
Lecture 5) Eigenstructure and 
Approximate Riemann Solvers for 

Hyperbolic Conservation Laws

1

By
Prof. Dinshaw S. Balsara (dbalsara@nd.edu)

Les Houches Summer School in Computational Astrophysics
http://www.nd.edu/~dbalsara/Numerical-PDE-Course

1

mailto:dbalsara@nd.edu
https://www.google.com/imgres?imgurl=https://static.festisite.com/static/partylogo/img/logos/nasa.png&imgrefurl=https://www.festisite.com/logo/nasa/&docid=i3oJ5nVB7EAanM&tbnid=VGe8SV4aso0FuM:&w=450&h=372&bih=926&biw=1920&ved=0ahUKEwiqh82EgOHMAhUk1oMKHdRCAocQMwg1KAEwAQ&iact=mrc&uact=8
https://www.google.com/imgres?imgurl=https://static.festisite.com/static/partylogo/img/logos/nasa.png&imgrefurl=https://www.festisite.com/logo/nasa/&docid=i3oJ5nVB7EAanM&tbnid=VGe8SV4aso0FuM:&w=450&h=372&bih=926&biw=1920&ved=0ahUKEwiqh82EgOHMAhUk1oMKHdRCAocQMwg1KAEwAQ&iact=mrc&uact=8


6.1) Introduction

Lecture 2 has shown us that monotonicity preserving reconstruction and 
Riemann solvers are important for linear hyperbolic equations. We 
studied the eigenstructure of the linear systems.

Lecture 3 has shown us the kinds of simple waves -- shocks and 
rarefactions -- that we get in a non-linear, scalar conservation law. We 
also got our first glimpse of an approximate Riemann solver.

Lecture 3 also showed that the same simple wave structures find 
analogues in systems of hyperbolic conservation laws. We described a 
exact and approximate (two-shock) Riemann solvers. 

Here we study the eigenstructure of the Euler and MHD systems. The 
choice of these systems is based on utility. Rel. hydro & MHD are similar

First goal : Study eigenstructure for these systems. Different 
waves/discontinuities behave differently; can we understand them?
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Exact Riemann solvers have been designed for all these systems. The 
barrier to their practical utilization in codes is computational complexity.

Much of the information generated by such Riemann solvers is never 
used in the computation of a numerical flux. 

As the hyperbolic system gets larger, an increasing amount of 
information that is generated by the Riemann solver is discarded.

Second Goal: Study linearized Riemann solvers. These are approximate 
Riemann solvers.

3



4

What are the essential elements of any exact or approximate Riemann 
solver?

1) A Self-Similar Wave Model. (Wave Model == how we conceptualize 
the waves in the Riemann solver. May not be the same as the exact RS.)

2) Consistency with the Conservation Law: Not just for infinitesimal 
fluctuations but also for isolated discontinuities of finite strength.

3) Entropy Enforcement: Arbitrary discontinuities to be resolved 
correctly. Need for conservation and entropy generation.

4) Preservation of Discontinities: Isolated contact discontinuities should 
not be smeared on the mesh. Shocks are self-steepening – ok to smear 
them. Contacts are not – must keep them intact as much as possible.

All of the Riemann Solvers discussed here are one dimensional. All 
multidimensional flow features are treated dimension-by-dimension. 
Imparts mesh imprinting.



Linearized (Approximate) Riemann Solvers: Try to turn Ut + F(U)x = 0 
into a suitable linear problem Ut + Ā Ux = 0 , Ā is a matrix. It is easy to 
study its eigenstructure. Ā(UL, UR) depends on both the input states!

( )
A) When the  ,  can obtain :

U + A U 0 with  A F U U  i.e. problem linear
difference between the left and right state is suitab

izes easily .

B) le

l

f

y s

t a
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nd right states differ by muc

ll
consistency

 When 

t x∂ ∂ = ≡ ∂ ∂ ⇒

 equation :
U + A U 0 that mimics the above equation U + A U 0.

C) The  should have parallels to that of A in the linear regime.
Question: What do

eigenstructure of

h, we  
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want a matrix

 A

t x t x

still
∂ ∂ = ∂ ∂ =

is mean for eigenstructure? Relate it to linear systems (Lect 3).

D) When  are present, the structure of A should be such
that they can propagate at the 

isolated discontinuities
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Question: What does that give us? Can you relate it to what we lea
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Recall that the linearized Riemann solver preserves all isolated 
discontinuities exactly. Sometimes, we may not want to preserve all this 
structure. 

In retrospect, the linearized RS is not positivity preserving; HLL RS is 
positivity preserving. Which is why we have several favorable variants 
of HLL.

The HLL Riemann solver, from Lect 3, is an example of such a Riemann 
solver that washes out some structure yet gives stability & positivity! 

Linearized Riemann solvers can also be temperamental performers, 
especially in the vicinity of strong shocks.  HLL Riemann solvers are 
robust and stable, so are its variants.

The variants of the HLL Riemann solver – HLLC, HLLI, HLLD – can 
even capture isolated discontinuities exactly.

Third goal: Design HLL, HLLC, HLLI, LLF Riemann solvers and their 
variants for systems.
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6.2) The Eigenstructure of the Euler Equations

6.2.1) Derivation of the Eigensystem for the Euler Equations

( ) ( ) ( )

( ) ( )

yx
2

x yxx
2
yx yy

y zx zz

yx

Write the Euler equations as:

U + F U  + G U  + H U 0

 v v
 v  v v  + P v
 v  + P v  v +  +  +  v
 v  v v  v v
+P v+P v

t x y z

t x y

ρρρ
ρρρ
ρρρ
ρρρ
εεε

∂ ∂ ∂ ∂ =

   
   
   ∂ ∂ ∂ ∂   

∂ ∂ ∂    
   

           ( )

z

x z

y z
2
z

z

2

 v
 v  v
 v  v  = 0
 v  + P
+P v

1 P = e +          with         e  
2 1

z

ρ
ρ
ρ
ρ

ρ

ε

ε

 
 
 
 

∂  
 
 
 

≡
Γ −

v
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( )

( ) ( ) ( ) ( ) ( )

( ) ( )

2 2
x x x y z

x

y x y y x

z x z z x

2 2
x x x

Write the x-directional variation as:   U + A U 0   with  given by

0 1 0 0 0
1

v  2v 1 v 1 v 1 v 1 v 2
 +  v v v v v 0 0

 v v v v 0 v 0
1

v H  v  H 1
2

A F U

v

Ut x

t

ρ
ρ
ρ
ρ
ε

∂ ∂ =

  Γ −
− + − Γ − − Γ − − Γ − Γ − 

 ∂   −
∂  

− 
  Γ −  − + − Γ − −

≡ ∂ ∂

v

v ( ) ( )

