
Lecture 3: Scalar Advection and 
Linear Hyperbolic Systems

1

By
Prof. Dinshaw S. Balsara (dbalsara@nd.edu)

Les Houches Summer School in Computational Astrophysics
http://www.nd.edu/~dbalsara/Numerical-PDE-Course

1

mailto:dbalsara@nd.edu
https://www.google.com/imgres?imgurl=https://static.festisite.com/static/partylogo/img/logos/nasa.png&imgrefurl=https://www.festisite.com/logo/nasa/&docid=i3oJ5nVB7EAanM&tbnid=VGe8SV4aso0FuM:&w=450&h=372&bih=926&biw=1920&ved=0ahUKEwiqh82EgOHMAhUk1oMKHdRCAocQMwg1KAEwAQ&iact=mrc&uact=8
https://www.google.com/imgres?imgurl=https://static.festisite.com/static/partylogo/img/logos/nasa.png&imgrefurl=https://www.festisite.com/logo/nasa/&docid=i3oJ5nVB7EAanM&tbnid=VGe8SV4aso0FuM:&w=450&h=372&bih=926&biw=1920&ved=0ahUKEwiqh82EgOHMAhUk1oMKHdRCAocQMwg1KAEwAQ&iact=mrc&uact=8


3.1) Introduction

We have seen the need for consistency and stability in FDAs of PDEs. 
However, for the advection equation, which is linear, the approach failed 
badly for square pulses. We study why in this chapter.

Our analysis is based on a pictorial approach for advection. Concept of 
total variation diminishing (TVD) schemes that is later formalized.

Need two insights for treating systems:
1) How to treat linear hyperbolic systems w/o oscillations (this chapter).
2) How to deal with non-linearities in the hyperbolic system (next 
chapter).

Will also discuss the Riemann problem for linear hyperbolic systems.

These topics are important building blocks that will be used over and 
over again later in scheme design. Also address boundary conditions.2



3.2) Qualitative Introduction to Non-Linear Hybridization for 
Scalar Advection
The Dilemma: Godunov’s theorem : There are no linear, second order 
schemes for treating linear advection which would always remain 
positivity preserving. Free of oscillations  monotinicity preserving.

The Way Out: van Leer designed inherently non-linear schemes for 
treating the linear advection problem, thereby escaping the clutches of 
Godunov’s theorem!

We follow Godunov’s original idea of literally moving slabs of fluid in 
order to show the evolution of fluid from time tn to tn+1 = tn + ∆t .

We focus on what happens to the discontinuity in the ith zone when we 
do that. Consider ∆x = 1 and ∆t = 0.4 , i.e. CFL of 0.4.

The blue represents the fluid (i.e. flux) that flows into zone i . The pink
represents the flux flowing out of the same zone i. 3
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Questions: Can we develop a notion of monotonicity preserving 
advection?
Can we visually show that this advection is monotonicity preserving?
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We see by sheer construction that the first order upwind scheme will 
produce no new extrema because each mesh point at tn+1 is a convex
combination of two neighboring mesh points at time tn . 

A scheme with such a property of not generating any new extrema in the 
solution that were not present initially is called a monotonicity
preserving scheme.

We wish to explore monotonicity preserving schemes which are second 
order accurate extensions of the first order upwind scheme.

To get to second order accuracy, endow slabs with slopes. 3 choices:
1) Left-biased 2) Central difference 3) Right-biased

Formally, this is called reconstruction . We are carrying out piecewise 
linear reconstruction. Reconstruction is an important building block in 
scheme design. We have:
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Questions: Can we visually show that this second order advection is not 
monotonicity preserving?

a b

a t∆

i-2        i-1            i           i+1       i+2                     i-2         i-1         i            i+1    i+2

2un
i− 1un

i−

un
i

1un
i+ 2un

i+

1
2un

i
+

−

1
1un

i
+

−

1un
i

+

1
1un

i
+

+ 1
2un

i
+

+



( )

( )

1/2
11/2 1

1/2
1/2

1

1Time average of left flux :  f  = (a ) u  1 u
2
1Time average of right flux :  f  = (a ) u  1 u
2

