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7.1) Introduction

This is the chapter where we bring together all our ideas on hyperbolic
conservation laws.

Multi-d conservation law: U, +F(U) +G (U)y =0

Whether it is hyperbolic depends on eigenstructure of :

A\ _OF(U) _9G(U)

=RAL ; B =
o U

Written in conservation form:
Ay

Question: What are the benefits of conservation form? Why do we have
overbars?

—n+l  —n AL [=n+1/2 —n+1/2 AL [—n+1/2 —n+1/2
Ui,j — Ui,j —A_ Fi+1/2,j — Fi-12,j Gi,j+1/2 — i, j-1/2
X




Avoiding spurious oscillations: Non-linear hybridization; TVD
Reconstruction

Hyperbolic conservation law becomes simple in characteristic variables:

w' + A" wg =0 with w"(x)=I"U(x) V m=1.,M

Above equation still holds locally, though not globally when non-
linearities are introduced.

Riemann problem is essential for dealing with non-linearities.
Various Kinds of approximate Riemann solvers were studied.
We will always begin with examples of second order schemes. Then we

will show how the methodology is extended to higher order schemes. l.e.
go from the familiar to that which may be less familiar.



/.2) Reconstructing the Solution for Conservation Laws — Part |,
TVD & PPM Reconstruction

7.2.1) TVD Reconstruction in Conserved, Primitive or Characteristic
Variables

The Problem:

Let U be an M-component solution vector for a 2D conservation law. At
a time t" in a zone (i,]J), we start with zone-averaged values. We wish to
reconstruct the solution:

U' (X,9)=U, +AU,, X+A U, § where X=(x—x)/AX ; yz(y—yj)/Ay

Reconstruction means we use the mesh function {U,”J} to obtain AU, ; and A, U, ,

In each zone.

The Solution: Three ways to do it:

A)Reconstruct on the conserved variables.
B) Reconstruct on the primitive variables.
C) Reconstruct on the characteristic variables. i



A) Componentwise Reconstruction on the conserved variables:

Let U} be the m™ component ofU

For each of the components, we want:
u" (X, §)=0" + AT X+ AT

i,
with:
AT = Limiter (G, -0, 0" -0 ;)

—M

AT = Limiter (T, -G

Question: What are the advantages and disadvantages of this form of
limiting?




B) Componentwise Reconstruction on the primitive variables:

From each vector U], obtain a vector of primitive variables V"

i,j?
Let v, be them" component of V.

For each of the components, we want:
V(X §) =V AV XAV

y i

with:
AxvIJ = Limiter ( 1 —V; J,V V|m1,j) )
AN = Limiter (v{f‘j+1—V, Vi V.r,n,-_l)

Question: What are the advantages and disadvantages of this form of
limiting?




C) Reconstruction on the characteristic variables:

For a linear system, w," + A" w' = 0 is valid all over. Not so for a non-linear system.
Question: Why?

When the eigenvalues and eigenvectors become solution-dependent, we only have a
local representation of the eigensystem within each zone.

Le., 2" (U7;) , 1™(U};) and r" (U7, ) have become solution-dependent.

In simple words, the left eigenvectors in zone (i+1, j), given by {Im (L_Ji”ﬂ,j

):m=1..,M},
will not be orthonormal with the right eigenvectors in zone (i, j), given by

{r”‘ (O7;):m=1,..,M } Consequently, each zone defines its own local eigenspace.

Advantage of this Limiting:-Different wave families may have different properties. Some

may be linearly degenerate with the result that they don't self-steepen (think contact
discontinuity in Euler flow). Others may be genuinely non-linear so that they do self-steepen
(think sound waves in Euler flow). Different wave families have to be treated differently.



We can only project the solution from neighboring zones into an eigenspace that is
specific to the zone (i, J) as follows:

First, obtain the characteristic variables from the neighboring zones and the current zone
(pay attention to the subscripts):-

W :Im(Uin,j) <UL, W :Im(U'n') cUl 0 W =I”‘(U;’,j) - U]

i-1,j ! i+1, j

Y m=1. M

Second, limit the local characteristic variable:

m

AW, = Limiter (w",.. -

m m m _
W|,J,C’W|,J,C_W|,J,L) \v/ m—l’..,l\/l

Third, project the variation in the characteristic variables into the local space of right
eigenvectors:

J— M J—
AU, = Z:;AW{T‘J. ™ (0];)

Question: What do subscripts “L”, “C” and “R” stand for? What are the
advantages and disadvantages of this form of limiting?




Results from piecewise linear limiting. Advect Gaussian, square wave,
triangle and ellipse. See if shape is preserved. But what is that scheme to

the nght? Advection Test: MC Limiter, RK2, CFL 0.6 Advection Test: Classical PPM, RK3, CFL 0.6
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Fig. 7.2a shows the advection test catalogued in the text when the MC
limiter was used with a second order Runge-Kutta scheme. Fig. 7.2b
shows the same when the classical PPM reconstruction was used with
a third order Runge-Kutta scheme. The solid line shows the analync
solution, the crosses show the computed solution.



