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7.1) Introduction

This is the chapter where we bring together all our ideas on hyperbolic 
conservation laws.

Multi-d conservation law: 

Whether it is hyperbolic depends on eigenstructure of :

Written in conservation form:

Question: What are the benefits of conservation form? Why do we have 
overbars?
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Avoiding spurious oscillations: Non-linear hybridization; TVD 
Reconstruction

Hyperbolic conservation law becomes simple in characteristic variables:

Above equation still holds locally, though not globally when non-
linearities are introduced. 

Riemann problem is essential for dealing with non-linearities.

Various kinds of approximate Riemann solvers were studied.

We will always begin with examples of second order schemes. Then we 
will show how the methodology is extended to higher order schemes. I.e. 
go from the familiar to that which may be less familiar.

( ) ( ) +   0    with     U        1,..,m m m m m
t xw w w x l x m M= = ∀ =λ
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7.2) Reconstructing the Solution for Conservation Laws – Part I, 
TVD & PPM Reconstruction
7.2.1) TVD Reconstruction in Conserved, Primitive or Characteristic 
Variables
The Problem: 
Let U be an M-component solution vector for a 2D conservation law. At 
a time tn in a zone (i,j), we start with zone-averaged values. We wish to 
reconstruct the solution:

The Solution: Three ways to do it:

A)Reconstruct on the conserved variables.
B) Reconstruct on the primitive variables.
C) Reconstruct on the characteristic variables.
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A) Componentwise Reconstruction on the conserved variables:
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Question: What are the advantages and disadvantages of this form of 
limiting?
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B) Componentwise Reconstruction on the primitive variables:
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,

From each vector U ,  obtain a vector of primitive variables V

Let  be the  component of V . 

For each of the components, we want:
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C) Reconstruction on the characteristic variables:
For a linear system,  +   0 is valid all over. Not so for a non-linear system. 
Question: Why?

When the eigenvalues and eigenvectors become solution-dependent, we only have a
local representatio

m m m
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project into an eigenspace 
specific to the zon
We can only  the solution from neighboring zones that is

 as follows:

First, obtain the characteristic variables from the neighboring zones and 
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Question: What do subscripts “L”, “C” and “R” stand for? What are the 
advantages and disadvantages of this form of limiting? 8



Results from piecewise linear limiting. Advect Gaussian, square wave, 
triangle and ellipse. See if shape is preserved. But what is that scheme to 
the right?
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7.2.2) Going Beyond Piecewise Linear: Piecewise Parabolic 
Reconstruction
It is only logical to think that going beyond piecewise linear 
reconstruction would yield better dividends. The piecewise parabolic 
method, PPM, is predicated on that viewpoint. 

It retains a TVD-like flavor in that it prohibits new extrema from 
developing.

It is acceptable to reconstruct the variation one dimension at a time. 
Therefore, we focus on a one-dimensional reconstruction.

Let us assume a piecewise parabolic profile that is valid over [-0.5,0.5], 
which spans the zone “i”:

Question: Why might it be beneficial to choose this form? 
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Shock-like profile shown by dotted curve.
Mesh function (average of shock-like profile) shown by dashed slabs.
Reconstructed profile shown by solid curve. Observe how it changes 
during the course of the reconstruction procedure!
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Question: What are the problems with the solid curve in the previous figure? 13
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7.3) Reconstructing the Solution for Conservation Laws – Part II, 
Non-Oscillatory Reconstruction
The TVD and classical PPM reconstruction do clip local extrema, 
whether they are physical or not. Over thousands of timesteps, this can 
add up. (There are newer variants of PPM that avoid this.)

Clipping extrema scheme is second order.

To go to higher order, we must avoid clipping physically valid extrema. 

In Essentially Non-Oscillatory (ENO) schemes, we permit the 
introduction of new extrema in the reconstruction as long as the original 
mesh function also has such extrema.

Weighted Essentially Non-Oscillatory (WENO) reconstruction schemes 
are a modern variant. 

Comes in two flavors: Finite Difference and Finite Volume 17



7.3.1) Weighted Essentially Non-Oscillatory (WENO) Reconstrution
in One Dimension
Think of the minmod limiter as choosing from a left slope 
(corresponding to a left-biased stencil) and a right slope (corresponding 
to a right-biased stencil). 

Either reconstruction is second order. Minmod chooses the stencil with 
the smaller slope.

The choice is made using non-linear hybridization.

WENO takes these two ideas much further:

1) We do a much more detailed stencil analysis, often between two or 
more stencils.
2) The non-linear hybridization between competing stencils is also more 
sophisticated.

Let us see how WENO reconstructs a smooth and a discontinuous 
profile.
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Smooth Gaussian & Shock-like profiles shown by dotted curves.
Mesh function (average of shock-like profile) shown by dashed slabs.
Reconstructed profile shown by solid curve. Observe how it changes 
during the course of the reconstruction procedure!
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( );

We need to quantify the smoothness of a stencil.
Insight: the smoothness relates to the derivatives:  
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What do we expect for the discontinuous profile?
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Different strokes for different blokes:

There is a certain amount of flexibility in the choice of the linear weights, and also, indeed,
in the choice of smoothness measures.