Conservation law in integral form :  u   u

nn n
ii i

nn n
ii i

n
i i

t t

t t

x x

µ

µ

+
−− −

+
+

+

 ∆ ∆ + − ∆  
 ∆ ∆ + − ∆  

∆ = ∆

( ) ( )( )
1/2 1/2

1/2 1/2

1
11

 f  f   

                                            

positiv

      u  u u u 1 u u
2

Question: What can you say about  for the above schemei y ?t

n n n
i i

n nn n n n
i ii i i i

t t
µµ µ

+ +
− +

+
−−

+ ∆ − ∆

⇔ = − − − − ∆ − ∆

a b

a t∆

i-2        i-1            i           i+1       i+2                     i-2         i-1         i            i+1    i+2

2un
i− 1un

i−

un
i

1un
i+ 2un

i+

1
2un

i
+

−

1
1un

i
+

−

1un
i

+

1
1un

i
+

+ 1
2un

i
+

+

9



10

a b

a t∆

i-2        i-1            i           i+1       i+2                     i-2         i-1         i            i+1    i+2

2un
i− 1un

i−

un
i

1un
i+ 2un

i+

1
2un

i
+

−

1
1un

i
+

−

1un
i

+

1
1un

i
+

+ 1
2un

i
+

+

a t∆

ub

uc

( ) ( )b c
1A = a t u u
2

∆ +



11

( )

( )

1/2
11/2 1

1/2
1/2

1

1Time average of left flux :  f  = (a ) u  1 u
2
1Time average of right flux :  f  = (a ) u  1 u
2

Conservation law in integral form :  u   u

nn n
ii i

nn n
ii i

n
i i

t t

t t

x x

µ

µ

+
−− −

+
+

+

 ∆ ∆ + − ∆  
 ∆ ∆ + − ∆  

∆ = ∆

( ) ( )( )
1/2 1/2

1/2 1/2

1
11

 f  f   

                                                  u  u u u 1 u u
2

n n n
i i

n nn n n n
i ii i i i

t t
µµ µ

+ +
− +

+
−−

+ ∆ − ∆

⇔ = − − − − ∆ − ∆



We see that we have generated a new extremum. 

Right slopes yield Lax-Wendroff scheme; central slopes yield Fromm 
scheme; left slopes yield Beam-Warming scheme. All choices are ill!

The only solution lies in restricting, i.e. limiting, the piecewise linear 
profile within each zone so that it does not produce any new extrema in 
the advected profile that were not initially present in the original slabs of 
fluid. 

Such limiters are called slope limiters. A simple example – the MinMod
limiter (i.e. choose between the left and right slopes based on which one 
is smaller; 0 if opposite slopes) :

There are several other/better limiters in the text. All limiters are non-
linear.

Thus success on linear advection came at the cost of non-linear 
hybridization.
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Question: Based on the minmod limiter, justify the slopes in the profile to the left.

With limiter, the spurious extrema are gone!

This does come at a price: The order of the method is locally reduced by a limiter in 
those zones where it is activated. The limiter achieves its salutary effect by providing 
strong dissipation (and order reduction) where it is needed to prevent dispersive ripples 
that would otherwise form in a second order scheme. 13
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a b

All limiters clip extrema. The better ones, like the MC limiter shown 
above, fare better. However, even the MC limiter clips the top of the 
Gaussian.

Only recourse lies in schemes like WENO or PPM with larger stencils.

We call the MC limiter a compressive limiter because it allows the 
scheme to use larger slopes. As a result, it yields a sharper profile. 15



Comparing reconstuction by MinMod limiter to MC limiter. Latter 
produces steeper slopes  sharper profiles.

Questions: Can you justify the slopes to the left and right based on the 
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3.3) The Total Variation Diminishing Property and Understanding 
the Limiters
Monotonicity preserving property is hard to formulate mathematically; 
total variation diminishing (TVD) is much easier to formulate.

A TVD scheme is monotonicity preserving – Harten. Helps with positivity.
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Studying our schemes in the context of Harten’s theorem:

The scheme will be TVD if the fluxes have a special form.
The first order upwind scheme is monotone but has diffusive fluxes.
The fluxes for the second order schemes have extra terms. We call 
these extra underlined terms the antidiffusive fluxes. (Question:Why
“anti”?) They reduce diffusion in the 2nd order scheme. But reduce 
dissipation carefully, or else oscillations appear.

