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4.1) Introduction

We have seen that monotonicity preserving reconstruction and Riemann
solvers are essential building blocks for numerically solving a linear
hyperbolic system.

While the same remains true for a non-linear system of conservation
laws, the emphasis shifts.

For non-linear systems, the Riemann solver and the reconstruction
problem become more complicated.

The presence of non-linearity introduces additional complications — the
presence of shocks and rarefactions. We study them for the simplest
scalar case:

u, + f(u), =0

Need to focus on df(u)/du , the wave speed, and d?f(u)/du? , convexity.



With f(u) = u? / 2 we get Burgers equation. Interesting because it can
produce prototypes of many of the shocks and rarefactions we will study
later.

Conceptual simplification if f/(u) does not change sign, i.e. egn. is
convex. Then the wavespeed either monotonically increases or decreases

with “u”. Burgers eqn. is convex. Euler system can also be shown to be
CONvex.

For hyperbolic conservation laws we will see that:
Convexity + strict hyperbolicity = several advantages in designing
numerical solution methods.

If f/(u) does change sign, the egn. is non-convex. When the PDE is non-
convex, we are not on very firm ground. Examples, multiphase flow,
non-linear elasticity equations, MHD.



4.2) A Gentle Introduction to Rarefaction Waves and Shocks
4.2.1) A Mechanistic Model for Rarefaction Waves and Shocks
The idea here is to study a very simple model to develop intuition.

Simple model for rarefaction waves: Imagine skiers going downhill.
Linear number density n, skiers per meter wait at the ski ramp, moving
to the starting point with a speed v .

Speed of skier: v*(x)=v; + 29 x sing

Flux conservation: n, v, =n(x) v(x)= n(x)=n, vo/\/v(f +2gxsing

v, it
&,

Skiers keep changing, shape of {y ﬁ {y
rarefaction wave stays fixed.
Analogously, atoms move through a

rarefaction, but the shape of a
rarefaction wave remains fixed.

Structure of rarefaction is determined
entirely by the form of the flux function




Simple model for shock waves: Skiers reaching downhill with a high
speed v, run into a tree. They approach the bottom with number density
n, . At the pileup they will again be closely packed, number density n, .

The point where the pile-up occurs moves to the left with a speed “s”.
This is the shock front moving with a speed “s” to the left.

Locate yourself in the frame of the shock. Flux of skiers coming in from left : n, (v, —s)
Flux of skiers leaving the plane of the shock to the right: —n, s

The two fluxes must balance: n, (v, —s)=-n, s
As before, we use a conservation law. 5

Location of shock is not pinned to 5 s
any one skier. Skiers, like
atoms in a fluid shock,
move through the shock.

Current Location of
shock front moving to
the Ieft with velocity “s”

Form of shock depends on flux
function.




4.2.2) The Formation of Shocks and Rarefaction \Waves

Two equivalent forms of Burgers egn. : U, +(

Compare with advection egn. to see what it says :

j:o < u+uu, =0

u +au, =0

Letu, (x) be the initial condition. Let us compare the respective solutions

pictorially and analytically.

Solution to Burgers equation :  u(Xx,t)=u,

Solution to advection equation : u(x,t)=u,

H t
u(x,)=uyx—ar u

(%,

(%)

1,(x,)

where X, =x—f' (U, (%))t

where X, =x-at

u(x,f) =u,(x,)

I P

x=x,+ 1 (uy(x,))¢
6

X




Similarity: Both equations tell us that the solution at any space-time point
(x,t) Is obtained by following the characteristic through this point
backward in time to the x-axis.

Difference: Characteristics are parallel for advection equation, not so for
Burgers. Characteristics are solution-dependent for Burgers equation.

As a result, solution of Burgers equation becomes transcendental.
Question: Can you show this?

Depending on slope of initial conditions, characteristics converge or
diverge for Burgers equation. Solution steepens when characteristics
converge; becomes less steep where characteristics diverge. At some point
In space-time, the characteristics might intersect. Let us find the first time
the characteristics intersect, called the breaking time.