( ) ( )

x

y

z

x y x z x

2 2 2

total entha

 v
 0 v

 v

1 v v 1 v v  v

with the  defined by:
11 1 1 H  e + P +          

lpy "

 P =  

H"

H   1    
2 2 2

x

ρ
ρ
ρ
ρ

ρ ρ ρ ρ ρ

ε

ε

 
         ∂    =  ∂        

  Γ − − Γ − Γ 
 

Γ −    ≡ ⇔ − = Γ − −   Γ    
v v v
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( )x y z

It is simpler to study this system in terms of the vector of :

V  v v v P

Question: If so, why do we still want to study the system in conservation form?
This i

prim

s mo

itive varia

st easily d

bles

one by

T
ρ≡

 recasting the system with the Jacobian matrices :
U V and  (see text).
V U
∂ ∂
∂ ∂
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{ }

x

xx x

xy y

xz z

x

x s x x x x s s

More familiar primitive form:
v 0 0 0
0 v 0 0 1v v

 +   = 00 0 v 0 0v v
0 0 0 v 0v v
0  P 0 0 vP P

 PEigenvalues:  v  c , v , v , v , v  c     where   c

Matri

t x

ρρ ρ
ρ

ρ

    
    
    ∂ ∂    

∂ ∂    
    

    Γ    

Γ
− + ≡

( ) ( )2
s s

s s s

p p

2 2
s s

x of Right Eigenvectors:                       Matrix of Orthonormal Left Eigenvectors:

0 2c 0 0 1 2c1 1 0 0 1
c 0 0 0 c 1 0 0 0 1 c

 = 0 0 1 0 0                    = 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
c 0 0 0 c 0 2c

R L

ρ

ρ ρ

ρ

− 
 − − 
 
 
 
 
  ( ) ( )2

s s0 0 1 2c

Question: Can you physically interpret the above eigenvectors?

 
 
 
 
 
 
 
 
 
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6.3) Linearized Riemann Solver for the Euler Equations

Finding a linearization of the non-linear hyperbolic system is tantamount 
to saying that we want to replace Ut + F(U)x = 0 by U + A U 0t x∂ ∂ =

( )

( ) ( )
linear map

Task: For general left & right states U  and U , such that:
 It is a  to the vector space "U" to the vector space "F".

As U   U   U, we have A U ,U

find
ping

 a matr

 .

ix A U ,U

 YiA e dsU lL

L

R L

R R

R

L

→ → →

(i)
(ii)

( ) ( ) ( ) ( )A U , U  U U  = F U F U
isolated discontinuities propagate at t

  of flux.

 For all U  and U  we have 
Ensures that .
Let's see why:
Assume U  and U  are left and

he right spee

co

 rig

nsistenc

ht

y

 states o

d
L R L R R L R L

L R

− −(iii)

( ) ( ) ( )
( ) ( ) ( )

f an isolated discontinuity that
moves with speed "S".
Nonlinear cons. law gives :    F U F U  S U U

Linearized system should give :    A U , U  U U  = S U U
I.e. the two systems should predict the sam

R L R L

L R R L R L

− = −

− −

( ) ( ) ( ) ( ) ( )
e propagation speed for the discontinuity.

This is ensured if :    F U F U  S U U   A U , U  U UR L R L L R R L− = − = −
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( )
( ) ( )

 The  of A U ,U  are . 

Any jump U U  can be projected into the eigenspace of A U ,U .
This is needed if we are to used met

eigenvectors linearly 

hods drawn from linea

in

r 

depe

hyp. systems
in form

ndent

u

L R

R L L R

⇒

−

(iv)

lating a Riemann solver.
Question: How general can U  and U  be?L R

Collectively these four properties are known as “Property U”, because 
they endow the Riemann solver with “uniform” validity at 
discontinuities.

Note that the linearized RS is not positivity preserving. So in principle, 
the (iv) property cannot always be guaranteed. 

Even so, the linearized RS has some very desirable theoretical 
properties – it reduces dissipation to the minimum level that is allowed. 
That is why we continue to study it. The HLLI RS can reproduce this 
property of minimizing dissipation for intermediate waves.
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There are many different ways to get Property U. Easiest approach is 
via parameter vectors:

( ) ( )
( )
( ) ( )
( ) ( )

1/2
1 2 3 4 5 x y

1

z

1/2
1 2 3 4 5 x y

/2
1 2 3 4 5 x z

z

y

x y z

W

W w ,  w ,  w ,  w ,  w 1,  v ,  v ,  v ,  H

W w ,  w ,  w ,  w ,  w 1,  v ,  v ,  v ,  H

1Recalli

w ,  w ,  w ,  w ,

ng  H

 w 1,  v ,  v ,  v

 +

,  H

     ,  v ,  v ,  v ,  H

 

TT
L L L L L L L L L L L

TT
R R R R R R R R R R

T

R

TT ρ

ρ ρ ρ ρ

ρ

ρ

ρ

ρ

ε

≡ ≡

≡ ≡

Γ

≡ ≡

≡

Γ −= ( ) 21
  ,  we can write the vectors "U" and "F" as:

2
ρ

Γ
v

( ) ( )

2
1

1 2
x

1 3
y

1 4
z

2 2 2
1 5 2 3 4

w
w  w v
w  wU= = v
w  w v

11 w  w   w w w
2

ρ
ρ
ρ
ρ
ε

 
   
   
   
   
   
   Γ −   + + + 

 Γ Γ 
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( ) ( )
( )

( )

( )

1/2
1 2 3 4 5 x y z

x y z

2 2

1 2
x

2 2
x 1 5 2

x y

x z

x

11 1 H  e + P +           P =  H   
2 2

w  w
 v

1

W w ,  w ,  w ,  w ,  w 1,  v ,  v ,  v ,  H

     ,  v ,  v ,  v ,  H

 v  + P w  w   w  
F= = v  v

 v  v
 H v

TT

T

ρ ρ ρ ρ

ρ

ρ

ρ ρ ρ ρ ρ

ρ
ρ
ρ
ρ

Γ −  ≡ ⇔ − Γ  

 
Γ − 

+ −  Γ 
 
 
 

≡



≡



≡

v v

( ) ( )2 2 2
2 3 4

2 3

2 4

2 5

1
 w w w

2
w  w
w  w
w  w

Notice that "U" and "F" are  in the components of the parameter 
vec

quadratic
tors.

