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5.1) Introduction

In Chapter 3 we realized that non-linear hybridization introduced by 
TVD limiters could help us get second order schemes for advection. 

We saw in Chapter 4 that even the simplest non-linear hyperbolic cons. 
law, ut + (u2/2)x = 0 can give rise to complex flow features such as shocks 
and rarefactions.

In Chapter 4 we even designed an approximate Riemann solver based on 
the HLL flux for scalar hyperbolic equations. Such a strategy for 
obtaining a physically sound flux can indeed be extended to hyperbolic 
systems of conservation laws to yield a basic second order accurate 
scheme.

But it behooves us to invest a little time to understand strategies for 
obtaining a good, high-quality, physically consistent, properly 
upwinded numerical flux at the zone boundaries for use in numerical 
schemes.
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In this chapter we restrict attention to the Euler equations. However, 
the ensuing chapter will show that the insights gained here are of great 
importance in designing good strategies for obtaining the flux at zone 
boundaries in numerical schemes for several hyperbolic equations.

Thus imagine that we have a mesh with fluid variables defined at the 
zone centers. We can use our slope limiters to endow each flow 
variable in each zone with a linear profile.

As a result, for each zone boundary on a mesh for which we have 
carried out TVD interpolation of the flow variables, we can obtain the 
flow variables to the left and right of any given zone boundary.
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Call the variables to the left of a certain zone boundary (ρ1L, vx1L, vy1L, 
vz1L, P1L) and call the corresponding flow variables to the right of the 
same zone boundary (ρ1R, vx1R, vy1R, vz1R, P1R) . We want to compute 
out a set or flow variables at the zone boundary from which we can 
evaluate the numerical flux. But how do we obtain this resolved state?
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Instinctively, one might want to derive a resolved state by taking an 
arithmetic average of the left and right variables above. If the jump in 
flow variables is small, the above choice of an arithmetic average might 
even be adequate. For reasonably small jumps in flow variables, one 
might even imagine the fluctuations in the flow variables propagating 
along the characteristics of the flow, as shown in Chp. 1.

However, we know from our study of the Burgers’ equation that this 
choice of resolved state from which to compute a numerical flux would 
yield unphysical solutions even for the simplest of cases when 
discontinuities are present in the flow.

In general however, the jump in densities ρ1L – ρ1R , velocities vx1L – vx1R
and pressures P1L – P1R can be very large if the flow has a shock. 

Early insight on this problem was obtained by Bernhardt Riemann who 
analyzed the problem of how flows develop when we have two adjacent 
slabs of fluid with a discontinuity in flow variables across them.
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A mechanical instantiation of the problem considered by Riemann 
consists of a shock tube. Such shock tubes are routinely used to study 
flows with shocks and the physics of shock waves. A shock tube consists 
of a long slender tube with a diaphragm in the middle. Initially, the 
volume to the left of the diaphragm is filled with gas having density and 
pressure ρ1L and P1L respectively while the right of the gas is filled with 
gas having density and pressure ρ1R and P1R respectively. At some point, 
the diaphragm is suddenly removed and we want to know the subsequent 
flow features that develop in the tube. A schematic fig. is provided below

We readily see that, but for permitting arbitrary velocities vx1L and vx1R to 
the left and right, the problem that interested Riemann is very similar to 
the problem that interests us. We call the problem of determining the 
resolved state arising from such discontinuous initial conditions the 
Riemann Problem in honor of Riemann.

ρ1L , P1L ρ1R , P1R

Diaphragm
Shock tube
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Riemann’s ingenious realization was that even though the problem 
involved strong jumps in density, pressure and possibly velocity, the 
resolution of the discontinuity would bear some imprint of the linearized 
problem with some important differences!

From Chp. 1 we already know that the linearized problem with very 
small fluctuations (i.e. say a very small jump in flow variables across the 
diaphragm) that are localized at a point along the x-axis would resolve 
itself into:

i) a right-going sound wave, 
ii) a left-going sound wave
iii) an entropy wave between them. 
The entropy wave may well have an additional shear across it. The shear 
is brought on by the fact that vy1L may differ from vy1R and similarly for 
vz1L and vz1R .

Question: Can you recall the properties of scalar conservation laws with 
convex fluxes?
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Riemann realized that the fully non-linear problem (i.e. with arbitrary 
jumps in flow variables across the diaphragm) would resolve itself into:

i) a right-going shock wave or rarefaction fan, 
ii) a left-going shock wave or rarefaction fan
iii) an entropy pulse which may well have an additional shear in the 
transverse velocities.

The connection between the linearized problem and the fully non-linear 
problem can be made very concrete by realizing that : 

i) a finite amplitude right-going sound wave can self-steepen into a 
right-going shock or open out to become a right-going rarefaction wave, 

ii) finite amplitude left-going sound wave can self-steepen into a left-
going shock or open out into a left-going rarefaction wave,

iii) an entropy wave, being linearly degenerate, can have any entropy 
jump across it. When the entropy jump across an entropy wave becomes 
large, the wave becomes an entropy pulse.
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A schematic representation in the x-t plane of a Riemann problem with 
a right-going shock, a left-going rarefaction fan and a contact 
discontinuity between the two is shown below. (An entropy pulse is also 
often referred to as a contact discontinuity.)
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5.1.2) Introducing the Riemann Problem as a Building Block for 
Numerical Schemes

Godunov (1959) viewed flow variables in each zone of a mesh as being 
slabs of fluid. The slabs would obviously have discontinuities between 
them at the zone boundaries. Godunov suggested that the Riemann 
problem be used to obtain a resolved state at each zone boundary. His 
important insight was that fluid fluxes computed with that resolved state 
would naturally be physically consistent and properly upwinded!
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A schematic of Godunov’s method is shown above. It can be broken up 
into the two following conceptual steps:
i) Discretize the Conservation law, Ut + F(U)x = 0 , as slabs of fluid.
ii) Solve the Riemann problems at zone boundaries, get fluxes and 
update.