CWENO 1 with 50   :   L R Cγ = γ = γ =
Question: What does this do?  

Dispersion minimization: Requires adding fur

and =4.
Central stencil is emphasized becaus

ther stencils.

Optimize accuracy: For right-

e it is mor
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e stable.
p

With this choice we can achieve fifth order of accuracy, but only for finite di

0.1,  0.6,  0.3

increasing order of a
fference sch

ccurac
emes.

This advantage of  does not extend to finite volume sy c

L C Rγ = γ = γ =

hemes.

Question: The smoothness indicators are extremely nonlinear in the solution. Why is that
a good thing? What does that give you?

In general, WENO works better if the reconstruction is carried out i characteristic variabn les.25



Question: Can you compare and contrast these results with those for 
TVD and PPM schemes?
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7.3.2) WENO Reconstruction in Multiple Dimensions

Say for example that we want third order finite volume reconstruction 
over a rectangular zone. We then have

Our job is to reconstruct all the moments. Can be done in one of two 
ways:

1) Choose large, multidimensional stencils, each of which yields all the 
moments.

2) Do all x-moments by looking in the x-direction; all y-moments by 
looking in the y-direction. Then do something special for the few cross 
terms that remain.

We pick strategy 2) thought the book gives citations where 1) is done.
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7.4) Evolving Conservation Laws Accurately in Time – Part I, Runge-
Kutta Methods
Spatial reconstruction at second and third order has been thoroughly 
discussed. Even higher orders of spatial reconstruction are possible.

To get a balanced scheme, the temporal accuracy must match the spatial 
accuracy. 

Easiest way to do that is given by Runge-Kutta methods.

The time evolution is conceptualized as the solution of an ordinary 
differential equation. Recall the terminology, “method of lines”, “semi-
discrete approximation” from Lecture 2.

Each stage in a Runge-Kutta method is simple and multiple internal stages 
make up the RK method to give us the overall time accuracy. 

Only some classes of RK methods preserve the TVD property – SSP-RK.
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7.4.1) Runge-Kutta Time Stepping
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( ) ( ) ( )( )

( ) ( )( )

1 1

1

2 1 1

2 21

1 1U  U
2 2

Can we extend this to ? Yes!

U U   U

3 1 1U U U  U
4 4 4
1 2 2U U U  U  
3 3 3

Above two schemes support a max CFL o

t

f

hir

 unity in 1D; Question: What about

d order R

 mu

K-SSP

lti-d?

n n

n

n n

t L

t L

t L

t L+

+ ∆

= + ∆

= + + ∆

= + + ∆
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( )1

Question: To what orders can we continue this? 
Answer: From  onwards,  schemes become 4th order RK-SSP

Butcher 

Fourt

quite complica

h order RK-SSP

ted 
              -- !

 sch

bar

eme

U U  0.391752227003

riers

n= + ( )
( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( )

2 1 1

3 2 2

4 3

92  U

U 0.44437049406734 U  0.55562950593266 U  0.36841059262959  U

U 0.62010185138540 U  0.37989814861460 U  0.25189177424738  U

U 0.17807995410773 U  0.82192004589227 U  0.54497475

n

n

n

n

t L

t L

t L

∆

= + + ∆

= + + ∆

= + + ( )( )
( )

( ) ( )

( )( ) ( )( )

3

21

3 4

3 4

021237  U

U 0.00683325884039 U  0.51723167208978 U

        0.12759831133288 U  0.34833675773694 U

        0.08460416338212  U  0.22600748319395  U

n n

t L

t L t L

+

∆

= +

+ +

+ ∆ + ∆
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7.4.2) Second Order Accurate Runge-Kutta Scheme

( ) ( ) ( )

( ) ( )

,
1/2, 1/2, , 1/2 , 1/2

,

1/2

1/2, , 1/2

1/2

We can now discretize the spatial parts of the governing equation as

U 1 1U F F G G

with

F F 1/ 2,      ;     G G , 1/ 2  

i j
i j i j i j i j

i j

y

i j i j

y x

L
t x y

x y dy x y dx

+ − + −

=

+ +

=−

∂
= = − − − −

∂ ∆ ∆

≡ = ≡ =∫


 

     

1/2

1/2

integration
finite volume formulat

  

The  of the fluxes along the faces reminds us that we are 
dealing with a . The integration of the 
fluxes shoul

ion
sufficiently high orded be done with o r 

x=

=−
∫


At second order things are sim

 
in order to realize the full accuracy of the method.