 
 Γ − + +
 Γ
 
 
 
 
 
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( ) ( )( ) ( )( )

( ) ( )

( )

Now realize the :

 

           = p q + q p   
1 1where   p p

useful trick
1 1p q  p  q   p  q  = p

  p  and q q   q
2 2

From Calculus, recall that :-

  p q   q  + q   q

     p q p q 

p

+ 

p
2 2

p

 

q

 

 

R L R L

R R L L R L R L R L R L

d d d

∆ ≡ − + −

∆ ∆

≡ + ≡ +

−

=

+

( ) ( )

x x 3 52 4
x y z

1 1 1 1

    See the analogy?

We also define the  :

 v  v w ww wv   ;  v   ;  v   ;  H   ;  
w w w w

  

These variables enable us to represent U U  and F F  in 

ter

L L R R

L R

L R

R L R L

Roe - averaged variables

ρ ρ
ρ ρ

ρ ρ ρ∗

←

+
≡ = ≡ ≡ ≡

+

≡

− −

( )ms of W W .
Let us see how it is done.

R L−
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( ) ( )

2
1

1 2
x

1 3
y

1 4
z

2 2 2
1 5 2 3 4

w
w  w v
w  wU= = v
w  w v

11 w  w   w w w
2

ρ
ρ
ρ
ρ
ε

 
   
   
   
   
   
   Γ −   + + + 

 Γ Γ 

( ) ( )

( ) ( ) ( )

1

2 1

3 1

4 1

5 2 3 4 1

1

2w 0 0 0 0
w w 0 0 0
w 0 w 0 0U U = B W W  =  W W
w 0 0 w 0

1 1 1 1 1w w w w w

It is also useful to write :-    W W  = B U U

R L R L R L

R L R L
−

 
 
 
 

− − − 
 
 Γ − Γ − Γ −
 
 Γ Γ Γ Γ Γ 

− −
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( ) ( )

1

2 1

3 1

4 1

5 2 3 4 1

x

y
1

z

x y z

2w 0 0 0 0
w w 0 0 0
w 0 w 0 0U U = B W W  =  W W
w 0 0 w 0

1 1 1 1 1w w w w w

2 0 0 0 0
v 1 0 0 0
v 0 1 0 0                                        = w  
v 0 0 1 0

1 1 1 1 1H v v v

R L R L R L

 
 
 
 

− − − 
 
 Γ − Γ − Γ −
 
 Γ Γ Γ Γ Γ 

 
 
 
 


 Γ − Γ − Γ −

 Γ Γ Γ Γ Γ 

( ) W W

This defines the matrix B. Notice that B is lower triangular, therefore, it is easy to invert.

R L−



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( ) ( )

2 1

5 2 3 4 1

3 2

4 2

5 2

x

x y

1
y x

x

w w 0 0 0
1 1 1 1 1w w w w w

F F = C W W  =  W W0 w w 0 0
0 w 0 w 0
0 w 0 0 w

v 1 0 0 0
1 1 1 1 1H v v v

                                        = w  0 v v 0 0
0 v 0 v 0
0 H 0 0 v

R L R L R L

z

z

 
 Γ − Γ + Γ − Γ − Γ − − −
 Γ Γ Γ Γ Γ 

− − − 
 
 
 
 

Γ − Γ + Γ − Γ − Γ −
− −

Γ Γ Γ Γ Γ ( )

( ) ( ) ( )

( ) ( ) ( )

x

1

1

 W W

This defines the matrix C.

From the previous page, recall that :-    W W  = B U U

We then have from this page that :-        F F = C W W  = C B  U U  

This enables us to 

R L

R L R L

R L R L R L

−

−

 
 
 
 

− 
 
 
 
 

− −

− − −

( ) ( ) 1
identify : A U ,U C BR L

−
≡
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( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
x x x y z

1

x y y x

x z z x

2 2
x x x x y x z x

matrix is forma

0 1 0 0 0

lly just

1
v  2v 1 v 1 v 1 v 1

2
A U , U C B v v v v 0 0

v v v 0 v 0
1

v H  v  H 1 v 1 v v 1 v v  v
2

The  is that this  the s

L R

amazing fact

−

 
 Γ − − + − Γ − − Γ − − Γ − Γ −
 
 = = − 
 −
 

Γ − − + − Γ − − Γ − − Γ − Γ 
 

v

v

!!

We have no reason to expect this, since the variables in the above matrix have no physical standing;
they only have a 

ame as the original character

formal standing.

We make the c

istic 

onnect

matrix

ion m ( ) ( )
( )

2 2 2
x y z

2

x s

1 1ore concrete by defining : P   H v v v
2

1 1Recall that physically speaking we indeed do have : P =  H  
2

We can thus express the eigenvalues of the above matrix as:

v  c ,

ρ

ρ

∗Γ −  ≡ − + + Γ  
Γ −  − Γ  

−

v

{ } 2
x x x x s s

 Pv , v , v , v  c    where  c
ρ∗

Γ
+ ≡
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x x y y z z s s

This exact, formal analogy can be used to derive the eigenvectors too. We just make
the formal transcriptions:

  ;  v v   ;  v v   ;  v v   ;  H H  ; 

two important 

 c c

No pointtice s of differen

ρ ρ∗→ → → → → →

s

x s

xexact jump v c
is the right-going 

: 

 If U  and U  correspond to the  in a right-going shock then 
. One cannot say the same about v c  .

 For any physical state, 
shock sp

P is guaranteed to b

ce

e
d

 
ee

L R +
+

A)

B) positive. 
We  for any two physical states U  and U .

Notice too that nothing has been said so far on the . From the 

can't guara

discussion
i

ntee positivity of P

n Lecture 3, we know that we
 

 mus

L R

entropy fix
t have an entropy fix.

The linearized Riemann solver has also been formulated for  .real gases
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6.4) Entropy Fixes for Linearized Riemann Solvers

By linearizing a non-linear system of conservation laws, we wish to 
replace the non-linear system with an equivalent linear system. We have 
studied linear hyperbolic systems. We, therefore, wish to draw upon 
insights from that study in Section 3.4.

( )
{ } { } { }

( )

Having obtained an , we perform its :

I.e. we obtain : 1,..., ,  : 1,...,  , : 1,..., .