X=X+ ' (U (X))t and x =x, +Ax, +f(u (x + AX ))t
Characteristics intersect when : t :—]7/ [f” }

Braking time, i.e. first time they intersect : Tbreak = ]7/ mlnx[f” )]



X =X+ ' (U (X))t and x =%, + AX, + f’( (x + AX ))t
Characteristics intersect when : t :—]7/ [ ” }

Braking time, i.e. first time they intersect : Tbreak = ]7/ mlnx[f”



4.2.3) Shock and Rarefaction Wave Solutions from Burgers Equation

Burgers equation with initial condition : u, (x) = 0.5+ exp(—lOO(x + 0.25)2)
Solution shown at t=0, 0.08, 0.1116, 0.6 . Can find that =0.1116

break
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0.6

This figure shows the characteristics in space-
time. Notice compressional (converging
characteristics) and rarefaction (diverging
characteristics) waves
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The shock forms when the characteristics
Intersect. The position of the shock is shown by
the thick line at which the characteristics intersect.
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We also observe that the characteristics diverge at the location of the
rarefaction wave.
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Think of the characteristics carrying information. The information is
destroyed when the characteristics flow into a shock. l.e., if we try to
retrieve initial conditions, we can’t! different initial conditions can give
rise to the same shock. Information destruction =» entropy generation.

This can also be seen in hydrodynamic shocks where there is a clearly
available entropy function.

Availability of entropy function is very useful for designing schemes.



4.2.4) Simple Wave Solutions of the Burgers Equation
Consider left and right states with : u, (x) =2 for x<—0.25 ; u, (x) =0 for x> —0.25

f'(2)=2 , f(0)=0 = characteristics flow into initial discontinuity.
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Notice, characteristics from either side are flowing into (converging to)
the initial discontinuity

Discontinuity is form-preserving, i.e. self-similar. Self-similarity will
become a very important concept later in this chapter. Known as isolated
shock wave.

Their propagation speed depends on the form of the flux function.

Similarity: Shocks are analogues of the simple waves studied in the
previous chapter on linear hyperbolic systems.

Difference: However, the speed of propagation has become solution-
dependent in the non-linear case. This is an important point of difference
between linear and non-linear hyperbolic conservation laws.

Question: When considering linear hyperbolic systems: If the strength of
a simple wave changed, did that also cause a change in its speed?




Consider left and right states with : u, (x) =0 for x<-0.25 ; u, (x) = 0.5 for x> -0.25

f'(0)=0 , f'(0.5)=0.5 = characteristics flow away from initial discontinuity.

t=0 ° t=0.5 °
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t=10 04—
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Notice, characteristics from either side are flowing away from (diverging
from) the initial discontinuity.

Discontinuity Is form-preserving, i.e. self-similar. Known as isolated
rarefaction fan. Their propagation also depends on the form of the flux
function.

Similarity: Isolated rarefaction fans are analogues of the simple waves
studied in the previous chapter on linear hyperbolic systems.

Difference: However, the structure of the rarefaction has become
solution-dependent in the non-linear case. This is an important point of
difference between linear and non-linear hyperbolic conservation laws.

We get the important insight that : Piecewise constant initial conditions
with a single discontinuity in them can give rise to isolated shocks or
rarefaction fans (self-similar simple waves) depending on whether the
characteristics converge into the discontinuity or diverge away from'it.




What happens when the conservation law has a non-convex flux?
4 y*

Consider the Buckley-Leverett eqn. with flux : f (u) = .
4u®+(1-u)

8u (1-u)
[4 u2+(1—u)2]

Observe that f' (u) = so that f'(0)=f'(1)=0and ' (u)> 0 for O<u<l

2

I.e. the flux is non-convex

The result of the initial conditions shown below is a rarefaction fan stuck
to a shock —a compound wave. Questions: Why would a compound
shock never arise for Burgers equation? Which other systems should we
watch out for?
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4.3) Isolated Shock Waves:

4.3.1) Shocks as Solutions of Viscous Equations in the Inviscid Limit
Consider a gas dynamics problem that forms a shock. Atoms that make
up the gas undergo collisions.

Collisions = non-ideal processes, i.e. viscosity & conductivity,
dominate on the smallest scales of the problem. Thus, starting with the
Euler equations with a shock, we automatically reach the Navier Stokes
limit if we look on small enough scales. On those smaller scales, the
problem is parabolic.

Shock’s profile is smoothed out on the viscous scales because the
problem has been turned into a parabolic problem.

The viscous terms operating at a shock raise the entropy of parcels of
fluid that flow into a shock.

The shock is only a discontinuity if we choose to simultaneously ignore
the viscous terms in our governing equations as well as the viscous
length scales in the physical problem.

16



2
u, J{?J =n u, <« Viscous Burger's equation. Parabolic; Does not form discontinuities.

