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Chapter 5: The Hydrodynamical Riemann Problem 
 

5.1) Introduction 

5.1.1) General Introduction to the Riemann Problem 

 

 We have seen in Chapter 4 that even Burgers equation, the simplest non-linear 

scalar conservation law, can give rise to complex flow features such as shocks and 

rarefactions. Linear schemes were seen to be inadequate for treating such problems. In 

Chapter 3 we realized that a simple non-linear hybridization introduced by TVD limiters 

could yield a monotonicity preserving reconstruction. In Sub-section 4.5.2 we even 

designed an approximate Riemann solver for evaluating consistent and properly 

upwinded numerical fluxes at zone boundaries based on the HLL flux for scalar 

conservation laws. Such a strategy for obtaining a physically sound flux can indeed be 

extended to systems to yield a basic second order accurate scheme. Since better fluxes 

translate into better schemes, in this Chapter we invest a little time to understand 

strategies for obtaining a good, high-quality, physically consistent flux at the zone 

boundaries for use in numerical schemes. In this chapter we restrict attention to the Euler 

equations. However, the next Chapter will show that the insights gained here are of great 

importance in designing good strategies for obtaining the numerical flux at zone 

boundaries in numerical schemes for several hyperbolic conservation laws of interest in 

several areas of science and engineering. 

 

 In this and the next paragraph we motivate the need for studying the 

hydrodynamical Riemann problem. Assume that we are solving a problem on a one-

dimensional mesh with fluid variables defined at the zone centers. The best choice of 

fluid variables in simple Cartesian geometries consists of the density, the momentum 

densities in each direction and the total energy density. These variables are referred to as 

conserved variables and are an optimal choice because they enable us to enforce local 

mass, momentum and energy conservation. Recall the Lax-Wendroff theorem from Sub-

section 4.7 which states that conservation form ensures that shocks move at the correct 

speed and converge to the right locations on a mesh. The choice of variables is not 
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constraining because we can derive equivalent primitive variables from these conserved 

variables. A good choice of such primitive variables could be the density, pressure and 

velocities. We can use our slope limiters to endow each flow variable in each zone with a 

linear profile. The limiters can be applied to the conserved variables but it is slightly 

more advantageous to apply them directly to the primitive variables. Limiting the 

primitive variables enables us to put in a small check to ensure that the density and 

pressure profiles are positive all over each zone of the mesh. (The positivity of the 

density is assured in one dimension by the TVD limiting if the initial density is positive. 

Because the pressure is a derived variable, its positivity is not ensured by a TVD limiting 

procedure that is applied to the total energy density. In Chapter 7 we will see how we can 

reconstruct the conserved variables while still retaining pressure positivity.) The 

primitive variables are also the variables of choice in which the expressions for shock and 

rarefaction fans are expressed. Once linear profiles have been constructed in each zone, 

we can use the zone-centered variables and their linear slopes to obtain the flow variables 

to the left and right of any given zone boundary, see eqn. (3.55). Call the variables to the 

left of a certain zone boundary ( )1L x1L y1L z1L 1L , v , v , v , Pρ  and call the corresponding flow 

variables to the right of the same zone boundary ( )1R x1R y1R z1R 1R , v , v , v , Pρ . We want to 

obtain a set of flow variables at the zone boundary from which we can evaluate the 

consistent and properly upwinded numerical flux.  

 

The flow variables that enable us to calculate a physically consistent numerical 

flux at the zone boundary are referred to as the resolved state. The nomenclature is 

consistent with that developed in Sub-sections 3.4.3 and 4.5.1. But how should we obtain 

the resolved state? Instinctively, one might want to derive a resolved state by taking an 

arithmetic average of the left and right variables above. If the jump in flow variables is 

small, the use of an arithmetic average might even be adequate. For very small jumps in 

flow variables, one might also imagine the fluctuations in the flow variables propagating 

along the characteristics of the flow, as shown in Sub-section 1.5.2. Our study of 

rarefaction shocks in the Burgers equation in Sub-Section 4.5.1 has shown us that using 

an arithmetically averaged solution to compute a numerical flux can yield entropy 
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violating solutions when the initial conditions are discontinuous. Thus the physically 

consistent fluxes that we use at zone boundaries should satisfy an entropy condition. In 

general, the jump in densities 1L 1Rρ ρ− , velocities x1L x1Rv v−  and pressures 1L 1RP P−  can 

be very large if the flow has one or more discontinuities. Early insight on this problem 

was obtained by Bernhardt Riemann who analyzed the problem of how flows develop 

when we have two adjacent slabs of fluid with a discontinuity in flow variables across 

them. The problem considered by Riemann (1860) is referred to as the Riemann problem 

and is a standard building block in numerical schemes for compressible flow. Sections 

3.4 and 4.5 have prepared us for this study by showing us the importance of the Riemann 

problem for linear hyperbolic problems and scalar conservation laws. The 

hydrodynamical Riemann problem is the object of our study in this Chapter. 

 
 A mechanical instantiation of the problem considered by Riemann consists of a 

shock tube. Such shock tubes are routinely used to study flows with shocks and the 

physics of shock waves. A shock tube consists of a long slender tube with a diaphragm in 

the middle. Initially, the volume to the left of the diaphragm is filled with gas having 

density and pressure 1Lρ  and 1LP  respectively while volume to the right of the diaphragm 

is filled with gas having density and pressure 1Rρ  and 1RP  respectively. At some point, 

the diaphragm is suddenly removed and we wish to know the subsequent flow features 

that develop. A schematic diagram of the initial conditions before the diaphragm is 

removed is provided in Fig. 5.1, where we only show the central portion of the shock 

tube. We readily see that, but for permitting arbitrary velocities x1Lv  and x1Rv  to the left 

and right, the shock tube problem is very similar to the problem that interests us in this 

Chapter.  
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Riemann’s ingenious realization was that even though the problem involved 

strong jumps in density, pressure and possibly velocity, the resolution of the discontinuity 

would bear some imprint of the linearized problem with some important differences. The 

linearized version of the problem being discussed would only have infinitesimally small 

jumps in flow variables. From Sub-section 1.5.2 and Fig. 1.9 we already know that the 

linearized problem with very small fluctuations that are localized at a point along the x-

axis would resolve itself into : i) a right-going sound wave, ii) a left going sound wave 

and iii) an entropy wave between them. The entropy wave may well have an additional 

shear in the transverse velocities across it. The shear is brought on by the fact that y1Lv  

may differ from y1Rv  and similarly for z1Lv  and z1Rv . Riemann realized that the fully 

non-linear problem (i.e. with arbitrary jumps in flow variables across the diaphragm) 

would resolve itself into: i) a right-going shock wave or rarefaction fan, ii) a left-going 

shock wave or rarefaction fan and iii) an entropy pulse which may well have an 

additional shear in the transverse velocities. When we studied compressive waves for 

scalar conservation laws with convex fluxes in Sections 4.2 and 4.3, we learned that they 

steepen into shocks. Similarly, Sections 4.2 and 4.4 showed us that situations which 

correspond to an initial rarefaction open up into rarefaction fans. The connection between 

the linearized problem and the fully non-linear problem for the Euler equations (which 

too have a convex flux) can be made very concrete by realizing that : i) A finite 

amplitude right-going sound wave can self-steepen into a right-going shock or open out 

to form a right-going rarefaction wave depending on its initial profile. ii) A finite 

amplitude left-going sound wave can self-steepen into a left-going shock or open out to 

form a left-going rarefaction wave depending on its initial profile. iii) An entropy wave, 

being linearly degenerate, can have any entropy jump across it. (Linearly degenerate 

waves are waves that flow with the same speed regardless of wave amplitude. I.e., unlike 

shocks an entropy pulse does not self-steepen.) When the entropy jump across an entropy 

wave becomes large, the wave becomes an entropy pulse. Let us illustrate a Riemann 

problem with a right-going shock, a left-going rarefaction fan and a contact discontinuity 

between the two. A schematic depiction of the propagation of characteristics in space and 

time in is shown in Fig. 5.2. We see that the solution is self-similar. In the course of this 

Chapter we will show that Fig. 5.2 depicts the result of removing the diaphragm in Fig. 
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5.1 in the situation where 1L 1RP P>  and 1L 1Rρ ρ> . An entropy pulse is also often referred 

to as a contact discontinuity. 

 

 
 

5.1.2) Introducing The Riemann Problem as a Building Block for Numerical 

Schemes 

 

 The connection between the Riemann problem and its utility in numerical 

methods for computing flows with potentially discontinuous solutions was made very 

slowly in the scientific literature. Godunov (1959) wrote a paper in which he viewed flow 

variables in each zone of a mesh as being slabs of fluid. The slabs would obviously have 

discontinuities between them at the zone boundaries. Godunov suggested that the 

Riemann problem should be used to obtain a resolved state at each zone boundary. His 

important insight was that fluid fluxes computed with the help of that resolved state 

would naturally be physically consistent and properly upwinded. This is because the 

Riemann problem represents an “in the small” evolution of the actual initial discontinuity. 

A one-dimensional schematic representation of Godunov’s method is shown in Fig. 5.3. 

Zone-centered variables are indicated with an integer subscript “i” and variables at zone 

boundaries are indicated by a half-integer subscript “i+1/2”. Time levels are indicated by 

a superscript “n” that denotes the nth time step. Intermediate values of variables that are 

used to take a complete time step can have fractional superscripts. On either side of zone 

number 1 we show the solution of the Riemann problem where right- and left-going 
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shocks are shown as S→  and S←  respectively, right- and left-going rarefaction fans are 

shown as R→  and R←  respectively and the contact discontinuity is shown as C0 . It can 

be broken up into the following two conceptual steps for taking a time step ∆t on a one-

dimensional mesh with zones of size ∆x : 

 i) Discretize the conservation law t xU + F(U) = 0∂ ∂  as slabs of fluid that have a 

flat profile within each zone. Thus within each zone “i” at a time  nt n t= ∆  we have a 

vector of conserved variables U
n
i  . 

 ii) Solve the Riemann problems at zone boundaries to get the resolved states and 

resolved numerical fluxes, i.e. at zone boundary “i+1/2” we have ( )1F U ,U
n n
i iRP +  . Use 

them to make the update 

 

( ) ( )( )1
1 1U  = U   F U ,U F U ,U

n n n nn n
i i i ii i RP RP

t
x

+
+ −

∆
− −

∆
     (5.1) 

 

 Section 5.4 will explain to us how the resolved state, i.e. the state that coincides with the 

boundary, can be obtained from the Riemann problem. Section 5.4 will also explain to us 

how the resolved fluxes are computed at each zone boundary.  
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 Godunov’s method, despite the appeal of its transparently physical interpretation, 

was slow in gaining wide-spread acceptance. In truth, the Riemann problem had to be 

solved iteratively and the iterative method proposed by Godunov was slow to converge. 

This made the scheme slower than other competitive schemes from that era. Furthermore, 

the method was only first order accurate in space and time making it very dissipative. As 

a result, Godunov’s method languished for another two decades. In a tour de force, van 

Leer (1977,1979) proposed a second order extension of Godunov’s scheme. van Leer’s 

papers have been cited thousands of times and a detailed reading of those papers has 

continued to provide fresh insights to subsequent generations of computationalists. 

 

 It is said that the Wright brothers’ invention of the aeroplane was a consequence 

of their making a combination of leading edge advances that meshed together 

harmoniously. Similarly, van Leer made the following cutting edge advances all at once: 

 i) A very efficient iterative solution strategy for solving the hydrodynamical 

Riemann problem which is still used with only small changes. 

 ii) A strategy for using piecewise-linear, monotonicity preserving reconstruction 

of the sort studied in the previous chapter. As a result each interpolated fluid variable has 

a linear profile within each zone. This makes the scheme spatially second order accurate 
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in regions of smooth flow and simultaneously enables it to capture shocks without 

producing spurious oscillations. 

 iii) A method for increasing the temporal accuracy to second order.  

Later on, van Leer later realized that second order temporal accuracy could also be 

achieved by using the second order Runge-Kutta time-stepping strategy that was 

catalogued in Sub-Section 3.6.2, (van Leer 1984). van Leer’s scheme is shown 

schematically in Fig. 5.4.  

 

 
 

 van Leer’s scheme, with several modifications, is still used as a blueprint for 

several successful numerical codes. A possible variant of his scheme that achieves its 

temporal accuracy using a strategy that is simpler than the one originally presented by 

van Leer is described schematically below. It can be broken up into the following three 

conceptual steps for taking a time step ∆t on a one-dimensional mesh with zones of size 

∆x : 

 i) Use a second order Runge-Kutta scheme described in eqns. (3.50) or (3.51) to 

achieve second order accuracy in time. The scheme has been written in a format that 

makes its conservative form self-evident. Each of the stages in the scheme consists of 

using the following two steps. 

 ii) Within each zone “i” at the start of each stage we have a vector of conserved 

variables Ui  . Use this vector of conserved variables to obtain a vector of primitive 
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variables Vi  in each zone. The vector of primitive variables consists of density, the three 

velocity components and the pressure. For each of the stages, make linear profiles Vi∆  

within each zone for the density, velocities and pressure using the componentwise 

limiting applied to the vector of primitive variables, see eqn. (3.57) for an example of 

componentwise limiting. Do this using the limiters described in Sub-Section 3.2. Giving 

each slab of fluid a piecewise linear profile makes the method a spatially second order 

accurate shock-capturing scheme. The interpolation, which is piecewise linear within 

each zone, enables us to obtain ( )1L x1L y1L z1L 1L , v , v , v , P V V / 2
T

i iρ ≡ + ∆   and 

( )1R x1R y1R z1R 1R 1 1 , v , v , v , P V V / 2
T

i iρ + +≡ − ∆  at the zone boundary “i+1/2”, see eqn. 

(3.55) for an example. We calculate the left and right states at each zone boundary. 