Given any arbitrary jump across a zone boundary ,

 matrix A U , U characteristic analysis

 weU U p can 

L R

L

m m m

R

m M l m M r m M

M M

λ = = =

−

×

( )
1

roject it
onto the space of right eigenvector :

U U     where      U

s

U
M

m m m m
R L R L

m
r lα α

=

− = ≡ −∑ 

This just represents each simple wave discontinuity as a discrete jump in 
the solution without examining whether it is a physical compressive 
shock or an unphysical rarefaction shock.  It is up to us to go back and 
provide an entropy fix to the rarefaction shocks.
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( )

( )

1

1

As with linear hyperbolic systems, we get 1 constant states in space-time:

U , = U                                                                for    

            = U U  U  

L

m
m p p p p

L R
p p

M

xx t
t

r r

λ

α α
= =

+

<

≡ + = −∑

( )

1

1
    for   ,  1,..., 1

            = U                                                               for    

And their associated fluxes:

F , = F                                    

M
m m

m

M
R

L

x m M
t

x
t

x t

λ λ

λ

+

+

< < = −

<

∑

( )

1

1

1 1

                                    for 

           = F F  F       for   ,  1,..., 1

            = F                                                        

m M
m p p p p p p m m

L R
p p m

R

x
t

xr r m M
t

λ

λ α λ α λ λ +

= = +

<

≡ + = − < < = −∑ ∑

               for M x
t

λ <
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0 0

0
1

0

Find  such that:

0
 helps us find

resolved state
and numerical flux.

m m

m

m
λ λ +< ≤

( ) ( ) ( )0 0 01 1To apply an , find the three states .
Whether or not an entro exa

entropy fix U ,  U  and U
mining wave speepy fix is needed is decided by  ds

in those three s , as shta owtes n next.

m m m− +
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0 0We only show the characteristics associated with the  and 1 wave families.
Questions: Which of these waves is a shock, which of them are rarefactions?
Which of of the wave families in each panel ne

m m +

ed an entropy fix? Assume non-moving boundaries.
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( )0 0

Further caveats:

(i) Examine the resolved states for positivity, linearized Riemann solvers have problems
when it comes to maintaining positivity.

(ii) One usually uses a shortcut by defining U  m m
L Lλ λ≡ ( )0 0

0 0

0 0

0

and U

and using the condition 0  to identify the formation of a rarefaction
fan in the  wave family.

We provide two entropy fixes:

  #  1:

If 0  our resolved flux sh

m m
R R

m m
L R

th

m m
L R

m

Entropy Fix

λ λ

λ λ

λ λ

≡

< <

< <
( ) ( )

( ) ( )

0 0

0 0 0 0 0

0 0 0

1

1

0

ould be a linear combination of the fluxes

F  and F  . 

Here we have F F   so that the full contribution from 
the  wave family is   .

m m

m m m m m

m m mth

r
m r

λ α

λ α

−

−= +
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( )

0 0 0

0 0 0

With 0< <1, let the contribution from the left of the zone 
boundary be :   
Similarly, let the contribution from the right of the zone 
boundary be : 1   

The two contributions shou

m m m
L

m m m
R

r

r

β

β λ α

β λ α−

( )0 0 0 0 0 0 0 0 0

0 0

0 0

ld add up to the full contribution that we identified before:
   + 1    =  

so that:

With the above definition, and several other ancillary definitions (

m m m m m m m m m
L R

m m
R
m m
R L

r r rβ λ α β λ α λ α

λ λβ
λ λ

−

−
=

−

see below), we are
ready to obtain closed form expressions for the conserved variables and fluxes.

( ) ( ) ( ) ( ), , , ,

, ,

When     0,  we make the following definitions:-

max ,0   ;  min ,0   ;  H   ;  H

When     < 0,  we make the following definitions:-

    ;  

m m
L R

m m m m m m m m m m

m m
L R
m m

m mL
Rm m

R L

λ λ

λ λ λ λ α α λ α α λ

λ λ

λ λλ λ λ
λ λ

+ − + −

+ −

≥

≡ ≡ ≡ ≡ −

−
≡

−
, ,

, ,

    ;    ;  

Where we also define:-     

m m m m m m
m m m m m mR L R

Lm m m m m m
R L R L R L

m m m

λ λ λ λ λ λλ α α α α
λ λ λ λ λ λ

λ λ λ

+ −

+ −

− − −
≡ ≡ ≡

− − −

≡ −



27

( )

( ) ( )

( ) ( )

( )

( )

,
lin

1

,

1

, ,

1

,
lin

1

,

1

U = U    

      U    

1 1      = U  U      
2 2

F  = F       = F  A U U

        = F       F  A U U

1 1        = F  F   
2 2

M
RS m m

L
m
M

m m
R

m
M

m m m
R L

m

M
RS m m m

L L R L
m
M

m m m
R R R L

m

R L

r

r

r

r

r

α

α

α α

λ α

λ α

−

=

+

=

+ −

=

− −

=

+ +

=

+

= −

+ − −

+ + −

− = − −

+ −

∑

∑

∑

∑

∑

( ) ( )
1

1 1      = F  F   A U U
2 2

This is very reminiscent of the linear case, except that the above definitions
build in the entropy fix. The book provides further detail.

M
m m m

R L R L
m

rλ α
=

+ − −∑
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All is not perfect with linearized Riemann solvers:

High speed flows can be especially problematical. Question: Why?

We have a need for positively conservative schemes, i.e. schemes that 
can guarantee that the pressure and density remain non-negative. 

The linearized Riemann solver is not positively conservative. HLL is. 
The states in the next figure can cause a linearized Riemann solver to 
choke!
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They are also susceptible to a carbuncle instability when strong shocks 
move slowly relative to the mesh.
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6.5) HLL, HLLC and HLLI Riemann Solvers

Consider the states in the hydrodynamical Riemann problem, shown 
below. 

Below we also show the simplifications in the wave model that are made 
for the HLL and HLLC Riemann solvers. 
The “C” stands for contact.
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6.5.1) HLL Riemann Solver

Question: For the scalar conservation law, which structure did the wave 
model of the HLL Riemann solver average over?

Question: If we make a similar wave model for the Euler equations, 
which structures are we averaging over? 

