇ ∇ ∇ 

 

∂ ∂
∂ ∂
∂ ∂

∂ ∂

v B B B




( )( )

( ) ( )( )

( )

( )

2

2

2
2

v v  + P + /8    B  B 4   = 0

  +   P + /8  v   B /4  = 0
  

           with     = 0

1 Pwith  = e +   +     and      e  
2 8 1

Question: Can you spot the magneti

i j ij i j
j

i i
i

x

t x

t

ρ π δ π

π π

ρ
π

ε ε

ε

−

∂ ∂
+ − ⋅

∂ ∂
∂

= ∇× × ∇
∂

≡
Γ −

B

B v B

B v B B

Bv



c energy density and Poynting flux on this page?
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Flux Freezing Approximation for Ideal MHD

The magnetic fields are frozen into the fluid and move with the fluid in 
the ideal MHD limit. 

Thus if the fluid is compressed transversely to the magnetic field 
direction, the magnetic fields get squished too. This gives us an extra 
magnetic pressure term. Hint: Think of B2 / 8 π to see how it works.

If the fluid is pulled longitudinal to the magnetic field direction, the 
magnetic fields also produce extra magnetic tensional forces, just like a 
bunch of rubber bands that are pulled on end.

Magnetic pressure

Magnetic Tension

Original field configuration
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The equations of MHD have seven propagating wave families.

The Riemann problem ( I.e. the cell-break problem) tells us how 
these families propagate at discontinuities. This eminently physical 
procedure is used to build some of the most robust and accurate 
numerical schemes for MHD. 

Right-going 
fast wave

Right-going 
Alfven wave

x

t

Right-going 
slow wave

Entropy 
wave

Left-going 
slow wave

Left-going 
Alfven wave

Left-going 
fast wave

Space-Time Diagram for MHD Waves
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1.10) Flux Limited Diffusion (FLD) Radiation Hydrodynamics
It is tempting to build a “hydrodynamic” approximation for photons 
interacting with atoms. Question: What are the deficiencies in that? 
(Hint: Compare σCouloumb to σThompson .)

The Flux Limited Diffusion approximation does not solve this problem. 
It does, however, make it possible to arrive at a more tractable set of 
equations that can be solved.

Works best in the optically thick regime. Provides gracious breakdown in 
the optically thin regime. Question: What do these two regimes mean?

For some problems, we only care for the optically thick regime. FLD is 
ok in such situations because it assumes that photons diffuse through 
matter.

Mathematically: Assert that the radiation energy density E is the only 
variable of interest. Claim that radiation flux F and radiation pressure 
tensor P obtained from it. We will not derive, but give feel for equations.
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( ) ( )

0

0 0

2 2 2

     E +  E +       Interpret these terms ;  is flux limiter.

Question: With  being the reciprocal of a mean free path, can you interpret ?

E =  1 R   + 3 R 1     ;   R  
2

R

R R

c

c

λ λ
κ

κ κ

= − ∇ ←

− − ⊗ =  

F v v P

P I n n



( )

( ) ( )

( )( ) ( )

2 2

0

0
0

0

 EE  +  R   ;    =    ;   R = 
E  E

The final equations are:

  +   v  = 0
  

 Ev  + v v  + P   =   
   

  +   P  v  =  4  B   E  +  2   1   
  

R

i
i

i i j ij
j i

P
i P

i R

t x

t x x

c
t x

λ λ
κ

ρ ρ

ρ ρ δ λ

κκ π λ
κ

ε ε

∇∇
−

∇

∂ ∂
∂ ∂
∂ ∂ ∂

−
∂ ∂ ∂

 ∂ ∂
+ − − − ∂ ∂  

n

v 

( )

2
2

0

2

0

2
0 2

0 0
0

3 R E     E
2

3 R E  +  E v  =     E
  2

3 R                                             4  B   E    2   1    E +    E
2

Question: Interpret t

P

i
i R

P
P P

R

c

c
t x

c
c

κ

λ
κ

κκ π λ κ
κ

−
∇ −

 −∂ ∂   ∇ ∇  ∂ ∂    
  −

+ − − − ∇ 
 

v

vv





he RHS terms. Interpret all the terms in the radiation energy equation.
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1.11) Radiative Transfer
When the medium is not optically thick, photons do not propagate 
diffusively. We then have to treat the propagation of photons more 
carefully.