Notice that the linear profiles within each zone can only be meaningfully interpreted 

within the zones in which they are defined. This is what produces a jump in the flow 

variables at the zone boundaries. The presence of the jump in fluid variables at zone 

boundaries enables the hydrodynamical Riemann problem to introduce the needed 

dissipation. Recall that in Sub-section 4.5.2 we showed that the jump in the scalar 

variable at the zone boundaries was essential if we wanted the approximate Riemann 

solver to stabilize discontinuities. The same concept carries over to systems of 

conservation laws. 

 iii) Using the left and right flow variables at each zone boundary, compute the 

resolved state and resolved flux at each zone boundary. The resolved flux is indeed the 

properly upwinded and consistent numerical flux that we wish to use in our scheme. The 

Riemann solver described in this chapter can be used like a machine that accepts a left 

and right state and produces a numerical flux. The numerical flux can then be used to 

obtain the time update for each of the stages shown in either eqn. (3.50) or (3.51). 

 

 By the end of this chapter the reader should be able to understand the construction 

of a flow solver that is similar to the one described in the previous paragraphs using the 

codes provided in this book. Problem 5.4 provides a step by step guide for constructing a 

one-dimensional flow solver that is based on the steps described above. 
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 It is worth pointing out that the texts by Courant & Friedrichs (1948) and Landau 

& Lifshitz (1987) provide a very detailed study of hydrodynamical shocks and 

rarefactions. Texts by Ben-Artzi and Falcovitz (2003) and Toro (2009) study the 

hydrodynamical Riemann problem in great detail, especially as it applies to numerical 

schemes. Colella and Glaz (1985), Menikoff and Plohr (1989), Ben-Artzi (1989) and 

Ben-Artzi and Birman (1990) present ingenious solutions to the Riemann problem in the 

presence of real gas equations of state and reactive flow. In this chapter, we only present 

the essentials that are needed to study the numerical solution of the Riemann problem. 

 

 In Sec. 5.2 we study hydrodynamical shocks, in Sec. 5.3 we study 

hydrodynamical rarefaction fans and Sec. 5.4 we study the hydrodynamical Riemann 

problem including strategies for its iterative solution. The reader is also given a foretaste 

of the more modern Riemann solvers for the Euler and MHD systems that will be 

described in Chapter 6. The Riemann solver that we describe here also gives us several 

insights that are generally useful in designing Riemann solvers for several hyperbolic 

systems of interest to engineering and science. 

 

5.2) Hydrodynamical Shock Waves 

 

 In Chapter 4 we saw that a non-linear scalar hyperbolic equation of the form 

t xu + f(u) = 0∂ ∂  can sustain shock waves. Say the values on either side of such a shock 

are 1u  and 2u . If the shock’s propagation speed is “s”, eqn. (4.10) and Fig. 4.8 tell us that 

the fluxes and conserved variables should satisfy the relation ( )1 2 1 2f(u ) f(u ) s u u− = −  . 

We saw there that the derivation of this expression was very simple and general because 

it only depended on a two-dimensional integration over a small rectangular domain in 

one spatial coordinate and time, see Fig. 4.8. If the shock travelled a distance “X” in a 

time “T”, the domain was chosen such that it contained the discontinuity. Thus it is very 

easy to see that the same expression should hold component-wise for a hyperbolic system 

of equations in conservation form. A construction that parodies eqn. (4.9) and Fig. 4.8 for 

a system of conservation laws bears out our anticipation. In this section we focus 
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attention on the one-dimensional Euler equations that can be written in conservation form 

as: 

 

( )

x
2
xx

x yy

x zz

x

 v
 v  + P v
 v  v +  = 0 v

t x
 v  v v
+P v

ρρ
ρρ
ρρ
ρρ
εε

  
  
  ∂ ∂   

∂ ∂   
  

      

       (5.2) 

 

Here ρ  is the density; xv  , yv  and yv  are the velocities; P is the pressure; “e” is the 

thermal energy density and ε is the total internal energy density. Notice that eqn. (5.2) 

can be written in the conservation form t xU + F(U) = 0∂ ∂  . The equations can be solved 

along with the closure relation 

 

21 P = e +          with         e  
2 1

ρε ≡
Γ −

v       (5.3) 

 

which we take quite simply to pertain to a polytropic gas with polytropic index Γ . We 

wish to find the relations that hold for the fluid variables on either side of a 

hydrodynamical shock. 

 

 Notice that since each of the five components in eqn. (5.2) are required to satisfy 

eqn. (4.9) with the same shock speed s= X T , we expect to find further relationships 

between the fluid variables on either side of a shock. In general, we anticipate the 

relationships to be rather complicated. Consequently, in Sub-section 5.2.1 we evaluate 

the conditions that relate the fluxes on either side of a fluid discontinuity in the rest frame 

of the discontinuity. In Sub-section 5.2.2 we obtain some relationships that pertain to 

shocks without regard to the fluid’s equation of state. In Sub-section 5.2.3 we specialize 

to polytropic gases and obtain relationships between the flow variables on either side of a 

shock viewed in its own rest frame. Relying on the fact that the Euler system is Galilean 



 12 

invariant, we obtain general relationships between the flow variables on either side of a 

moving shock in Sub-section 5.2.4. Several other interesting hyperbolic systems can be 

written in a conservation form that resembles eqn. (5.2). Consequently, the ensuing Sub-

sections are peppered with several asides that highlight the similarities and differences 

between the Euler system and these other systems of interest. 

 

5.2.1) Hydrodynamical Discontinuities and Shock Jump Conditions 

 

 As pointed out in the previous paragraphs, it is easiest to start our study of 

hydrodynamical discontinuities in the rest frame of the discontinuity. Notice that eqn. 

(4.9) should hold componentwise for all the components of the vector of conserved 

variables and the flux vector in eqn. (5.2). In such a rest frame, s= X T =0  in eqn. (4.9) 

and we obtain the particularly simple condition  

 

[ ]1 2F(U ) F(U ) 0− =          (5.4) 

 

which is to be applied to each of the five components of the flux in eqn. (5.2). Here 1U  

and 2U  denote the five-component vectors of conserved variables from eqn. (5.2) that are 

specified on either side of the discontinuity. Our decision to work in the rest frame of the 

discontinuity can be justified by realizing that the Euler equations are Galilean invariant. 

In that frame we can specify the flow variables in primitive form on either side of the 

discontinuity by the vectors ( )1 x1 y1 z1 1 , u , u , u , P
T

ρ and ( )2 x2 y2 z2 2 , u , u , u , P
T

ρ  

respectively. In this section the velocities in the rest frame of the discontinuity are 

denoted by “u” instead of “v” to show clearly that they pertain to a specific choice of 

coordinate frame. The velocities in the two frames of reference are related by a Galilean 

transformation. Balancing the mass, momentum and energy fluxes from eqn. (5.4) yields: 

 

1 x1 2 x2 u  =  uρ ρ          (5.5) 
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2 2
1 x1 1 2 x2 2 u  + P  =  u  + Pρ ρ         (5.6) 

 

1 x1 y1 2 x2 y2 u  u  =  u  uρ ρ         (5.7) 

 

1 x1 z1 2 x2 z2 u  u  =  u  uρ ρ         (5.8) 

 

2 2
1 x1 1 1 2 x2 2 2

1 1 u    + h  =  u    + h
2 2

ρ ρ   
   
   

u u       (5.9) 

 

Here “h” is the specific enthalpy, i.e. the enthalpy per unit mass. It is defined by  

 

e + Ph = 
ρ

          (5.10) 

 

and for a polytropic gas it is given by 

 

Ph =  
-1 ρ

Γ
Γ

          (5.11) 

 

 The first natural solution to eqns. (5.5) to (5.9) consists of setting the mass flux 

across the discontinuity to zero. Thus we have 1 x1 2 x2 u  =  u  = 0ρ ρ  . Since the densities 

are non-zero we have x1 x2u  = u  = 0 , i.e. there is no mass flowing through the 

discontinuity. Eqn. (5.6) gives us 1 2P  = P  so that the pressures are required to match up 

across this type of discontinuity. We further see from eqns. (5.7) and (5.8) that the 

differences in the transverse velocities y1 y2u u−  and z1 z2u u−  are unconstrained and can 

take on any value. Similarly, the difference in densities 1 2ρ ρ−  is also unconstrained 

across this type of discontinuity. Since the pressures match up across this discontinuity 

while the density can undergo any arbitrary change we realize that we have a jump in 

entropy across this type of discontinuity. We, therefore, refer to this type of discontinuity 

as an entropy pulse or a contact discontinuity. Analogous to the simple waves discussed 
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in the previous chapters, the contact discontinuity is one of the simple wave solutions for 

the Euler equations. 

 

 Using the eigenmodal analysis of the Euler equations from Sub-section 1.5.2 

gives us a further perspective on the discontinuities that we discussed in the previous 

paragraph. In that chapter we saw that very small amplitude fluctuations in the density 

and transverse velocities could propagate with the flow speed as entropy waves and shear 

waves respectively. We see that an entropy pulse consists of a discontinuous jump in 

entropy and is, therefore, a finite amplitude version of an entropy wave. When the 

transverse velocities are also discontinuous across the discontinuity, we realize that we 

have a finite amplitude shear pulse across the discontinuity. Again, our eigenmodal 

analysis of the Euler equations informs us that these pulses in fluid shear are finite 

amplitude versions of the shear waves studied in Chapter 1. Collectively, we refer to 

these fluctuations in density and transverse velocity as contact discontinuities. Recall 

though that the pressure and normal velocity must match up exactly on either side of a 

contact discontinuity, We have therefore demonstrated that fluctuations in the density and 

transverse velocities across a contact discontinuity do not self-steepen and any finite 

amplitude fluctuation in just these variables can propagate unchanged. We call such 

waves linearly-degenerate waves to distinguish them from the genuinely non-linear 

waves, like the sound waves in Euler flow, which can self-steepen to form shocks. Fig. 

5.5 provides a schematic representation of a contact discontinuity viewed in the rest 

frame of the discontinuity.  

 



 15 

 
 

 Let us now consider discontinuities which have a non-zero mass flux across the 

discontinuity, i.e. from eqn. (5.5) we get 1 x1 2 x2 u  =  u   0ρ ρ ≠  . Eqns. (5.7) and (5.8) for 

the balance of the transverse momentum fluxes immediately give us y1 y2u u 0− =  and 

z1 z2u u 0− =  . Because we are in the rest frame of the discontinuity, we make the further 

simplifying assumption that  

 

y1 y2 z1 z2u u u u 0= = = =         (5.12) 

 

Eqns. (5.5) and (5.6) for the conservation of mass and x-momentum remain unchanged 

but (5.9) for energy conservation then simplifies to give us: 

 

2 2
x1 1 x2 2

1 1 u  + h  =  u  + h
2 2

        (5.13) 

 

Eqns. (5.5), (5.6), (5.12) and (5.13) give us the conditions that prevail in the rest frame of 

a normal shock. The shock is called “normal” because the transverse velocities are zero. 

These equations, which are essentially balance equations on the fluid fluxes, are also 

referred to in the literature as the shock jump conditions or the Rankine-Hugoniot jump 

conditions after Rankine (1870) and Hugoniot (1889) who first derived them and studied 
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them in detail. Since shocks emerge through self-steepening of sound waves, it is natural 

to think of shocks as the non-linear extension of sound waves studied in Chapter 1. In one 

dimension it is natural to talk about right- and left-going sound waves and consequently 

of right- and left-going shocks. Unshocked fluid flows into a right-going shock from the 

right and into a left-going shock from the left. Fig. 5.6 shows schematic diagrams for 

right- and left-going shocks viewed in the rest frame of the shock. For the rest of this 

chapter, variables that are subscripted by “1” indicate fluid that propagates into a shock 

or rarefaction fan while variables that are subscripted by a “2” indicate fluid that is on the 

other side of the shock or rarefaction fan. Analogous to the simple waves discussed in the 

previous chapter, shocks constitute another kind of simple wave solution for the Euler 

equations. 

 

 
 

 It is very interesting to make connections between hydrodynamical shocks and the 

material that we have studied in the previous two chapters. We make such a connection in 
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this paragraph. As with our study of the Burgers equation in Chapter 4, it is possible to 

have discontinuities in hydrodynamical flow that will not evolve to form shocks. For the 

Burgers equation we saw that certain initial discontinuities actually go on to form 

rarefaction fans. For the Burgers equation, the entropy condition, see Section 4.4, 

determines whether an initial discontinuity goes on to form a shock or a rarefaction; an 

exactly analogous situation prevails for the Euler equations. When studying linear 

systems of hyperbolic equations in Chapter 3 we further learned that the variables on one 

side of a simple wave are related to the variables on the other side by a single parameter, 

see Sub-section 3.4.2. The same is true for simple waves, i.e. isolated shocks and 

rarefaction fans, arising from the Euler system. We will discuss hydrodynamical 

rarefaction fans in the next section. To be physically realizable, an isolated 

hydrodynamical shock should also raise the entropy of the fluid that flows through it; 

recall our discussion of entropy in Sub-section 4.2.2 and Section 4.3. To determine the 

direction of propagation of a one-dimensional shock, a simple rule of thumb is to “follow 

the entropy”. Physically consistent hydrodynamical shock waves always raise the entropy 

in the post-shock region.  

 

Because we expect a shock to represent a pile-up of material, we also expect the 

post-shock density 2ρ  to be greater than the density 1ρ  in the unshocked fluid; recall our 

mechanistic model of shock waves in Section 4.2. Since the entropy is proportional to 

( )log P ρ Γ  we can therefore conclude that the post-shock pressure and temperature are 

greater than the corresponding pressure and temperature in the unshocked fluid. Problem 

5.1 at the end of this chapter makes this assertion more concrete. Using 2 1ρ ρ>  we can 

also obtain important insights into the fluid velocities in the shock’s rest-frame. Eqn. 