( ) ( )

( )

HLL

HLL

U       if S 0          
S  U  S  U   F   F

U U       if S 0 S     with     U
S  S

U       if S 0         

F        if S 0          
F F        if S 0 S

F       if S 0         

L L
RS R R L L R L

L R
R L

R R

L L
RS

L R

R R

∗ ∗

∗

>
− − −= ≤ ≤ = − <

>
= ≤ ≤

<

( )

( )( ) ( )( )1
x s x s

     

S S S  Swith     F  =  F    F  + U   U
S  S S  S S  S

and       S min U , v  c    ;   S max U , v + c

R L R L
L R R L

R L R L R L

M
L L R Rλ λ

∗






     
− −     − − −     

≡ − ≡
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For a scalar conservation law, we have no further requirements. For 
Euler equations, we would make some further demands:

1) Notice that if we have an isolated right-going shock, the HLL 
Riemann solver picks out the correct flux.
Question: For a transonic shock (with SL < 0 < SR) this is non-trivial. 
Can you prove it?

2) For open rarefaction fans that straddle the zone boundary, the entropy 
fix is also naturally built in.

3) The HLL Riemann solver also maintains positivity of the resolved 
state U* . A result from Einfeldt et al (1991) then claims that a scheme 
that uses such a Riemann solver will also keep the pressure positive. 
This guarantee is only true in 1D; it does not extend to 2D and 3D.
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6.5.2) HLLC Riemann Solver (Philosophy:- Start with HLL & build 
on top of it.)
The HLLC Riemann solver is designed to overcome the one failing of 
the HLL Riemann solver – the inability to capture contact 
discontinuities.

The resolution is to put two constant states between the left and right 
states that are separated by a contact discontinuity moving with a speed 
SM. This is an improvement of our wave model.

For the contact discontinuity to have the properties of an actual contact 
discontinuity, we demand:

( )
HLLC

U       if S 0          
U       if S 0 S

U
U       if S 0 S
U       if S 0         

L L

RS L L M

R M R

R R

∗

∗

>
 ≤ ≤= 

≤ ≤
 <

( )
HLLC

F        if S 0          
F        if S 0 S

F
F        if S 0 S
F       if S 0         

L L

RS L L M

R M R

R R

∗

∗

>
 ≤ ≤= 

≤ ≤
 <

x x xS v v vM L R
∗ ∗ ∗= = =
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( ) ( )
( ) ( )

*
x x x x2

x x x *
1 x x

*

 v S v  v S v  + P PUS v

Question: But how do we obtain S  ? Answer: Use the components of U  
from the HLL Riemann solver.

A   

v v
U

of makin

S v S v
R R R R L L L L L R

M L R
R R R L L L

M

pleasant corollary

ρ ρ
ρ ρ

∗ ∗ ∗ − − − −
= = = = =

− − −

*

* * *

* *

g this choice is that the pressure P  is a constant 
across the contact. I.e. P  is the same in U  and U  .

Question: But how do we obtain the post-shock states, U  and U  ?
Answer: Jump conditions a

L R

L R

( )

( )

t discontinuities: 

Left: F F S U U    

   

Right: F F S

S U F S U F

S U F S U F

U U    

   R R

L L

L L L L L

R R R

R

L L L

R

L

R R

R R

∗ ∗

∗

∗ ∗

∗

∗

∗

−

− = −

⇔

− =

−

⇔ =

=

− −

−
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( ) ( )

x
2

x xx

y x yy y

z x zz z

x

Left:

 S v
 S P v v P S v
 S v v vS S v v
 S v v v v v

P S P v

L M L LL L

L M L L L L LL M L L

L M L L L LL LL L L L

L M L L L LL L L L

L L M L L LL L

ρ ρρ ρ
ρ ρρ ρ
ρ ρρ ρ
ρ ρρ ρ
ε εε ε

∗∗

∗ ∗∗

∗ ∗∗ ∗

∗ ∗∗ ∗

∗ ∗∗

     
     + +     
     − = −    
    
     + +     

( )

x
2

x xx

y x yy y

z x zz z

Right:

 S v
 S P v v P S v
 S v v vS S v v
 S v v v v v

P S

R M R RR R

R M R R R R RR M R R

R M R R R RR RR R R R

R M R R RR R R R

R R MR R

ρ ρρ ρ
ρ ρρ ρ
ρ ρρ ρ
ρ ρρ ρ
εε ε

∗∗

∗ ∗∗

∗ ∗∗ ∗

∗ ∗∗ ∗

∗ ∗∗






 
 
  



    
    + +    
    − = −    
    
     +     ( )

( )( )

x

x x

x x

P v

S v S vFirst Row gives:    ;     ; Notice . Why is that good?
S S S S

Second Row yields constancy of pressure: P P  P S v S v

            

R

R R R

L L R R
L L R R L R

L M R M

L L L L L M L

ρ ρ ρ ρ ρ ρ

ρ

ε

∗ ∗ ∗ ∗

∗ ∗

 
 
 
 
 
 
  + 

− −
= = ≠

− −

= = + − −

( )( )x x                                                           P  P S v S vR R R R R M Rρ∗= = + − −
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( )

y y y y z z z z

x x

Third and fourth rows give constancy of transverse velocity:
v = v    ;   v = v    ;   v = v    ;   v = v

Fifth row gives the total energy density:
S v  P  v  P  S

   ;   
S S

L L R R L L R R

L L L L L M
L R

L M

εε ε

∗ ∗ ∗ ∗

∗
∗ ∗− − +
=

−
( )x xS v  P  v  P  S

S S

 and  are formal entities . Their derivation is purely based on a formal
jump condition. Don't ever use them to derive a "pressure".

R R R R R M

R M

L R

ε

ε ε

∗

∗ ∗

− − +
=

−

The HLLC Riemann solver inherits all the same good properties that we 
catalogued for its progenitor HLL Riemann solver. Thus it too will: 
1) represent isolated shocks exactly.
2) Have a built-in entropy fix for transonic rarefactions.
3) Make any scheme that uses it positively conservative in 1D (not 2D/3D). 
4) It does its HLL parent one better representing isolated contact 
discontinuities exactly. It is also almost as fast as the HLL Riemann solver
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HLLI Riemann Solver (Philosophy:- Start with HLL & build on top 
of it)
The HLLC RS is a decided improvement over the HLL RS, because it 
restores the contact discontinuity.

But notice that we had to work very hard to derive the HLLC RS; and it 
only restores the contact discontinuity.

What if we had several waves in a Riemann fan that we wanted to 
preserve crisply? One option would be to restore multiple discontinuities 
into an HLL RS. From our study of the HLLC RS, we realize that this 
would be a lot of work.

Another option, suggested by Einfeldt and Munz (hence the “EM”), 
would be to introduce a linear profile within HLL.

Intuitively, the right kind of profile would make more of the waves of 
interest flow in a particular direction, thereby reducing the dissipation of 
that wave family. Key benefit:- We can improve any set of wave families!



