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2.1) Introduction

We have seen that several PDEs have a combination of hyperbolic, 
parabolic and elliptic terms. Example : Navier-Stokes equations.

Many of the PDEs are also strongly non-linear. The non-linear aspect 
will be tackled in Chapters 4 and 5.

Even within the context of linear PDEs, convergence to the physical 
solution is not always guaranteed. Obtaining such guarantees is the topic 
of this Chapter.

We study how to approximate PDEs on a mesh. This is known as a 
Finite Difference Approximation (FDA). 

We understand what makes an approximation consistent.

Then we study stability of stiff source terms, linear parabolic equations 
and linear hyperbolic equations. 
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An interesting deficiency emerges for linear hyperbolic equations, which 
will only be resolved in the next Chapter.

Problems studied here are initial boundary value problems. They require 
specification of boundary conditions. We begin that study here.
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2.2) Meshes and Discretization on a Mesh
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To solve problems on a computer we need to represent the physical 
data. This entails allocating storage, I.e computer memory, I.e. bytes in 
RAM, to represent the physical variables.

Say we have a rectangular physical problem. We can subdivide our 
computational domain, which covers physical space, to obtain a 
computational mesh. The subdivisions can be labeled to obtain zones. 
For instance, we can talk of the (3,2)th zone of a two-dimensional mesh.

We can then assign physical data to each of the zones of the mesh. Eg. 
For a fluid flow problem we would assign density, momentum
density and energy density to each zone.

We expect that as the number of zones is 
increased by further subdivision of the mesh, the 
accuracy with which we represent the physical 
problem will increase. Eg., A 10X10 or 
100X100 zone mesh would be more accurate 
than the 5X5 mesh shown in the figure.
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Notice that the fluid variables evolve in time in response to their own 
spatial gradients. This is often the case with most PDEs.

Question: So what makes the conservation form so special? 
Answer: Gauss’ Law. 
Let’s focus on the continuity equation and the figure below.

When discontinuities/shocks
are present, we have no hope of
predicting the flow structure 
inside a zone in our computational mesh. 
However, the conservation form 
remains valid!
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Data can be allocated (collocated) at different locations on the mesh; 
some examples, along with popular indexing schemes, are shown below.

Zone-centered collocation of data x-Face-centered collocation of data

Denotes locations where physical
data is stored (collocated).
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Question: What would the multi-dimensional array declarations be for 
the meshes shown above?

Question: Which of the collocations above are favored for a) Euler 
equations, b) MHD, c) Maxwell’s equations and d) for the Poisson 
equation? Give reasons for your answers.

Question: A 3d mesh permits zone-centered, face-centered, edge-
centered and vertex-centered collocations. Draw a zone of a 3d mesh and 
indicate the locations of these collocations. How many different face-
centered and edge-centered collocations can you find?
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Vertex-centered 
collocation of data
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The standard notation for 
labeling various locations 
in a zone are shown:

Question: For which different 
scientific problems would you 
use these different locations 
on a mesh?

There are two standard ways of thinking about the solution techniques:

Finite Difference Formulation: Each variable is a point value defined at 
whatever location it is defined. (Pros: Easier, Faster. Cons: Not so general; 
doesn’t extend to complex geometries; can’t do mesh refinement.)

Finite Volume Formulation : Each variable represents a spatial (or 
temporal) average over some portion of the zone. (Pros: Extends to 
complex geometries, can do adaptive mesh refinement. Cons: Slightly 
slower)
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Notice that the fluid variables evolve in time in response to their own 
spatial gradients. This is often the case with most PDEs.

Question: So what makes the conservation form so special? 
Answer: Gauss’ Law. 
Let’s focus on the continuity equation and the figure below.

When discontinuities/shocks
are present, we have no hope of
predicting the flow structure 
inside a zone in our computational mesh. 
However, the conservation form 
remains valid!
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Triangulated meshes in 2d or tetrahedral meshes in 3d are very useful 
when mapping to complex geometries. This is important when solving 
configuration-specific problems.

On such meshes, only finite volume methodology works. As before, 
without specifying how to obtain proper physical fluxes etc., we show 
how a finite volume discretization of a conservation law may be 
achieved on an unstructured mesh. 
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Let the domain of the triangle be denoted by A and let |A| denote its area. 
A finite volume discretization of Ut+Fx+Gy=0 over triangle T1 would 
require us to collocate the conserved variables at the center of the 
triangle and integrate the PDE over the space-time domain A×[tn, tn+∆t]. 
As in the case of structured meshes, the time rate of update of the 
conserved variables is given by the fluxes at the boundaries of the 
triangle. 
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The finite volume update equations are given by:

Where we have the averages:
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2.3) Taylor Series and Accuracy of Discretizations. Truncation Error.
We have seen that as we subdivide the mesh we expect the solution to 
become more and more accurate. But we want to quantify this notion of 
accuracy. We expect accuracy to depend on the size “∆x” of the zones 
that make up a mesh.

The concept of Taylor series gives us a way to make that quantification.