7.2.2) Going Beyond Piecewise Linear: Piecewise Parabolic
Reconstruction

It is only logical to think that going beyond piecewise linear
reconstruction would yield better dividends. The piecewise parabolic
method, PPM, is predicated on that viewpoint.

It retains a TV D-like flavor in that it prohibits new extrema from
developing.

It is acceptable to reconstruct the variation one dimension at a time.
Therefore, we focus on a one-dimensional reconstruction.

Let us assume a piecewise parabolic profile that is valid over [-0.5,0.5],
which spans the zone “i”:

u(x) =0 + G, x + Gxx(xz—ij
12

Question: Why might it be beneficial to choose this form? 0




reconstruction

function, mesh function,

PPM reconstruction; porabolae from quortic First, realize that U is already specified and can't be

] changed.
1 Thus, a parabola in zone "i" would be fully
] specified if the left and right edge values of "u"

1 within that zone were to be specified.

Focus on zone "i". Given u;., and u;., , we obtain:

1 ux:ui;R_ui;L : uxx: 3ui;R_ 6U| +3ui;L

1 Question: So, how do we obtain U, and u,.q

with third or better accuracy?

Shock-like profile shown by dotted curve.

Mesh function (average of shock-like profile) shown by dashed slabs.
Reconstructed profile shown by solid curve. Observe how it changes
during the course of the reconstruction procedure!

11



PPM reconstruction; parabolae from quartic

reconstruction

Question: So, how do we obtain u,, and u; .
with third or better accuracy?

function, mesh function,

Answer: Reconstruction via primitive function:

Consider the cubic ¢ (x) =g, +g,x+,x" +0,x" , which is to be fitted to
zones from "I —1" to "i+2". This can be done by imposing the four conditions

-0.5 0.5 1.5 2.5

[a(gdx =a, ; [a()dx =G ; Ja(x)dx =T, ; [a()dx =T, .,

-15 -05 0.5 1.5



reconstruction

function, mesh function,

PPM reconstruction; parabolae from quartic
T

3,0:- '
i Ui:R :
2.5_- \ 7
[ . P i
2.0 . : : :
: : : Question: So, how do we obtain u., and u. .
I | - ’ ’
.51 E : with third or better accuracy?
: } |
1.0 | i
: | ‘
| |
i | | ‘
051 | | |3
: j | |
: | | |
0.0 ] I l | I ] I I i 1
-2 -1 i +i+1 i+2 143
’r 1 _
Uir = E (ui + Ui+1) - E (ui—l + Ui+2)

1 1 : 1 1
Ui = u + E (Ui+1 - Uu) - E (Aui+1 - Aui) with Al'|i+1:§(Ui+2_Ui) and AU, :E(Um_ﬁi—l
We also set u,,., =U; -

This parabolic profile is shown by the solid curve in the previous figure.

Question: What are the problems with the solid curve in the previous figure? "

)



PPM reconstruction; paraboloe with slope limiters
T T T T T T

3.0 =

25F g

function, mesh function, reconstruction

w
I

0.sf
0,0: ] ]

-2 -1 i i+1  i+2  i+3
Second, consider the previous formula:

ui;R:U + E (Ui+1_U

But now enforce a limiter. l.e., unlimited slopes above are replaced with the limited slopes below:
Au;, = MC( U, —Uy s U _U') , AU = MC( U, -0, U _Ui—l)

1+1 i

We also set u;,,., =Uy., . The result is shown above. It is still unacceptable. Question: Why? 14



PPM reconstruction; monotone paraboloe

— ' ' ' ' —1 Third, in the spirit of not introducing new
3,0:- extrema, we first require that the mean value,
% 25F 1 T, should lie between min(u,, ,u. ) and
% gl | max (U;.,,U, ). This gives us our first condition
§ ; I for enforcing monotonicity:
:f‘:i "55- i 1 U, >0 andu, >0 if (U —T)(T-u, )<0
E_ u:-:- I _
‘§ : i This condition would flatten zone "i +2".
“ 0.5F | =
o
ool | | ! 1 Butitleaves zones "i" and "i +1" unchanged!

i-2 -1 i i+1 i+2 i+3  Question: How do we detect and cure those zones?
: A A 1 A A
Answer: Notice that u; (x) = T; + U, X + UXX(XZ—Ej has extremaat x, =0, /(20 )
The method introduces a new extremum in zone "i" centered at x =0 if : —0.5<-0,/(20,, )<0.5

Solution: Without changing the sign of 0., reduce the value of

a,|.

xXx 1

Question: Why will this work? 15



PPM reconstruction; monotone paroboloe piecewise linear reconstruction; MC limiter