The inclusion of the antidiffusive terms in red (underlined), turn the 
donor cell fluxes into the Lax-Wendroff fluxes
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3.4) Linear Hyperbolic Systems and the Riemann Problem
(Review §1.5)
3.4.1) Solution of Linear Hyperbolic PDEs for Continuous Initial 
Data

We will need to learn how to classify different hyperbolic PDEs. We take 
only a first step here. 

We have seen that any conservation law Ut + Fx = 0 can be linearized as 
Ut + A Ux = 0 . For linear hyperbolic PDEs we literally have F = A U . 
We focus on such PDEs. A is an M×M matrix with constant entries.

The M×M hyperbolic system Ut + A Ux = 0 is strictly hyperbolic if we 
have real disjoint eigenvalues : λ1 < λ2 < …< λM .

Physically, it means that the waves are well-separated.

Mathematically, it means that we have linearly independent eigenvectors. 
 Sensible solution methods within reach. 24
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Several very important hyperbolic systems are non-strictly hyperbolic, 
i.e. we still have real eigenvalues but : λ1 ≤ λ2 ≤ … ≤ λM .

Question: Give an example of such a system.

Physically, under favorable circumstances (i.e. when we have linearly 
degenerate eigenvalues), waves may still remain well-separated.

Mathematically, we have to examine eigenstructure more closely. 
Need to work on solutions for each specific case.



We consider the simple case where “A” is a constant M×M matrix and 
has well-separated eigenvalues.
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The characteristic decomposition described above is one of the standard 
building blocks used in designing numerical schemes.

Physically, It tells us that the characteristic variables undergo simple 
scalar advection with a speed that is given by the eigenvalue.

It helps us solve the Cauchy problem for hyperbolic systems: Given 
differentiable initial conditions on non-characteristic surfaces in space-
time, the system can be evolved further in time at least for a small time.
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3.4.2) Solution of Linear Hyperbolic PDEs for Discontinuous Initial
Data: Simple waves and the Riemann Problem

Linear hyperbolic PDEs also admit discontinuous solutions (weak 
solutions).

For first order conservation laws, one can have discontinuous solutions 
even though the differential form of the PDE does not admit them. 
Reason: The integral form of the PDE admits such weak solutions.

Study weak solutions in two stages:

a) Simple waves 

b) Riemann Problem
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Notice: A simple wave is a very special wave structure where the jump 
UR−UL is restricted to lie parallel to the mth right eigenvector.

Question: What if we have a very general jump UR−UL with no particular 
arrangement between left and right state?

Answer: Then we have to solve the Riemann problem!

As long as the space of right eigenvectors is complete (which is 
guaranteed for a strictly hyperbolic linear system) we can always make 
the projection:

αm is an eigenweight of rm .But what does it mean physically?

It means that we have a set of M−1 constant states between UL and UR
where the mth constant state U(m) lies between x=λm t and x=λm+1 t

( )
1

U U     where    U U
M

m m m m
R L R L

m
r lα α

=

− = ≡ −∑

31



( )

( )

1

1

1 1

U , = U                                                              for 

           = U U  U      for   ,  1,..., 1

            = U                            

L

m M
m p p p p m m

L R
p p m

R

xx t
t

xr r m M
t

λ

α α λ λ +

= = +

<

≡ + = − < < = −∑ ∑

                                 for M x
t

λ <

Physically: We have 
a similarity solution 
with m simple 
waves.

The Riemann 
problem is a 
super-important 
building block 
for numerical 
schemes.
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x = λ2 t

U(1)

x = λ3 t

U(2)
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x = λM t

x = λM−1 t
( )0U m

0mx tλ= 0 1mx tλ +=

(1)

(2)

(3)

U
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t

UL

x = λ1 t

x = λ2 t

U(1)

x = λ3 t

U(2)

UR

U(M−1)
x = λM t

x = λM−1 t
( )0U m

0mx tλ= 0 1mx tλ +=

( 1)

( 2)

( 3)

U

U

U

M

M

M

−

−

−

=

=

=



3.4.3) The Riemann Problem as a Building Block for the Numerical 
Solution of Hyperbolic Systems

Here we focus on formulating a first order (Godunov) scheme for linear 
hyperbolic systems that can handle discontinuities. 