. We can replace the spatially 
averaged fluxes with the fluxes from the Riem

f spatial acc

ann problem t

uracy

hat
ple

 have 
been evaluated at the centers of the zone faces.
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; 1/

, , ,

, , 1; 1/

; , 1

, 1,

,

2, 2

2 ,/

,

; ,

In each zone ( , ), we assume we have U  and undivided differences U  and U  ,
to get:

1 1= U  U    ;    = U  U
2 2
1= U  U   

UU

 ;    U
2

U

i j x i j y i j

i j x i j i j x i j

i j y i

R i

T i

L i j

i j

j

jB j

i j

+

+

+ +

+

+

∆ ∆

+ ∆ − ∆

+ ∆

( ) ( );

1 , 1 , 1

1/2, ;

/

1 ,, 1/2; 1/2,

2

; , 1/2, 1/ /22

1= U  U
2

F F  ,      ;    G G UUU U ,R i B i

i j y i j

i j RS i j RS T ijj j jL i

+ +

+ ++ + ++

− ∆

= =

The neighboring zones 
have to interact using a 
Riemann solver so that 
we get the flux at the 
zone boundaries!
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7.4.3) Runge-Kutta Schemes at Higher Orders; Using Third Order 
as an Example

( ) ( ) ( )

( ) ( )

,
1/2, 1/2, , 1/2 , 1/2

,

1/2

1/2, , 1/2

1/2

We still discretize the spatial parts of the governing equation as

U 1 1U F F G G

with

F F 1/ 2,      ;     G G , 1/ 2  

i j
i j i j i j i j

i j

y

i j i j

y x

L
t x y

x y dy x y dx

+ − + −

=

+ +

=− =−

∂
= = − − − −

∂ ∆ ∆

≡ = ≡ =∫


 

     

1/2

1/2

  

Problem: , evaluating the above integrals becomes difficult.
Questions:What does the  tell us about numerical quadrature?
How many ev

At higher or

aluations of

der
Simpson ru
 the numerical flu

le

x=

∫


multiple Riemann solver evaluations
Gaussian

x would it require?
One option would be to use  at multiple

 along each bo points expensiundary. This can become very .

Because Riemann problem evaluation

ve

 is expensive, we want to make as few
evaluations of the Riemann problem as possible -- A -  approach .quadrature free
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( ) 2 2
, , , ; , ; , ; , ; , ;

Start with a reconstructed profile in each zone ( , ):
1 1ˆ ˆ ˆ ˆ ˆU , U  U  U  U  U + U  

12 12

Let us take the HLL Riemann solver as an example.

i j i j i j x i j y i j xx i j yy i j xy

i j

x y x y x y x y   = + + + − + −   
   

       

( ) ( ) ( )
( ) ( ) ( )

, ; 1/2, ,

1, ; 1/2, 1,

U ,  is used to obtain the left state : U U 1/ 2, 0

U ,  is used to obtain the right state : U U 1/ 2, 0
These can be used to obtain  and  , the extr

c
i j L i j i j

c
i j R i j i j

L R

x y x y

x y x y
S S

+

+ + +

= = =

= = − =

   

   

( ) ( ) ( )1/2, ; 1/2, ; 1/2,

emal wave speeds for the HLL RS.
If these wave speeds are frozen, we obtain the HLL flux as:

F  F  F

                     

S S
S S

    

S S

 US S
S S

R L

R L R
i j L i

L
j i j

L

R

R L

R

y y y+ + +

   
= −   
   

 
+

− 

− −

 


  

( ) ( )( ); 1/2, ; 1/2,U

Question: What does freezing the wave speeds,  and  , give us?

R i j L i j

L R

y y

S S

+ +− 
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( ) ( ) ( ) ( ); 1/2, , ; 1/2, 1,

The reconstruction within each zone allows us to write:
U U 1/ 2,      ;      U U 1/ 2,

The above expressions are available analytically and can be integrated 
once 

L i j i j R i j i jy x y y x y+ + += = = = −     

( ) ( )( )

( ) ( )

1/2

; 1/2, ; 1/2,
1/2

1, 1, ; 1, ; , , ; , ;

1
; 1/2, ,

and for all:

U U

1 1 1 1ˆ ˆ ˆ ˆ          U  U  U U  U  U
2 6 2 6

Fluxes treated similarly:

U U 1/ 2, 1/ 2     

y

R i j L i j
y

i j i j x i j xx i j i j x i j xx

L i j i j

y y dy

x y

=

+ +
=−

+ + +

+

−

   = − + − + +   
   

= = = −

∫




  

 

( ) ( )
( ) ( )

( ) ( )( ) ( )( ) ( )( )

2
; 1/2, ,

3
; 1/2, ,

1/2
1 2 3

; 1/2, ; 1/2, ; 1/2, ; 1/2,
1/2

;     U U 1/ 2, 0     ;

U U 1/ 2, 1/ 2     

1 2 1F  F U  +  F U  +  F U
6 3 6

L i j i j

L i j i j

y

L i j L i j L i j L i j
y

x y

x y

y dy

+

+

=

+ + + +
=−

= = =

= = =

=∫




 

 

 
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7.5) Evolving Conservation Laws Accurately in Time – Part II, 
Predictor-Corrector Schemes
7.5.1) Second Order Accurate Predictor-Corrector Schemes

( )

( ) ( ) ( )

, , , ,

, ,

Say we have used the reconstruction in zone ( , ) at time  to obtain:
U , U  + U   + U  

We refer to U  and U  as the .