The solution is available as a mesh function at discrete locations. Say, for 
simplicity, that those locations are evenly spaced.

x

u(x)

i-2 i-1 i         i+1 i+2

2u i−

1u i− u i
1u i+

2u i+
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x xx xxx xxxx

Say we know a function "u" and its derivatives at the origin.
Thus, say we have: u(0) ; u (0) ; u (0) ; u (0) ; u (0)
As we increase the number of such derivative terms, we increase 
the accuracy w

2 3 4
x xx xxx xxxx

ith which we can predict u ( h), a distance "h"
from the origin:

1 1 1u(h) = u(0) + u (0) h +  u (0) h  +  u (0) h  +  u (0) h  +...
2 6 24

We know from calculus that as the terms of the Taylor series are 
extended, our predicted solution also becomes more accurate. We want 
to carry that concept over to our discrete numerical representation.
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Let us, therefore, take the origin at the jth mesh point of a 1d mesh. The 
(j+1) th mesh point is located at “∆x” ; the (j-1) th mesh point is located 
at “-∆x”. At each of those discrete locations, we have a mesh function : 
uj = u(0), uj+1 = u(∆x) and uj-1 = u(-∆x) , see figure.

j-1           j             j+1
∆x−∆x

u(-∆x)       u(0)        u(∆x)

2 3 4
j+1 x xx xxx xxxx

j

2 3
j 1 x xx xxx

Using our formula for Taylor series 
(truncate at 4th order) we get:

1 1 1u  = u( x) = u(0)+u (0) x+ u (0) x + u (0) x + u (0) x
2 6 24
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2 6−

∆ ∆ ∆ ∆ ∆

−∆ − ∆ ∆ − ∆ 4
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j+1 j 1 x xxx

j+1 j 1 2
x xxx

1 u (0) x
24
1Subtract 3rd equation from 1st to get: u u  = u (0)(2 x)+ u (0) x
3

u u 1or    u (0) = u (0) x
2 x 6
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− ∆ ∆
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− ∆

∆
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2 3 4
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2 6 24
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j+1 j 1 2
x xxx

u u 1u (0) = u (0) x
2 x 6

−−
− ∆

∆

First derivative

Finite difference approximation of first derivative

Higher order terms. These carry the 
truncation error. The truncation 
error shows us that our FDA is 
second order accurate.

We can do a similar one for the second derivative to get:

j+1 j j 1 2
xx xxxx2

u 2u  + u 1u (0) = u (0) x
x 12

−−
− ∆

∆

Second derivative

Finite difference approximation of second derivative

Higher order terms. These carry the 
truncation error

Notice: the above discretizations are second order accurate.
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j+1 j
x

j+2 j+1 j 1 j 2
x

u u
Question: Show that u (0) =  is a first order 

x
accurate representation of the first derivative. 
Find the truncation error.

u + 8 u  8 u u
Question :  Show that u (0) =  

12 x
is a fourt

− −

−

∆

− − +

∆

xx

h order accurate representation of the first derivative.

Question : Build on the above question to get a 4th order accurate 
representation of u (0). Is it the most compact 4th order representation?

Note: As the accuracy of approximation increases, so does the width of 
the corresponding stencils. Question: What’s a stencil? Identify three point and 
five point stencils in the finite difference approximations above.
Question: For implicit problems, is a large stencil, generally speaking, a good thing or a 
bad thing? How would this limit the accuracy of practical implicit schemes? 
Question: How does a larger stencil influence the solution speed on a parallel 
supercomputer?

j-2             j-1           j             j+1         j+2∆x−∆x
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2.4) Finite Difference Approximations and their Consistency
Note, therefore, that there is a difference between the differential form
of an equation and its finite difference approximation. The truncation 
error quantifies this difference!

t xx

n+1 n n n n
i i i+1 i i 1

2

Differential Form : u  =  u

Finite Difference Approximation:

u u u 2u  + u = 
t x

σ

σ − − −
 ∆ ∆ 

Question: What is the spatial and temporal order of accuracy of the 
above finite difference approximation? What is the truncation error for 
the above finite difference approximation of the parabolic equation?

Notice from the above example that truncation errors can be of 
different orders in space and time!
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t xx 2

u u u 2u  + uu  =  u       v/s        = 
t x

σ σ − − −
 ∆ ∆ 

The stencil for the explicit heat conduction equation is shown:-

Identify the numerical domain of dependence and range of influence for 
the FDA.

Compare contrast with the same for the differential form of the PDE.
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Question: Draw stencils for each of the the following Finite 
Difference Approximations:
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∆ ∆ 
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                                  ( 0 1 )
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α
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≤ ≤
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3

2

1
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t

Question: What are the stencils,  domains of 
dependence and ranges of influence of the 
above schemes? (Hint: Look at the stencils 
and ask which points will influence the 
solution at which other points?)
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Consistency of a numerical scheme.
In the previous sections we have seen how we can use the concept of 
“discretization error” to produce “finite difference approximation” 
(FDA) to a “partial differential equation” (PDE) that is “good enough”. 

But what really determines “good enough”? Certainly, we want the 
computed solution from a finite difference approximation to 
approximate the solution of the PDE up to some specified (and 
specifiable) discretization error.

Formally speaking, we say that the finite difference approximation 
provides a consistent approximation to the PDE if the finite difference 
approximation tends to the PDE in the limit where ∆t  0 and ∆x  0.

n+1 n n n n
i i i+1 i i 1

2

t xx

Question: Is the finite difference approximation

u  2u u 2u  + u = 
t x

a consistent approximation of the PDE : u  =  u ?