Godunov’s method was slow in taking off. In truth, the Riemann 
problem had to be solved iteratively and the iterative method proposed 
by Godunov was slow to converge. This made the scheme slower than 
other competitive schemes from that era. 
Furthermore, the method was only first order accurate making it very 
dissipative.

In a tour de force, van Leer (1979) proposed a second order extension 
of Godunov’s scheme. van Leer’s paper has been cited thousands of 
times.
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van Leer proposed the following cutting-edge advances all at once:
i) A very efficient iterative solution strategy to the Riemann problem 
which is still used mostly without change.
ii) A strategy for using piecewise-linear monotonicity preserving 
reconstruction of the sort studied in the previous chapter. This made the 
scheme spatially second order accurate while enabling shock capturing.
iii) A method for increasing the temporal accuracy to second order. van 
Leer later realized that this could also be achieved by using the Runge-
Kutta time-stepping that was catalogued in Chp. 3.

van Leer’s scheme, with several modifications, is still used as a blueprint 
for several successful numerical codes. A possible variant of his scheme 
can be described schematically by the following three steps:
i) Use a second-order Runge-Kutta scheme to achieve second order 
accuracy in time. Each of the stages in the two-stage scheme consists of 
the following two steps.
ii) Make piecewise linear profiles within each zone for the density, 
pressure and velocity. Do this using the limiters described in Chp. 3. This 
gives the scheme second order accuracy in space.
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iii) Compute the fluxes using the Riemann solver described in this 
chapter and finite difference the fluxes to obtain the time rates of update, 
i.e. Ut = - F(U)x , that are needed in the Runge-Kutta scheme.

van Leer’s scheme is shown schematically below. By the end of this 
chapter the reader should be able to construct a similar flow solver using 
the codes provided in this book.
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5.2) Hydrodynamical Shock Waves
5.2.1) Shock Jump Conditions

r l r lOur equation for the jumps across a shock is given by :  f ( u )  f ( u ) s( u   u  ) 
While the above was derived for a scalar, non-linear hyperbolic 
equation, it is easy to see that the constructi

− = −

on is quite general. In
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It is just plain easier to work in the rest frame of the discontinuity .
In that frame we can set the speed of the discontinuity to zero, i.e. s = 0.
Since the Euler equations are Galilean invariant, this is tantamount to picking
a favorable frame of reference in which the problem simplifies. Denote
velocity variables in that frame to be " ", instead of
Jump Conditions Across  Discontin

 "
ui y

".
:

We 

tA
v

ny
u

denote the pre-shock and post-shock parts of the discontinuity by subscripts 
"1" and "2" respectively. Thus in the frame of the discontinuity, where the velocity 
is called "u", we get a set of balance
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Linearly Degenerate waves for The Euler and the MHD equations
Typically, the contact discontinuity that arises for the Euler equations can 
also have an associated shear wave. This is symptomatic of the fact that 
the eigenvectors with λ = vx in the Euler system permit an entropy wave
(with any possible jump in entropy) as well as shear waves (with any 
possible jump in velocity shear), all with the same eigenvalue. Such 
waves do not steepen as they propagate in space. They are, therefore, 
known as linearly degenerate waves as opposed to genuinely non-linear 
waves , i.e. the sound waves, which do steepen as they propagate.

The MHD equations also sustain an entropy wave. If the magnetic field 
is non-zero in the direction of wave propagation, then such an entropy 
wave cannot sustain a shear in the transverse velocities across it. This is 
because the magnetic field breaks the degeneracy of eigenvalues noted 
above. Now it is the torsional Alfven waves that carry the shear in the 
flow. The MHD system then has one entropy wave and two Alfven 
waves as its linearly degenerate waves while the magnetosonic waves are 
nonlinear. The fast magnetosonic wave then serves as the precise 
analogue of sound waves.
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Question: Recall the Lax entropy condition. What does 
it say for the characteristics on either side of a shock 
wave?
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To figure out which direction a one-dimensional shock is headed, "
". Physically consistent shock waves always raise the entropy

in the post-shock region. The pre-shock 
 

fluid is the low

follow
the entropy

 entropy fluid that has
not yet been run over by a shock. The post-shock fluid is the high entropy
fluid that has had its entropy raised by passage through a shock. Within the
sho viscous tck, t ermhe s are very important in raising the entropy of the
shock. 

Question: What does the entropy condition imply for the characteristics?
How do they flow relative to a shock?

The viscosity operates in a thin layer around the shock and numerical

schemes for shock-capturing often try to reproduce the same physical process
by including some amount of artificial viscosity. But watch out for astrophysical

shocks which can often be collisionless shocks. Question: How do such shocks 
"thermalize" the velocity distribution in their atoms?
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increase in pr or temessure perature will do.
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5.2.2) The Hugoniot Adiabat
Given a specification of the pre-shock density and pressure and a single 
parameter measuring the shock strength, say the post-shock pressure, we 
wish to predict the other thermodynamic conditions in the post-shock 
region.
The Hugoniot adiabat permits us to do just that. Question: What is an 
adiabat?

I.e., we are expressing the intuition that for a given set of pre-shock 
thermodynamic variables and one post-shock variable, we should be able 
to find all the other thermodynamic variables as a one-parameter 
sequence.