Conside 1r  : ,1/ 2 / 2, , / 2, , 1

n

n n
i j i j x i j y i j

x i j y i j

i j t
x y x y

nodal po

m

i j

odes

ii s j jnt i −

= ∆ ∆

∆ ∆

++

   

( )
( )

 and . 

We evaluate  from immediately inside the zone ,  being considered.

, 1/ 2

 nodal valu i jes

i j −

(i,j) ( )1/ 2,i j+( )1/ 2,i j−

( ), 1/ 2i j +

( ), 1/ 2i j −
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( ) ( ) ( ) ( )

, , 1/

, 1/

1/2, , ,2

,2

,

Consider  : , ,  and . 

1 1We now have  : U  + U ; U   U  ;
2 2

                                            

1/ 2, , 1/ 21/

U

2 ,

 

U

2, 1

U U

/

n n
i j x i j i j x i j

n
i

n

n
j

i j

j

i

i

nodal points

nodal valu

i j

es

i jji j i

+ −

+

+ −+

= ∆

−

= − ∆

=

( )

( ) ( )( ) ( ) ( )( )
,

, , ,

1/2, 1/2, , 1/2 , 1/

, 1/2

2

1 1 + U ; U   U
2 2

then gives us the time rate of update within each zone ,  as:

1 1F U F U G U G

U

UU

 
n

i

n n
j y i j i j y

n
i j i j

n n n n
i j i j i j i j

j

Predict i j

x

or Step

t y+ +

−

− −

∆ = − ∆

=
∂ −

 − − −
∆ ∆∂ 

(i,j)
1/2,Un

i j+1/2,Un
i j−

, 1/2Un
i j+

, 1/2Un
i j−

The Predictor Step now gives 
us an “evolution-in-the-small” 
for the PDE as follows:-
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1/2 1/2
; 1/2, , ; 1/2, 1, , 1,

,

 then assembles the  on either side of 

each zone boundary:

1 1 1 1 UU U

 space- and time-centered value

+  ; U U  U
2 2

U
2

s

U
2

n n n n n
L i j i j R i j i

n
n

x j
j

j x ii j
i

t t

Corrector St p

t

e

+ +
+ + + +

∂ ∂
≡ + ∆ ≡ − ∆ + ∆




∆ ∂ ∂

( )

1,

1/2 1/2
; , 1/2 , , ; , 1/2 , 1 , 1

, , 1

1 1/2 1/2
, , ; 1/2, ; 1/2, ; 1/

1 1 U 1 1 UU U +  U ; U U  U
2 2 2 2

 : U U F U , U F U

n

i j

n n
n n n n n n
B i j i j y i j T i j i j y i j

i j i j

n n n n
i j i j RS L i j R i j RS L i

t

t t
t t

tFinal update
x

+

+ +
+ + + +

+

+ + +
+ + −

 
 
 

∂ ∂   ≡ ∆ + ∆ ≡ − ∆ + ∆   ∂ ∂   
∆

= − −
∆

( )( )
( ) ( )( )

1/2 1/2
2, ; 1/2,

1/2 1/2 1/2 1/2
; , 1/2 ; , 1/2 ; , 1/2 ; , 1/2

, U

                                       G U , U G U , U

n n
j R i j

n n n n
RS B i j T i j RS B i j T i j

t
y

+ +
−

+ + + +
+ + − −

∆
− −
∆

The Corrector Step is 
the step where the 
neighboring zones 
interact with each other 
through the Riemann 
solver.



41

7.5.2) ADER Time Stepping for Second, and Higher Order Time 
Accuracy

ADER == Arbitrary DERivatives in space and time.
It is a method for starting with a high order spatial reconstruction and 
rapidly doing the time update with higher order of accuracy. 

I.e., the Predictor-Corrector methods at second order go on to become 
full-fledged ADER methods at all orders in space and time.

The important part is the ADER-Predictor step. It starts with the spatially 
reconstucted modes with any order of spatial accuracy within a zone. It 
gives us the temporal “evolution-in-the-small” of the PDE up to the same 
order of space-time accuracy. Here, “evolution-in-the-small” means 
locally within the zone of interest.

ADER-CG studied here. “CG” stands for Continuous Galerkin. 
Question: What does a stiff source term do?
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1D ADER Predictor In Brief ; Toro & Titarev (2002), Titarev & Toro (2002), 
Gassner et al (2007), Dumbser, Enaux & Toro (2008), Dumbser et al. (2008) Toro & Castro 
(2008), Gassner et al (2011), Balsara et al. (2009, 2013)

Mathematical Statement of our goal:-

Within a 1D zone start with spatial reconstruction, i.e. spatial modes:-

2
0 x xx

1ˆ ˆ ˆw  + w  x + w  u ( xx, t=0   )
2

 = 
1

 − 
 

Use governing equation to obtain space-time reconstruction, i.e. space-
time modes:-

t xGoverning Equation :  u +  f(u) = 0∂ ∂

2
t t

2
0 x x t tx xˆ ˆ ˆ+ u  t +  u (x, t) u  t1ˆ ˆ ˆw  +  + w  x + w u  x t =     x     Dynamics!