σ

σ

− − −
 ∆ ∆ 
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We realize, therefore, that an accurate enough finite difference 
approximation will produce a consistent approximation of the PDE. But 
will the physics always be correctly represented if all we have is a 
consistent approximation? In other words, is a consistent finite 
difference approximation sufficient for correctly representing the 
physics? Answer : NO! It is possible to have consistent approximations 
to a PDE that will not represent the physics correctly!

We need one more thing at a very minimum. That thing is stability!

In other words, we can usually have multiple, consistent approximations 
to a PDE. Stability provides a further criterion by which we can winnow 
out several useless finite difference approximations. We only wish to 
retain the few consistent finite difference approximations to a PDE that 
pass the further test of stability.
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Our expectation is that the solution of a more accurate scheme will 
approach the exact solution of the PDE faster than the corresponding 
solution of a less accurate scheme.
Practical Considerations Regarding Accuracy Analysis
In practice we can solve the same problem with the same scheme on 
meshes with different resolutions, ∆x1 , ∆x2 , ∆x3 , … (where ∆x1 > ∆x2 > 
∆x3 > …). We can compute the corresponding errors in the solution ∆E1 , 
∆E2 , ∆E3 , … on the meshes. We know that asymptotically we should 
have                      when ∆x becomes small enough. Thus plotting log 
(∆E) v/s log (∆x) allows us to “read off” the order of accuracy “m” of the 
scheme. The plot below, comparing a second order scheme to a 4th order 
scheme, gives the general idea.

E  xm∆ ∝ ∆

Log(∆E)

Log(∆x)

0

-3

-1

-4
-5

4th order scheme

2nd order scheme

-1-2-3

-2

So, higher order schemes may 
have a higher computational 
cost, but they also have an 
increased computational 
benefit.

E  xm∆ ∝ ∆
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If the problem has an analytic solution, we can obtain ∆E on the meshes 
by comparing the analytic solution to the numerical one that is obtained 
on each of the meshes.

If the problem does not have an analytic solution, we take the finest 
mesh in our set of meshes and obtain ∆E on the rest of the meshes by 
comparing their solution to the solution on the finest mesh. This may be 
a dicey thing to do because the finest mesh too could have a spurious 
component in its solution. If a finer mesh starts showing different 
solutions it could always be physical (take turbulence as an example) but 
one has to approach such situations with a modicum of circumspection.

The above plot shows that one may sometimes have to go to very large 
meshes (very small ∆x) before the scheme reaches its asymptotic 
accuracy. Most schemes reach their design accuracy from below, I.e. on 
smaller meshes they are less accurate than their design accuracy. This 
often limits the accuracy one can safely advertise for one’s simulation of 
a physical problem.
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 (useful for parabolic/elliptic equn's): 

1                          E  = u u ( x )
N

 (useful for hyperbolic equn's): 

L  n

   

orm

   

L  n

    

r

 

m

 

o

  

∆ −∑

N
exact

1 i i
i = 1

exact
i ii = 1,...,N

1            E  = u u ( x )
N

 (also useful for hyperbolic equn's): 

                          E  = max  u u ( x )

For hyperbolic equations that are better 

L  n

tha

orm

n second 

∞

∞

∆ −

∆ −

∑

1

order accurate,
our definition of the L  norm may need to be upgraded. We will see
that in the chapters on WENO schemes.
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The above points give practical ideas for gauging the error of a 
numerical scheme via direct numerical experimentation. It is always a 
good idea to gauge this error for each new scheme via direct numerical 
analysis. This can show deficiencies in scheme design and/or 
implementation.

The best way to gauge accuracy is to do the same simulation on meshes 
of increasing resolution.

One often finds that a more accurate scheme reaches its design accuracy 
faster, I.e. on smaller meshes. This is a good argument in favor of more 
accurate schemes.



33

Consistency of a numerical scheme.
In the previous sections we have seen how we can use the concept of 
“discretization error” to produce “finite difference approximation” 
(FDA) to a “partial differential equation” (PDE) that is “good enough”. 

But what really determines “good enough”? Certainly, we want the 
computed solution from a finite difference approximation to 
approximate the solution of the PDE up to some specified (and 
specifiable) discretization error.

Formally speaking, we say that the finite difference approximation 
provides a consistent approximation to the PDE if the finite difference 
approximation tends to the PDE in the limit where ∆t  0 and ∆x  0.

n+1 n n n n
i i i+1 i i 1

2

t xx

Question: Is the finite difference approximation

u  2u u 2u  + u = 
t x

a consistent approximation of the PDE : u  =  u ?

σ

σ

− − −
 ∆ ∆ 
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We realize, therefore, that an accurate enough finite difference 
approximation will produce a consistent approximation of the PDE. But 
will the physics always be correctly represented if all we have is a 
consistent approximation? In other words, is a consistent finite 
difference approximation sufficient for correctly representing the 
physics? Answer : NO! It is possible to have consistent approximations 
to a PDE that will not represent the physics correctly!

We need one more thing at a very minimum. That thing is stability!

In other words, we can usually have multiple, consistent approximations 
to a PDE. Stability provides a further criterion by which we can winnow 
out several useless finite difference approximations. We only wish to 
retain the few consistent finite difference approximations to a PDE that 
pass the further test of stability.
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2.5) The Stability of Finite Difference Approximations
Bridges, boats, cars and planes can fail if the natural oscillations that they 
are liable to experience from the wind, road or water cause them to jostle 
too much. Avoiding such situations plays a great role in the design of 
bridges, boats, cars and planes .