Higher order monotonicity preserving schemes will also produce jumps 
at zone boundaries, albeit the jumps will be smaller. Either way, we 
have to learn how to handle such jumps for the case of hyperbolic 
systems.

The Riemann problem from the previous section is well-suited for doing 
that and comes to our rescue.

The Riemann solver is a very important building block for schemes that 
solve linear and non-linear hyperbolic problems.
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{ }

( )1
1/2 1/2

Let us start with a 1d mesh function U on a mesh with zone size x.

For Godunov's method, we wish to evolve the solution from 
time  to  :

U U F F

The goal is to find properl

n
i

n n

n n n n
i i i i

t t t

t
x

+
+ −

∆

+ ∆

∆
= − −

∆

1/2y   at the zone boundaries, i.e. fluxes 
that build in the realization that there are discontinuities in the solution and 
incorporate the fact that the discontinuity at each boundary

F

 wil

n
iupwinded +

l split into a 
 of simple waves that move in different directions.. 

Shift coordinate system so that the origin lies at the zone boundary of

 

 interest.

Riemann fan
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U(1)

x = λ3 t

U(2)
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U(M−1)
x = λM t

x = λM−1 t
( )0U m

0mx tλ= 0 1mx tλ +=



We seek the , i.e. the solution of the Riemann problem that overlies
the zone boundary =0 of interest. It will then be easy to average that state in

space and time to get the  or

x

numerical

resolved state

( ) ( )

( ) ( )

0

0 0

0

1 See previous fig. Find state that overlies time axis
 . I.e. we want state 

with the property that  .

= U                                            

U U

            

0

U     U

mRS

m m

mRS
L

λ λ +

≡

< ≤

≡

resolved flux

0
0 0

0

1

1

1 1

if 0

                   = U  U             if 0

                   = U                                                            if 0

Not the resoice that lved st 

m M
m mp p p p

L R
p p m

M
R

r r

λ

α α λ λ

λ

+

= = +

<

+ = − < ≤

≤

∑ ∑

( ) ( )

0 0 1

Obtaining the  requires us to  between waves that move to the
right and those that move to the left.

F

resolve

A U

Becau

ate is bounded by the characteristics  and  .

s

d f

e

u

 t

l x

RS

m m

RS

x
distinguish

t x tλ λ +

≡

= =

he resolved flux is of  importance to us, we obtain compact, 
computationally efficient expressions for it.

great
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( ) ( ), ,

Distinguishing between waves that move to the right and those that move to the left
is most easily done by defining: 

max ,0     ;      min ,0

The left and right fluxes are also best written a

m m m mλ λ λ λ+ −≡ ≡

( )

( )

,

1

,

1

1

s:     F A U      ;     F A U

 expressions for  are then obtained as:

= F     

      F     

1 1      = F  F       

   

2 2
ues

F

Q

L L R R

M
RS m m m

L
m
M

m m m
R

m
M

m m m
R L

m

Automatic evaluating the resol

r

ved fl

r

ux

r

λ α

λ α

λ α

−

=

+

=

=

≡ ≡

+

= −

+ −

∑

∑

∑

( )

tion: What makes the eqns. above so desirable for ?

Set U U  in the above formulae to obtain even more compact 
expressions

 

.

m m
R L

computer implementation

lα ≡ −
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U U = U             if 0

To find the flux, do F A U

m
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( ) ( )
( )

( ) ( )

{ } { }
{ }

+ +,1 +,2 +,M ,1 ,2 ,M

1 2

+

F  = F  A U U

        F  A U U
1 1        = F  F   A U U
2 2

with the definitions:

Λ diag λ , λ ,..., λ    ;   Λ diag λ , λ ,..., λ    ;   

Λ diag  λ  , λ  ,..., λ    ;    

A Λ    ;   

RS
L R L

R R L

R L R L

M

R L

−

+

− − − −

+

+ −

= − −

+ − −

≡ ≡

≡

≡ A Λ    ;    A Λ    R L R L− −≡ ≡

Our final computer-friendly expressions for the resolved flux are:

The matrices A ,   A  and A  are evaluated once and for all for a given
linear hyperbolic system!