(5.5) which represents mass conservation, consequently implies that x2 x1u u<  and also 

that x1u  and x2u  have the same sign, trends that are also displayed in Fig. 5.6. We also 

see from Fig. 5.6 that x1u 0<  in the rest-frame of a right-going shock while x1u 0>  in the 

rest-frame of a left-going shock. 
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We saw in Chapter 4 that characteristics flow into a physically realizable shock, 

resulting in the loss of information at a shock. Problem 5.2 at the end of this chapter 

shows that characteristics of a given family flow into a shock of the same family. Thus if 

we have a right-going shock, the characteristics xL sLv c+ from the left of the shock and 

xR sRv c+ from the right side of the shock flow into the shock. In other words, a right-

going shock is the locus of converging C+ characteristics formed by eigenvalues 

x sv cλ = + . Similarly, a left-going shock is the locus of converging C− characteristics 

formed by the eigenvalues x sv cλ = −  . In that sense, information is indeed lost at 

hydrodynamical shocks. Once a hydrodynamical shock forms in a problem, it may be 

impossible to uniquely retrieve the initial conditions that gave rise to it. 

 

Shocks and Entropy Generation 

 

 We very briefly turn our attention to the physical process of entropy generation at 

shocks. While the Euler equations are quite often a reasonably good representation for 

several flow problems, it is important to realize that they basically represent the inviscid 

limit of the Navier-Stokes equations which indeed include the viscous terms. Within a 

shock, the viscous terms in the Navier-Stokes equations are very important in raising the 

entropy in the post-shock fluid. The text by Landau & Lifshitz (1987) shows how a 

viscous flow profile with a finite width reduces to a discontinuous shock jump in the limit 

where the viscosity tends to zero, thus making the connection between the Navier-Stokes 

and Euler equations very clear. The viscous terms in the momentum and energy equations 

are proportional to the second derivative of the velocity. Thus while the viscous terms are 

negligible in smooth flow, they can become rather large at a shock-front due to the rapid 

change in velocity across the shock front. Consequently, the viscous terms operate in a 

thin layer around the shock. Several numerical schemes for shock-capturing, especially 

those with an older vintage, try to reproduce the same physical process by including some 

amount of artificial viscosity. The artificial viscosity is then designed to stay small 

everywhere except at locations where shocks are detected.  
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 The important question is: How big should this artificial viscosity be? To answer 

that question, consider fluid flow taking place with a typical velocity “v” in a region 

having a size characterized by “L”. Let the mean sound speed be “cs” and let the mean 

free path of the molecules be “l”. The viscosity “η” will scale as, η ∼ cs l . The Reynolds 

number, Re , scales as Re ~ (v L)/(cs l). Now say that the flow is supersonic so that a 

shock develops in it. Far from the shock, we have Re>>1 so that viscosity is 

unimportant. When we focus on the shock though, the characteristic size over which the 

shock forms is given by L~l. As a result, in the vicinity of the shock, we have Re~1. Now 

say that a problem is being solved on a computational mesh with zones of size ∆x . If we 

want to capture shocks with a typical size that is a few zones wide, we will require the 

Reynolds number to be of order unity on length scales that are comparable to the width of 

the shock. As a result, the numerical viscosity will have η ∼ v ∆x in the vicinity of the 

shock. 

 

The current trend is to move away from such artificial viscosity-based schemes 

and rely on the self-adjusting properties of the Riemann solver to produce the correct 

amounts of entropy and dissipation at discontinuities. However, the Riemann solver that 

we construct later on in this chapter will itself use shocks as one of its building blocks 

and will thus implicitly incorporate the physical dissipation and consequent entropy 

generation that takes place at shocks. Furthermore, as we will see later, even such 

Riemann solver-based higher order Godunov schemes are best off if they are 

supplemented by a very small amount of artificial viscosity. The artificial viscosity is not 

needed for one-dimensional shock flow but it is needed to provide cross-stream coupling 

at multi-dimensional shocks, (Quirk 1994) . 

 

 The discussion in this sub-section has shown that strong shocks have larger jumps 

in their flow variables. As a result, the physical viscosity generates entropy more 

efficiently at stronger shocks with the result that stronger shocks have smaller viscous 

widths than weaker shocks, as shown by Thomas (1944). We see the same trend in 

numerical schemes where a very weak shock can sometimes be spread across several 

zones but a strong shock will steepen to have a width of one or two zones. By itself this 
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fact is not detrimental for modern schemes for fluid flow though it can have an adverse 

effect when radiative processes also cause strong changes in the post-shock temperature 

and pressure. In such situations it may be appropriate to take time steps that are governed 

both by the Courant condition as well as the time scale for radiative cooling on the 

computational mesh. 

 

 The discussion in this sub-section has also shown us that the strength of a shock 

depends on the extent to which entropy is raised at a shock. In the remaining sub-sections 

it will help to have a measure of the strength of a shock. Thus any tracer of this entropy 

increase, such as the ratio of post-shock to unshocked pressures 2 1P / P , is a good tracer of 

the strength of a shock. In the next few sub-sections we will liberally use the ratio of 

pressures as a measure of shock strength. 

 

 

Comparing Linearly Degenerate Waves for the Euler and MHD Equations 

 

 The entropy pulse that arises for the Euler equations can also have an associated 

shear wave. This is symptomatic of the fact that the eigenvectors with eigenvalues given 

by xvλ =  in the Euler system permit an entropy wave as well as a pair of shear waves. 

This leads to a degeneracy in the eigenvalues. Such waves do not self-steepen as they 

propagate in space. They are, therefore, known as linearly degenerate waves as opposed 

to genuinely non-linear waves , i.e. the sound waves, which do steepen as they propagate. 

Consequently, one can have any amount of jump in the density or transverse velocity 

across a contact discontinuity without having a change in the propagation speed of the 

discontinuity. Compare that to a hydrodynamical shock wave, where increasing in the 

post-shock pressure (with the pre-shock conditions held constant) causes the shock to 

propagate faster into the unshocked gas. 

 

 The MHD equations also sustain an entropy wave. If the magnetic field is non-

zero in the direction of wave propagation, then such an entropy wave cannot sustain a 

shear in the transverse velocities across it. This is because the magnetic field breaks the 
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degeneracy of eigenvalues noted above. For the MHD system, the torsional Alfven waves 

carry the shear in the flow. The MHD system then has one entropy wave and two Alfven 

waves as its linearly degenerate waves while the four magnetosonic waves are nonlinear. 

The two fast magnetosonic waves are precise analogues of hydrodynamical sound waves. 

As the magnetic field strength is reduced to zero, the fast magnetosonic waves will even 

transition in a continuous fashion to the sound waves while the Alfven waves transition 

continuously to the shear waves. 

 

5.2.2) The Hugoniot Adiabat 

 

 In Sub-section 3.4.2 we saw that the values on one side of a simple wave are 

related to the values on the other side by a single parameter, the coefficient of the right 

eigenvector. In the same spirit, given a specification of the pre-shock density 1ρ  and 

pressure 1P  and a measure of the strength of the shock, say 2 1P / P , we wish to predict the 

other thermodynamic variables in the post-shock region. We would also like to express 

the rest-frame velocities x1u  and x2u as well as their difference x2 x1u u−  in terms of the 

above-mentioned variables. In wanting to do all this we are drawing on our intuition 

which tells us that for a given set of unshocked thermodynamic variables and one post-

shock variable, we should be able to determine all the other post-shock thermodynamical 

variables and the velocity differences. Our present study of the Hugoniot adiabat enables 

us to do just that. An adiabat is just a portrait in phase space showing all the possible 

isolated shocks (or rarefactions) of a given family that can be connected to a certain set of 

unshocked variables. 

  

 The equations are simplified if we define specific volumes as 1 1  1/V ρ≡  and 

2 2  1/V ρ≡  . To arrive at expressions for the thermodynamical variables it also helps to 

initially eliminate the velocities from the problem. We also identify a mass flux variable 

“j” which is defined by 1 x1 2 x2j   u  =  uρ ρ≡  . We then have 

 

x1 1 x2 2u  = j     ;    u  = j V V         (5.14) 
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Substituting the velocities from eqn. (5.14) in eqn. (5.6) then gives an expression of the 

mass flux that depends purely on the thermodynamical variables as follows: 

 

2 2 1

1 2

P Pj  = 
V V

−
−

          (5.15) 

 

Because 2j  is positive we see that we can only have one of the two following possibilities. 

The first possibility is 2 1P P>   and 1 2V V>  . The second possibility is 2 1P <P  and 1 2V V< . 

Since we take subscript “1” to indicate unshocked, uncompressed gas, only the first 

possibility is physically consistent with entropy generation at a realizable shock. We call 

such shocks compressive shocks because they result in a pressure increase in the post-

shock region. It is also possible to obtain 

 

2 1

1 2

P Pj = 
V V

−
−

          (5.16) 

 

where the –ve sign for the mass flux “j” pertains to right-going shocks and the +ve sign 

pertains to left-going shocks. See the right- and left-going shocks in Fig. 5.6 to realize 

that they have negative and positive mass fluxes respectively. Substituting eqn. (5.15) in 

the energy equation, i.e. eqn. (5.13), gives one possible expression for the Hugoniot 

adiabat: 

 

( )( )

2 2 2 2 2 2
1 x1 2 x2 1 1 2 2

1 2 1 2 2 1

1 1 1 1h  u h  u   h  j  h  j   
2 2 2 2

1h h P P 0
2

V V

V V

+ = + ⇒ + = + ⇒

− + + − =
   (5.17) 

 

Since 2h in the above equation depends on 2P  and 2 21/Vρ = , the above equation makes 

it evident that a specification of the unshocked thermodynamical variables 1P  and 1ρ  and 

one post-shock thermodynamical variable, i.e. 2P , then permits us to obtain the other 
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thermodynamical variable 2ρ . For problems involving a general equation of state, it may 

be more valuable to obtain eqn. (5.17) in terms of the specific internal energy defined by 

e / ρ  . We then get 

 

( )( )1 1 2 2 1 2 2 1
1e e P +P 0
2

V V V V− + − =        (5.18) 

 

 For polytropic equations of state the above equations yield several further 

simplifications, as we will see in the next section. Even for a general equation of state we 

realize that the internal energy density in the above equation depends on pressure as 

( )e = P 1Γ −  with the result that given 1P  and 1ρ  and 2P  we can always obtain 2ρ  

iteratively using the above equation. For most real gases, the effective polytropic index Γ  

is a slowly varying parameter. As a result, we can freeze it around some local value as 

shown in the design of the Riemann problem for real gases in Colella & Glaz (1985). To 

solve for the shock structure Colella & Glaz showed that one can make local iterations 

around the shocked state to find an approximate value of Γ .  

 

 We will make a detailed study of the hydrodynamical Riemann problem over the 

course of this Chapter. For that study it is very useful to have a compact expression for 

the velocity jump across the shock, x2 x1u u−  . To do that, we first obtain 

( )x2 x1 2 1u u = j V V− −  and then use eqn. (5.16) to get 

 

( )( )x2 x1 2 1 1 2u   u  = P P V V− ± − −        (5.19) 

 

The +ve and –ve signs in the above equation pertain to right- and left-going shocks 

respectively. It is now easy to see that x2 x1u u 0− >  for right-going shocks while 

x2 x1u u 0− <  for left-going shocks, as also catalogued in Fig. 5.6. 
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 Notice that none of the equations derived in this sub-section depend on the form 

of the equation of state. In the next section we derive further relations that are specific to 

the assumption of a polytropic gas. 

 

5.2.3) Normal Shocks in Polytropic Gases 

 

 Many of the requisite insights in computational astrophysics, engineering and 

space physics can be gained by studying normal shocks in polytropic gases. (Even when 

gases are not polytropic, as is the case in the interior of a pre-supernova star or in a 

problem with strong combustion, they seem to approximate polytropic gases in restricted 

density and temperature ranges. See Zwerger & Muller (1997) or Timmes & Swesty 

(2000) for the equation of state for nuclear matter. For combustion problems involving 

gases, see Colella & Glaz (1985) and for problems involving condensed phase material 

equations of state, see Horie (2007).) Furthermore, in several science and engineering 

problems the gas does indeed satisfy a polytropic equation of state to a rather good 

approximation. For that reason we make an in depth study of normal shocks in polytropic 

gases. In this sub-section, we wish to restrict study to the flow variables in the rest frame 

of the shock. In the next sub-section we will remove this restriction. 

 

 Using the polytropic relation, eqn. (5.11), in eqn. (5.17) for the Hugoniot adiabat 

we obtain 

 

( ) ( )
( ) ( )

1 21 x2 2

2 x1 1 1 2

1  P  + 1  Pu =  =  = 
u 1  P  + 1  P

V
V

ρ
ρ

Γ + Γ −
Γ − Γ +

      (5.20) 

 

Notice that eqn. (5.20) gives us the post-shock density 2ρ  in terms of the unshocked 

density 1ρ  and the ratio of pressures 2 1P / P . Eqn. (5.20) therefore permits us to make the 

Hugoniot adiabat explicit for any choice of  Γ . Fig. 5.7 shows us the Hugoniot adiabat 

for a gas with 1.4Γ = . The solid curve in Fig. 5.7 shows us the locus of all the density 

ratios 2 1/ρ ρ  that are accessible for physically acceptable choices of pressure ratio 2 1P / P . 
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Since a physical shock is always a compressive shock, we need 2 1P / P 1> . The dashed 

curve in Fig. 5.7 shows us the locus of a rarefaction shock. In a rarefaction shock, the 

entropy in the shocked gas is lower than the entropy in the unshocked gas. Thus 

rarefaction shocks, while mathematically feasible, are physically unacceptable because 

they violate an entropy condition. The entropy condition tells us that in place of a 

rarefaction shock the physical flow opens out to form a rarefaction fan. Enforcement of 

such an entropy condition is, therefore, of paramount importance in ensuring that a 

numerical scheme that is based on the Riemann problem produces physically consistent 

shocks and rarefaction fans. Using ( ) ( )2 1 2 2 1 1T T P  P  V V=  and eqn. (5.20) we can also 

show that 
 

( ) ( )
( ) ( )

1 22 2

1 1 1 2

1  P  + 1  PT P =  
T P 1  P  + 1  P

Γ + Γ −
Γ − Γ +

       (5.21) 

 

 
 

 We now turn to deriving relationships that pertain to the velocities in the 

unshocked and shocked gases as viewed in the shock’s rest frame. Substituting eqn. 