To arrive at a condition like this, we realize that we might want to 
eliminate the velocities. Also realize that uy and uz are constant across a 
normal shock so we can simplify by setting uy = uz = 0. 
The equations also work out more simply if we use the specific volumes:
V1 = 1/ρ1 and V2 = 1/ρ2 .
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2 2 2 2 2 2
1 x1 2 x2 1 1 2 2

1 1 1 1Energy Balance: h  + u  = h  + u    h  +  j   = h  +  j  
2 2 2 2

                                                             Hugoniot adiabat

We can even write it in terms of the specific

V V⇒

⇒ ←

( )( )1 1 2 2 1 2 2 1

 internal energy by
setting h = e  + P  to get:

1 e  e  P +P 0      Hugoniot adiabat
2

V V

V V V V⇒ − + − = ←

( )( )1 2 1 2 2 1
1h h P P 0
2
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For most real gases,  is a slowly varying parameter. As a result, we can
freeze it around some local value as was shown in the design of the Riemann
problem for real gases in Colella & Glaz (1994). To 

Γ

solve for the shock 
structure we can make local iterations around the shock state
to find an approximate value of  .

We will study the Riemann problem in time. For that problem,
 

 it is 
  very useful to ha

Γ

( ) ( ) ( )
x1 x

2
x1 x2 1 2 2 1 1 2

2  . To do this, first
obtain u   u  = j    and then use j  =

   exp
 P P  to get:

  u   uve a compact res
V V V V

sion for
− − − −

−

( )( )x2 x1 2 1 1 2u   u  = P P V V− ± − −

We will show very shortly in the next section that ux2 – ux1 > 0 for 
right-going shocks and ux2 – ux1 < 0 for left-going shocks. Note too that 
for a shock we will always have P2 > P1 and ρ2 > ρ1 or V2 < V1 .

Notice that all the eqns in this section are independent of EOS.
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5.2.3) Normal Shocks in Polytropic Gases
Many of the requisite insights in computational science and engineering
can be gained by studying normal shocks. We do that here.

Even when gases are not polytropic, like in the interior of a pre-supernova
star, they behave somewhat like polytropic gases in restricted density and
temperature ranges. Besides, the plasma in several problems
can indeed be treated as polytropic to a very good approximation.

PUsing the polytropic relation  h =    in the previous
1

Hugoniot adiabat, show that the following condition holds:
ρ

 Γ
 Γ − 

( ) ( )
( ) ( )

1 21 x2 2

2 x1 1 1 2

1  P  + 1  Pu =  =  = 
u 1  P  + 1  P

V
V

ρ
ρ

Γ + Γ −
Γ − Γ +
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2 2

1 1

2

1

We can now plot out the Hugoniot adiabat for a polytropic gas, done below. 
PQuestion: In the limit   , what is  ? Why do we not care for the
P

Plimit   0 ? ( Assume that subscript "1" denote
P

ρ
ρ

→ ∞

→ s pre-shock gas.)
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Using T2 / T1 = (P2 V2) / (P1 V1) and the previous eqn. we can show that:

( ) ( )
( ) ( )

1 22 2

1 1 1 2

1  P  + 1  PT P =  
T P 1  P  + 1  P

Γ + Γ −
Γ − Γ +

Furthermore, we can use the relation j2 = (P2−P1)/(V1−V2) along with 
the next to previous eqn. to show that:

( ) ( ) ( )2
1 2 1j  = 1  P  + 1  P 2 VΓ − Γ +  
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Use ux1 = j V1 and the results from the previous eqn. to obtain:

( ) ( ) ( ) ( )2 2
x1 1 1 2 s1 2 1

1 1u  =   1  P  + 1  P  =  c    1 + 1  P P
2 2

V Γ − Γ + Γ Γ − Γ +      

Now use ux2 = V2 ux1 / V1 and the above result to obtain:

( ) ( ) ( ) ( )

( ) ( )

22
x2 1 1 2 1 2

2
s2 1 2

1u  =   1  P  + 1  P 1  P  + 1  P
2

1     =  c    1 + 1  P P
2

V Γ + Γ − Γ − Γ +      

Γ Γ − Γ +  

In preparation for our study of the Riemann problem, it is also useful to 
take the expression for the velocity jump ux1 − ux2 from the last section 
and show that:

( ) ( ) ( )
1

x2 x1 2 1
1 2

2 u   u  =  P P  
1  P  + 1  P

V
− ± −

Γ − Γ +

Where the +ve and –ve signs above are for right- and left-going shocks 
respectively.
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In the previous formulae, we used the pressure ratio, P2 / P1 , as a 
measure of the strength of the shock. It sometimes helps to use the pre-
shock Mach number, M1 = ux1 / cs1 , as a measure of the strength of the 
shock. We wish to derive formulae that depend on M1 because such 
formulae are often very useful in setting up isolated hydrodynamical 
shocks. Similar formulae for MHD are given in Jefferey & Taniuti’s text.

Use the formula for ux1
2 from the penultimate eqn. to express the 

pressure ratio, P2 / P1 , in terms of the Mach number  M1 as:

( ) ( )2
2 1 1P P  = 2  M   1 1 Γ − Γ − Γ + 

Put this in our ratio of V2 / V1 to obtain:

( ) ( )

( ) ( ) ( )

2 2
2 1 x1 x2 1 1

22 2 2
2 1 1 1 1

 = u u  = 1  M 1  M   2

T T  = 2  M   1  1  M   2 1  M

ρ ρ  Γ + Γ − + 
    Γ − Γ − Γ − + Γ +     

Equating the pressure ratio, P2 / P1 , in formulae for ux1
2 and ux2

2 from 
the previous eqns gives: ( ) ( )2 2 2

2 1 1M  = 1  M   2 2  M   1   Γ − + Γ − Γ −   
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( )
( )

( )

1 1

2 2 2 2

1 1 1 1

These equations clearly show that as M  increases so that M    ,
 i.e. as we get progressively stronger shocks, we have:

+1 1P T M      ;       ;      ;   
1 P T M 2

These equations are m

ρ
ρ

→ ∞

Γ Γ −
→ → ∞ → ∞ →

Γ − Γ

ade even more meaningful by the fact that we observe
several strong-shock phenomena in high speed flow. Question : Give examples.