Viscous "shock" solutions : u(x,t)= u, +%(UL - uR){l—tanh {(ui—uR)(x—%(uﬁ uR)tﬂ}
n

Solutions shown for : =0.5, 0.2, 0.05, >0

1) We see a competition between non-linear terms trying to steepen and diffusion terms
trying the smooth out the shock profile. Similar competing effects operate on viscid
hydrodynamical shocks.

2) Width of shock : 47/(u, —uy) . Decreases with
decreasing » and increasing size of jump.

The same trend is seen for viscous shocks in the
Navier Stokes equations.

3) Viscous shock moves with the same speed as

inviscid shock : %(uL+ Ug ). The same trend is seen

for viscous shocks in the Navier Stokes equation.
Question: So why don't we just study viscous shocks

and forget about inviscid shocks?



The previous question compellingly shows that we have to represent
shocks as isolated discontinuities in many science and engineering
problems. Representing each and every viscous shock profile on a
practical computing mesh is not an option.

Question: Can you make this claim concrete for a shock going through
air in this room?



4.3.2) Shocks as Weak Solutions of a Hyperbolic Equation

We have seen in the previous chapter that treating discontinuities, i.e.
obtaining weak solutions, requires working with the PDE in integral
form. The self-similarity of the problem ensures that the discontinuity

follows a linear, self-similar, trajectory in space-time.

Integrate u, +f (u) =0 over rectangle

u X —ug X+f(ug) T -

fug) — fu)=

Shock speed :

X
-

f(u)T=0 <

(ug—u)

_ Fug)— f(u) _ F(u)]

S
Ug

—u, [u]

(0,T)

flu; ) —

(0,0)

Discontinuity




Integrate u, +f (u) =0 over rectangle t u, Discontinuity

‘ Y
U X —Uug X+f(ug) T-f(u ) T=0 & (@onf-ccmccmmne- 1 ___________ T
X :
fug) - f(UL)=$ (Ug—Uy) fu)—| n e fuy)
©.0) T X.0)

Shock speed : s = f(ug)— f(u) _ [f[(u])]



We define the jumps as : [u] = ug—u, and [f(u)] = f(ug)—f(u,)

The above equations are known as the Rankine-Hugoniot jump
conditions. Even hyperbolic systems of conservation laws have similar
jumps.

We have now proved that the form of the shock speed depends on the
flux function.

Now see that the inviscid shock speed for Burgers equation is (u, +ug)/2
The above expression also holds for non-convex shocks. Question: What

IS the caveat though when applying the above formula to non-convex
shocks?

The above derivation also highlights the importance of flux conservative
forms in computations.



4.4) Isolated Rarefaction Fans
4.4.1) The Structure of an Isolated Rarefaction Fan

From previous examples, we see that other forms of self-similar
solutions are possible — the rarefaction fans.

Two important properties about our rarefaction fan solutions : A) They
are self-similar(depend on x/t). B) inside a rarefaction fan (i.e. excluding
Its end points), the solution is differentiable.

Start with Initial Conditions: u, (x) =u, forx<0; uy(x) =u, forx>0
Consider a convex flux with f'(u, )<f'(uy)

Assert a self-similar solution that is centered at the origin:

u(x,t)= 0 (&) =0 (x/t) where &=x/t isthe self-similarity variable.

Define @' (&) = d G(&)/d¢ to get

X

ut(x,t):—t—zu (&) and f,(xt)=

22



Start with Initial Conditions: u, (x) =u, forx<0; u,(x) =u, forx>0
Assert a self-similar solution that is centered at the origin:
u(x,t)= 0 (&) =0 (x/t) where &=x/t is the self-similarity variable.

Define @’ (£) = d G(&)/d¢ to get

u, (x,t) = —120’ (&) and f (xt)=

1
t t

f'(a(g)) ' (g)



Substituting above derivatives inu, + f'(u) u, =0 gives :

fl(a(e))=¢ for '(u)<&<F'(u) where =7

Atx=f"(u ) tand x=f'(uy) t the rarefaction fan joins
the constant left and right states.

Physically, the characteristics are straight lines in space-time. The solution is
constant along each of those characteristics. At its end points, the speeds
match those of the constant states on either side.

Example : f'(u) = u for Burgers equation. Solution is u(x,t) :%

Atx=u, tand x=u; t the rarefaction fan joins
the constant left and right states.



4.4.2)The Role of Entropy in Arbitrating the Evolution of Discontinuities

Question: But what extra bit of physics determines which discontinuity
becomes a shock and which one becomes a rarefaction?