(5.20) in (5.15) gives an expression for the mass flux in the shock’s rest frame: 

 

( ) ( ) ( )2
1 2 1j  = 1  P  + 1  P 2 VΓ − Γ +         (5.22) 



 26 

 

Using x1 1u j V=  and the results from eqn. (5.22) we get: 
 

( ) ( ) ( ) ( )2 2
x1 1 1 2 s1 2 1

1 1u  =   1  P  + 1  P  =  c    1 + 1  P P
2 2

V Γ − Γ + Γ Γ − Γ +        (5.23) 

 

Now using x2 2 x1 1u  uV V=  and the above equation gives: 
 

( ) ( ) ( ) ( )

( ) ( )

22
x2 1 1 2 1 2

2
s2 1 2

1u  =   1  P  + 1  P 1  P  + 1  P
2

1     =  c    1 + 1  P P
2

V Γ + Γ − Γ − Γ +      

Γ Γ − Γ +  

   (5.24) 

 

In preparation for our study of the Riemann problem, it is also useful to use eqn. (5.20) in 

eqn. (5.19) to obtain an expression for the velocity jump x2 x1u u−  as follows: 

 

( ) ( ) ( )
1

x2 x1 2 1
1 2

2 u   u  =  P P  
1  P  + 1  P

V
− ± −

Γ − Γ +
     (5.25) 

 

The +ve and –ve signs in eqn. (5.25) pertain to right- and left-going shocks respectively. 

 

 The previous equations used the post-shock pressure as an independent variable 

and expressed all the other post-shock flow variables in terms of the post-shock pressure 

and the pre-shock flow variables. In the scientific literature, however, we often find it 

more convenient to use the Mach number in the unshocked gas, 1 x1 s1M u c= , as a proxy 

for the shock strength. We wish to derive formulae for shock relations that depend on 1M  

because such formulae are often very useful in setting up isolated hydrodynamical shocks 

in numerical simulations. Writing eqn. (5.23) in terms of the Mach number 1M  we can 

then express the pressure ratio 2 1P / P  in terms of 1M  to obtain: 
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( ) ( )2
2 1 1P P  = 2  M   1 1 Γ − Γ − Γ +        (5.26) 

 

Substituting eqn. (5.26) into eqns. (5.20) and (5.21) we obtain 

 

( ) ( )2 2
2 1 x1 x2 1 1 = u u  = 1  M 1  M   2ρ ρ  Γ + Γ − +       (5.27) 

 

and  

 

( ) ( ) ( )22 2 2
2 1 1 1 1T T  = 2  M   1  1  M   2 1  M    Γ − Γ − Γ − + Γ +         (5.28) 

 

Equating the pressure ratio 2 1P / P  obtained from eqn. (5.23) and (5.24) then gives 

 

( ) ( )2 2 2
2 1 1M  = 1  M   2 2  M   1   Γ − + Γ − Γ −         (5.29) 

 

 The above equations also show that in the limit where we have infinitely strong 

shocks, i.e. when 1M   → ∞ , we have the asymptotic relations 

 

( )
( )

( )2 x1 2 2
2

1 x2 1 1

+1 1u P T =       ;       ;      ; M   
u 1 P T 2

ρ
ρ

Γ Γ −
→ → ∞ → ∞ →

Γ − Γ
  (5.30) 

 

The dashed line in Fig. 5.7 shows that the ratio of densities tends to ( ) ( )+1 1Γ Γ −  for 

extremely strong shocks. In the limit where we have strong shocks that are not 

necessarily of infinite strength we have the approximations 

 

( )
( )

( )
( )

( ) ( )
( )

2
2 2x1 1 2 2 2

x1 x2
x2 2 1 1 1 1 1

+1 1 +1  P 1  Pu T P =  =  =   ;   =    ; u  =     ;  u  = 
u 1 T +1 P 2 2 +1  

V
V

ρ
ρ ρ ρ

Γ Γ − Γ Γ −
Γ − Γ Γ

 

           (5.31) 
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In Section 5.1 we saw that isolated shocks can arise in the Riemann problem. The 

formulae derived in this section give us a good compendium of equations pertaining to 

isolated shocks that we will use later in designing our Riemann solver. 

 

Classifying discontinuities; Hydrodynamical v/s Magnetohydrodynamical Shocks 

 

 Just like the Euler equations, the one-dimensional form of the MHD equations can 

support shocks. In the MHD case we have four shock families; the right-going fast 

magnetosonic shocks, the right-going slow magnetosonic shocks, the left-going slow 

magnetosonic shocks and the left-going fast magnetosonic shocks. In the canonical case, 

these shocks follow the same foliation of waves as the linear system. The post-shock 

pressure is always larger than the pressure in the unshocked gas for all hydrodynamical 

shocks and this is also true for magnetohydrodynamical shocks. As a result, we say that 

all hydrodynamical shocks are compressive shocks, a property shared by MHD shocks. 

 

 In all of the formulae that we developed in this sub-section we used the ratio 

2 1P / P  as a measure of the shock strength. Similar formulae for MHD are given in the text 

of Jefferey & Taniuti (1964) and are adumbrated in their Appendix D, see also Bazer & 

Ericson (1959). 

 

 For a right-going hydrodynamical shock the C+ characteristics formed by 

x sv cλ = +  flow into the shock from either side of the shock. Furthermore, all of the 

other characteristics to the right of this shock and none of the other characteristics to the 

left of this shock flow into the shock. Such shocks are known as genuine or classical 

shocks. Hydrodynamical shocks are classical because the Euler system with an ideal 

equation of state is convex (Lax 1972). For certain equations of state, the convexity of the 

Euler system cannot be guaranteed; the resulting shocks then bear further examination.  A 

general definition of a classical shock follows: Consider an M-component hyperbolic 

conservation law with eigenvalues mλ  that are ordered from smallest to largest. Let UL 
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and UR denote the left and right states on either side of a discontinuity. The discontinuity 

is said to form a classical shock of the mth family if it moves with speed “s” such that 

( ) ( ) ( ) ( )1 1U s U     and    U s Um m m m
L L R Rλ λ λ λ− +< < < < . 

I.e., notice that the characteristics of the mth wave family are converging into the shock 

and there are only 1M −  characteristics that are emanating from the shock. For example, 

see the figure below and convince yourself that the right-going shock is a classical shock. 

The only other discontinuities that arise for the Euler system are linearly degenerate 

contact discontinuities, also known as exceptional discontinuities, where characteristics 

of a given wave family evolve with the same speed on either side of the discontinuity. 

See the figure below and convince yourself that the contact discontinuity is an 

exceptional discontinuity. It is important to be able to classify the discontinuities that 

arise in a hyperbolic system of conservation laws because that information guides us in 

designing numerical schemes. For the Euler system with an ideal equation of state, the 

discontinuities are all well-behaved. Consequently, it is easy to design good numerical 

schemes for this system that converge to the physics of the problem. 

 
The MHD system is non-convex and can on occasion produce compound shocks. 

Recall that in the previous chapter we saw how compound shocks arise for the Buckley-

Leverett equation. Consequently, degeneracies in the MHD eigenstructure can also 
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produce situations where characteristics from different wave families on one or the other 

side of a compound shock can become parallel to each other across the shock. Such 

compound shocks usually occur in MHD when the pressure jump is small and the 

transverse magnetic field on either side of a shock lies in a single plane but undergoes a 

change in sign across the shock. In that case it often turns out that an Alfvènic rotational 

discontinuity is conjoined with a magnetosonic wave, forming a compound shock.  

 

5.2.4) Shocks in the Lab Frame 

 

 In the previous sub-section we studied normal shocks in polytropic gases. We did 

this in the rest frame of the shock. However, when viewed in the laboratory, the 

transverse velocities can have any value across a shock as long as it is left unchanged as 

the fluid passes through the shock. The normal velocities in the unshocked and post-

shock fluids also do not need to comply with eqns. (5.23) and (5.24). In this sub-section 

we wish to obtain expressions for the post-shock velocity and the propagation speed of a 

shock in an arbitrary frame of reference. We will then demonstrate the utility of those 

expressions, especially as they pertain to our eventual design of a hydrodynamical 

Riemann solver. 

 

 Thus say that we are studying the problem of shock propagation in a frame of 

reference F where the unshocked fluid has a velocity vector given by 

 

x1 y1 z1v  x + v  y + v  z  and density and pressure given by ρ1 and P1 respectively. The 

frame F is sometimes referred to as the lab frame. Specification of the post-shock 

pressure 2P  defines the strength of the shock. We can use this information in eqn. (5.23) 

to find the velocity x1u  of the unshocked fluid in the shock’s rest frame. Consequently, 

even before we make any coordinate transformation, we know the velocity with which 

the unshocked fluid enters the shock in its own rest frame. We wish to transform to the 

shock’s rest frame, denoted by F/ , because the shock jump conditions are simplest in that 

frame of reference. To do so, we make a Galilean transformation from the original frame 

of reference F to the frame F/ that is moving with velocity 
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( )  

x1 x1 y1 z1v u x + v  y + v  z= −/F
v   with respect to it. Since we already know x1u   , the 

velocity /F
v  of the frame F/ is easy to find. See Fig. 5.8 which shows that the scalar 

variables remain unchanged by the transformation; however, the velocity vectors undergo 

transformations as shown. Fig. 5.8 also gives us the formulae for the velocity 

transformation as we go from one frame to the other. In the shock’s rest frame, eqn. 

(5.24) gives us the velocity of the shocked fluid x2u  as a function of 1ρ , 1P  and 2P . 

Transforming back to the original lab frame of reference F (in which the shock is not a 

normal shock) gives us the velocity in the post-shock fluid as 

( )  

x1 x2 x1 y1 z1v u u  x + v  y + v  z+ −   . Thus if the x-component of the post-shock fluid in 

the lab reference frame F is x2v  we have x2 x1 x2 x1v  = v  + u   u− , with the result that 

x2 x1 x2 x1u  u v  v− = − . In other words, x2 x1u  u−  is just the change in velocity across the 

shock and that change is the same regardless of the frame in which we solve the problem. 

We, therefore, come to the important realization that if x2 x1u  u−  can be specified 

explicitly in terms of 1ρ , 1P  and 2P  then we can specify the post-shock velocity exactly. 

Consequently, for a right-going shock we have: 

 

( ) ( ) ( )
1

x2 x1 2 1
1 2

2 v  = v  + P P  
1  P  + 1  P

V
−

Γ − Γ +
     (5.32) 

 

In the rest frame F/, the right-going shock is at rest. It therefore propagates in the lab 

frame F with an x-velocity given by x1 x1v u− . Using eqn. (5.23) for x1u , we get the speed 

of the right-going shock as: 

 

( ) ( ) 2
shk x1 s1

1

1 1 Pv  = v  + c   +  
2 2 P→

Γ − Γ +
Γ Γ

      (5.33) 
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To see why the above two equations pertain to a right-going shock, set x1v 0=  to realize 

that x2v  and shkv →  are both positive, i.e. the shock overruns the fluid to its right. 

Likewise, for a left-going shock we have: 

 

( ) ( ) ( )
1

x2 x1 2 1
1 2

2 v  = v   P P  
1  P  + 1  P

V
− −

Γ − Γ +
     (5.34) 

 

The left-going shock propagates in the frame F with an x-velocity given by: 

 

( ) ( ) 2
shk x1 s1

1

1 1 Pv  = v  c   +  
2 2 P←

Γ − Γ +
−

Γ Γ
      (5.35) 

 

 
 

 Focusing on right-going shocks, we can plot out x2v using eqn. (5.32) for 

increasing values of pressure 2P  and any given unshocked state ( )1 1 x1 , P , vρ . This is 

done in the right panel of Fig. 5.9 where the solid curve gives us the locus of all points in 

the ( )x2 2 v , P  plane that can be connected to the unshocked state by a right-going shock 
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denoted by S→  . The analytic extension of the plot to include (unphysical) rarefaction 

shocks is shown via the dashed curve in Fig. 5.9. Using eqn. (5.34) we can similarly 

display the locus of all points in the ( )x2 2 v , P  plane that can be connected to the 

unshocked state by a left-going shock. The left-going shock is denoted by S←  and is 

shown in the left panel of Fig. 5.9. In that panel we again show the physical shock with a 

solid curve and the (unphysical) rarefaction shock as a dashed curve. We see that 

progressively stronger right-going shocks produce increasing (and positive) values of 

x2 x1v v−  while progressively stronger left-going shocks produce decreasing (and 

negative) values of x2 x1v v−  .  

 

 We now make three important observations for right-going shocks: 

 i) x2 x1v v   − → ∞  as 2P   → ∞  , i.e. the locus of the right-going shock is 

monotonically increasing in the ( )x2 2 v , P  plane. 

 ii) ( )x2 x1

2

v v
  0

 P
∂ −

→
∂

 as 2P   → ∞  , i.e. the velocity increase does not keep up 

with the pressure increase. In fact, for 2 1P  >> P  we have x2 x1 2v v   P− ∝  . 

 iii) P2 = 0 at 
( )x2 x1 s1

2v v  = c  
1

− −
Γ Γ −

 , i.e there is a certain –ve velocity 

difference past which the pressure and density become zero in a rarefaction shock. In 

other words, the flow experiences a cavitation. We will see that a similar trend exists in 

physical rarefaction fans. The only difference is that a rarefaction fan will permit a larger 

range of –ve velocities before it undergoes cavitation. 

Trends that are analogous to the above three points can also be specified for left-going 

shocks. 
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 In a numerical code, an actual rarefaction fan opens up in a self-similar fashion as 

we have seen before in Chapter 4. Once a rarefaction fan has opened up on a 

computational mesh, the jump in flow variables from one zone to the next is rather small 

within the rarefaction fan. Consequently, for the sake of computational simplicity, it 

becomes acceptable to replace actual rarefaction fans by (unphysical) rarefaction shocks. 