Question: For strong shocks that are not infinite shocks can you use the

( )
( )

( )
( )

( ) ( )
( )

x1 1 2 2 2

x2 2 1 1 1

2
2 2

x1 x2
1 1

 previous

+1 1u T Pexamples to show that:  =  =  =     ;   =  
u 1 T +1 P

+1  P 1  P
u  =     ;  u  = 

2 2 +1  

V
V

ρ
ρ

ρ ρ

Γ Γ −
Γ − Γ

Γ Γ −
Γ

Notice that the post-shock pressure is always larger than the pre-shock 
pressure in a hydrodynamical shock. Thus, we say that all hydro shocks 
are compressive shocks, a property shared by MHD shocks.
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This figure shows us that the shocks that arise in the Euler equation are 
all classical shocks.

Notice the C0 characteristic families around the contact discontinuity 
and the rarefaction fan.
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5.2.4) Shocks in the Lab Frame

Notice that we have zeroed out the transverse velocities and solved the 
problem in the rest-frame of the discontinuity. In some sense, this is a 
restriction on the form of the pre-shock velocities. We can go to the more 
general case by using a Galilean transformation.

 

x1 y1 z1

1 1

pre-shock velocity

v  x + v  y + v  z

Thus say that the  in any general frame of reference

is given by  . Say the pre-shock pressure and 
density are  respectively and post-shP  an ock the pre d r ssu eρ



2

x1

,
which defines the . 

We can use this information to  of
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strength of t

 pre-shock fluid i
find the velocity 

n the shock's rest
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u

k

me. 
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( )  

x1 x1 y1 z1

Then if we  the current coordinate system  

which is moving with velocity  with 

respect to it,

transform

 we would

 from  to a frame 

v u

 be in the

x + v  y + 

 shock's r

v  

es

z

t frame. 

As seen i

= −/

/

F

F F

v 

( )x1 2 x1

n the lab frame the shock is moving with the velocity of the 
frame  relative to the reference frame

post-shock ve

  .

In the general frame of reference , the  

vector should th

locity

v uen  e ub  x+ −

/F F

F
 

x2 x1

y1 z1

1 1

2

2

2

x2 x1 x

x

 . 

We thus see that if u u  can be specified as a function of P  ,  
and P  then we can specify the  exactly.

The velocity jum

post-shock veloci

p is unchanged : 

x + v  y 

v

+ v

v  

t  v

u

y

 z

ρ

− = −

−



x1u  
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s=0
Rest frame of shock
given by frame F/
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=
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2 1
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Right-going shock, Changing the frame of reference:-
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in frame F

1

x1
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z1

1
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              v
              v 0
              v 0
              P

≠

≠

ρ
2 1

x2 x1
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>
v v
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ρ ρ
>
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≠

= − /F
u v v

= + /F
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( )  

x1 x1 y1 z1v u x + v  y + v  z= −/F
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( ) ( ) ( )
1

x2 x1 2 1
1 2

2 v  = v  + P P  
1  P  + 1  P

V
−

Γ − Γ +

For right-going shocks we then have                                 so that :

For left-going shocks we similarly have:

( ) ( ) ( )
1

x2 x1 2 1
1 2

2 v  = v   P P  
1  P  + 1  P

V
− −

Γ − Γ +

x2 x1 x2 x1v  = v  + u   u−

To see why the shock is right-going, set vx1 = 0, i.e. the fluid to the right 
of the shock is not moving. In that case, vx2 > 0 and the shock overruns 
the fluid to the right. Since the shock is stationary in its own rest frame, 
we have: ( ) ( ) 2

shk x1 s1
1

1 1 Pv  = v  + c   +  
2 2 P→

Γ − Γ + 
 Γ Γ 

x2 shk; Notice v   v →≠

To see why this shock is left-going, set vx1 = 0 to get vx2 < 0 . The shock 
velocity is:

( ) ( ) 2
shk x1 s1

1

1 1 Pv  = v  c   +  
2 2 P←

Γ − Γ + 
−  Γ Γ 



Focusing on right-going shocks we can plot out vx2 for increasing values 
P2 and any given pre-shock state ( ρ1, P1, vx1) . The shock Hugoniot is 
shown below as the solid line. The analytic extension of the Hugoniot to 
include “rarefaction shocks” is shown via a dashed line and we will see 
this to be useful later on. A similar plot is shown for left-going shocks.

We see that progressively stronger right-going shocks produce increasing 
values of vx2 – vx1. Progressively stronger left-going shocks produce 
decreasing values of vx2 – vx1. 
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Left-going shock

vx2vx1

P2

P1

S← ( )x2 x1 s1
2v = v  +  c

1Γ Γ −

P2

vx2

P1

vx1

Right-going shock

S→
( )x2 x1 s1

2v = v   c
1

−
Γ Γ −
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( )
x2 x1 2

x2 x1
2

2

For a right-going shock, notice the following:
 v v    as P    .

v v
   0 as P    ; i.e. in words, the velocity increase does not keep

 P
     up with the pressure increase.

 P = 0 at

− → ∞ → ∞

∂ −
→ → ∞

∂

a)

b)

c)
( )x2 x1 s1

2 v v  =  c  ; i.e. in words, there is a certain ve velocity
1

    difference past which the pressure becomes zero in a rarefaction shock. In other 
    words, the flow suffers a cavitation! We 

− − −
Γ Γ −

will see that a similar trend exists in real
    rarefaction fans. The only difference is that the rarefaction fan permits a larger 
    range of ve velocity difference before the cavitation sets in!−

In a numerical code, an actual rarefaction fan opens up in a self-similar 
fashion as we have seen before. Once a rarefaction fan has opened up, the 
jump in flow variables from one zone to the next is rather small within the 
rarefaction fan. Consequently, for the sake of computational simplicity, it 
becomes acceptable to replace actual rarefaction fans by (unphysical) 
rarefaction shocks. We do provide an entropy fix though.
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While unphysical, the dashed lines in the above plots nevertheless 
provide a reasonably good description of what happens in the total 
variation of flow variables across a rarefaction fan. We will elaborate on 
this point later. 