Even the slightest spurious effect can excite such oscillations – the 
butterfly effect!

The fact that computers have finite precision means that discretization 
errors can, in and of themselves, excite such spurious oscillations in a 
numerical method. Other sources of unwanted oscillations can be 
imperfectly specified initial conditions, non-linearly large fluctuations in 
the solution itself, source terms, discretization error and imperfect 
specification of boundary conditions, to name but a few. In other words, 
“Whatever can go wrong will go wrong”. Murphy’s law.

Our goal is to protect our solution process against all such errors.
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A car should have a low enough center of gravity so that it does not turn 
turtle, a stable aircraft should want to fly right side up! A numerical code 
should, likewise, by virtue of its very design, want to produce the right 
physical solution.

It turns out that one can use the same “linear stability analysis” that one 
uses for cars and aircraft to also analyze the stability of a numerical 
scheme. Such a stability is known as Von Neumann Stability Analysis.

The following examples give us our first exposure to stability analysis 
within the context of ordinary differential equations.

 t
0

1  t

d yConsider the ordinary differential equation: y
d t

It has the solution: y ( t) = y  e
Thus we can write: y ( ) = e  y ( )

d yThus, even for a numerical scheme for solving the ODE, 
d t

n nt t

σ

σ

σ

−

+ − ∆

= −

=

n+1 n n+1 1

n

y , we 

can posit: y  =  y  . Here, y  is the numerical solution at t =(n 1) t
and y  is the numerical solution at t  = n t .

n

n

σ

λ +

−

+ ∆

∆



37

 

           '   !
      .   ,    .

         t

Whether the numerical scheme is stable or not depends on what s it produces
is known as the amplification factor It determines stability or lack thereof

Comparing to e also allows us toσ

λ
λ

λ − ∆

n+1 n
n

n+1 n n

n+1 n

  
"      ".

y   yConsider the following time-explicit scheme:  =  y
t

Which can be written as : y  = y    t y
Use our ansatz that y = y  to

gauge the
goodness of our finite difference approximation

σ

σ

λ

−
−

∆
− ∆

 get :  = 1  t
1Notice that   0 only when t  

Thus for a physically meaningful solution, the
range of permissible t's is rather limited!
Say we take 1 as our criterion for stability.(Why?)

Even 

λ σ

λ
σ

λ

− ∆

≥ ∆ ≤

∆

≤

2then, we get t   . This is 

the domain of stability of the above scheme.
σ

∆ ≤

+1

−1

λ

∆t

1
σ

2
σ
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( )

n+1 n
n+1

n+1 n+1 n

n+1 n

y   yConsider the following time-implicit scheme:  =  y
t

Which can be written as : y  t y  = y
Use our ansatz that y = y  to get :  = 1 1  t
Notice that   0 for all t !
Also notic

σ

σ

λ λ σ
λ

−
−

∆
+ ∆

+ ∆

≥ ∆

 

e that   1 for all t !
The scheme is unconditionally stable (or A-stable) !

 also approximates  pretty well!te σ

λ

λ − ∆

≤ ∆
+1 λ

∆t

n+1 n n

Question: What will happen to the solution computed from 
2y  = y  t y  when t   ? Find out by computing it on a computer.

1 2Find out what happens when t <  .

σ
σ

σ σ

− ∆ ∆ ≥

< ∆
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Von Neumann Stability is, in general, only necessary for stability. But by 
itself, it is not sufficient for stability in all cases.

A convergent scheme is one whose numerical solution tends to the 
solution of the PDE as ∆t  0 and ∆x  0. 

Note the word “linear” in the theorem above. Questions:Are the Euler 
equations linear? Identify some physically useful linear PDE’s?

Lax-Richtmeyer Theorem (see pgs 45-48 and 179 of Richtmeyer and 
Morton for proof) : Given a properly posed linear initial-boundary 
value problem and a finite difference approximation to it that satisfies 
the consistency condition, stability is a necessary and sufficient 
condition for convergence. 
(Mnemonic: consistency + stability  convergence)
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2.6) von Neumann Stability Analysis for Linear Parabolic Equations

The Lax-Richtmeyer theorem strictly applies to any linear PDE. But any 
PDE can be linearized about some local state; so it is also necessary 
(though not sufficient) in guaranteeing physical solutions for non-linear 
PDEs. 

2.6.1) Stability Analysis for Time-explicit Linear Parabolic Equations

For now we focus on the linear parabolic PDE :

1

n+1 n

u  u  with constant  discretized on an infinite mesh (i.e. to avoid boundary 
conditions) with zone size  and timestep . Mesh points:  . 

u u u
Time-explicit scheme:    = 

t

t xx
n n

j

j j

x t x j x t t t
σ σ

σ

+

=

∆ ∆ = ∆ = + ∆

−

∆

( )

n n n
j+1 1

2

1
1 1 2

2u  + u
       

x

 u u u 2u  + u    where 

j j

n n n n n
j j j j j

t
x

σµ µ

−

+
+ −

 −
⇒  ∆ 

∆
= + − ≡

∆



41

( )

 k  k  k   k  k    k 1 1
k k 1 k 1 k

1  k   k 
k k k

u =U  e ; u =U  e   u =U  e  and  u =U  e

It is worth demonstrating how this goes once:

U  = U  1 e   2 + e  = U  1  2 cos (

j j j ji x i x i x i x i x i xn n n n n n n n
j j j j

n n i x i x nµ µ

+ ∆ − ∆+ +
+ −

+ ∆ − ∆

⇒

 + − +  ( )

2

1
2k

FDA

  k  
PD

2

k

k

E

k )  1

        = U  1 4  sin  ( k  / 2)       Recall amplification factors?