Photons can be absorbed or emitted by matter. (Give examples where 
this happens) They also scatter off the matter. (Question: Give terrestrial 
and stellar examples of scattering.)

In such situations, at each location “x”, we study the propagation of 
photons in each direction “Ω”.

The amount of radiant energy (in a frequency range ν to ν + dν) 
propagating per unit time through an infinitesimal area dA that is 
orthogonal to Ω is given by the radiation intensity: 

Question: How is this analogous to a distribution function for gas 
particles? Hint: for a photon, E = h ν = p c.

( ), , ,    I t d dA dx Ω Ων ν
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The radiative transfer equation for photons is the analogue of the 
collisional Boltzmann equation:

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )

1 , , ,  +    , , ,  = , ,  T , ,

                                                              , , , , , , ,  

                                                               + 

bI t I t t I t
c t

t t I t

ν ν κ ν ν

κ ν σ ν ν

σ

∂
∇

∂
− +

x Ω Ω x Ω x x

x x x Ω

x



( ) ( ) ( )/ / /, ,
 ,  , , ,  

4
t

I t d
ν

ν
π

Φ∫ Ω Ω x Ω Ω

Note: This is not just one equation for a single Ω, but rather a set of 
equations for the ordinates, Ω, spanning all directions.

The left hand side just says that photons stream freely in the absence of 
matter (and, therefore, in the absence of collisions with matter).

The right hand side contains the effect of photon-matter interaction. 
Question: Interpret each of the terms. Why does Ib depend on the 
temperature of matter? κ is the absorption opacity and σ is the scattering 
opacity. How do those terms differ in the right hand side?
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First simplification: Speed of light >> all other speeds.  time-
dependence can be dropped.

Second simplification: Solve for a small number of frequency bins –
picket fence approximation. Alternatively, integrate over all frequencies –
gray approximation.

Third simplification: Solve only for a small set of ordinate directions. 
For each integer “N” there are only N ( N + 2) ordinates. Gives rise to an 
SN method.

Fourth simplification: Oftentimes, the matter is assumed stationary.

( ) ( ) ( )( )
( ) ( )( ) ( )
( ) ( ) ( )

( )2

1

   , ,  = ,  T ,

                              , , , ,  

,
                               +   ,  , ,

4

i i b

i

N N

j i j j
j

I I

I

w I
+

=

∇

− +

Φ∑

Ω x Ω x x

x x x Ω

x
Ω Ω x Ω

 ν κ ν ν

κ ν σ ν ν

σ ν
ν

π
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1.12) Equations of Linear Elasticity

We can stretch a spring and verify the linear relation in Hooke’s law. 
Restoring force (stress) proportional to deformation (strain). 

Imagine plucking the spring. Set up compressible oscillations.

We can also set up transverse oscillations. 

At an atomic level, the force comes from the deformation of atomic bonds

Undeformed Extensional strain Shear strain
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( )

( ) ( ) ( )( )

original positions
shifted posi

Let the  of the "atoms"/mass points be : , ,
After application of strain, the  tons

Displacement

are : 
X , , , ,Y , , , ,Z , , ,

 : 

We seek a definition

 v

 fo

ector

x y z

x y z t x y z t x y z t

=

=

≡ −

x

X

δ X x

( ) ( )

r strain that is independent of translations or solid body rotations.
Consider  . It eliminate translations

rot

does .

Solid body  are given by anti-symmetric 

3

t

3 ten

ensor

sor

 : at

 : 

ions T ∂ ∂ − ∂

×



∂

∂

∂

δ x δ

x

x

δ

( ) ( )

x y

2

The  is , therefore, given by the 

We will shortly see how   r the stress tensor 

 tenso

.

The  is defin

elates to the strain tensor

r : 

ve ed by :

2

 v ,v ,vlocity

 

T

l

strain symmetric

inearly

 ≡



∂ ∂ +

≡

∂ ∂ 

v

ε

δ x

σ

ε δ x

( ) ( )

( ) ( )

z

11 x

X , Y , Z

and satisfies  of the foc rm : 
X , , , X , , ,

  1 v

onsistency conditions

t x

t t t

x y z t x y z t
t x x t

ε

= ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂   ∂ ∂
∂ = − = = ∂   ∂ ∂ ∂ ∂   

δ

δ
δ

δ
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( ) ( ) ( )

11 x 22 y 33 z

12 x y 23 y y 13 x

x 11 12 13

z

 v 0     ;     v 0     ;     v 0     ;
1 1 1 v v 0  ;   v

Dynamical equations

v 0  ;   v v 0  ;
2 2 2

 v    0   

 given

;

 by:

t x t y t

t x y z

z

t y x t z x t z x

ε ε ε

ε

ρ σ σ σ

ε ε

∂ − ∂ = ∂ − ∂ = ∂ − ∂ =

∂ − ∂ + ∂ = ∂ − ∂ + ∂ = ∂ − ∂ + ∂ =

∂ − ∂ − ∂ − ∂ =

y 12 22 23

z 13 23 33

i.e. 6 consistency conditions and 3 components of Newton's laws.