+ −
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( ) ( ),

1
F = F         with    U U

M
RS m m m m m

L R L
m

r lλ α α−

=

+ = −∑
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( ) ( ),

1
F  F         with    U U

M
RS m m m m m

R R L
m

r lλ α α+

=

= − = −∑

( ) ( ) +F  = F  A U U      with      A ΛRS
R R L R L+ +− − =



Notice that we can now show consistency of our scheme.

The present Riemann solver goes through with small modifications for 
non-linear hyperbolic systems, hence its great importance.

( ) ( )

( )1
1/2 1/2

F F U  is guaranteed when U U and U U.

As a result, the FDA U U F F  will converge 

to the PDE U  A U 0 .

RS
L R

n n n n
i i i i

t x

t
x

+
+ −

→ → →

∆
= − −

∆
+ =
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Example: The linearized Euler system

v 0
1v  +  0 v  v  = 0

P P
0 c v

Recall the     = v c   ;      = v   ;      = v c   

t x

characteristic analysis

ρρ ρ

ρ
ρ

λ λ λ

 
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 c 0  c
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2 c 2  c c 2 c 2  c
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ρ ρ
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2 2
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c 2 c 2  c

T T
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R L R L xR xL R L
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α
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α ρ ρ α
ρ

= =

−
≡ − + −

≡ − − − ≡ − + − 48



49

1 2 3
2 2 2

0 0 0 0 0 0 0

1 1 1 1 1 = 0    ;    = 1 0    ;    = 0
2 c 2  c c 2 c 2  c

Now consider the Riemann problem with U v  and U v .
P P
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L xL R xR
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( ) 0 0

(1) 1 1 2 2 3 3

The solution to the   is then given by:

U , U                                                                     for v c

            = U   U   = U            for 

L x

L R

Riemann Problem
xx t
t

r r rα α α

= < −

≡ + − − 0 0 0

(2) 1 1 2 2 3 3
0 0 0

0 0

v c v

            = U   U    = U           for v v c

            = U                                                                    for v +c

Taking the transoni

x x

L R x x

R x

x
t

xr r r
t

x
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α α α

− < <

≡ + + − < < +

<

( )

( )

0 0 0

(1) 1 1 1

2 2 2 3 3 3

1 1 1 2 2 2

c case 0 < v c  we get =1. 

The   is now given by:

F  = A U  = A U     
                    = A U       

1 1                    = A U A U      +    +
2 2
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R L

m
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r
r r

r r

λ α

λ α λ α

λ α λ α

<

+

− −

+ − ( )3 3 3   rλ α
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3.5) Numerical Boundary Conditions for Linear Hyperbolic Systems

Recall that for scalar advection ut + a ux = 0 with a>0, we only need to 
specify the boundary conditions at the left boundary. Specifying them at 
the right boundary would overspecify the problem.

We want to understand how it goes for the “M” component linear 
hyperbolic system Ut + A Ux = 0.
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Because we apply limiters to obtain the slopes, we will need two zones 
out from each physical boundary. Called ghost zones. Question: Why 
two?



We classify boundary conditions as follows:

Boundary conditions that permit a wave to leave the computational 
domain without generating a back-reaction are called radiative or non-
reflective boundary conditions.

Boundary conditions that specify the amplitude of a wave that should 
flow into a computational domain are called inflow boundary conditions.

Our philosophy in developing the boundary conditions is that we should 
apply the same numerical algorithm, if this is at all possible, to all the 
zones of the mesh.
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1 0 1

For    we set :
 U  = U  , U  = U  , U  = U  , U  = U

For    at left boundary we set : 
U U U

n n n n n n n n
N N N N

n n n

periodic boundary conditions

outflow boundary conditions

− − + +

− = =
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3.6) Second Order Upwind Schemes for Linear Hyperbolic Systems

Two Schemes:
A) Two-stage Runge-Kutta
B) Predictor-Corrector

Each of the two schemes described here can be extended to non-linear 
hyperbolic systems.