For the FDA U(k)   = 1 4  sin  ( k  we have : 

For the PDE we have : (k) = e  = 

/ 2)
U

et

n

n

n

x

x

x

σλ

λ µ

µ

+

− ∆

∆ −  

 − ∆ ←

≡



− ∆

( )

2
22

PDE

2
F

  (k )

A

 
( )

D

  k

Notice that (k) 1 for all   

However, (k) 1 for 1/2 or   2  
                                                        

   

= e
tx

xx

t

t

PDE is unconditionally stable

x
F

σ
µ

λ

λ µ σ

∆ − ∆   − ∆∆ 

≤ ∆ ⇒

≤ ≤ ∆ ≤ ∆

⇒

FDA PDEWe say that the FDA approximates the PDE well when
   

 (k)  (k)!
DA is conditionally stable

λ λ→
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( )
n+1 n n n n

1i i i+1 i i 1
1 12 2

u u u 2u  + u   =    u u u 2u  + u  with 
t x

n n n n n
j j j j j

t
x

σσ µ µ+−
+ −

 − − ∆
⇒ = + − ≡ ∆ ∆ ∆ 
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 k  k 1 1
k k

 k   k  k  k    k  k  k   k 
1 k k 1 k k

1
1

u =U  e     ;      u =U  e   

u =U  e =U  e e  and  u =U  e =U  e e
Question: Why do we want  ?

u u u 2u

j j

j j j j

i x i xn n n n
j j

i x i x i x i x i x i xn n n i x n n n i x
j j

n n n
j j j j

k xπ π

µ

+ +

+ ∆ − ∆∆ − ∆
+ −

+
+

⇒

− ≤ ∆ ≤

= + −( )1 + u    n n
j− ⇒

2
2 22

1
2k

FDA
k

  (k )  
  k    (k )

PDE

U(k)   = 1 4  sin  ( k  / 2)
U

(k) = e  = e = e

n

n

tx
t xx

x

σ
σ µ

λ µ

λ

+

∆ − ∆  − ∆ − ∆∆ 

≡ − ∆
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The amplification factors are shown for µ = 0.25, 0.5, 1.5. 
Dashed curve : FDA Solid curve : PDE Question: What do you see?
a b c

k x∆ k x∆k x∆

λλ λ

µ = 0.4 µ = 0.5008

Evolution of
Square Pulse:
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2.6.2) Stability Analysis for Time-Implicit and Semi-Implicit Linear 
Parabolic PDEs

( )

n+1 n n+1 n+1 n+1
j+1 1

2

1 1 1 1
1 1

+1
k

FDA 2
k

u u u 2u  + u
Time-Implicit Scheme:    =       

t x

u u 2u  +

U 1(k) =  = 
U 1+4  sin  ( k  / 2

 u u

We t

)

ge

j j j j

n n n n n
j j j

n

n

j j

x
λ

µ

σ

µ

−

+ + + +
+ −

 − −
⇒  ∆ ∆ 

− −

∆

=

  
The amplification factors are shown for µ = 0.25, 0.5, 10.0. 
Dashed curve : FDA Solid curve : PDE Question: What do you see?

λ λ λ

k x∆ k x∆

a b c

 Question: What is this amplification factor 
telling you about stability?
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( )

 k  k 1 1
k k

 k   k  k  k    k  k  k   k 
1 k k 1 k k

1 1 1 1
1 1

u =U  e     ;      u =U  e   

u =U  e =U  e e  and  u =U  e =U  e e

u u 2u  + u u    

j j

j j j j

i x i xn n n n
j j

i x i x i x i x i x i xn n n i x n n n i x
j j

n n n n n
j j j j jµ
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+ ∆ − ∆∆ − ∆
+ −

+ + + +
+ −

⇒

− − = ⇒

+1
k

FDA 2
k

U 1(k) =  = 
U 1+4  sin  ( k  / 2)

n

n x
λ

µ ∆ 
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µ = 6.55

Evolution of
Square Pulse:

µ = 32.75

( )( )

n+1 n n n n n+1 n+1 n+1
j+1 1 j+1 1

2 2

1 1 1 1
1 1 1

Semi-Implicit Scheme ( ):

u u u 2u  + u u 2u  + u
 =    + (1 ) 

Crank-Nichols

 ( 0 1 )  
t x x

u  1 u 2u  + u u  + 

on, =1/2

u

j j j j j j

n n n n n n
j j j j j j

α σ α σ α

α

µ α µα

− −

+ + + +
+ − +

   − − −
− ≤ ≤ ⇒      ∆ ∆ ∆   

− − − = −( )

( )

2+1
k

FDA 2
k

1

1 4   sin  ( k  / 2)

2u  + u

We g

U(k) =  = 
U 1+ 4  1  sin  ( k  /

e

 

t

2)

n

n

n

n
j j

x

x

µ α
λ

µ α

−

 − ∆ 
 − ∆ 
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The amplification factors are shown for µ = 0.25, 0.5, 10.0. and α=1/2 
Dashed curve : FDA Solid curve : PDE Question: What do you see?