Rarefaction shocks will, therefore, see use in place of rarefaction fans 
when constructing approximate Riemann solvers for astrophysical flow 
codes.

We will, however, not forget the central property of rarefaction fans that 
they open up in an entropy-preserving manner, while rarefaction shocks 
decrease the entropy in the post-shock region. 

Thus while rarefaction shocks are often used in place of rarefaction fans 
during the iterative solution of the Riemann problem, we do need to go 
back post-facto and enforce an entropy condition, i.e. an entropy fix, in 
the approximate Riemann solver.
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5.3) Rarefaction Fans
We now focus on one dimensional continuous solutions that are 
isentropic. I.e., the entropy of a parcel of fluid does not change as the 
fluid moves around.  no shocks develop.

While we specialize the equations in this section for ideal gases, we will 
also provide some general expressions for gases with real EOS.

For isentropic flow we have:
2 2 1

1 12
s s

1 s s1 1 1
1 1 s1 s1

t

c cP = P   which gives : c  = c   ;   =   ; P = P  
c c

Using the isentropic condition allows us to drop the entropy equation S + S=0.
This is equi

ρ ρ ρ ρ
ρ ρ

ΓΓ−
Γ

Γ− Γ−      
      

       

∇v

x x x
x x

continuity and x-mo
valent to dropping the thermal energy or total energy equations from 

the mix. The  equations then become:
 v  v  v1   

mentum

 + v  +  = 0   ;   + v  =  
t x x t x
ρ ρ

ρ
∂ ∂ ∂∂ ∂    −   ∂ ∂ ∂ ∂ ∂   

1  P 
xρ

∂
∂
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s

s

x x x
s x s s x s s

dcd 2Incorporating the isentropic relation  we get:
1 c

 v  v  v2 2 2c  + v  c  + c   = 0  ;   + v  + c  c  = 0
t 1 x 1 x t x x 1

Adding and subtracting the above two equat

ρ
ρ

=
Γ −

∂ ∂ ∂∂ ∂ ∂     
     ∂ Γ − ∂ Γ − ∂ ∂ ∂ ∂ Γ −     

( ) ( )x s x s x s x s

ions gives:
2 2 + v  + c   v  + c  = 0  ;  + v   c   v   c  = 0

t x 1 t x 1

These are the characteristic equations derived by Riemann. They tell us that :

∂ ∂ ∂ ∂       − −      ∂ ∂ Γ − ∂ ∂ Γ −       

x s x s +

x s x s

2 dxR  v  + c  remains constant along  = v  + c  i.e. the C  characteristic.
1 dt

2 dxS  v   c  remains constant along  = v   c  i.e. the C  characteristic.
1 dt −

≡
Γ −

≡ − −
Γ −

R and S are known as the Riemann Invariants.
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2
1

s
1 1

1 s1

x x x
x x

cP = P   ;   =  
c

 v  v  v1   1  P + v  +  = 0   ;   + v  =   
t x x t x x

ρ ρ ρ
ρ

ρ ρ
ρ ρ

Γ
Γ−  

  
   

∂ ∂ ∂∂ ∂ ∂   −   ∂ ∂ ∂ ∂ ∂ ∂   

( ) ( )x s x s x s x s
2 2 + v  + c   v  + c  = 0  ;  + v   c   v   c  = 0

t x 1 t x 1
∂ ∂ ∂ ∂       − −      ∂ ∂ Γ − ∂ ∂ Γ −       
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( ) ( ) ( )
1 1

P
s

x x
sP

For a general EOS we have :

c  d dPR  v  +   and S  v     where  =  = 
 c

l l l
ρ

ρ

ρρ ρ ρ
ρ ρ

≡ ≡ − ∫ ∫

R and S are the images of the characteristics C+ and C− in the two-
dimensional solution space ( vx, cs) . 

For small fluctuations, it is easy to see that the above equations tell us 
how the fluctuations move. The eigenvectors give us similar 
information in the limit of small fluctuations. We see that the 
fluctuations move along the characteristic curves C+ and C− . 

But the above equations also go further. They tell us that the 
propagation of finite amplitude isentropic fluctuations can also be 
tracked as long as we track them along characteristics. This process can 
be continued as long as the characteristics of a given family do not 
intersect, i.e. as long as shocks don’t form.
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x

t
Variable α increases along (red) C+ characteristics

α
β

Variable β increases along (blue) C− characteristics

Consider the variables α and β which increase in the time-like directions 
along the C+ and C− characteristics respectively as shown in the figure. As 
long as characteristics of either family do not intersect with themselves, 
the two dimensional characteristic coordinate system formed by (α,β) 
provides an unusually easy coordinate system in which to read off the 
solution. In practice, the problem is implicit but say for simplicity that 
someone constructed an (α,β) coordinate system and even gave us vx(x) 
and cs(x). Then we can find the solution at any (x,t) by reading off the 
corresponding (α,β) from the left fig. Then read off R(β) and S(α) from 
the figure to the right. Then use R(β) and S(α) to find vx(x,t) and cs(x,t).

vx

cs

R(β) S(α)
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In practice, constructing a characteristic coordinate system like the one 
shown in the above figure is never that simple. Question: Why? There 
are, however, simple flows for which explicit solution can be given.

These simple flows take the form of compression waves and rarefaction 
fans. Out of these, we are only interested in the latter but some of the 
development in this section is general enough to include the former. 

These are simple waves for which either R or S is held constant all over 
space and time. This is tantamount to saying that the entire solution lies 
on only one of the straight lines in the (vx, cs) plane in the figure to the 
right above. As a result, v is always specified in terms of cs or vice versa.