This can be done as long as an entropy fix is included in the Riemann solver to account 

for the fact that the rarefaction shock is actually a proxy for a rarefaction fan – a structure 

that spreads out in space-time. In other words, we restore physical consistency by 

asserting a wave model that includes an entropy fix, just as we did in Section 4.5. While 

unphysical, the dashed lines in the above plots nevertheless provide a reasonably good 

description of what happens as the flow variables evolve in a rarefaction fan. We will 

elaborate on this point later. Rarefaction shocks will, therefore, see use in place of 

rarefaction fans when constructing approximate Riemann solvers for flow codes. We will, 

however, not forget the central property of rarefaction fans that they preserve the entropy 

of the flow that passes through them, while rarefaction shocks decrease the entropy in the 

post-shock region. Thus while rarefaction shocks are often used in place of rarefaction 

fans during the iterative solution of the Riemann problem, we do need to go back post-

facto and enforce an entropy fix in the approximate Riemann solver. 
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5.3) Rarefaction Fans 

 

 In the previous chapter we saw that self-similar solutions of a scalar conservation 

law can either be shocks or rarefaction fans. Inside a physical rarefaction fan, the solution 

was seen to be continuous. By interpreting entropy loosely in an information theoretic 

fashion, we realized that in a physical rarefaction fan entropy was not generated. For that 

reason we now focus on one dimensional continuous solutions of the Euler equations that 

are isentropic. While we specialize the equations in this section for ideal gases, we will 

also provide some general expressions for gases with real equations of state. For 

isentropic flow we have the following relations between thermodynamic variables: 

 
2 2 1

1 12
s s

1 s s1 1 1
1 1 s1 s1

c cP = P   which gives : c  = c   ;   =   ; P = P  
c c

ρ ρ ρ ρ
ρ ρ

ΓΓ−
Γ

Γ− Γ−      
      

       
 (5.36) 

 

Enforcing the above relations, all of which are equivalent, enables us to pick out 

isentropic solutions of  the Euler equations. 

 

 Using the isentropic condition allows us to drop the entropy equation 

tS +   S=0∂ ∇v   . This is equivalent to dropping the thermal energy equation, or 

alternatively the total energy equation, from the mix of equations we have to solve. The 

continuity then becomes: 

 

x
x

 v1    + v  +  = 0
t x x
ρ ρ

ρ
∂∂ ∂ 

 ∂ ∂ ∂ 
       (5.37) 

 

After using 2
sdP = c  dρ  in the momentum equation, we get 

 
2
sx x

x
c v  v   + v  =   

t x x
ρ

ρ
∂ ∂ ∂  − ∂ ∂ ∂ 

       (5.38) 
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Eqns. (5.36) then give us an isentropic relation s

s

dcd 2
1 c

ρ
ρ

=
Γ −

. Incorporating it in the 

above two equations gives us: 

 

x
s x s s

 v2 2c  + v  c  + c   = 0
t 1 x 1 x

∂∂ ∂   
   ∂ Γ − ∂ Γ − ∂   

     (5.39) 

 

and 

 

x x
x s s

 v  v 2 + v  + c  c  = 0
t x x 1

∂ ∂ ∂  
 ∂ ∂ ∂ Γ − 

      (5.40) 

 

By adding and subtracting the above two equations in a suitable way, we get: 

 

( )x s x s
2 + v  + c   v  + c  = 0

t x 1
∂ ∂   

  ∂ ∂ Γ −   
      (5.41) 

 

and 

 

( )x s x s
2 + v   c   v   c  = 0

t x 1
∂ ∂   − −  ∂ ∂ Γ −   

     (5.42) 

 

The self-similarity in the above two equations is worth noting. We also see that the 

isentropic assumption has reduced the number of variables that we need to consider in 

one dimension from three to two (i.e. xv  and sc ), which is a considerable simplification. 

 

 Eqn. (5.41) and (5.42) are the characteristic equations derived by Riemann. They 

tell us that the Riemann invariant “R” defined by 
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x s
2R  v  + c

1
≡

Γ −
         (5.43) 

  

remains constant along the C+ characteristic curve in space-time whose trajectory is given 

by x s
dx  = v  + c
dt

 . Likewise, the Riemann invariant “S” defined by 

 

x s
2S  v   c

1
≡ −

Γ −
         (5.44) 

 

remains constant along the C− characteristic curve in space time with a trajectory given 

by x s
dx  = v   c
dt

−  . 

 

For a general equation of state we have 

 

( )xR  v  + l ρ≡          (5.45) 

 

and 

 

( )xS  v   l ρ≡ −          (5.46) 

 

where 

 

( )
1 1

P
s

sP

c  d dP =  = 
 c

l
ρ

ρ

ρρ
ρ ρ∫ ∫         (5.47) 

 

The Riemann invariants “R” and “S” are the images of the characteristics C+ and C− in 

the two dimensional solution space ( )x s v , c . 
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 For small fluctuations, it is easy to see that the equations derived in the previous 

paragraph tell us how the fluctuations move. The eigenvectors give us similar 

information in the limit of small fluctuations, i.e. look at eqn. (1.74) where we use the left 

eigenvectors defined in eqn. (1.61). We see that the fluctuations move along the 

characteristic curves C+ and C− . But the above equations also go further. They tell us 

that the propagation of finite amplitude isentropic fluctuations can also be tracked as long 

as we track them along characteristics. This process can be continued as long as the 

characteristics of a given wave family do not intersect, i.e. as long as shocks don’t form. 

Fig. 5.10 shows a schematic representation of isentropic flow. The left panel shows the 

space-time diagram of the characteristics. The right panel shows their image in the 

solution space formed by the ( )x s v , c  plane. From the left panel in Fig. 5.10, we see that 

the C+ and C− characteristics form an intersecting truss work and we can use it to define 

a coordinate system. Even if it is initially non-intuitive, let us define characteristic 

coordinates α and β in that coordinate system. Consider the characteristic coordinates α 

and β which increase in the time-like directions along the C+ and C− characteristics 

respectively as shown in the left panel of Fig. 5.10. As long as characteristics of a given 

family do not intersect with themselves, the two dimensional coordinate system formed 

by ( ),α β  provides an unusually easy coordinate system in which to read off the solution. 

In practice, the problem is implicit but say for simplicity that someone constructed a 

characteristic coordinate system and, furthermore, gave us ( )xv x  and ( )sc x  at time 

0t = . Then we can find the solution at any space time point ( ),x t  by reading off the 

corresponding ( ),α β  from the left panel in Fig. 5.10. Then read off the Riemann 

invariants ( )R β  and ( )S α  from the right panel of Fig. 5.10. Using ( )R β  and ( )S α and 

the definition of the Riemann invariants from eqns. (5.43) and (5.44), we can find 

( )xv ,x t  and ( )sc ,x t  at any general point in space and time. In practice, constructing a 

characteristic coordinate system like the one shown in Fig. 5.10 is never that simple. To 

map the characteristics in space and time, as was done in the left panel of Fig. 5.10, we 

have to know the solution at all points in space and time. Thus the theoretical “solution 



 39 

methodology” outlined in this paragraph assumes that the solution is already known, 

greatly diminishing its practical utility. 

 

 
 

 There are, however, simple flows for which an explicit solution can be given. 

These simple flows take the form of compression waves and rarefaction fans. Out of 

these, we are only interested in the latter but some of the development in this section is 

general enough to include the former. These are simple waves for which either the 

Riemann invariant “R” or the Riemann invariant “S” is held constant all over space and 

time. This is tantamount to saying that the entire solution lies on only one of the straight 

lines in the ( )x s v , c  plane in the right panel of Fig. 5.10. As a result, xv is always 

specified in terms of sc  or vice versa. In practice, this is achieved by having a constant 

state on one or the other side of a simple wave. A rarefaction fan usually forms next to a 

constant state of the flow. As a result, one of the families of characteristics has footpoints 

starting from the constant state of the flow. Consequently, that entire family corresponds 

to one and only one single value of the corresponding Riemann invariant. 

 

 The discussion in the previous two paragraphs might have been too abstract for 

some readers’ taste; so we simplify it here. A practical, mechanical example of a 

rarefaction fan occurs when a piston that is initially at rest in a tube of stationary gas is 
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suddenly pulled out of the tube at a constant velocity. Fig. 5.11 shows a schematic 

diagram as well as a space-time diagram of the characteristics for the case where the 

piston is pulled to the left. The piston is initially located at the origin. Notice that all the 

left-going characteristics C− must originate from the constant initial state in the gas and, 

therefore, must have the same Riemann invariant ( )1 s1S 2c 1= − Γ − . Here s1c  is the 

sound speed in the initially static gas. The fluid immediately abutting the piston must 

move with the piston’s speed. Because we know rarefaction fans to be self-similar 

solutions, they can only depend on the ratio ( )x t . Since 1S  is a constant along all C− 

characteristics, the only (isentropic) variation can be along the C+ characteristics. The C+ 

characteristics are the only characteristics in this problem that can have non-trivial 

information propagating along them. Consequently, in order to form a self-similar 

solution, the C+ characteristics must be straight lines in space-time. Note though that the 

density and velocity across a rarefaction fan do not have linear variation along the x-axis. 

Notice too from Fig. 5.11 that at 0t =  the solution has a discontinuity at 0x = . Over 

time, a wave with locus s1c  x t=  moves into the gas to the right. I.e. over time, more and 

more parcels of gas flow into the rarefaction fan from its right. We, therefore, call it a 

right-going rarefaction fan.  

 

 The right boundary of the right-going rarefaction fan shown in Fig. 5.11 is 

coincident with the first C+ characteristic that varies with ( )x t . In other words, the 

characteristic, Cr
+  in Fig. 5.11, is the right-most characteristic of the right-going 

rarefaction fan. The left boundary of the same rarefaction fan consists of a fluid state with 

a velocity that matches that of the piston. That is how the right-going rarefaction fan 

produces a transition in x-velocities from a value of zero to its right to a value that 

matches the piston’s velocity to its left. The space-time diagram in Fig. 5.11 shows us 

that the C− characteristic are straight lines except when they pass through the rarefaction 

fan. Inside the rarefaction fan, the C− characteristics can be curved. This is because they 

intersect different C+ characteristics each of which carries a different value of the 

Riemann invariant “R”. 
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 In the next two sub-sections we will study right- and left-going rarefaction fans, 

deriving expressions that are of general computational use. The derivation of the 

expressions for right-going fans will be given in full while the results for the left-going 

rarefaction fans will be stated without further detail since they very closely parallel the 

previous results. 

 

5.3.1) Right-going Rarefaction Fans 

 

 By construction, a right-going simple wave has a constant state to its right. We 

have seen that for right-going simple waves, the Riemann invariant 

( )x sS  v   2 c 1≡ − Γ −  remains constant. This holds true whether they are compression 

or rarefaction waves. Let us, therefore, denote the constant state to the right of this wave 

by a subscript “1”. The flow variables in that constant state are given by 
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1 x1 y1 z1 1(  , v  , v  , v  , P )ρ  with s1 1 1c =  P / ρΓ  . Across the right-going simple wave we can 

then assert the constancy of the Riemann invariant “S” to get: 

 

 x s x1 s1
2 2v   c  = v   c

1 1
− −

Γ − Γ −
       (5.48) 

 

Eqn. (5.48) then gives us the sound speed at any point in the right-going simple wave as a 

function of the velocity difference ( )x x1v   v−  as: 

 

( ) ( )s s1 x x1

1
c  = c  +  v   v

2
Γ −

−        (5.49) 

 

Incorporating eqn. (5.49) into eqn. (5.36) then enables us to obtain the pressure and 

density in the right-going simple wave as a function of ( )x x1v   v−  as: 

 

( ) ( ) ( ) ( )
2 2 

11
x x1s

1 1
s1 s1

1 v   vcP = P  = P  1 +  
c 2 c

ΓΓ
Γ−Γ− Γ − −  

   
   

     (5.50) 

 

and 

 

( ) ( ) ( ) ( )
22

11
x x1s

1 1
s1 s1

1 v   vc =  =  1 +  
c 2 c

ρ ρ ρ
Γ−Γ− Γ − −  

   
   

    (5.51) 

 

Eqns. (5.49), (5.50) and (5.51) express the sound speed, pressure and density in the 

rarefaction or compression wave in terms of the variables in the constant state that abuts 

the wave and one parameter that pertains to the interior of the rarefaction fan. In eqns. 

(5.49) to (5.51), that controlling parameter is the velocity xv , or alternatively, 

( )x x1 s1v   v c−  . Reasoning by analogy, recall that the post-shock pressure was the one 

controlling parameter that determined the structure of a shock in eqns. (5.20) to (5.25). 
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 The above three expressions are generally true for any right-going rarefaction or 

compression wave in a polytropic gas. We now specialize them for a self-similar right-

going rarefaction fan that emanates from 0x = at 0t = . Since we are studying a right-

going rarefaction fan, we focus on the C+ family of characteristics. Such waves have the 

further special property that they obey a similarity solution that depends only on the self-

similarity variable ( )x t≡ξ . Furthermore, the C+ characteristics carry that similarity 

information. Setting ( ) x sv + cx t =  for the right-going characteristics and using eqn. 

(5.49) gives us: 

 

( ) ( )x s x1 s1 x x1

+1
 = v  + c  = v  + c  +  v v

2
x
t

Γ
−       (5.52) 

 

which can be written in an alternative form as 

 

( ) ( )x x1 x1 s1
2v v  =  v + c
+1

x
t

  − − −   Γ   
      (5.53) 

 

Using eqn. (5.53) in (5.50) and (5.51) then gives us 

 

( )
( ) ( )

( )
2 

1

1 x1 s1
s1

1 1P = P  1    v + c
+1 c

x
t

Γ
Γ− Γ −    − −   Γ     

     (5.54) 

 

and  

 

( )
( ) ( )

( )
2

1

1 x1 s1
s1

1 1 =  1    v + c
+1 c

x
t

ρ ρ
Γ− Γ −    − −   Γ     

     (5.55) 
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Eqns. (5.53) to (5.55) give us the internal structure of a right-going rarefaction fan that 

emanates from the origin at time 0t = . For a given right state, the flow variables in the 

rarefaction fan that abuts that state are entirely specified by the ratio ( )x t . Notice that 

for a centered, right-going rarefaction fan the right-most C+ characteristic that belongs to 

the fan is given by ( )x1 s1 = v  + c  x t  . As one traverses the fan from right to left, 

( )x1 s1v + c x
t

  −     
 increases from an initial value of zero, see the C+ characteristic curves 

in Fig. 5.11. Consequently, from eqns. (5.53) to (5.55) we see that xv , P and ρ decrease 

monotonically from x1v , 1P  and 1ρ  as the fan is traversed from right to left. If we denote 

the variables to the left of a right-going rarefaction fan by  2 x2 y1 z1 2(  , v  , v  , v  , P )ρ  we 

see that x2 x1v v 0− <  , 2 1P  < P  and 2 1 < ρ ρ   . These trends run exactly opposite to the 

trends that we catalogued in the previous section for a right-going shock. Notice too that 

the transverse velocities y1v  and z1v  do not change across rarefaction fans, a trend that is 

shared with shocks. 