2
!!

1
← − 

 

The process is iterative, but the iterations converge very fast!
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STEP I) Start with the reconstructed initial polynomial within each zone
expressed in a higher order modal basis set (i.e. orthogonal Hermite
polynomials) (1d here for simplicity; modes shown with caret):-

2
0 x xx

1ˆ ˆ ˆw  + w  x + w  u ( xx, t=0   )
2

 = 
1

 − 
 

We can use the above to obtain the spatial 
representation of the fluxes at t=0; 
i.e. evaluate only once:

t xGoverning Equation :  u +  f(u) = 0∂ ∂

2
0 x xx

1ˆ ˆ ˆf  + f  x + f  x  f (x, t  =0) =  
12

 − 
 

How? Answer: 
a) Evaluate u1 = u(x=0,t=0), u2 = u(x=.5,t=0), u3 = u(x=-.5,t=0). 
b) Find f1 = f(u1), f2 = f(u2), f3 = f(u3) . 
c) Obtain modal representation of flux. 3rd order in 1D is first non-trivial 
case.

1 23

45

6

x

t

x=0.5x= −0.5

t=0

t=1

Space-time element
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STEP I, cont’d)
We wish to obtain the space-time representation of the conserved vars. 
within a zone:-

2
t tt x0 t

2
x xx

1ˆ ˆ ˆw  + w  x + w  x   
12

ˆ ˆ ˆ+ u  t +u (x,   u  t  +t) =  u  x t  − 
 

Similarly, we wish to obtain a space-time representation of the fluxes:
(the fluxes don’t need to be saved, so they don’t take up storage)

2
t tt x0 t

2
x xx

1ˆ ˆ ˆf  + f  x + f  x   
12

ˆ ˆ ˆ+ f  t +f (x,   f  t  +t) =  f  x t  − 
 

t tt xt t tt xt
ˆ ˆ ˆˆ ˆ ˆWe start the with : u  u  = u  = 0    and   f  f  = f  =  0iteration = =

t xGoverning Equation :  u +  f(u) = 0∂ ∂

V. Imp. Questions: 1) Given approx. u(x,t), how to obtain improved f(x,t)?

2) How to obtain an improved space-time representation? t tt xtˆ ˆ ˆi.e. u ,  u  and  u
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STEP II) Pick a space-time element. Pick a set of nodal points in a 
space-time element. 1d shown here; has been extended to multi-d.

u (xi , ti ) can be evaluated at each such nodal point “i = 4, 5, 6”. 

STEP III) Use nodal values to find nodal fluxes fi = f ( u (xi , ti ) ) .

STEP IV) Obtain modal representation of fluxes:
Notice: Finite Difference-like forms

( )
( )
( )

( )

0 1 2 3

x 2 3

xx 2 1 3

t 1 2 3 4 5 6

tt 1 2 3 4 5 6

xt 2

f̂  = 4f  + f  + f 6         ;         

f̂  = f   f      ;         

f̂  = 2 f  2 f  + f    ;

f̂  =  f   2 f   2 f  + 2 f  + 2 f    f  ;    

f̂  = 2 f   f   f  + f  + f   f  ;      

f̂  = 2 f   

−

−

− − −

− − − −

− −( )3 4 5f   f  + f− Notice: t=0 variables only 
evaluated once; saves float pts.

1 23

45

6

x

t

Nodal points at
different time levels

Space-time element in (x,t)
Spans [-.5,.5]x[0,1]

x=0.5x= −0.5

t=0

t=1
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STEP V) Use space-time basis functions as test functions to derive 
update equations: 

( ) ( ) ( )2
1 2 3x,t  = t    ;    x,t  = t     ;    x,t  = x tφ φ φ

Make Galerkin, i.e. weak-form integration over the space-time element :-

( ) ( )t x u x,t  +  f x,t 0∂ ∂ =

2 2
0 x xx t tt xt

1ˆ ˆ ˆ ˆ ˆ ˆu (x, t) = w  + w  x + w  x    + u  t +  u  t  + u  x t
12

 − 
 

2 2
0 x xx t tt xt

1ˆ ˆ ˆ ˆ ˆ ˆf (x, t) = f  + f  x + f  x    + f  t +  f  t  + f  x t
12

 − 
 

( ) ( ) ( )
[ ] [ ]

t x
1/2,1/2 , 0,1

Galerkin formulation:

 x, t  u x,t  +  f x,t  dx dt = 0     for  = 1, 2, 3i
x t

i
∈ − ∈

∂ ∂  ∫∫ φ
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For an Nth order scheme, even in multi-dimensions, this process can be 
shown to converge in (N−1) iterations. – Picard Iteration

ADER can now be used in Predictor-Corrector fashion to obtain a 
one-step update scheme for conservation laws. 

We’ve described the Predictor Step. Next, we describe efficient 
evaluation of the Corrector Step.