A rarefaction fan usually forms next to a constant state of the flow. As a 
result, one of the families of characteristics finds its footpoint starting 
from the constant state of the flow. Consequently, that entire family 
corresponds to one and only one single value of the corresponding 
Riemann invariant.
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A practical, mechanical example of a rarefaction fan occurs when a 
piston that is initially at rest in a tube of stationary gas is suddenly pulled 
out of the tube at a constant velocity.

The schematic and a space-time diagram of the characteristics is shown 
for the case where the piston is pulled to the left. Say the piston is 
initially at the origin.

Notice that all the left-going characteristics C− must originate from the 
constant initial state in the gas and, therefore, must have the same value
of the Riemann invariant S1 = −2 cs1 / (Γ−1). Here cs1 is the sound speed 
in the initially static gas. 

The fluid immediately abutting the piston must move with the piston’s 
speed. Because we know rarefaction fans to be self-similar solutions, 
they can only depend on the ratio (x/t) . 
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Because S1 is a constant along all C− , the only (isentropic) variation can 
be along the C+ characteristics. To form a self-similar solution the C+
characteristics, which are the only characteristics in this problem that can 
have non-trivial information propagating along them, must be straight 
lines in x-t space. Note though that ρ and vx may not have linear variation 
in x.

piston

rarefied gas constant gasRarefaction
fan

x

ρ

x

vx
x = 0

x

t

piston
C+

C−

s1C  : x=c  tr
+
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Notice that indeed at t=0 the solution has a discontinuity at x=0 .

Over time, a wave with locus x = cs1 t moves into the gas to the right. 
i.e. over time, more and more parcels of gas flow into the rarefaction 
fan from its right. We, therefore, call it a right-going rarefaction fan. 

This location of the right boundary of the rarefaction fan coincides with 
the first C+ characteristic that varies with x/t. In other words, this 
characteristic, which is shown as the line C+

r in the above plot, is the 
right-most characteristic in the right-going rarefaction fan.

The left boundary of the rarefaction fan will correspond to a fluid state 
whose x-velocity matches that of the piston.

In the two next sub-sections we will study right- and left-going 
rarefaction fans, deriving expressions that are of general computational 
use. The derivation of the expressions for right-going fans will be given 
in full while the results for the left-going rarefaction fans will be stated 
without further detail since they closely parallel the previous results.
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5.3.1) Right-going Rarefaction Fan

( )x s

We have seen that for 
(applies to compression or rarefaction waves). 

The Riem

right-going simple waves we have a constant state 
to the 

.

Let us say t

ann invariant S  v   2 c 1  remains 
right 

constant≡ − Γ −

1 x1 y1 z1 1

s1 1 1

x

hat we have a constant state to the right of this wave and denote it
by a subscript "1". Thus the state to the right is given by (  , v  , v  , v  , P ) 

with c =  P /  . 

We can then assert : v  

ρ

ρΓ

s x1 s1
2 2 c  = v   c  to get:

1 1
− −

Γ − Γ −

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

s s1 x x1

22
11

x x1s
1 1

s1 s1

2 2 
11

x x1s
1 1

s1 s1

1
c  = c  +  v   v

2

1 v   vc =   =  1 +  
c 2 c

1 v   vcP = P   = P  1 +  
c 2 c

ρ ρ ρ
Γ−Γ−

ΓΓ
Γ−Γ−

Γ −
−

Γ − −  
   
   

Γ − −  
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( ) ( )
2 2 

1 1
s s

x s x1 s1 1 1
s1 s1

c c2 2S  v   c  = v   c  ;   =   ;  P = P  
1 1 c c

ρ ρ

Γ
Γ− Γ−   

≡ − −    Γ − Γ −    

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
1

x x1
s s1 x x1 1

s1

2 
1

x x1
1

s1

x x1

s1

1 1 v   v
c  = c  +  v   v   ;    =  1 +  

2 2 c

1 v   v
P = P  1 + 

v   v
 measures strength of rarefaction

c
     

2 c

ρ ρ
Γ−

Γ
Γ−

Γ − Γ − − 
−  

 

Γ − − 
⇒ 

 

−
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The above three expressions are generally true for any right-going simple 
wave in a polytropic gas. We now specialize them for C+ , i.e. right-going 
rarefaction fans that are initially centered at x=0. Such waves have the 
further special property that they obey a similarity solution that depends 
only on x/t. Furthermore, the C+ characteristics carry that similarity 
information. This gives us:

( ) ( )x s x1 s1 x x1

+1x  = v  + c  = v  + c  +  v v
t 2

Γ
−

( ) ( )

( )
( ) ( )

( )

( )
( ) ( )

( )

x x1 x1 s1

2
1

1 x1 s1
s1

2 
1

1 x1 s1
s1

2 xv v  =  v + c
+1 t

1 1 x =  1    v + c
+1 c t

1 1 xP = P  1    v + c
+1 c t

ρ ρ
Γ−

Γ
Γ−

  − − −   Γ   

 Γ −    − −   Γ     

 Γ −    − −   Γ     

or
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( ) ( ) ( ) ( ) ( )
2 

1
x x1

s s1 x x1 1
s1

x s

1 1 v   v
c  = c  +  v   v      ;      P = P  1 +  

2 2 c
x  = v  + c  =
t

Γ
Γ−Γ − Γ − − 

−  
 

( ) ( ) ( )
( ) ( )

( )
2 

1

x x1 x1 s1 1 x1 s1
s1

12 x 1 xv v  =  v + c    ;   P = P  1    v + c
+1 t +1 c t

Γ
Γ− Γ −       − − − − −       Γ Γ        
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served for a right-going shock. 