 

 Rarefaction fans are often a part of the solution to the Riemann problem at a zone 

boundary. We say that a C+ rarefaction fan is open and straddles a zone boundary if 

( )x2 s2 x1 s1boundary
v c  dx dt  v c+ < < +  where ( )boundary

dx dt  is the velocity of the boundary . 

When solving the Riemann problem, special attention will have to be paid to those 

situations where an open rarefaction fan straddles a zone boundary. Eqns. (5.53) to (5.55) 

are very useful when obtaining the resolved state at a moving (or stationary) zone 

boundary when a C+ rarefaction fan straddles that boundary. In other words, eqns. (5.53) 

to (5.55) give us the interior structure of a rarefaction fan in terms of the self-similarity 

variable ( )x t  and are, therefore, very useful for enforcing the entropy fix at a subsonic, 

right-going rarefaction fan. 

 

 When obtaining a numerical solution of the Riemann problem, it helps to iterate 

the problem towards a converged solution using one judiciously chosen iteration variable. 
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For shocks we see that the post-shock pressure 2P  is such a good variable. The previous 

paragraph has shown that the pressure 2P  behind a rarefaction fan is a similarly good 

variable. We, therefore, obtain expressions for x2 x1v v−  and 2ρ  in terms of the variables 

to the right of the right-going rarefaction fan and the ratio 2 1P P . Using eqn. (5.50) gives 

us 

 

( )

( )1
2 

s1 2
x2 x1

1

2 c Pv v  =  1  
1 P

Γ−
Γ

 
  − − −   Γ −    

      (5.56) 

 

and the isentropic condition gives us 

 
1

2
2 1

1

P =  
P

ρ ρ
Γ 

 
 

         (5.57) 

 

 We can now plot out x2v  using eqn. (5.56) for decreasing values of pressure 2P  

and any given state ( )1 1 x1 , P , vρ  that is to the right of the right-going rarefaction. This is 

done in Fig. 5.12 where the solid black curve with 2 1P P<  gives us the locus of all points 

in the ( )x2 2 v , P  plane that can be connected to the right state by a right-going rarefaction 

denoted by R→  . The dashed black curve extends the same plot to the compressive side, 

i.e. eqn. (5.56) is plotted out even when 2 1P P> . The grey curve shows us the locus of a 

right-going shock S→  that also connects to the unshocked state given by ( )1 1 x1 , P , vρ . 

The solid part of the grey curve with 2 1P P>  indicates a physical, compressive shock and 

the dashed grey curve shows the corresponding rarefaction shock. We see that for 2 1P ~ P  

both the black and the grey curves in Fig. 5.12 have the same slope. This is as expected. 

It means that for weak shocks or weak rarefaction fans it does not matter whether we use 

either curve. We also notice that for x2 x1v v 0− < , the rarefaction fan permits a larger 
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velocity difference before developing a cavitation than a rarefaction shock. A flow is said 

to undergo cavitation when its pressure becomes zero. As a result, an exact Riemann 

solver which uses rarefaction fans and compressive shocks will fare slightly better than 

an approximate Riemann solver that uses compressive shocks but replaces rarefaction 

fans by rarefaction shocks. Such an exact Riemann solver would use the solid grey curve 

in Fig. 5.12 to represent right-going shocks and the solid black curve to represent right-

going rarefaction fans. In practice, this represents only a small advantage because the 

solid black curve and the dashed grey curve in Fig. 5.12 don’t differ by much. Besides, 

for most problems, the rarefactions in the flow are not too strong. For this reason, several 

approximate Riemann solvers use the shock adiabat (solid grey curve in Fig. 5.12) for 

compressive shocks but resort to rarefaction shocks (dashed grey curve in Fig. 5.12) to 

represent rarefactions. We will see in the next chapter that there are yet other Riemann 

solvers that resist the formation of cavitations even better than the exact Riemann solver. 

We also see that for 2 1P P>> , i.e. for strong shocks, the rarefaction adiabat and the shock 

adiabat have very different asymptotic behaviors. It is for this reason that efforts to 

replace compressive shocks by rarefaction fans in the regime where 2 1P P> have not met 

with much success. For an example of such a Riemann solver which was based entirely 

on rarefaction fans, see Osher and Solomon (1982) and an easily implementable version 

of the same by Dumbser and Toro (2011). 
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5.3.2) Left-going Rarefaction Fans 

 

 By construction, a left-going compression or rarefaction wave has a constant state 

to its left. We see that for left-going compression or rarefaction waves the Riemann 

invariant ( )x sR  v   2 c 1≡ + Γ −  remains constant. As before, denote the constant state 

to the left of this wave by a subscript “1” and denote the flow variables in that constant 

state by 1 x1 y1 z1 1(  , v  , v  , v  , P )ρ  . Asserting the constancy of the Riemann invariant “R” 

we obtain the sound speed at any point in the left-going simple wave as a function of the 

velocity difference ( )x x1v   v−  as: 

 

( ) ( )s s1 x x1

1
c  = c    v   v

2
Γ −

− −        (5.58) 
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We further obtain the pressure and density in the left-going simple wave as a function of 

( )x x1v   v−  as: 

 

( ) ( ) ( ) ( )
2 2 

11
x x1s

1 1
s1 s1

1 v   vcP = P   = P  1   
c 2 c

ΓΓ
Γ−Γ− Γ − −  

−   
   

    (5.59) 

 

and  

 

( ) ( ) ( ) ( )
22

11
x x1s

1 1
s1 s1

1 v   vc =   =  1   
c 2 c

ρ ρ ρ
Γ−Γ− Γ − −  

−   
   

    (5.60) 

 

Notice that eqns. (5.58) to (5.60) for a left-going compression or rarefaction wave are 

analogous to eqns. (5.49) to (5.51) for a right-going compression or rarefaction wave. 

 

 The above expressions are generally true for any left-going compression or 

rarefaction wave in a polytropic gas. We now specialize them for self-similar left-going 

rarefaction fans that are initially centered at 0x = . As before, we set ( ) x sv cx t = −  for 

the right-going characteristics and using eqn. (5.58) to get 

 

( ) ( )x x1 x1 s1
2v v  = v  c
+1

x
t

  − − −  Γ   
       (5.61) 

 

( )
( ) ( )

( )
2 

1

1 x1 s1
s1

1 1P = P  1    v  c
+1 c

x
t

Γ
Γ− Γ −    − − −   Γ     

     (5.62) 

 

and 
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( )
( ) ( )

( )
2

1

1 x1 s1
s1

1 1 =  1    v  c
+1 c

x
t

ρ ρ
Γ− Γ −    − − −   Γ     

     (5.63) 

 

Eqns. (5.61) to (5.63) give us the internal structure of a left-going rarefaction fan that 

emanates from the origin at time 0t = . For a given left state, the flow variables in the 

rarefaction fan that abuts that state are entirely specified by the ratio ( )x t . Notice that 

( )x1 s1v  cx
t

   − −    
 is positive and monotonically increases from zero as one traverses a 

left-going rarefaction fan from left to right. If we denote the variables to the right of a 

left-going rarefaction fan by  2 x2 y1 z1 2(  , v  , v  , v  , P )ρ  we see that x2 x1v v 0− >  , 2 1P  < P  

and 2 1 < ρ ρ   . These trends run exactly opposite to the trends that we catalogued in the 

previous section for a left-going shock.  

 

 We, now obtain expressions for x2 x1v v−  and 2ρ  in terms of the variables to the 

left of the left-going rarefaction fan and the ratio 2 1P P . Using eqn. (5.59) gives us 

 

( )

( )1
2 

s1 2
x2 x1

1

2 c Pv v  = 1  
1 P

Γ−
Γ

 
  − −   Γ −    

       (5.64) 

 

and the isentropic condition gives us 

 
1

2
2 1

1

P =  
P

ρ ρ
Γ 

 
 

         (5.65) 

 

Eqns. (5.64) and (5.65) for a left-going rarefaction fan are analogous to eqns. (5.56) and 

(5.57) for a right-going rarefaction fan. Fig. 5.13 is analogous to Fig. 5.12 and compares 

left-going rarefaction fans, shown as R←  , with left-going shocks. In Section 5.1 we saw 

that isolated rarefaction fans can arise in the Riemann problem. The formulae derived in 
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this section give us a good compendium of equations pertaining to isolated rarefaction 

fans that we will use later in designing our Riemann solver. 

 

 

 
 

5.4) The Riemann Problem 

 

 In  the next two sub-sections we introduce the Riemann problem in two easy 

stages. In Sub-Section 5.4.1 we introduce it with diagrams in the (vx, P) plane. In Sub-

Section 5.4.2 we show how the problem can be solved numerically using an iterative 

Newton-Raphson root solver. Sub-Section 5.4.3 describes the entropy fix in the iterative 

Riemann solver. 

 

5.4.1) Intuitive Introduction to the Riemann Problem 
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 Riemann envisioned a situation where two initially uniform slabs of gas are 

brought into contact at the plane 0x =  and then allowed to evolve self-consistently in 

one dimension along the x-axis. Call the initial variables to the left 

( )1L x1L y1L z1L 1L , v , v , v , Pρ  and call the corresponding initial flow variables to the right 

( )1R x1R y1R z1R 1R , v , v , v , Pρ . The Riemann problem describes the subsequent evolution of 

that flow. Riemann’s important realization consisted of realizing that the problem can 

only evolve as a similarity solution in space-time. The only self-similar fluid dynamical 

structures that we know of are shock waves, centered rarefaction fans and contact 

discontinuities. In rarefaction fans the Riemann invariants are constant along certain 

characteristic families. Assuming that the problem is well-defined and doesn’t form 

cavitations, Riemann asserted that there are only four possible outcomes of such a 

problem: 

 i) right-going shock and left-going rarefaction fan,  

 ii) left-going shock and right-going rarefaction fan,  

 iii) right- and left-going shocks, 

 iv) right- and left-going rarefaction fans. 

In all of the above four cases, a contact discontinuity between the two elementary flow 

structures, i.e. simple waves, preserves the original sanctity of the two original slabs of 

fluid. Across the contact discontinuity the pressure and normal velocity remain 

continuous, while the density and the transverse velocities may undergo a jump. The 

transverse velocity remains y1Lv  and z1Lv  in all of the left fluid and y1Rv  and z1Rv  in all 

of the right fluid. If the two fluids in the two initial slabs have different properties, such 

as different polytropic indices or different composition, then that that difference is also 

preserved across the contact discontinuity. The previous statement would, however, have 

to be modified if the fluids had a complicated equation of state.  

 

 The case where 1L 1RP P> , 1L 1Rρ ρ>  with all the initial velocities zeroed is 

particularly interesting because of its relevance to shock tubes. The problem corresponds 

to Fig. 5.2 which was presented schematically in the Introduction. It is also rather simple 

to analyze intuitively and we do that first. Since the pressure to the left is higher, it sends 
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a right-going shock into the fluid to the right with a pressure *P  that is intermediate 

between 1LP  and 1RP . All the C+ characteristics in the left fluid will have their footpoints 

in the constant flow to the left of 0x = . Since *
1LP P<  the only self-similar flow that can 

establish itself in the left fluid is a left-going rarefaction fan. The density in the post-

shock gas that lies to the left of the right-going shock and the density in the gas that lies 

to the right of the left-going rarefaction fan will not match in general. As a result, a 

contact discontinuity develops in Fig. 5.2 with the same pressure *P and x-velocity xv∗  in 

the two fluids on either side of it. 
 

 Fig. 5.14 is a visual representation of the solution to the Riemann problem. It 

shows us the four possible outcomes of the Riemann problem. Each of the four panels in 

the figure shows the left and right states, ( )x1L 1L v , P  and ( )x1R 1R v , P , along with the 

intermediate state ( )xv ,  P∗ ∗  that connects to them. Focus on Fig. 5.14a which shows a 

situation that is slightly more general than the one presented in the previous paragraph. 

Here the left and right velocities of the initial states do not have to be zero, but their 

difference has to be suitably small. The right state is shown by the point ( )x1R 1R v , P  and 

has substantially lower pressure than the left state ( )x1L 1L v , P . The right state 

( )x1R 1R v , P can only connect to right-going wave families. We can now identify all the 

right-going shocks S→  in the ( )xv ,  P∗ ∗  plane that propagate into the unshocked gas given 

by ( )x1R 1R v , P . This is shown by the part of the solid curve that has *
1RP >P  in Fig. 5.14a. 