λ λ λ

a b c

k x∆ k x∆ k x∆

µ = 3.5

Evolution of
Square Pulse:

µ = 10.0
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2.6.3) Stability Analysis of the Time-Implicit TR-BDF2 Method

The Crank-Nicholson scheme, despite being second order accurate, has 
the deficiency that it produces spurious oscillations. 

Can one obtain a second order accurate scheme for parabolic problems 
that is free of these oscillations? Ans: If one is willing to invert the 
matrix twice, then the answer is yes!

One uses a TRapezoidal scheme for the first step which only takes us up 
to a time of tn +∆t/2 from a time of tn . This is written as:

Using time levels tn and tn+1/2 , we now use a Backward Difference 
Formula of 2nd order as:

Hence the name TR-BDF2. This scheme is also useful when stiff source 
terms are present in addition to the diffusion terms.

( ) ( )1/2 1/2 1/2 1/2
1 1 1 1u  u 2u  + u u  + u 2u  + u

4 4
n n n n n n n n
j j j j j j j j
+ + + +

+ − + −− − = −
µ µ

( )1 1 1 1 1/2
1 1

1 4u u 2u  + u   u   u
3 3 3

n n n n n n
j j j j j j
+ + + + +

+ −− − = − +
µ
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The amplification factors are shown for µ = 0.25, 0.5, 10.0. and TR-BDF2 
Dashed curve : FDA   Solid curve : PDE   Question:What do you see?Compare with C-N.

λ λ λ

µ = 6.55

Evolution of
Square Pulse:

µ = 32.75

k x∆ k x∆ k x∆
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2.6.4) Boundary Conditions for Parabolic Equations

Our parabolic FDA looks very much like the elliptic Poisson equation.

There is a theorem which states that for the Poisson problem we can 
either specify the value of the potential at the boundary or specify the 
gradient of the potential at the boundary. However, we can never specify 
the value of the potential and its gradient at a boundary.

For parabolic equations, the boundary conditions can change in time, but 
the same restrictions apply – we  can’t specify variable and its gradient 
at a boundary at any given time.

The boundary conditions we used in our previous example are called 
Dirichlet boundary conditions and consist of specifying the solution at 
the boundary of the domain.

Specifying the gradient gives us Neumann boundary conditions. 
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We may also specify a linear combination of the potential 
and its gradient, known as mixed boundary conditions. 

We may also require the boundary conditions to be periodic, which 
changes the dimension of the resulting matrix when implicit/semi-
implicit formulations are used.

2.6.5) Introduction to Matrix Methods for Parabolic Equations

Consider the fully-implicit formulation on a 1d mesh. The mesh points 
are indexed from j=0 to j=J At the boundaries one can have the most 
general form of mixed boundary conditions by discretizing the 
boundary conditions as:

In the interior we have the FDA:

a  u  + b  u = c   ;   a  u  + b  u = cl x l l r x r r

1 1 1 1
0 1 1(b a ) u  + a  u  = c    ;   a u  + (b a ) u  = cn n n n

l l l l r J r r J rx x x x+ + + +
−∆ − ∆ − ∆ + ∆

( )1 1 1
1 1 u  + 1 2 u  u u    for    =1,.., 1n n n n

j j j j j Jµ µ µ+ + +
+ −− + − = −

j-1           j             j+1∆x−∆x

u(-∆x)       u(0)        u(∆x)
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( )1 1 1 1
1 1Solve :   u u 2u  + u u     for 1 1

with boundary conditions :  a  u  + b  u = c   at 0 ;   a  u  + b  u = c   at 

n n n n n
j j j j j

l x l l r x r r

j J

j j J

µ+ + + +
+ −− − = ≤ ≤ −

= =
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1
0

1
11

1
22

1
11

1

b a a cu
(1 2 ) uu

(1 2 ) uu
  = 

... ... ... ..
(1 2 ) uu

a b a cu

n
l l l l

nn

nn

nn
JJ

n
r r r rJ

x x

x x

µ µ µ
µ µ µ

µ µ µ

+

+

+

+
−−

+

∆ − ∆    
    − + −     
    − + −
    
    
    − + −
    

− ∆ + ∆        

The result is a banded sparse matrix with dimension (J+1)×(J+1):

Such matrices also arise when discretizing elliptic and parabolic 
equations in multiple dimensions. For 2d problems we have the form:
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2.7) von Neumann Stability Analysis of Linear Hyperbolic Equations

Even the simplest 1d PDE : ut + a ux = 0 has much to teach us. 

On infinite domains, the initial conditions u0(x) evolves as u ( x, t) = 
u0(x−a t) , as shown in the figure below. 

Shape is preserved; characteristics are straight lines in space-time.

Question: On 
finite domains, we 
need more. What 
do we need?

How do we 
specify the 
boundaries of the 
domain?
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 k 
k

a   (k ) 
  a k    (k )

PDE

First analyze amplification factor for PDE, u  + a u  = 0, 

using Fourier modes  u =U  e  :- 

(k) = e  = e = e     
a where we define 

j

t x
i xn n

j

ti x
i t i xx

t
x

µλ

µ

∆ − ∆  − ∆ − ∆∆ 

∆
≡

∆

[ ]
[ ]
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PDE

PDE

(k)  = 1  k  
 PDE is 

Im (k)
(k)  tan k a 
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not 

not 

PDE is dispersiv

dissipative

e

t

λ

λ
θ

λ
−

∀

⇒

  ≡ = − ∆ 
  

⇒
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2.7.1) Forward Euler (Never Used)

The forward Euler scheme is an example of an unconditionally unstable 
scheme that should never be used. It is only meant to illustrate that it is 
easy to do something that seems “reasonable” and arrive at a bad scheme.