When solving the Riemann problem, special attention will have to be 
paid to those situations where an open rarefaction fan straddles a zone 
boundary. The above expressions are very useful when obtaining the 
resolved state at a moving (or stationary) zone boundary when a C+
rarefaction fan straddles that boundary.
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For example, we say that the C+ rarefaction fan is open and straddles the 
zone boundary x=0 if λ1 = vx1 + cs1 > 0 and λ2 = vx2 + cs2 < 0.

As in the case of shocks, we find that the ratio P2/P1 is also a good 
measure of the strength of a rarefaction fan. 

When obtaining a numerical solution of the Riemann problem, it helps to 
iterate the problem towards a converged solution using one judiciously 
chosen iteration variable. For shocks we see that the post-shock pressure 
P2 is such a good variable. The previous point has shown that the 
pressure P2 behind a rarefaction fan is a similarly good variable. We, 
therefore, obtain expressions for vx2 – vx1 and ρ2 in terms of the variables 
in front of the rarefaction fan and the ratio P2/P1 . 

( )

( )1 1
2 

s1 2 2
x2 x1 2 1

1 1

2 c P Pv v  =  1     ;    =  
1 P P

ρ ρ

Γ−
Γ Γ

 
    − − −     Γ −      
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( ) ( ) ( )
( ) ( )

( )
2 

1

x x1 x1 s1 1 x1 s1
s1

12 x 1 xv v  =  v + c   ;  P = P  1    v + c
+1 t +1 c t

Γ
Γ− Γ −       − − − − −       Γ Γ        

( )

( )1
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s1 2
x2 x1

1

2 c Pv v  =  1  
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P2

vx2

P1

vx1

Right-going shock v/s Right-going Rarefaction Fan

S→( )x2 x1 s1
2v = v   c

1
−

Γ Γ −

( )
s1

x2 x1
2 cv = v   

1
−

Γ −

R→

x2 x1 2 2 1v v P  for P P− ∝ >>

( ) ( )1 2
x2 x1 2 2 1v v P  for P PΓ− Γ− ∝ >>

The above expression can be viewed as an adiabat for right-going 
rarefactions similar to the Hugoniot adiabat for right-going shocks. In 
fact, it proves most instructive to plot them out on the same plot 
assuming 1 < Γ < 2 , which is the usual case.

Solid red curve shows right-going rarefaction, solid blue a right-going 
shock. The dashed curves of either color are analytic extensions.
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We see that for P2 ~ P1 both adiabats have the same slope. This is as 
expected. It means that for weak shocks or weak rarefactions it does not 
matter whether we use either adiabat.

We also notice that for vx2 – vx1 < 0, the rarefaction fan permits a larger 
velocity difference before developing a cavitation than a rarefaction 
shock. As a result, an exact Riemann solver, which uses rarefaction fans, 
will do a little better than an approximate Riemann solver that replaces 
rarefaction fans by rarefaction shocks.

In practice, the above gain is slight. We will see in the next chapter that 
there are other Riemann solvers that resist the formation of cavitations 
even better than the exact Riemann solver.

We also see that for P2 >> P1 , i.e. for strong shocks, the rarefaction 
adiabat and the shock adiabat have very different asymptotic behaviors. 
It is for this reason that efforts to replace shock adiabats by rarefaction 
adiabats even in the compressive part where P2 > P1 have not met with 
much success. (See Osher and Solomon’s Riemann solver for example.)
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6.3.b) Left-going Rarefaction Fan
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ρΓ
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The above expressions are generally true for any left-going simple wave 
in a polytropic gas. We now specialize them for C− , i.e. left-going self-
similar rarefaction fans that are initially centered at x=0. We get:

( ) ( )

( )
( ) ( )

( )

( )
( ) ( )

( )

x x1 x1 s1

2
1

1 x1 s1
s1

2 
1

1 x1 s1
s1

2 xv v  = v  c
+1 t

1 1 x =  1    v  c
+1 c t

1 1 xP = P  1    v  c
+1 c t

ρ ρ
Γ−

Γ
Γ−

  − − −  Γ   

 Γ −    − − −   Γ     

 Γ −    − − −   Γ     

( )x1 s1
x v  c  is positive and monotonically increasiNotice that  as one

traverses a left-going rarefaction fan from 

ng
t

left to ht.rig

  − − 
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2 x2 y1 z1 2 x2 x1 2 1 2 1

If we denote the variables to the right of the left-going rarefaction fan by
(  , v  , v  , v  , 
These tr

P ) we see that 
ends run exactl

v v 0 , P  < P  and  <
y opposite to t

  . 
he trends o

ρ ρ ρ− >

bserved for a left-going shock. 

We, now obtain expressions for vx2 – vx1 and ρ2 in terms of the variables 
in front of the rarefaction fan and the ratio P2/P1 . 

( )

( )1 1
2 

s1 2 2
x2 x1 2 1

1 1

2 c P Pv v  = 1     ;    =  
1 P P

ρ ρ

Γ−
Γ Γ

 
    − −     Γ −      

The above expression can be viewed as an adiabat for left-going 
rarefactions similar to the Hugoniot adiabat for left-going shocks. In 
fact, it proves most instructive to plot them out on the same plot 
assuming 1 < Γ < 2 , which is the usual case.

Solid red curve shows left-going rarefaction, solid blue a left-going 
shock. The dashed curves of either color are analytic extensions.
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Left-going shock v/s left-going rarefaction

vx2vx1

P2

P1

S←
( )x2 x1 s1

2v = v  +  c
1Γ Γ − ( )

s1
x2 x1

2 cv = v  + 
1Γ −

R←

( ) ( )1 2
x2 x1 2 2 1v v P  for P PΓ− Γ− ∝ − >>x2 x1 2 2 1v v P  for P P− ∝ − >>

The figure shows that all the same anticipated trends in the limits P2 ~ 
P1 , P2 << P1 and P2 >> P1 are reproduced here even for the left-going 
waves. As a result, the following plot leads us to conclusions that are 
similar to the ones reached in the previous section.
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5.4) The Riemann Problem
5.4.1) Intuitive Introduction to the Riemann Problem

Riemann envisioned a situation where two initially uniform slabs of gas 
are brought into contact at the plane x=0 and then allowed to evolve self 
consistently in one dimension along the x-axis. Call the initial variables 
to the left (ρ1L, vx1L, vy1L, vz1L, P1L) and call the corresponding initial 
flow variables to the right (ρ1R, vx1R, vy1R, vz1R, P1R) . The Riemann 
problem describes the subsequent evolution of that flow. 