The latter two are also relatively easy to extend to higher orders.

Consider the same mesh over the x-domain, [a,b], that we used for 
describing boundary conditions.
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3.6.2) Second Order Accurate, Two-Stage Runge-Kutta Scheme 
with Limiters
The methods described here are amongst the most popular ones. 
Reason: They have a very appealing plug-and-chug quality. 

Each stage of a Runge-Kutta method looks exactly like the other. While 
each stage only needs to attain the desired spatial accuracy, the whole 
scheme will have the desired spatial and temporal accuracy. Thus RK 
schemes are called method of lines or semi-discrete methods. Ut = −Fx

It is possible, though, to obtain schemes that are more efficient than 
Runge-Kutta. Two possible second order accurate Runge Kutta
schemes:
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We only need to describe one stage, since they all look alike:

Step 1: We have to obtain the undivided differences of the conserved 
variables. This can be done using two different styles of limiting:

( )1 1

:

a) Obtain characteristic variables :  U      

b) Limit characteristic variables : ,

c) Project back to obtain undivided diffe

Limiting on the Characteristic Variables
m m
i i

m m m m m
i i i i i

w l

w Limiter w w w w+ −

=

∆ = − −

( )

1

1 2

rences in conserved 

variables : U  

:

a) Write conserved variables as vector : U  u ,  u ,...,  u

L

b) Limit each of the components of the v

imiting on the Conserved Variable

ec

s

tor: 

u

M
m m

i i
m

TM
i i i i

m
i

w r

L

=

∆ = ∆

≡

∆ =

∑

( ) ( )1 2

1 1u u , u u    gives  U  u ,  u ,...,  u

Question: What are the strengths and weaknesses of each limiting strategy?

TMm m m m
i i i ii i i iimiter + −− − ∆ ≡ ∆ ∆ ∆
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Step 2: Obtain the left and right states at the zone boundary:
(i.e. since we know the variation within the zone, we can obtain the 
values of the solution at any point in the zone, including the face-
centers.)

Step 3: Treat the Riemann solver as a machine that accepts two states 
and spits out a flux. Feed the above left and right states into the 
Riemann solver and obtain a properly upwinded flux.

Step 4: These fluxes can be used in each of the two stages, as needed, to 
obtain the full update.

1; 1/2 ; 1/2 1
1 1U  U  +  ΔU    ;   U  U    ΔU
2 2

i iL i i R i i ++ + +≡ ≡ −

( )1/2 ; 1/2 ; 1/2F F  U ,  Ui RS L i R i+ + +=
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3.6.3) Predictor-Corrector Formulation
It is based on the idea that if we have the piecewise linear slopes within 
a zone, we can also predict the time-evolution of the hyperbolic system 
for at least a small time interval within that zone.
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The panel to the left shows a mesh function that is not decreasing with x. The panel to 
the right shows a mesh function that is not increasing with x. We solve the advection 
equation ut + a ux = 0 with a>0. In each case the dashed line shows the piecewise 
linear reconstructed profile in x at time tn while the dotted line shows the same profile 
at time tn + ∆t / 2 .
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Step 1: We have to obtain the undivided differences of the conserved 
variables; same as before.

Step 2: Realize that we can obtain the time evolution within a zone 
because:

This is the predictor step.

1/2
; 1/2

U U                   A 0

Use this to directly obtain time-centered left and right states at the 
zone boundaries. This time-centering makes the scheme second order.
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Step 3: Treat the Riemann solver as a machine that accepts two states 
and spits out a flux. Feed the above time-centered left and right states 
into the Riemann solver and obtain a properly upwinded flux.

Step 4: Use the fluxes to obtain the update step:

This is the corrector step.

Questions: How would the speed of this method compare to that of the 
Runge-Kutta method? Which steps are repeated in the Runge-Kutta
method? Which steps dominate the cost?

( )1/2 1/2
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i RS L i R i
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i i RS L i R i RS L i R i
t
x

+ + + + +
+ + − −

∆
= − −
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3.6.4) Numerical Results from the Previous Two Schemes
Question: Compare and contrast the results of the two schemes:
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