( )
1

1 1 1
1 1

FDA

 k 
k

1

FDA uncond

u u u u a  = a   u  = u   u u           

U(k) = ition

 
2 2

   ;   (k) 1     = k  !1  ally unstabl sin ( k 

Set u =U  e  and 

)
U

u

e

j

n

n n n n
j j j j n n n n

j j j j

k
n

xn
j

k

in

t
t x

i x

x
µ µ

λλ µ

+
+ − +

+ −

+

 − − ∆
− ⇔ − − ≡  ∆ ∆ ∆ 

− > ∀∆ ⇒

 k 1 1
k=U  e  to derive amplification factor.ji xn n

j
+ +
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2.7.2) Lax-Friedrichs Scheme

Slightly modify the forward Euler scheme:

Why does it work? Rewrite the scheme as:

( )
( ) ( )

1

1 1 1
1 1 1

1

1

1u u u 1 = a   u u u    u u
2 

1 u

2

u
2

2

n n nj j j n n n n n
j j j

j

j j

n n
j

t x
µ

+

+ − +
+ − + −

+ −−  −
− ⇔ = + − −  ∆ ∆ 

+

( ) ( ) ( )1
1

1/2 1/2 1/2 1
au u f f   with  f    dissipation term
2

u
2 

u u+ un n
j

n n
j

n n n n
j j j j j

n
j j

t x
x t− + +

+
+ + −

∆ ∆
= − − = − ←

∆ ∆

1

FDA
U(k) =  = cos ( k )   sin ( k )
U

n
k
n
k

x i xλ µ
+

∆ − ∆

a 

is CFL #

t
x

µ ∆
≡

∆
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( ) ( )

 k  k 1 1
k k

 k   k  k  k    k  k  k   k 
1 k k 1 k k

1
1 1 1 1

u =U  e     ;      u =U  e   

u =U  e =U  e e  and  u =U  e =U  e e

1u u u    u u
2 2

j j

j j j j

i x i xn n n n
j j

i x i x i x i x i x i xn n n i x n n n i x
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n n n n n
j j j j j

µ

+ +

+ ∆ − ∆∆ − ∆
+ −

+
+ − + −

⇒

= + − −

1

FDA
U(k) =  = cos ( k )   sin ( k )
U

n
k
n
k

x i xλ µ
+

∆ − ∆
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Observe the domain of dependence of the Lax-Friedrich scheme (dashed stencil)

The solid arrow also shows the characteristics.

Question: What do the characteristics tell us about the CFL time step restriction?

x1 2 3 4 5

5

4

3

2

1

0

t

∆x

∆t

x1 2 3 4 5

5

4

3

2

1
0

t

∆x

∆t
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The above figures show advection of a Gaussian and a top-hat profile.

Question: Relate the deficiencies that you see in these simulations to the 
above dispersion analysis.
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2.7.3) Lax-Wendroff Scheme

The Lax-Friedrichs scheme was first order and very dissipative. So we 
try to build a second order scheme. Resort to Taylor series expansion.

The Lax-Wendroff procedure shown here is, in fact, a common building 
block for numerical schemes, even though the Lax-Wendroff scheme 
designed here is seldom used.

2

2

1u ( ,  + ) = u ( , ) +  u  ( , ) +  u  ( , ) + ...
2

Now use the governing equation: u  a u 0 to get : u  a u   and u  a u  a u  a  u  . 

Substituting one gets:     

n n n n
j j t j tt j

t x t x tt xt tx xx

x t t x t t x t t x t∆ ∆ ∆

+ = = − = − = − =

( )

2 2

1
1 1 1 12

2

2
1

1 1

1u ( ,  + ) = u ( , )  a  u  ( , ) +  a   u  ( , )
2

Which yields:

u u u u u 2 u  + u1 = a  +   a  
2 2

u u u u u
2 2

n n n n
j j x j xx j

n n n n n n n
j j j j j j j

n n n n
j j j j j

x t t x t t x t t x t

t
t x x

µ µ

+
+ − + −

+
+ −

∆ − ∆ ∆

   − − −
− ∆ ⇔      ∆ ∆ ∆   

= − − + ( )1 12 u  + un n n
j j+ −−
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2

Lax-Wendroff

1u ( ,  + 

 procedure

) = u ( , ) + 

switch tim

 u  ( , ) +  

e derivative

u

s with spatial deriv

 ( , ) + ...
2

Use  ( ) 
using u  

atives
a u 0

n n n n
j j t j tt j

t x

x t t x t t x t t x t∆ ∆ ∆

+ =

2 21u ( ,  + ) = u ( , )  a  u  ( , ) +  a   u  ( , )
2

n n n n
j j x j xx jx t t x t t x t t x t∆ − ∆ ∆

1
1 1 1 12

2

u u u u u 2 u  + u1 = a  +   a       Forward Euler + What?
2 2

n n n n n n n
j j j j j j jt

t x x

+
+ − + −   − − −

− ∆ ←      ∆ ∆ ∆   
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( ) ( )