This gives us the update equations:-
(Notice that this is the part where we do dynamics, because we relate 
gradients of flux to the time-rate of change of the conserved variables!!!)

t x tt xt xt xx
ˆ ˆ ˆˆ ˆ ˆu  = f     ;     u  = f 2     ;     u  = 2f− − −

Go back to STEP II and iterate!
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Flowchart for Initializing ADER-CG Iteration

2
0 x xx

1ˆ ˆ ˆStart with : u (x, t) = w  + w  x + w  x   
12

 − 
 

u (xi , ti =0) evaluated at each spatial nodal point “i = 1, .., 3”.
x1=−0.5 ; x2 = 0.0 ; x3=0.5

Use nodal values, u (xi , ti ) to find nodal fluxes fi = f (u (xi , ti )), i=1,..,3

( ) ( ) ( )
i i

0 1 2 3 x 2 3 xx 2 1 3

ˆUse nodal fluxes f  to obtain modal fluxes f
ˆ ˆ ˆf  = 4f  + f  + f 6    ;   f  = f   f   ;   f  = 2 f  2 f  + f− −

t tt xt t tt xt
ˆ ˆ ˆˆ ˆ ˆWe start the  with : u  u  = u  = 0    and   f  f  = f  = 0iteration = =
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Flowchart for ADER-CG Iteration
2 2

0 x xx t tt xt
1ˆ ˆ ˆ ˆ ˆ ˆStart with : u (x, t) = w  + w  x + w  x    + u  t +  u  t  + u  x t

12
 − 
 

u (xi , ti ) evaluated at each space-time nodal point “i = 4, 5, 6”. 
(x4, t4) = (-.5,.5)  ;  (x5, t5) = (0.5,0.5)  ;  (x6,t6) = (0,1)

Use nodal values, u (xi , ti ) to find space-time nodal fluxes fi = f (u (xi , ti ))

( ) ( )
i i t 1 2 3 4 5 6

tt 1 2 3 4 5 6 xt 2 3 4 5

ˆ ˆUse nodal fluxes f  to obtain modal fluxes f   :    f  =  f   2 f   2 f  + 2 f  + 2 f    f  ;
ˆ ˆf  = 2 f   f   f  + f  + f   f   ;     f  = 2 f   f   f  + f

− − −

− − − − − − −

t x tt xt xt xx
ˆ ˆ ˆˆ ˆ ˆUpdate equations :   u  = f   ;   u  = f 2   ;   u  = 2f− − −

N-1 iterations for an Nth order scheme.
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1D ADER Corrector: Rapid strategy for obtaining numerical fluxes

Dumbser, Kaser & Toro (2008), Balsara et al. (2009), Balsara et al. (2013)

Say for the governing equation : 

We have obtained the space-time representation of “u” and “f”,
i.e. within each zone we have:

t x u +  f(u) = 0∂ ∂

2 2
0 x xx t tt xt

1ˆ ˆ ˆ ˆ ˆ ˆu (x, t) = w  + w  x + w  x    + u  t +  u  t  + u  x t
12

 − 
 

2 2
0 x xx t tt xt

1ˆ ˆ ˆ ˆ ˆ ˆf (x, t) = f  + f  x + f  x    + f  t +  f  t  + f  x t
12

 − 
 

Question: How do we rapidly obtain the numerical flux after we
have obtained the space-time representation?
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( ) ( ) ( ) ( ) ( )( )

( )

1/2 ; 1/2 ; 1/2 ; 1/2 ; 1/2

1/21/2

Consider the v. simple case of the HLL flux:

  

The numerical flux is then given by :  

HLL
i L i R i R i L i

HL

R

L HLL
ii

L R L

R L R L R L

S S Sf t f t f t u t u t

f f

S
S S S S S

t

S+ + + + +

++

     
= − + −     
     

≡

− − −

( )

1

0

1/2 ; 1/2 ; 1/2 ; 1/2 ; 1/2

 

If we freeze  and  in some intelligent way (described later) then we can write:

   

t

L R

HLL

i
R L R

L i R i R i L
L

R L R R L
i

L

dt

f f fS S S S
S S S S S

u u
S

λ λ
=

+ + + + +

     
≡ − + −    − − − 

     

∫

( )

( )

( )

( )

1

; 1/2; 1/2
0

1

; 1/2; 1/2
0

1

; 1/2; 1/2
0

1

; 1/2; 1/2
0

Define:

  ; 

  ;  

  ; 

  ; 

L iL i
t

R iR i
t

L iL i
t

R iR i
t

f f t dt

f f t dt

u u t dt

u u t dt

++
=

++
=

++
=

++
=

≡

≡

≡

≡

∫

∫

∫

∫
x

ti i+1

; 1/2 ; 1/2
;  

L i L i
u f

+ + ; 1/2 ; 1/2
;  

R i R i
u f

+ +

( ) ( )
( ) ( )

; 1/2

; 1/2

1/ 2,  &

1/ 2,  
L i i

L i i

u t u x t

f t f x t
+

+

≡ =

≡ =

( ) ( )
( ) ( )

; 1/2 1

; 1/2 1

1/ 2,  &

1/ 2,  
R i i

R i i

u t u x t

f t f x t
+ +

+ +

≡ = −

≡ = −

RSLS

t=0

t=1
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Above example showed how time-averaging can be done. For 
multidimensional problems, the averaging can be done in space & time.
Can also be done for other Riemann solvers.