38

Intuitively speaking, realize that the Linearized RS and HLLC RS also 
reduce dissipation by introducing sub-structure in the Riemann fan. We 
build on that idea.

From the linearized RS, we realize that is should be related in some form 
to the characteristic weight :- αp = lp · ( UR – UL) .

The real questions are:- What form of linear profile is optimal? And, 
how much of that profile is needed to exactly cancel the excessive 
dissipation from the HLL RS?

The details have been worked out in Dumbser & Balsara (2016). 

The formulation works for hyperbolic systems in conservative or non-
conservative form.

Key idea is to exploit the self-similarity of the Riemann fan. As a result, 
we develop the idea in self-similarity variables.
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( ) ( ), ,
Typically, we start with 0

For special situations where the PDE system is indeed evolving self-similarly, we can 
write the proble self-sim in terms of the m  .
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∂ ∂
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( ) ( ) ( )
HLL

For HLL RS we can write
U           if S        

S  U  S  U   F   F
U U           if S S with     U

S  S
U          if S     

For HLLI R

    

 we can improve the sharpness of the S
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ξ ξ
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− − −= ≤ ≤ = − <

( ) ( ) ( ) ( )( )
( )HLLI

 by writing the linear profile as:-
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S S 2
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Recall that U  is still the HLL state in the above formula.
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

 <
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or (like contact + Alfven waves for MHD flow)  of those waves
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utions
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 scalar 
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to or each wave famil . We do that t.y  nexpδ
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( ) ( ) ( ) ( )HLLI
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F F                      ifS S    
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 S 0 S
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p pR L
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6.5.3) LLF Riemann Solver

Like before, it is based on taking the extremal speeds in the HLL 
Riemann solver to get:

( ) ( )( )
( ) ( ) ( )

1
x s x s

LLF

S max U , v  c , v + c , U      ;       S S S

S1F  =  F   F   U   U
2 2

M
Max L R R L Max

RS Max
L R R L

λ λ≡ − = − =

+ − −
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6.6) Intercomparing Riemann Solvers for the Euler Equations
Question: What differences do you see in the density profiles below?

a) b)

d)c)

 Roe

HLL 

 HLLC

HLLI 
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6.7) Eigensystem for Non-Relativistic MHD
Can be written in a conservation form as:

Note the anisotropic pressures.
Also note the magnetic tension
terms.

First 5 rows represent conservation of mass, momentum & energy. Last 
3 represent the induction eqn.:

( ) ( )

( )
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 v  + P + /8   B /4  v  v   B  B /4
 v  v   B  B /4  v

 +  + +P+ /8 v   B /4y z
v  B   v  B

0

v  B   v  B

ρ ρ
ρ π ρ π

ρ π π ρ π
ρ π ρ

π πε

 
 − − 
 − −
 − ∂ ∂
 − ⋅∂ ∂ 
 − −
 
 
  − 

B

B v B ( ) ( )
( )
( )

2 2 2
z

2
z z

z x x z

y z z y

 + P + /8   B /4
 = 0+P+ /8 v   B /4

v  B   v  B

v  B   v  B

0

π π

π πε

 
 
 
 
 − 
 − ⋅
 
 −
 

− − 
  
 

B

B v B

1 + c  = 0      ;       =     
t c

∂
∇× − ×

∂
B E E v B



45

With the constraint 0 , the induction equation ensures that if it is satisfied at the
beginning of a calculation, it will be satisfied for all time. 

0 results in unphysical plasma transport ort

∇ =

∇ ≠

B

B





( )

x

2
x

hogonal to the field.

In a later chapter we will see how the constraint is imposed at a discrete level in a numerical code.

For x-directional variations, it ensures that B  is constant.
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y x
y x x y x
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( )x y z y z
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y z
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2
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Using the vector of primitive variables, V  v v v P B B

we can write the hyperbolic system as V + A  V = 0 with :

v 0 0 0 0 0
B B10 v 0 0

4 4
B0 0 v 0 0  0

4
A  = 

B0 0 0 v 0 0  
4

0  c 0 0 v 0 0
0 B B 0 0 v 0

T

t x

ρ

ρ

ρ πρ πρ

πρ

πρ
ρ

≡

∂ ∂

−

−

−

z x x

y 2 2 2 2x z
x y z x y z y

0 B 0 B 0 0 v

Define the Alfvenic speeds as (They are useful for defining the wave speeds.)
BB Bb   ;   b    ;   b    ;   b  b  + b  + b    ;   b    b  

4 4 4πρ πρ πρ ⊥

 
 
 
 
 
 
 
 
 
 
 
 
 
  − 

≡ ≡ ≡ ≡ ≡ 2
z+ b
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{ }
( )

x f x x x s x x s x x x f

 4 2 2  2 2 2
f s s s x

f s

The wave speeds form an ordered set given by:
v m , v b , v m , v , v m , v b , v + m

To get m  and m  , solve the quartic : m    c  + b   m  + c  b  = 0

Here m  and m  are the    fast and slow magnet

− − − + +

−

f s  speeds (m m 0)

It is important to learn the nomenclature of the waves, see fig. below:
Questions: Compare and contrast entropy waves in MHD and Euler flow.
Which waves take the place of she

osonic wave ≥ ≥

x

ar waves? Are magnetosonic waves compressive?
Which waves are the analogues of sound waves? As B 0, which waves go to 0?→
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The magnetic field breaks the degeneracy of the problem. Unlike sound 
waves, MHD waves do not propagate isotropically relative to the fluid’s 
rest frame.

The wave propagation diagrams show B increasing from a) through c). 
Question: What do you see? Interpret the wave diagrams.
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Eigenvalues become degenerate  eigenvectors become indeterminate.

The indeterminacy is multiplicative and can be treated. This yields an 
eigenvector set that is orthonormal and salient in all the limits seen above 
(Roe & Balsara 1996).

Have to pay careful attention to the coefficients in all the limits.

f s s f

f f s s s s f f

s s y,s z f f y,s f f y,s z s s y,s

s s z,s y f f z,s f f z,s y s s z,sp
2 2 2 2

f s s s s s f s

s s y z

 0  1  0  
 m 0  m 0  m 0  m

 m   m  0  m   m  
 m   m  0  m   m  
   c 0    c 0    c 0    c

 4  c  4

R

α ρ α ρ α ρ α ρ
α α α α

α β β α β α β β α β
α β β α β α β β α β
α ρ α ρ α ρ α ρ

α πρ β πρβ

− −
− − −

− − −=

− ,s f s y f s y z,s s s y

s s z y,s f s z f s z y,s s s z

 4  c  0  4  c  4  4  c  

 4  c  4  4  c  0  4  c  4  4  c  

α πρ β α πρ β πρβ α πρ β

α πρ β πρβ α πρ β α πρ β πρβ α πρ β

 
 
 
 
 
 
 
 
 − − −
  − − 
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6.8) Linearized Riemann Solver for the MHD Equations

We define the Roe-averaged magnetic fields differently, retaining the 
original definitions of the velocities etc.