We also identify all the right-going rarefaction fans R→  in the ( )xv ,  P∗ ∗  plane that 

propagate into the constant state given by ( )x1R 1R v , P . This is shown by the part of the 

solid curve that has *
1RP <P  in Fig. 5.14a. The solid curve in Fig. 5.14a is, therefore, the 

locus of all right-going simple waves, whether they are shocks or rarefactions, that can 

connect to the initial right state ( )x1R 1R v , P . As a result it increases to the right, similar to 

the situation depicted in the Fig. 5.12 for right-going waves. If the intermediate state is 
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found to be ( )xv ,  P∗ ∗  then the right-going wave will be a shock if *
1RP >P  and a 

rarefaction fan if *
1RP <P . The left state ( )x1L 1L v , P  can only connect to left-going wave 

families. The dashed curve in Fig. 5.14a is the locus of all left-going shocks S←  and 

rarefactions R←  that can connect to the initial left state ( )x1L 1L v , P . Notice that since the 

dashed curve represents a left-going simple wave, it decreases to the right, similar to the 

situation depicted in the Fig. 5.13 for left-going waves. As before, the left-going wave 

will be a shock if  *
1LP >P  and a rarefaction fan if *

1LP < P . Because the solid and dashed 

curves have increasing and decreasing trends respectively, the two curves are sure to 

intersect for any physical Riemann problem that does not produce a cavitation. The point 

of their intersection gives us the intermediate state ( )xv ,  P∗ ∗ . Fig. 5.14a shows that the 

fully evolved Riemann problem has a right-going shock and a left-going rarefaction fan 

with a contact discontinuity between them. The density jump in the contact discontinuity 

has a constant pressure P∗  on either side of it and moves with an x-velocity given by xv∗  . 

Fig. 5.15a shows the density, pressure and the x-velocity as a function of position along 

the x-axis of a numerically computed Riemann problem. The values of the density, 

pressure and velocity on the extreme left and extreme right of the plots shown in Fig. 

5.15a, therefore, give us the initial left and right states of the Riemann problem. Notice 

from Fig. 5.15a that the left state was initialized with higher density and pressure than the 

right state and that the two states were stationary at the initial time. Fig. 5.2 shows the 

self-similar wave propagation in space and time for such a situation. Fig. 5.15a shows us 

that the solution indeed consists of a right-going shock and a left-going rarefaction fan 

along with a contact discontinuity between the two. All shocks are compressive for the 

Euler equations, so that the jump in the pressure shows the location of the right-going 

shock. The jump in the density, with a constant pressure and a constant velocity across it, 

shows the location of the contact discontinuity. The left-going rarefaction is identified by 

the continuously varying profile in the density, pressure and velocity variables. All 

rarefaction fans correspond to a reduction in the pressure, which enables us to figure out 

the direction in which the rarefaction fan propagates. We therefore see that Fig. 5.15a 

shows all the flow structures that we anticipate from Fig. 5.14a. This problem is known in 
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the literature as the Sod problem and is commonly used to verify that Euler flow codes 

are operating correctly. 

 

Fig. 5.14b shows the situation where the pressure of the left state is much lower 

than the pressure in the right state with only a suitably small x-velocity difference 

between the states. We clearly see that the Riemann problem shown in Fig. 5.14b 

represents a right-going rarefaction fan and a left-going shock. Fig. 5.15b shows the 

density, pressure and the x-velocity as a function of position along the x-axis of a 

numerically computed Riemann problem that has a right-going rarefaction fan and a left-

going shock. As before, we see that Fig. 5.15b shows all the flow structures that we 

anticipate from Fig. 5.14b. 

 

 
 

 Fig. 5.14c shows us a situation where the initial left and right states are 

propagating towards each other with a rather large velocity, i.e. x1L x1Rv v>  so that the 
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fluid to the left runs into the fluid to the right. However, the difference in initial pressures 

between them is suitably small. In that case, the intermediate state, which is given by the 

point of intersection between the solid and dashed curves in Fig. 5.14c, has a pressure P∗  

that is greater than either 1LP  or 1RP . In physical terms, the kinetic energy of the two 

colliding streams is turned into thermal energy. As a result, this Riemann problem 

resolves itself into right- and left-going shocks with a contact discontinuity between them. 

Fig. 5.16a shows the density, pressure and the x-velocity as a function of position along 

the x-axis of a numerically computed Riemann problem that has right- and left-going 

shocks, analogous to Fig. 5.14c. Notice that the central densities and pressures in Fig. 

5.16a are much larger than the densities and pressures in the initial left or right states, 

thereby showing the compression that has resulted from the two colliding streams. 

However, the velocities of the initial left and right streams are much larger than the 

velocity in the central compressed region. 

 

Fig. 5.14d shows a situation where the initial left and right states are moving apart 

with a rather large velocity, i.e. x1L x1Rv <v  so that the fluid to the left is initially flowing 

away from the fluid to the right. As in Fig. 5.14c, the difference in initial pressures 

between the initial left and right states is suitably small. In this case the intermediate state 

has a pressure P∗  that is less than either 1LP  or 1RP . As a result, this Riemann problem 

resolves itself into right- and left-going rarefaction fans with a contact discontinuity 

between them. Fig. 5.16b shows the density, pressure and the x-velocity as a function of 

position along the x-axis of a numerically computed Riemann problem that has right- and 

left-going rarefaction fans, analogous to Fig. 5.14d.  

 

 A couple of computational exercises are provided at the end of this chapter. They 

invite the reader to build a one-dimensional flow solver for the Euler equations and use it 

to solve the problems shown in Figs. 5.15 and 5.16. As seen from Figs. 5.15 and 5.16, the 

numerical solutions are not entirely perfect and the computational exercises explain why. 
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 We observe from the discussion in the previous two paragraphs that in all cases, 

the contact discontinuity has a pressure P∗  on either side of it and moves with a velocity 

xv∗  along the x-axis. Recall our convention that subscripts “2” are used to denote post-

shock or post-rarefaction fan quantities. The solid curves in Fig. 5.14 give us the loci of 

all states ( )x2R 2Rv ,  P∗ ∗  that connect to the initial right state ( )x1R 1R v , P  of the Riemann 

problem via either a right-going shock or rarefaction. The dashed curves in Fig. 5.14 give 

us the loci of states ( )x2L 2Lv ,  P∗ ∗  that connect to the initial left state ( )x1L 1L v , P  of the 

Riemann problem via either a right-going shock or rarefaction. A solution strategy for 

resolving the Riemann problem should, therefore, consist of finding the pressure P∗  for 

which *
x2L x2R xv = v = v∗ ∗ . The curves for ( )x2R 2Rv ,  P∗ ∗  and ( )x2L 2Lv ,  P∗ ∗ , are strongly non-linear 

and so we realize that a solution strategy will necessarily consist of iterating on the 

pressure 2L 2RP  = P  = P∗ ∗ ∗  till the condition x2L x2Rv = v∗ ∗  is satisfied. We also observe that the 
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solid and dashed curves in Fig. 5.14 change character as they transition from shocks to 

rarefaction fans. Expressing that change of character in a numerical code entails 

additional programming, inefficient cache usage and a possible loss of vectorization. For 

that reason, it has come to be standard practice in this field to replace rarefaction fans by 

rarefaction shocks in production codes. As seen in Section 4.5, it is very important to 

have an entropy fix in one’s code when rarefaction shocks are used as a proxy for 

rarefaction fans. 

 

 
 

5.4.2) Iterative Solution of the Riemann Problem 

 

 The previous sub-section has shown that a numerical solution of the Riemann 

problem consists of finding the intermediate state ( )xv ,  P∗ ∗ . Once the intermediate state 

is found, the resolved state can also be found. Recall that the resolved state, which is the 

state that overlies the zone boundary in space and time in Figs. 5.3 and 5.4, yields the 
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consistent and upwinded numerical flux. This is the flux that we use in our numerical 

schemes. In this sub-section we, therefore, describe the procedure for iteratively 

obtaining the intermediate state. 

 

 Notice from Fig. 5.14 that for any physical left and right state, there is always a 

single intermediate state, thus ensuring it can always be found. Notice too that the right- 

and left-going adiabats shown in that figure are always continuous and differentiable, 

thus ensuring that efficient root finding methods for finding the intermediate state can be 

used. Because the curves depicted in Fig. 5.14 are not straight lines, the solution has to be 

obtained iteratively. In this section we explain the Newton-Raphson iterative procedure 

developed by van Leer (1979). As explained previously, it is often advantageous to 

replace rarefaction fans by rarefaction shocks as long as the wave model includes an 

entropy fix. As noted by Colella & Woodward (1984) and Colella (1985) such an 

approximate Riemann solver that is based on a two-shock approximation is perfectly 

adequate for practically all situations. For that reason, we specify “S” in equation 

numbers to denote that the equation can be used all by itself in an approximate Riemann 

solver that is based exclusively on shocks and a contact discontinuity. We will also 

specify “R” in equation numbers to denote that the equation pertains to rarefaction fans 

and can be used along with the equations for shocks to design an exact Riemann solver 

for hydrodynamics. Riemann solvers that are based exclusively on rarefaction fans 

(Osher and Solomon 1982) have not been very successful because they cannot handle 

very strong shocks properly. 
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 The x-velocity x2Rv∗  behind the right-going shock or rarefaction can be specified 

by using eqns. (5.32) and (5.56) to get: 

 

( ) ( )x2R x1R 1R Rv  = v  + P P W P∗ ∗ ∗−        (5.66) 

 

where ( )RW P∗  can be interpreted as the speed of propagation of the right-going shock or 

rarefaction wave in Lagrangian coordinates. ( )RW P∗  is defined for right-going shocks 

and rarefactions by: 

 

( ) ( ) ( )R 1R 1R 1RW P  = 1  P  + 1  P  2     for P Pρ∗ ∗ ∗ Γ − Γ + ≥     (5.67S) 

 

( ) ( ) ( )
( )( ) ( )

1R
R 1R 1R 1R1 2

1R

1  P P1
W P  =  P        for P P

2 1  P P
ρ

∗
∗ ∗

Γ− Γ∗

−Γ −
Γ <

Γ −
            (5.67R) 
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Similarly, the x-velocity x2Lv∗  behind the left-going shock or rarefaction can be specified 

by using eqns. (5.34) and (5.64) to get: 

 

( ) ( )x2L x1L 1L Lv  = v   P P W P∗ ∗ ∗− −        (5.68) 

 

( )LW P∗  is defined for left-going shocks and rarefactions by: 

 

( ) ( ) ( )L 1L 1L 1LW P  = 1  P  + 1  P  2     for P Pρ∗ ∗ ∗ Γ − Γ + ≥     (5.69S) 

 

( ) ( ) ( )
( )( ) ( )

1L
L 1L 1L 1L1 2

1L

1  P P1
W P  =  P        for P P

2 1  P P
ρ

∗
∗ ∗

Γ− Γ∗

−Γ −
Γ <

Γ −
             (5.69R) 

 

Fig. 5.17 shows the adiabats associated with eqns. (5.66) and (5.68) for the situation 

shown in Fig. 5.14c which results in right- and left-going shocks. The steps in the 

iterative solution are also shown in Fig. 5.17. When P∗  reaches its converged value we 

have *
x2L x2R xv = v = v∗ ∗  . Thus the iterative Newton-Raphson root solver is designed to drive 

x2R x2Lv  v∗ ∗−  to zero. 

 

 The iterative process can be started by setting 1RP P∗ =  and 1LP P∗ =  in eqns. 

(5.67S) and (5.69S) respectively. This is the first iteration shown in Fig. 5.17 where the 

intersection of the local tangents to the two adiabats are used to obtain (1)P∗ . Substituting 

the resultant values for ( )R 1RW P  and ( )L 1LW P  in eqns. (5.66) and (5.68) respectively, 

and equating the right hand sides of the two equations, gives us the first iterate (1)P∗  for 

P* as: 

 

( ) ( ) ( ) ( ) ( )
( ) ( )

1L R 1R 1R L 1L x1R x1L R 1R L 1L(1)

R 1R L 1L

P  W P  + P  W P   v v W P W P
P  = 

W P W P
∗ − −

+
  (5.70) 
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The above equation gives us a good starting approximation for the pressure in the 

intermediate state.  

 

 We now specify how to take a general nth iterate (n)P∗  and obtain the (n+1)th 

iterate (n+1)P∗  . As an example, Fig. 5.17 shows the second iteration after (1)P∗  has been 

obtained from the first iteration described in the previous paragraph. We see from that 

figure that the Newton-Raphson procedure requires us to use two more tangents from 

points on the adiabats corresponding to (1)P P∗ ∗= to obtain the second iterate (2)P∗ . Fig. 

5.17 also shows us that the velocities (2)
x2Rv∗  and (2)

x2Lv∗  after the second iteration are closer 

together than the velocities (1)
x2Rv∗  and (1)

x2Lv∗  after the first iteration. Using the nth iterate for 

the pressure, (n)P∗  , we obtain the nth iterate for the velocities, (n)
x2Rv∗  and (n)

x2Lv∗  , as follows: 

 

( ) ( )(n) (n) (n)
x2R x1R 1R Rv  = v  + P P W P∗ ∗ ∗−       (5.71) 

 

and  

 

( ) ( )(n) (n) (n)
x2L x1L 1L Lv  = v   P P W P∗ ∗ ∗− −       (5.72) 

 

If we are far from convergence, we will not have (n) (n)
x2R x2Lv v∗ ∗≈  and the iteration will have 

to be continued further. The (n+1)th iterate (n+1)P∗  is then obtained by a Newton-Raphson 

step that is meant to drive (n) (n)
x2R x2Lv  v∗ ∗−  to zero as follows: 

 

( )
(n) (n)

(n) (n) (n+1) (n) x2R x2L
x2R x2L (n) (n)

d v d v0 = v  v  + P   P   
d P d P

∗ ∗
∗ ∗ ∗ ∗

∗ ∗

 
− − − 

 
    (5.73) 

 

The derivatives in eqn. (5.73) can be evaluated using eqns. (5.66) and (5.68) while using 

eqns. (5.67) and (5.69) as supporting equations. For hydrodynamics, they have very 
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simple expressions that can be written with only a minimal amount of extra computation. 