Surely, we can assert a shock jump condition and a shock speed for any

Initial discontinuity. Or would we be violating some other principle?
Consider left and right states with : u, (x) =0 for x<—0.25 ; u,(x) = 0.5 for x > —0.25

f'(0)=0, f'(0.5)=0.5 = characteristics flow away from initial discontinuity. s=0.25.
Which of the plots below is physical?

1.0 1.0

0.0

0.0




The physical principle here is entropy generation.

Characteristics carry information about the solution. (Think of
Information entropy.)

The shock solution to the right is called a rarefaction shock. New
Information is generated at the rarefaction shock, because characteristics
come out of it. This is unphysical.

Nature provides a physical entropy for the Euler equations, and several
other systems.

The solution to the left satisfies an entropy condition. The solution to the
right does not. We call the one to the left an entropy-satisfying physical
solution. We want numerical schemes that find the physical solution.

For equations like Burgers or Buckley-Leverett, mathematicians have to
formulate entropy conditions, also known as admissibility conditions.



Lax showed that in order for a discontinuity to be physical for a scalar
conservation law with a convex flux, we have the entropy condition:

f'(u )>s>f (ug)

This is Lax's entropy condition for convex fluxes. Excludes entropy violating shocks!
Lax's entropy condition closely parodies the flow of characteristics into
a hydrodynamical shock as we will see in the next chapter.

Question: Can you apply it to the previous two plots to pick out the one

that is physical? l.e. show that rarefaction shocks are unphysical.

There exist other entropy conditions by Oleinik that pertain to convex and
non-convex fluxes.

A result by Harten says that symmetrizable hyperbolic systems admit a
numerically-motivated entropy condition. For example, the Euler system is
symmetrizable. 27



4.5) The Entropy Fix and Approximate Riemann Solvers

This section is all about obtaining a numerical flux and doing it in the
simplest/fastest way possible without relinquishing physical solutions.

4.5.1) The Entropy Fix

Consider the Godunov scheme that is schematically shown below. To find
the numerical flux at the zone boundaries, we first need to obtain the
resolved state that overlies the zone boundary. Question: How do we
obtain the resolved state at zone boundaries 1-3/2, 1-1/2, 1+1/2 and 1+3/2?

At zone boundary i+1/2 we have to do something special. We have to
solve for the interior structure of the rarefaction fan. While this is

Inexpensive for Burgers equation, ‘

this can in general be quite o - ”,
expensive. We wish to find ﬂ L L
Inexpensive alternatives. r -



When the boundary is not straddled by a rarefaction fan, the resolved
state, and numerical flux, are easy to find.

We’d like to cut corners with the one case that is difficult — the case where
the rarefaction straddles the zone boundary. But can we cut corners?

Our first attempt: Replace the rarefaction fan by a rarefaction shock.

Big Question: Does the numerical scheme still produce physical results?

RS with Rarefaction shocks (unphysical) RS with rarefaction fans(physical)

1.0 1.0F
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u(x)
u(x)

0.0 0.0f

-0.5

-0.5
29




Thus our first attempt falils. It is not possible to replace a rarefaction
wave with a rarefaction shock!

The Riemann solver must build in some knowledge that the rarefaction
fan opens up.

The fix that Is introduced into a Riemann solver to enable it to recognize
the presence of a rarefaction fan that straddles a zone boundary is called
the entropy fix.

The solution of the exact Riemann problem becomes increasingly
difficult as the system becomes larger and/or more complicated.

In all such situations we wish to build approximate Riemann solvers.

The approximate Riemann solvers must also incorporate some notion of
an entropy fix.



4.5.2) Approximate Riemann Solvers

Realize that the Riemann problem is a self-similar solution. Thus we can
replace the actual wave structure by a wave model. This is a proxy for
the actual, self-similar wave structure in a Riemann problem.

We still wish to avoid a complete and exact solution of the internal
structure of a rarefaction fan.