( )
( )

( ) ( )

y y z z
y z

22

2

L R

2

 B  B  B  B
B    ;   B

This allows us to derive (after a lot of symbolic manipulation)

 = X  +        ;    X  
2 2  + 

XP = 1        
2 4

R L L R R L L R

L R L R

ρ ρ ρ ρ
ρ ρ ρ ρ

ρ
ρ ρ

ρ ρ
π

+ +
≡ ≡

+ +

∆ 
∆ ∆ ⋅ ∆ ≡ 
 

 
∆ Γ − − ∆ − ⋅ ∆ 

 

BB B B

v v v 1+      
4π

ε 
∆ − ⋅ ∆ 

 
B B
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( ) ( ) ( ) ( ) ( ) ( ) ( ) y2 2
x x x y z

Manipulations similar to those for the Euler equations allow us to obtain a formal similarity to the
actual, physical, characteristic matrix:

0 1 0 0 0 0 0
B1 Xv  2 2v 1 v 1 v 1 v 1 2 2

2 4 4

A=

π π
Γ −

− + + −Γ − Γ − − Γ − − Γ − Γ − −Γv ( )

( )

( )

z

x
x y y x

x
x z z x

51 52 53 54 55 56 57

y x
y x x y x

z x
z x x z x

B
4

Bv v v v 0 0 0
4

Bv v v 0 v 0 0
4

B B1 B v B v 0 0 v 0

B B1 B v B v 0 0 0 v

Recall the Euler case. Familiar extensions to the

π

π

π
δ δ δ δ δ δ δ

ρ ρ ρ

ρ ρ ρ

∗ ∗ ∗

∗ ∗ ∗

 
 
 −Γ
 
 
 − −
 
 

− − 
 
 
 
 − − − 
 
 − − − 
 

( ) ( )22
2
s

yx
x y

 definition of the sound speed follow:

1 2 P Xc  =       ;    P     H        
2 4 4

Analogous definitions for the Alfvenic speeds can also be obtained:
BBb   ;   b

4 4

ρ ρ
ρ πρ π

πρ πρ

∗ ∗
∗ ∗

∗ ∗

 Γ − Γ −Γ
≡ − − − 

Γ Γ 

≡ ≡

v B

2 2 2 2 2z
z x y z y z

B   ;   b    ;   b  b  + b  + b    ;   b    b  + b
4πρ

⊥∗
≡ ≡ ≡
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{ }

( )

x f x x x s x x s x x x f

 4 2 2  2 2 2
s s x

The ordered set of analogous eigenvalues are given by:

v m , v b , v m , v , v m , v b , v + m

and they are obtained from the analogous quartic:

m    c  + b   m  + c  b  = 0

We can also obtain the a

− − − + +

−

f s s f

f f s s s s f f

s s y,s z f f y,s f f y,s z s s y,s

s s z,s y f f z,s f f z,s y s s z,s

p
2 2

f s s s

nalogous eigenvectors:

 0  1  0  
 m 0  m 0  m 0  m

 m   m  0  m   m  
 m   m  0  m   m  

X X c 0  c
4 4

R

α ρ α ρ α ρ α ρ
α α α α

α β β α β α β β α β
α β β α β α β β α β

α ρ α ρ
π π

∗ ∗ ∗ ∗

∗ ∗

− −
− − −

− − −
=  − − 

 
2 2

s s f s

s s y z,s f s y f s y z,s s s y

s s z y,s f s z f s z y,s s s z

X X X c 0  c
4 4 4

 4  c  4  4  c  0  4  c  4  4  c  

 4  c  4  4  c  0  4  c  4  4  c  

α ρ α ρ
π π π

α πρ β πρ β α πρ β α πρ β πρ β α πρ β

α πρ β πρ β α πρ β α πρ β πρ β α πρ β

∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗







       − − −     

     

− − − −

− −










 
 
 
  



We use the same entropy fixes as before.

There is some analysis to show that the effects of non-convexity are 
not severe.
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6.9) HLL, LLF, HLLD and HLLI Riemann Solvers for MHD
6.9.1) HLL and LLF Riemann Solvers

We keep Bx constant across all these Riemann solvers.

The HLL and LLF Riemann solvers continue to have the same 
definitions. All that changes is the definitions of the extremal signal 
speeds:

( )( ) ( )( )

( ) ( )( )

1
x f x f

1
x f x f

For HLL we use:

S min U , v  m ,0    ;   S max U , v + m ,0

For LLF we use:

S max U , v  m , v + m , U

M
L L R R

M
Max L R

λ λ

λ λ

≡ − ≡

≡ −



54

6.9.2) HLLD Riemann Solver for MHD

Recall : The Euler equations have one contact discontinuity. Restoring it 
in the HLL Riemann solver gave us the HLLC Riemann solver.

The MHD equations have three linearly degenerate waves : One contact
discontinuity and two Alfven waves. Restoring these waves in the HLL 
Riemann solver gives us the HLLD Riemann solver. The “D” stands for 
these discontinuities.
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( )
HLLD

The HLLD Riemann solver uses the following wave model with 6  :
F         if S 0         
F        if S 0 S
F       if S 0 S

F
F       if S 0 S
F        if S 0 S
F    

L L

L L L

RS L L M

R M R

R R R

R

constant states

∗ ∗

∗∗ ∗

∗∗ ∗

∗ ∗

>

≤ ≤

≤ ≤
=

≤ ≤

≤ ≤
    if S 0         

S  , S  and S  will correspond to the speed of the   and 
the  . We will obtain S  using a strategy that is similar to the Euler case.