Thus we define ( )(n)
RZ P∗  and ( )(n)

LZ P∗  as: 

 

( ) ( )
(n) (n)

(n) (n)x2R x2L
R L(n) (n)

d v d vZ P   1  and Z P   1
d P d P

∗ ∗
∗ ∗

∗ ∗

   
≡ ≡ −   

   
    (5.74) 

 

to get 

 

( ) ( )
( ) ( )

3(n)
R(n) (n)

R 1R2 2(n)
R 1R s1R

2 W P
Z P  =    for P P

W P  +  cρ

∗
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∗
≥     (5.75S) 

 

( )
( )
( )

+1
(n) 2

(n) (n)
R 1R s1R 1R

1R

PZ P  =  c     for P P
P

ρ

Γ
∗ Γ

∗ ∗ 
< 

 
              (5.75R) 

 

and  

 

( ) ( )
( ) ( )

3(n)
L(n) (n)

L 1L2 2(n)
L 1L s1L

2 W P
Z P  =    for P P

W P  +  cρ

∗
∗ ∗

∗
≥     (5.76S) 

 

( )
( )
( )

+1
(n) 2

(n) (n)
L 1L s1L 1L

1L

PZ P  =  c     for P P
P

ρ

Γ
∗ Γ

∗ ∗ 
< 

 
               (5.76R) 

 

Physically, ( )(n)
RZ P∗  and ( )(n)

LZ P∗  can be interpreted as the absolute value of the slopes 

of the solid and dashed curves in Fig. 5.14.  The (n+1)th iterate (n+1)P∗  is now given by: 

 

( ) ( )
( ) ( ) ( )

(n) (n)
R L(n+1) (n) (n) (n)

x2R x2L(n) (n)
R L

Z P  Z P
P  = P    v  v

Z P  + Z P

∗ ∗
∗ ∗ ∗ ∗

∗ ∗
− −     (5.77) 
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Once (n+1)P∗  is sufficiently close to its converged value P∗ , as evinced by 
(n+1) (n) (n)P P P∗ ∗ ∗−  having a suitably small value, we can optionally make a small, final 

improvement to the value of *
xv  as follows: 

 

( ) ( )
( ) ( )

(n) (n) (n) (n)
x2R R x2L L*

x (n) (n)
R L

v  Z P  + v  Z P
v  = 

Z P  + Z P

∗ ∗ ∗ ∗

∗ ∗
      (5.78) 

 

This completes our description of the Newton-Raphson root solver for obtaining the 

intermediate stats of the Riemann problem. 

 

 The Newton-Raphson iteration described above converges very rapidly and only 

two or three iterations are usually needed even for the strongest of shocks that one is 

likely to encounter. For problems with only a few shocks in the computational domain, 

the solution is rather smooth at most zone boundaries. At those boundaries, even the two 

or three previously mentioned iterations can be dispensed with by simply using eqns. 

(5.70) and (5.78) to obtain the intermediate state. Once the intermediate state ( )xv ,  P∗ ∗  is 

found, we can always use eqns. (5.20) and (5.57) to obtain the densities 2Rρ∗  and 2Lρ∗  on 

either side of the contact discontinuity. The transverse velocities are unchanged on either 

side of the contact discontinuity. 

 

5.4.3) The Entropy Fix in the Iterative Riemann Solver 

 

 The fully evolved Riemann problem now has four constant states, the first to the 

left of the left-going wave, the second to the right of the left-going wave, the third to the 

left of the right-going wave and the fourth to the right of the right-going wave. See Fig. 

5.2 and Figs. 5.15 and 5.16. The speeds of any right- or left-going shocks in the Riemann 

problem can be obtained from eqns. (5.33) and (5.35). Likewise, the structure of open 

right- or left-going rarefaction fans can be deduced by evaluating the speeds of the C+ 
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and C− characteristics respectively on both sides of the rarefaction fans. As a result, we 

can evaluate the location of the four constant states relative to the zone boundary. If any 

one of those states coincides with the zone boundary, we can use the flow variables from 

that state to obtain the ( )
1/2U

RS
i+  variables that are to be used in eqn. (5.1) to obtain the 

physically consistent upwinded fluxes. If the zone boundary is straddled by an open, 

right-going rarefaction fan, we use eqns. (5.53) to (5.55) to obtain ( )
1/2U

RS
i+ . Similarly, if the 

zone boundary is straddled by an open, left-going rarefaction fan, we use eqns. (5.61) to 

(5.63) to obtain ( )
1/2U

RS
i+ . This prescription of opening out rarefaction fans is followed even 

when the Riemann solver is based on a two-shock approximation; and it is especially 

important in such situations. It is known in the literature as entropy enforcement and is an 

essential step in every type of Riemann solver if it is to produce physically consistent 

answers.  

 

 In the next chapter we will design approximate Riemann solvers for 

hydrodynamics and MHD that are based on rather different philosophies than the one 

pursued here. We will find that an entropy enforcement step has to be retained even when 

using those Riemann solvers. 
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Problem Set 

 

5.1) a) Recalling the Lax entropy condition from the previous chapter, show that physical 

entropy is increased as the fluid flows through a compressive shock. Do this by picking 

1 1ρ = , 1P 1= , 1.4Γ =  and 2P 4=  for the compressive shock. Then use eqn. (5.20) to 

obtain 2ρ  for the post-shock density. Show that the post-shock entropy increases for the 



 68 

compressive shock. b) Now show that the entropy decreases as the fluid flows through an 

unphysical rarefaction shock. Do this by picking 1 1ρ = , 1P 1= , 1.4Γ =  and 2P 0.2=  for 

the rarefaction shock. Again, use eqn. (5.20) to obtain 2ρ  for the post-shock density. 

Then show that the post-shock entropy decreases for the rarefaction shock. 

 

5.2) a) Again recalling the Lax entropy condition from the previous chapter, show that 

the right-going characteristics flow into a physical, i.e. compressive, right-going shock. 

Do this by picking 1 1ρ = , 1P 1= , 1.4Γ =  and 2P 4=  for the compressive shock. Then 

use eqn. (5.20) to obtain 2ρ  for the post-shock density and then use eqns. (5.23) and 

(5.24) to obtain x1u and x2u  . Recall that these velocities are negative in the right-going 

shock’s rest frame. Show that in the shock’s frame, the characteristics with speeds 

x1 s1u c+  and x2 s2u c+  flow into the compressive shock. b) On the other hand, show that 

the right-going characteristics flow out of a right-going rarefaction shock. Do this by 

picking 1 1ρ = , 1P 1= , 1.4Γ =  and 2P 0.2=  for the rarefaction shock. Again, use eqn. 

(5.20) to obtain 2ρ  for the post-shock density and then use eqns. (5.23) and (5.24) to 

obtain x1u and x2u  . Show that in the shock’s frame, the characteristics with speeds 

x1 s1u c+  and x2 s2u c+  flow away from the rarefaction shock. 

 

5.3) Consider a straight tube that is filled with gas having unit density, unit pressure and 

Γ = 5/3. The gas is initially at rest. A piston that is initially at rest is placed in the tube at 

x=0. We are interested in the gas flow that develops in the region with x>0. At time t=0 

the piston is plunged to the right with a uniform, unit velocity. In the process, a shock 

propagates to the right of the piston. a) Find the density, pressure and velocity of the 

shocked fluid. b) Find the shocked velocity relative to the unshocked fluid. 

 

5.4) Consider a right-going shock that is initially at x<0 and moving toward a stationary, 

reflecting wall that is located at x=0. The unshocked fluid that lies between the initial 

shock and the wall has unit density, unit pressure, Γ = 5/3 and is initially at rest. The 

shock moves at a speed of two units relative to the unshocked fluid. a) Find the post-
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shock density, pressure and velocity before the shock reaches the wall. b) After the shock 

has reflected off the wall, find the density and pressure at the wall as well as the velocity 

with which the shock propagates away from the wall. 

 

5.5) Consider a straight tube that is filled with gas having unit density, unit pressure and 

Γ = 5/3. The gas is initially at rest. A piston that is initially at rest is placed in the tube at 

x=0. At time t=0 the piston starts moving to the left with a uniform, unit velocity. What 

are the values of the density, pressure and x-velocity of the flow at x=0 for times t>0. 

 

Computational Exercises 

 

5.1) Using the Riemann solver provided on the CD-ROM, construct a one-dimensional 

code for solving the Euler equations. Use the limiters that are also provided in the CD-

ROM. The minmod or van Leer limiters are perfect for this project. Use the time-stepping 

scheme shown in eqns. (3.50) and (3.51) to construct a spatially and temporally second 

order, one-dimensional Euler flow code. Do this using the following steps: 

i) First declare one-dimensional array variables for the solution variables. We use 

conserved variables as our solution variables and they consist of mass, momentum and 

energy densities defined at the zone centers of our one-dimensional mesh. Remember to 

leave a few extra zones (2 to 4 will do) on either side of the computational domain to 

hold the boundary information that may need to be refreshed at each timestep. (For the 

Riemann problems in the next problem, even this process of refreshing the boundary 

zones is not needed.) Realize that eqns. (3.50) and (3.51) pertain to a two step scheme. As 

a result, you will have to retain an old and new set of arrays for all the Un
i  and 1Un

i
+  

solution variables. You will also need to have further array variables that contain a 

discrete representation of the rates of update for the solution variables. 

ii) From eqns. (3.50) and (3.51) realize that we want a subroutine that accepts one-

dimensional array variables for the mass, momentum and energy densities and returns a 

discrete version of their rates of update. Thus we want to come out of this subroutine with 
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an evaluation of  ( ) ( )( )1/2 1/2F FRS RS
i i x+ −− ∆  for each zone “i”, i.e. the entire set of one-

dimensional arrays that went into the subroutine. This is done as follows: 

ii.a) Once inside the subroutine, construct arrays of primitive variables, i.e. density, 

velocities and pressure, from the conserved variables. I.e. for each vector Ui  in each zone, 

construct a corresponding vector Vi  . 

ii.b) Construct arrays that hold the undivided differences of the primitive variables, Vi∆ . 

Do this by using the limiters from the previous chapter. 

ii.c) Use the primitive variables and their slopes on either side of each zone boundary to 

construct variables to the left of the zone boundary 

( )1L x1L y1L z1L 1L , v , v , v , P V V / 2
T

i iρ ≡ + ∆  and the corresponding flow variables to the 

right of the zone boundary ( )1R x1R y1R z1R 1R 1 1 , v , v , v , P V V / 2
T

i iρ + +≡ − ∆ . Do this for all 

zone boundaries so that we have one array for each of the left variables and, similarly, 

one array for each of the right variables. 

ii.d) Send arrays of left and right variables to the Riemann solver. Think of the Riemann 

solver as a machine that uses the information provided to return properly upwinded 

fluxes ( )
1/2F RS

i+  for each zone boundary “i+1/2”. 

ii.e) Use the fluxes ( )
1/2F RS

i+  to evaluate rates of update ( ) ( )( )1/2 1/2F FRS RS
i i x+ −− ∆ . Now return from 

this subroutine with the properly evaluated rates of update. 

iii) Now incorporate a time update strategy consistent with eqns. (3.50) and (3.51). Do 

this using a loop that integrates forward in time for a desired number of time steps. Each 

iteration of that time step loop should have two parts. The first part takes a predictor step 

( ) ( )( )n+1/2 n
i i ; 1/2 ; 1/2 ; 1/2 ; 1/2U  = U   F  U , U F  U , U

2 
n n n n

RS L i R i RS L i R i
t
x + + − −

∆
− −

∆
 with time step ∆t/2. 

The second part takes a corrector step 

( ) ( )( )n+1 n 1/2 1/2 1/2 1/2
i i ; 1/2 ; 1/2 ; 1/2 ; 1/2U  = U   F  U , U F  U , Un n n n

RS L i R i RS L i R i
t
x

+ + + +
+ + − −

∆
− −

∆
 with time step ∆t. Notice 

that in the corrector step we can overwrite n
iU  with n+1

iU  for each zone “i”. Also evaluate 

a new time step ∆t for the next iteration, consistent with the Courant condition. 
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5.2) Use the code from the previous problem to solve a few of the Riemann problems 

described below. Use the flow solver described above with a mesh with about 100 to 400 

zones covering the unit interval [−0.5, 0.5]. The results should match up with the 

solutions shown in Figs. 5.15 and 5.16 wherever appropriate. 

i) Sod (1978) shock problem: 

( )x , P, v  = ( 1, 1, 0)           for x<0
                  = (0.125, 0.1, 0)          for x>0

ρ
 

Use Γ = 1.4 for this problem. The problem should be stopped at a time of 0.2. The result 

is shown in Fig. 5.15a. 

ii) A problem that is quite similar to the Sod problem is the Lax (1954) problem: 

( )x , P, v  = ( 0.445, 3.528, 0.698)           for x<0
                  = (0.5, 0.571, 0)          for x>0

ρ
 

Use Γ = 1.4 for this problem. The problem should be stopped at a time of 0.13. 

iii) One half of the Woodward & Colella (1984) problem: 

( )x , P, v  = ( 1.0, 0.01, 0)           for x<0
                  = (1.0, 1000.0, 0)          for x>0

ρ
 

Use Γ = 1.4 for this problem. The problem should be stopped at a time of 0.01. The result 

is shown in Fig. 5.15b. 

iv) Two strongly supersonic colliding streams of very low pressure gas: 

( )x , P, v  = ( 1.0, 0.2, 2.0)           for x<0
                  = (1.5, 0.2, 2.0)          for x>0

ρ
−

 

Use Γ = 5/3 for this problem. The problem should be stopped at a time of 0.4. The result 

is shown in Fig. 5.16a. The reader will see a slightly greater post-shock oscillation in his 

or her result. The oscillations stem from the fact that the problem has extremely strong 

shocks that move very slowly with respect to the mesh. The result shown in Fig. 5.16a 

uses a small amount of Lapidus (1967) viscosity to damp out those oscillations. 

v) Two strong rarefaction fans: 

( )x , P, v  = ( 1.0, 2.0, 2.5)           for x<0
                  = (1.5, 4.0, 2.5)          for x>0

ρ −
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Use Γ = 5/3 for this problem. The problem should be stopped at a time of 0.08. The result 

is shown in Fig. 5.16b. We see a small dimple in the density at the contact discontinuity. 

This is a region of slightly higher entropy and is initially needed by the numerical method 

to resolve the Riemann problem in an entropy satisfying fashion. However, once the 

dimple is produced, the numerical method treats it as a flow feature and never gets rid of 

it. 

 