Question: How does one obtain SL and SR ?

x

ti i+1i-1

; 1/2bL iu + ; 1/2bR iu +

LS RS

( ) ( ); 1/2 ; 1/2 11/ 2, 1/ 2  and 1/ 2, 1/ 2
are honest to goodness physical states at the space-time barycenters of the faces.
They can be used to obtain  and 

bL i i bR i i

L R

u u x t u u x t

λ λ

+ + +≡ = = ≡ = − =

These ideas extend to multidimensions; they can also be used to yield 
the electric fields for MHD.
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7.5.2.1) Multidimensional ADER-CG Predictor Step

( ) 2 2
, , ; , ; , ; , ;, , ;

Within a zone we start with the third order spatial reconstruction:

U , ,

To endow time-dependence wi

1 1ˆ ˆ ˆ ˆ ˆU  U  U  U  U + U  
1

th

1

t

2

i

2

n 

i j i j x i j y i j xx i j yy i jj xyi x y x yt xy yx    + + + − + −=   
   

   



   

( ) 2 2
, , ; , ; , ; , ; ,

2
, ; ,

, ;

; ,

1 1ˆ ˆ ˆ ˆ ˆU  U  U  

ˆ ˆ ˆ+ U  + U  

he zone, we want (Zero new terms to begin with):

U , ,

               

U  U + U

    

 
12 12

+ Ui j t i j t

i j i j x i j y i j xx i j yy i j x

t

yi j

i j

x y x

t

x y t x

t

y y   + + + − + −   
   

=

 

     



 

; , ;

Question: Why do we add just these terms? (Hint: 

ˆ  +

Think Taylor serie )

 U  

s

xt i j ytx t y t 

 
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Recall that we needed the gradients of the x- and y- fluxes to obtain the 
predictor step. Same holds true here. So let us write the space-time moments of 
the x- and y-fluxes:

( )

( )

2
, ; ,

2 2
, , ; , ; , ; , ;

; , ; ,

,

,,

, ;

,

;

1 1ˆ ˆ ˆ ˆ ˆ ˆF  F  F  F  F + F  
12

ˆ ˆ ˆ ˆ+ F  + F  + F   +

12

ˆ ˆG G

F , ,

                F      

G , ,

i j t i j tt i j xt i

i j i j x i j y i j xx i j yyi j

i

i j x

j y

y

ij i

t

j

x y x y x yx y t

x y t

t t x t y t

   + + + − + −   


=
  

+=

   



     







 





2
, ;

2 2
; , ; , ; ,

, ; , ; ,

;

;

; ,

                   
Question: How would you obtain the spat

ˆ ˆ ˆ ˆ+ G  + G
ial mo

1 1ˆ ˆ ˆ ˆG

men
 

G G +G

+ 

 

G   + G  

12 1

ts 

2

i j t

j x i j

i j tt

y i j x

i j x

x i j yy i y

i yt

j

j

x

tt t x

x y x y

y

x

t t

y   + + − + −   
   

 

 







 







( )

( ) ( ) ( )

,

, , ,

of the fluxes? 
What about temporal moments? 
How do we relate the moments of the fluxes to the moments of U , , ?

 U , ,  F , ,  G , ,
Governing equation:  +  

i j

i j i j i j

x y t

x y t x y t x y tt t
t x x y

∂ ∂ ∂∆ ∆
+

∂ ∆ ∂ ∆ ∂



 

  

     





( )

( ) ( ) ( ) ( )1/21 1/2
, , ,

0 1/2 1/2

 = 0

  with a   , , : 

 U , ,  F , ,  G , ,
, ,  +     = 0

yt x
i j i j i j

t y x

y
Galerkin Projection test function x y t

x y t x y t x y tt tx y t dx dy dt
t x x y y

φ

φ
== =

= =− =−

 ∂ ∂ ∂∆ ∆
+ ∂ ∆ ∂ ∆ ∂ 

∫ ∫ ∫








 





 

  

     

 

   



 
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( )

( )

, ; , ; , ; , ; , ; , ;

2

, ;

To understand how it goes, let us explicitly try out , , . Show that we get:
4 2 2ˆ ˆˆ ˆ ˆ ˆU  +  U  =  F   G    F    G
3 3 3

Similarly, with , , :
3ˆ ˆU  +  U
2

i j t i j tt i j x i j y i j xt i j yt

i j t

x y t t

x y t t

φ =

− − − −

φ =

 

 

 

 

( )

( )

, ; , ; , ; , ; , ;

, ; , ; , ;

, ; , ;

3 3ˆ ˆˆ ˆ =  F   G    F    G
4 4

ˆˆ ˆSimilarly, with , ,   :           U  =  2 F   G

ˆ ˆSimilarly, with , ,   :           U  =  F  

i j tt i j x i j y i j xt i j yt

i j xt i j xx i j xy

i j yt i j xy

x y t x t

x y t y t

− − − −

φ = − −

φ = −

 