The linear stress-s

 v

tr

  

ain relation is a constitutive relationshi

 0   ;
 v    

p giv

0   ;

en

t x y z

t x y z

ρ σ σ σ

ρ σ σ σ

∂ − ∂ − ∂ − ∂ =

∂ − ∂ − ∂ − ∂ =

11 11

22 22

33 33

12 12

23 23

13 13

 by:
2 0 0 0

2 0 0 0
2 0 0 0

 =  
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 and  are Lame  parameters and are related to th

σ εµ
σ εµ
σ εµ
σ εµ
σ εµ
σ µ

µ
ε

Λ + Λ Λ    
    Λ Λ + Λ    
    Λ Λ Λ +
    
    
    
    
    
Λ
   

′ e 
Young's modulus " " and Poisson ratioE n" ".µ
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( )
( )

( )
( )
( )

11 x y z

22 x y z

33 x y z

12 x y

23 y y

 2 v    v    v 0

   v  2 v    v 0

   v    v  2 v 0

 v v 0

 v v 0

The final form of the equations for  is :

t x y z

t x y z

t x y z

t y x

t z x

linear elasticity
σ µ

σ µ

σ µ

σ µ

σ µ

∂ − Λ + ∂ − Λ ∂ − Λ ∂ =

∂ − Λ ∂ − Λ + ∂ − Λ ∂ =

∂ − Λ ∂ − Λ ∂ − Λ + ∂ =

∂ − ∂ + ∂ =

∂ − ∂ + ∂ =

( )
x 11 12 13

y 12 22 23

z 13 23

2

x

3

13

3

1

z

For x-directional variations we can again write a cha

 v    0
 

racteristic matrix and obtain:

v    0
 v   

 v 0

 

0

;

v

 

 

t x y z

t x y z

t x y z

t x

P

z

c

ρ σ σ σ

λ

ρ σ σ σ

ρ σ σ σ

σ µ

λ

∂ − ∂ −

∂ − ∂ + ∂

∂ − ∂ =

∂ − ∂ − ∂ − ∂ =

∂ − ∂ − ∂ − ∂ =

= −

=

3 4 5 6 7 8 9

2where   ;    

Question: Interpret these modes. What do they tell you? Explain why you 
get 6 pr

 ; 0 ;  ; 

opagating modes.

  S

P

S

S

P

c

c c c

cµ µ
ρ ρ

λ λ λ λ λ λ λ= = − = = = = = =

Λ +
= =
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( ) ( )

( )( ) ( )

( ) ( )( )

( )

2 2 2 2

2 2 2 2

   v 0

1   v  +  +    v  v   E  E   B  B  + P +    = 0
2

1   P +  +    v  + 0
2

            ;         =0 

i
i

i i j i j i j iji
j

i i
i

t x

h h
t x

h h
t x

t

ρ γ ρ γ

ρ γ ρ γ γ δ

ρ γ ρ γ

∂ ∂
+ =

∂ ∂

∂ ∂   × − − +  ∂ ∂   

∂ ∂ − + × = ∂ ∂ 
∂

= ∇× × ∇ •
∂

E B E B

E B E B

B v B B

( )

         ;         

 = 1 + P   - 1h ρ

= − ×

Γ Γ  

E v B

1.13) Relativistic Magnetohydrodynamics
(Rel-MHD) in Conservation form.(c=1)
1) Compare with non-relativistic case. Lab frame v/s rest frame.
2) Notice that the thermal energy and magnetic energy contribute to the 
inertia in the momentum equations. Similarly for Lorentz factor. Why?
3)The rest mass energy & magnetic energy contribute to the energy 
density.
4) Notice the promotion of the magnetic field to a 4-vector.
5) Notice that the induction equation remains unchanged owing to the 
fact that Maxwell’s Equations are already Lorentz-invariant!
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