 k  k 1 1
k k

 k   k  k  k    k  k  k   k 
1 k k 1 k k

2
1

1 1 1 1

u =U  e     ;      u =U  e   

u =U  e =U  e e  and  u =U  e =U  e e

u u u u u 2 u  + u
2 2

j j

j j j j

i x i xn n n n
j j

i x i x i x i x i x i xn n n i x n n n i x
j j

n n n n n n n
j j j j j j j

µ µ

+ +

+ ∆ − ∆∆ − ∆
+ −

+
+ − + −

⇒

= − − + −

1
2 2

FDA
U(k) =  = 1   sin ( k )  2  sin  ( k  / 2)
U

n
k
n
k

i x xλ µ µ
+

− ∆ − ∆
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2 2 4
FDA

1F

1

DA

2 2
FDA

PDE

(k) 1  4  (1 ) sin  ( k  / 2 stable 

U(k) =  = 1   sin ( k )  2  sin  

for)       Scheme is 

(k) 1  sin ( k )   tan  
(k)  (k ) 1  2  s

 CFL numbe

( k  / 2)

r 1

U

i

n
k
n
k

x

x

x
x

i x

µλ µ µ

λ µ µ

θ µ
θ µ µ

−

+

= − − ∆ ←

−

−

∆

∆
∆

−

≤

∆

=
[ ]2

long wavelen

n ( k  / 2)

Questions: What can you say about 
advection of  modes?
What can you say about 
advection short of  

g

wavelength

th

modes?

x

  
 

∆  

FDA (k)λ

FDA

PDE

(k)
(k)

θ
θ

k x∆
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The above figures show advection of a Gaussian and a top-hat profile.
The Gaussian is almost perfect The top hat profile is very oscillatory, 
non-positive.
Question: Relate the deficiencies that you see in these simulations to the 
above dispersion analysis. What will a non-positive method do at shocks?
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If the square pulse represented a pulse of fluid density, the Lax-
Wendroff scheme would produce negative densities, a very undesirable 
situation. 

The ability of an advection scheme to evolve a solution so that positive 
initial conditions remain so for all time is called the positivity property.

To see it, rewrite the scheme and observe the  negative coefficients 
below:

A rather pessimistic theorem by Godunov says that all linear positivity-
preserving schemes are condemned to be first order accurate!

( ) ( ) ( )1 2
1 1u 1 u 1 u 1 u

2 2
n n n n
j j j j

µ µµ µ µ+
+ −= − − − + +
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2.7.4) Two-Stage Runge-Kutta Scheme

We try to build a second order scheme by resorting to second order 
Runge-Kutta in time and centered fluxes in space. 

Nice thing here is that we can split the spatial operator from the 
temporal operator, making the resulting scheme easy to implement

The Runge-Kutta time stepping shown here is, in fact, a popular 
building block for numerical schemes, even though the Runge-Kutta 
scheme designed here is seldom used.

The scheme shares many strengths and weakness with Lax-Wendroff.

( ) ( )

( ) ( )

1/2
1/2 1/2 1/2 1

1 1/2 1/2 1/2 1/2 1/2
1/2 1/2 1/2 1

1u u f f   with  f  a u u     Predictor Stage
2 2

1u u f f   with  f  a u u   Corrector Stage
2

n n n n n n n
j j j j j j j

n n n n n n n
j j j j j j j

t
x

t
x

+
+ − + +

+ + + + + +
+ − + +

∆
= − − = + ←

∆
∆

= − − = + ←
∆
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The ability of an advection scheme to evolve a solution so that positive 
initial conditions remain so for all time is called the positivity property. 
The Lax-Wendroff and Runge-Kutta schemes clearly lack such a 
property. 
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2.7.5) First Order Upwind Scheme
Realize that information always flows from the upwind direction in the 
advection equation. We try to build that intuition into our scheme in the 
simplest way.

For a > 0 we have:

The scheme is also called the donor cell scheme. It is positivity 
preserving.

1
1u u u u

 = a
n n n n
j j j j

t x

+
− − −

−   ∆ ∆ 

x1 2 3 4 5

5

4

3

2

1
0

t

∆x

∆t
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Gaussian shows dissipation because of first order accuracy.
However, the top-hat profile is oscillation-free! We wish to retain this 
desirable trait.
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2.7.6) Section Summary for Hyperbolic Systems
Second order schemes did very well for smooth profiles, like the 
Gaussian.

They are deficient for discontinuous profiles, like the top-hat profile.

First order upwind scheme did the best of all for discontinuous profiles.

Desirable to combine the best traits of both: In smooth regions, retain 
full second order accuracy; at discontinuities, use elements of the first 
order solution. Positivity at discontinuities is an important issue.

Within the confines of linear schemes (even for linear PDEs) the Lax-
Richtmeyer theorem tells us that this is not possible.

The only way out is to resort to non-linear hybridization (even for 
linear PDEs). We will find a way to pick the second order solution in 
regions of smooth flow while backing away from it locally at 
discontinuities.


	Chp 2)Finite Difference Approximations
	Slide Number 2
	Slide Number 3
	2.2) Meshes and Discretization on a Mesh
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	2.3) Taylor Series and Accuracy of Discretizations. Truncation Error.
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Consistency of a numerical scheme. 
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Consistency of a numerical scheme. 
	Slide Number 34
	2.5) The Stability of Finite Difference Approximations 
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73