  

 

   , ;

, ; , ; , ; , ;

ˆ 2 G

Recall that this is a finite element-like procedure. 
We can resort to iterative improvement of the 

ˆ ˆ ˆ ˆmoments :                             U  ,  U  ,  U  and  U  .
Quest

i j yy

i j t i j tt i j xt i j yt

−

ion: How would such an iteration work? Answer: Break it into two parts & see.
It turns out that, at third order, the process converges in two iterations!
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 1
, ; , ,

From the spatial nodal points (Only evaluated  at the start of the iteration.):
0,0,0 , 1/ 2,0,0 , 1/ 2,0,0 , 0,1/ 2,0 , 0, 1/ 2,0 ,

1/ 2,1/ 2,0 , 1/ 2,1/ 2,0 , 1/ 2, 1/ 2,0 , 1/ 2, 1/ 2,0
We get:

F̂ 2 F 2 F F

{
}

i j xx i j i j

once
− −

− − − −

= − +( ) ( )

( )

3 4 1 5
, , ; , , ,

6 7 8 9
, ; , , , ,

2 3 4 5 1
, ; , , , ; , , , , , ; , ;

ˆ    ;      F 2 F 2 F F      ;

F̂ F F F F     ;       

ˆ ˆ ˆ ˆ ˆF F F      ;      F F F      ;      F F F F 12

Notice the fi

i j i j yy i j i j i j

i j xy i j i j i j i j

i j x i j i j i j y i j i j i j i j i j xx i j yy

= − +

= − − +

= − = − = + +

( ) ( ) ( ) ( ) ( ) ( )

( )11 12 2 3
, ; , , , , ,

nite difference-like forms!

From the space-time nodal points (Evaluated for  iteration):
0,0,1/ 2 , 1/ 2,0,1/ 2 , 1/ 2,0,1/ 2 , 0,1/ 2,1/ 2 , 0, 1/ 2,1/ 2 , 0,0,1

We get:
ˆ ˆF 2 F F F F   ;   F

{ }

i j xt i j i j i j i j i

each
− −

= − − + ( )
( )

13 14 4 5
; , , , ,

15 10 1 15 1
, ; , , , , ; , , , ;

2 F F F F   ;   

ˆ ˆ ˆF 2 F 2 F F     ;   F F F F

j yt i j i j i j i j

i j tt i j i j i j i j t i j i j i j tt

= − − +

= − + = − −
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7.5.2.2) Multidimensional ADER-CG Corrector Step

The construction from the previous sub-section has given us the space 
and time representation of the conserved variables and the fluxes. 

We wish to obtain the numerical flux in a quadrature-free fashion. In 
doing so, we wish to use all the space-time information that we have 
generated.

( ) ( ) ( )

( ) ( )( )

1/2, ; 1/2, ; 1/2,

; 1/2, ; 1/2,

S SF ,  F ,  F ,
S S S S

S S                        U , U ,
S S

The extremal speeds, S  and S  , are obtained from:

U

R L
i j L i j R i j

R L R L

R L
R i j L i j

R L

L R

y t y t y t

y t y t

+ + +

+ +

   
= −   − −   

 
+ − − 

  

  

 

 

( ) ( ) ( ) ( ); 1/2, , ; 1/2, 1,U 1/ 2, 0, 1/ 2     ;     U U 1/ 2, 0, 1/ 2
As before, we freeze these speeds. Question: What does this buy us?

c c
L i j i j R i j i jx y t x y t+ + += = = = = = − = = 

   
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( )
1/21

; 1/2, , , ; , ;
0 1/2

, ; , ; , ;

; 1/2,

1 1ˆ ˆU ,   = U  U  U
2 6

1 1 1ˆ ˆ ˆ                                             U  U   U
2 2 3

Do analogously for F

yt

L i j i j i j x i j xx
t y

i j t i j xt i j tt

L i j

y t dy dt

y

==

+
= =−

+

 + + 
 

 + + + 
 

∫ ∫








 

 

( )

( )
1/21

; 1/2, 1, 1, ; 1, ;
0 1/2

1, ; 1, ; 1, ;

,  .

1 1ˆ ˆU ,   = U  U  U
2 6

1 1 1ˆ ˆ ˆ                                              U  U   U
2 2 3

Do analogously

yt

R i j i j i j x i j xx
t y

i j t i j xt i j tt

t

y t dy dt
==

+ + + +
= =−

+ + +

 − + 
 

 + − + 
 

∫ ∫










 

 

( ); 1/2, for F ,  .R i j y t+



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7.8) Numerical Tests for Euler Flow
7.8.1) Demonstrating Accuracy on Multidimensional Test Problems
We study scheme performance for vortex flow with increasing 
resolution.

Questions: On a coarse mesh, with just a few zones across, which 
scheme performs better? As the mesh is refined, which scheme performs 
better? How do you measure order of accuracy?
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5.8.2) Forward Facing Step Test Problem
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7.8.3) Double Mach Reflection Problem
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