R

M L R

M

contact discontinuity
Alfven waves

∗ ∗









 <

1) The HLLD Riemann solver for MHD is also provably positively 
conservative.
2) Just like the HLL Riemann solver, it too has an in-built entropy fix.
3) Like the HLLC, it too will capture isolated fast magnetosonic shocks 
exactly. It does average over the slow magnetosonic shocks. However, 
the slow magnetosonic shocks can only support a small pressure jump, 
so their contribution to the overall discontinuity is not too large. Hence, 
it is ok to ignore them.
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2

T

As with the HLLC Riemann solver, we wish to keep the total pressure constant
across the contact discontinuity and Alfven waves:

P  P + 
8

As with the HLLC Riemann solver, this is achieved by asserting

π
≡

B

( ) ( )
( ) ( )

x x x x T T
x x x x

x x

*

 that the x-component
of the velocity is a constant across the Riemann fan:

 v S v  v S v  + P P
S v v v v

S v S v

As with the HLLC Riemann solver, the states U  a

R R R R L L L L L R
M L R L R

R R R L L L

L

ρ ρ
ρ ρ

∗ ∗ ∗∗ ∗∗ − − − −
= = = = =

− − −

*nd U  are obtained by writing 
jump conditions:

R

( ) ( )

2 2
T x

y x yy

z x zz

T x

y y x y

z z x z

 S
 S P B 4 S
 S v B B 4 v
 S v B B 4 vS

P S B 4

B            B S B v
B            B S B v

L ML

L M LL M

L M L LL L

L M L LL LL

L L M L LL

L L M L

L L M L

ρρ
ρ πρ
ρ πρ
ρ πρ

πεε

∗∗

∗ ∗∗

∗ ∗ ∗∗ ∗

∗ ∗ ∗∗ ∗

∗ ∗ ∗ ∗∗

∗ ∗ ∗

∗ ∗ ∗

 
  + − 
  −

  −  −
  + − 
  −
 
  −  

v B ( ) ( )

x
2 2
x T xx

x y x yy

x z x zz

T x x

y y x x y

z z x x z

v
v P B 4v
v v B B 4v
v v B B 4vS

P v B 4

B            B v B v
B            B v B v

L LL

L L LL L

L L L LL L

L L L LL LL

L L L L LL

L L L L

L L L L

ρρ
ρ πρ
ρ πρ
ρ πρ

πεε

  
   + −  
   −

    −  =   −
    + −   
    −   

   −  

v B











 
 


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( )( )

( )( )
( )

x

T T T T x x

x y x
y y 2

x x

2
x x

y y

S vThe first row gives: 
S S

The second row gives: P P P  P S v S v

B B S vThe third and sixth rows give: v = v    ;
4 S v S S B 4

S v B
and     B = B

L L
L L

L M

L L L L L L M L

L M L
L L

L L L L M

L L L
L L

ρ ρ

ρ

π ρ π

ρ

∗

∗ ∗ ∗∗

∗

∗

−
=

−

= = = + − −

−
−

− − −

− −

( )( )

( ) ( )

2

2
x x

x T x T x

4
 

S v S S B 4

(Similar expressions are obtained from the 4  and 7  rows.)

S v  P  v  P  S  B 4
The fifth row gives: 

S S

As with the HLLC Riemann solver, these exp

L L L L M

th th

L L L L L M L L L L
L

L M

π
ρ π

πεε
∗ ∗ ∗

∗

− − −

− − + + −
=

−

v B v B 

ressions are based on a formal analogy.
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x x

T T y y

B B
The Alfven wave speeds are written by analogy:  S S     ;    S S

4 4

The jump conditions across the contact discontinuity give the expected results:
P P    ;    v v    ;  

L M R M

L R

L R L R

πρ πρ
∗ ∗

∗ ∗

∗∗ ∗∗ ∗∗ ∗∗

= − = +

= = z z y y z z  v v    ;    B B    ;    B B  

Asserting the formal jumps across the Alfven waves, unfortunately, does not give
us as much insight as we wish. Nor does it give us clean expressions

L R L R L R
∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗= = =

( ) ( )

** **

T T x

 for all the 
U  and U  variables. We can only squeeze so much out of our analogies!

We get :    ;    P P    ;    sgn B 4

Lastly, integrating over the dotte

L R

L L L L L L L L L L Lρ ρ ρ πε ε∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗∗= = = − −v B v B 

( ) ( )

( ) ( )

y y y y x
y y

y y y y x
y y

d rectangle in the previous space-time diagram gives:

 v  v   B B  sgn B 4
v v =    ;    

 B  B    v v  sgn B 4
B B =  

L L R R R L
L R

L R

L R R L L R R L
L R

L R

ρ ρ π

ρ ρ

ρ ρ ρ ρ π

ρ ρ

∗ ∗ ∗ ∗ ∗ ∗
∗∗ ∗∗

∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗∗ ∗∗

∗ ∗

+ + −
=

+

+ + −
=

+
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6.10) Riemann Problem for the MHD System

The result of the Riemann problem for the Euler system is easy to 
classify, not so for MHD, where over 200 outcomes are possible.

The system is non-convex and non-strictly hyperbolic  wave families 
can intersect and form compound waves. A shock can be attached to a 
rarefaction wave, as we saw in Chapter 4.

Fast magnetosonic shocks increase the transverse component of the 
magnetic field. Slow magnetosonic shocks decrease the transverse 
component of the magnetic field. Question: Rarefaction fans act 
oppositely, so how are transverse fields treated by rarefaction fans?

This opens the door to switch-on fast magnetosonic shocks or switch-on 
slow magnetosonic rarefactions.

Likewise, we can have switch-off fast magnetosonic rarefactions or 
switch-off slow magnetosonic shocks.
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The left-going slow compound wave is genuinely a consequence of the field reversal in 
a coplanar problem. If there were a non-coplanarity, it would not show up.

( )x y z y z , P, v ,  v ,  v ,  B ,  B  = ( 1, 1, 0, 0, 0, 4 , 0)                     for x<0        =2;     B 0.75 4

                                             = ( 0.125, 0.1, 0, 0, 0, 4 , 0)        for x>0

xρ π π

π

Γ =

−
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( )x y z y z , P, v ,  v ,  v ,  B ,  B  = ( 1.08, 0.95, 1.2, 0.01, 0.5, 3.6, 2.0)         for x<0       =5/3;     B 2

                                             = ( 1, 1, 0, 0, 0, 4, 2)                          
xρ Γ =

         for x>0
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( )x y z y z , P, v ,  v ,  v ,  B ,  B  = ( 1, 1, 0, 0, 0, 4 , 0)                              for x<0       =5/3;     B 4

                                             = ( 0.2, 0.1, 0, 0, 0, 0, 0)                
xρ π πΓ =

             for x>0

Right-going switch-on fast shock.
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Preserving Stationary Contact Discontinuities (HLL v/s HLLI)

Preserving Stationary Alfven waves (HLL v/s HLLI)
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