Riemann’s important realization what that the problem can only evolve 
as a similarity solution in the x-t space. The only self-similar fluid 
dynamical structures that we know of are shock waves, centered 
rarefaction fans and contact discontinuities. 

In such flow structures the information (Riemann invariants) are 
constant along certain characteristic families and the only jump in 
variables occurs at shocks.
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Assuming that the problem is well-defined, and assuming that 
cavitations do not form, Riemann asserted that there are only four 
possible outcomes of such a problem:

i) right- & left-going shocks, 
ii) right-going shock & left-going rarefaction fan, 
iii) left-going shock & right-going rarefaction fan, 
iv) right- & left-going rarefaction fans.

In all such cases, a contact discontinuity between the two elementary 
flow structures preserves the original sanctity of the two slabs of fluid. 
Across the contact discontinuity we have a jump in entropy as well as a 
jump in transverse velocity.

If the two fluids in the two initial slabs have different properties, such as 
different polytropic indices or different composition, then that that 
difference is preserved across the contact discontinuity.
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Given the information presented in the Introduction of this chapter it is 
evident that the Riemann problem plays a very important role in 
compressible flow calculations.

The case where P1L > P1R , ρ1L > ρ1R with all the initial velocities zeroed is 
particularly interesting because of its relevance to shock tubes. The 
problem corresponds to the figure that was presented schematically in the 
introduction. It is also rather simple to analyze. We do that next.

Since the pressure to the left is higher, it sends a right-going shock into the 
fluid to the right with a pressure P* that is intermediate between P1L and 
P1R . All the C+ characteristics in the left fluid will have their footpoints in 
the constant flow to the left. Since P* < P1L the only self-similar flow that 
can establish itself in the left fluid is a left-going rarefaction fan. The 
density in the post-shock gas that lies to the left of the right-going shock 
and the density in the gas that lies to the right of the left-going rarefaction 
fan will not match in general. As a result, a contact discontinuity develops 
with the same pressure P* and velocity vx2* on both sides of it.



68

Uncompressed low-
density, low-pressure gas

Right-going shockCompressed 
post-shock 
gas

Contact discontinuity

Compressed high-
density, high-pressure 
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Fig. a Right-going shock, left-going rarefaction
vx*

P*ρ P

vx
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The next figure depicts the same situation intuitively. Focus on Fig. a 
which shows a slightly more general situation where the left and right 
velocities of the initial states do not have to be zero. The right state is 
shown by the point (vx1R, P1R) on the blue line and has lower pressure 
than the left state which is shown by the point (vx1L, P1L)
on the red line. The blue curve in the plot is the locus of all right-going 

waves that can connect to the initial right state (vx1R, P1R) . As a result it 
increases to the right, similar to the situation depicted in the Fig. for 
right-going waves. We see that the right state can only have a right-going 
wave passing through it once the problem evolves. If the intermediate 
state is (vx*, P*) then the right-going wave will be a shock if P* > P1R
and a rarefaction if P* < P1R . The red line is the locus of all left-going 
waves that can connect to the initial left state (vx1L, P1L) . Notice that 
since the red curve represents a left-going wave, it decreases to the right, 
similar to the situation depicted in the Fig. for left-going waves. As a 
result, the red and blue curves are guaranteed to intersect. The location of 
the intermediate state (vx*, P*) in Fig. a shows that the resolved Riemann 
problem has a right-going shock and a left-going discontinuity.
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(vx1L, P1L)

(vx*, P*)
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Fig. a Right-going shock, left-going rarefaction
vx*
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Fig. b Right-going rarefaction, left-going shock
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Fig. c Right-going shock, left-going shock
vx*
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Fig. d Right-going rarefaction, left-going rarefactio
vx*

P*
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Question: Now that Fig. a has been analyzed for you, can you similarly 
analyze Figs. b, c and d ?

Question: The next two figures show you actual, computed solutions of 
the Riemann problem. Can you match the generic situations depicted in 
the previous plots to the specific Riemann problems shown on the next 
two pages?
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(vx1R, P1R)

(vx1L, P1L)

(vx*, P*)

S→

R→

S←

R←

Fig. a Right-going shock, left-going rarefaction
vx*

P*

Fig. 5.15a) left to right: density, pressure and x-velocity for RP with right-going shock and left-
going rarefaction

ρ P vx
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Fig. b Right-going rarefaction, left-going shock
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Fig. 5.15b) left to right: density, pressure and x-velocity for RP with left-going shock and right-
going rarefaction
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Fig. c Right-going shock, left-going shock
vx*
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Fig. 5.16a) left to right: density, pressure and x-velocity for RP with right- and left-going shocks

ρ P vx
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Fig. d Right-going rarefaction, left-going rarefaction
vx*
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Fig. 5.16b) left to right: density, pressure and x-velocity for RP with right- and left-going 
rarefaction fans

ρ
P vx
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5.4.2) Numerical Solution of the Riemann Problem
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Fig. 5.17 shows the first two iterations in the convergence of the Newton-Raphson 
based root solver for the Riemann problem. The adiabats associated with the right-
going and left-going shocks are shown by the blue and red curves. The blue and red 
lines show the tangents to the corresponding curves. The point of intersection of the 
blue and red lines at each iteration yield the pressure that is used for the next iteration.
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