When we have a rarefaction fan, the extremal speeds are easy to find:
S, =f'(u )<0 and S, =f'(u,)>0

Consider a constant, resolved
state g°°)

Let the corresponding resolved
flux be 7

< an approximation! (0.T)

=i 1 —(RS (RS ! :
Our goal:Find T'**) and f** 510 00 (S.T.0)




To obtain resolved state of the approximate HLL Riemann solver:
Integrate conservation law in weak form over dashed rectangle as follows

") (S =S )T —ug S T+u, S, T+f(ux) T —f(u)T=0
to get:

ws)  SeUp — S u,—( f(ug)—f(u))
(SR_SL)

To obtain resolved flux of the approximate Riemann solver: Integrate
conservation law in weak form over x>0 part of dashed rectangle as follows
0™ S T —uy Sy T+f(ug) T - F® T=0

to get the HLL flux :

= S S Sg S
.I:(RS): R .I: . L f + R L —
(100 - | )+ 2w .




t=T Xx=SgT X< St ) ¥ Ha
— 0,T
J. I (ut ‘|‘fx)dx dt —_ O (S,T, T) N ("")' “““““““ : (SzT, T)
t=0 x=S, T i e i E
flu,) — 'i é‘_f(UR)
Lo Ug E
' : > X
(S,T, 0) (0,0) (SgT, 0)
grs) _ S lr =3 U, —(F(up)— f(u))
(SR _SL) 33



x= 5y i 4 X =Spt
u +f )dxdt=0 0,T
J.O J'O ( t X) (S,T.T) X"~ L1 ¢ (ST, T)
1) —+| | fi(u)
i Uz Ug :

i : X

(S,T,0) (0,0) ( SiT, 0)

?(RS) SR

o[ [53few



The HLL Riemann solver, detailed above, extends naturally to systems.
It is a standard ingredient of the computationalist’s toolKkit.

It is always good to have it as one of the options for a Riemann solver in
any code for solving hyperbolic conservation laws.

We have still to specify the extremal speeds that need to be used:

S, =min(f'(u.),s,0) S, =max(f'(ug),s, 0)

By analogy with Euler flow, when S, and S have same sign, we call it
supersonic. When the signs are opposite, it is a subsonic situation.

Question: How would we prove that the HLL flux is consistent?

Question: Can you show that the above choice always gives us properly
upwinded fluxes in the supersonic situations?
How does the HLL RS generates dissipation at subsonic rarefaction fans?




For the subsonic case, we can write the HLL flux as:
FE) (U ug) =F(u )+ (uy) with

() =] g2 [ -s] ana ()| g (o) -0

Question: What is the real insight we gain from writing it this way?

This form of the flux is known as a flux vector splitting. Question: Why
IS this name appropriate.

Flux vector splittings can also be obtained for systems of conservation
laws.

Another useful form of numerical flux is obtained from the Rusanov or
local Lax-Friedrichs (LLF) flux:

P9 = = (F(u)+ F(Ua)~Sue(Un = u)) where Sy, =max( Jf'(uL)], s [F'(ug)]

Question: Compare and contrast the HLL and LLF numerical fluxes.




4.6) Boundary Conditions
For linear equations, the characteristic matrix is fixed. As a result, the
Kinds of boundary conditions that one imposes at each boundary are fixed.

For non-linear problems, the wave speed becomes solution-dependent and
can change from one location to the other as well as from one time to the
next as the solution evolves. As a result, the boundary conditions may alsa
have to adapt as the solution changes at the boundaries. Question: What
can you say about the boundary conditions for the three figures below?

a b c

/| (| r‘//




When variables are initialized at ghost boundaries, they may cause waves
to propagate with signal speeds that can be larger than the signal speed
that is represented in the interior of the computational domain. In such
situations, which usually occur when a strong shock propagates in from a
boundary, the timestep should be reduced to satisfy the CFL condition in
the ghost zones.



4.7) Numerical Methods for Scalar Conservation Laws

Lax-Wendroff theorem : The problem should be discretized on a
computational mesh using a consistent, stable and conservative method
If weak solutions (i.e. shocks and rarefactions) are to be convergent as
the mesh is refined.

Runge-Kutta methods go over exactly as before:

Step 1: We have to obtain the undivided differences of the conserved
variables.

Step 2: Obtain the left and right states at the zone boundary.

Step 3: Treat the Riemann solver as a machine that accepts two states
and spits out a flux. Feed the above left and right states into the
Riemann solver and obtain a properly upwinded flux.

39



Predictor-Corrector methods also go over much as before:

Step 1: We have to obtain the undivided differences of the conserved
variables.

Step 2: Obtain the left and right predicted states at the zone boundary.

— 1 —n 1 At .
UrL]-+i1+/12/2 u' + E Ali = E A_f ( ) AU
, X
—n 1 —n 1 At n A
Ug+|1+/f,2—Ui+1 — — AUjy— — Hf (u'+1) AUis

Step 3: Treat the Riemann solver as a machine that accepts two states
and spits out a flux. Feed the above left and right states into the
Riemann solver and obtain a properly upwinded flux.

Step 4: Make a single step corrector update.

40
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