I 1 ] | 1 I 1 i I 1 ] 1 1 I 1 i
3.0 7 30k =
s : s | -
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£ ! 2 |
L% ] [ ke
5 1.5 : ] < 15f : .
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g | I ] i | ]
= el k € .t | :
s lor | 1 MC—™ %0 | ]
S ' ! § | | '
=2 L
- 0.5_' I £ 2 05 | -
I |
[ | K
[ |
E | I
0.0 1 1 1 l 1 1 ool ; ! ; ! ;
-2 -1 i i+1  i+2 i+3 -2 -1 i+3

An automatic procedure for shifting the extremum out of the zone:

S (ui;R _ui;L)2
6

_ : 1
Uy = 3T — 2U, i (U —ui;L)(ui — E(U“R +ui;L)j

2
B _ U —U. 1
Up—> 30— 2y, if - (U - ) > (ui;R—ui;L)(ui— E(ui;R+ui;L)j

Compare the parabolic profile above to the profile from an MC limiter.
Question: What do you see? Compare results of advection test with PPM & MC and discuss.




7.3) Reconstructing the Solution for Conservation Laws — Part 11,
Non-Oscillatory Reconstruction

The TVD and classical PPM reconstruction do clip local extrema,
whether they are physical or not. Over thousands of timesteps, this can
add up. (There are newer variants of PPM that avoid this.)

Clipping extrema < scheme is second order.

To go to higher order, we must avoid clipping physically valid extrema.
In Essentially Non-Oscillatory (ENO) schemes, we permit the
Introduction of new extrema in the reconstruction as long as the original
mesh function also has such extrema.

Weighted Essentially Non-Oscillatory (WENO) reconstruction schemes
are a modern variant.

Comes in two flavors: Finite Difference and Finite Volume .



7.3.1) Weighted Essentially Non-Oscillatory (WENQO) Reconstrution
In One Dimension

Think of the minmod limiter as choosing from a left slope
(corresponding to a left-biased stencil) and a right slope (corresponding
to a right-biased stencil).

Either reconstruction is second order. Minmod chooses the stencil with
the smaller slope.

The choice i1s made using non-linear hybridization.
WENO takes these two ideas much further:

1) We do a much more detailed stencil analysis, often between two or
more stencils.

2) The non-linear hybridization between competing stencils is also more
sophisticated.

Let us see how WENO reconstructs a smooth and a discontinuous
profile.



r=3 WENOQ; left—-biased stencil
T

F T T T T E r=3 WENO; left—biosed stencil
1 1 I 1 I
I 30F
1.0 .
c L
k] i 3 E
] § 2.5F
¢ 0.8 % [
S s P '
o © 2.0 i
o . i
(=] c
= 06 2 3 i
g 5 | |
2 g 1.5F i
g £ I
Q
E 0.4 E ol :
:- - L
2 s |
e 3 I ;
I |
I |
0.0 ool !
-2

Smooth Gaussian & Shock-like profiles shown by dotted curves.
Mesh function (average of shock-like profile) shown by dashed slabs.
Reconstructed profile shown by solid curve. Observe how it changes
during the course of the reconstruction procedure!
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reconstruction

function, mesh function,

function, mesh function, reconstruction

r=3 WENOQ; left—biaosed stencil e

' - ' ' —1  Inzone"i", we wish to reconstruct at third order

u(x) =0 + G, x +d (xz—ij
i i X XX
12
| A A
| Because there are two moments, u, and u,, , we
i need a stencil with three zones.
i
:
: First stencil is left - biased and covers zone "i"
|
ool ! b | ;
-2 =1 i I+l i+2 i : - i
Again, reconstruct via primitive function:
3‘0:- I I I I I 1
L5t ; 15 0.5
— ’ jui;L(x)dx =0, ; J‘ui;L(x)dx =0,
2or ! [ B ] 25 15
: ! 1 ] A — .
K : y = U, =-20,+050_, +1.50;
[ i 1% 1 - _ _
L ' ) U.,=05U_ — U, +050
’ I |
05 i :L____‘, .
ool 1| R Question: Can you comment on the smoothness

=2 =11l 2 of the two left-biased stencils? (1.e., solid curves)



function, mesh function, reconstruction

function, mesh function, reconstruction

0.8

0.6

0.4

0.2

0.0l

3.0

2.5

2.0

0.5

0.0L

r=3 WENQ; centered stencil

—_——il e

——

Second stencil is centrally - biased and

COVers zone 1.

Again, reconstruct via primitive function:

-0.5 15
j UIC(X)dX = U ; jui;C(x)dx = Uy
-15 0.5
— l:I\Cx = ( l'Ti+1 + —I—l) '
l’jC;xx = U|—1 — Ut 0.5 U|+1

Question: Can you comment on the smoothness

of the two centrally-biased stencils?
(l.e., solid curves)

Questions: Which stencil is best for stability

of smooth flow? What happens when the flow
IS not smooth? 21



function, mesh function, reconstruction

function, mesh function, reconstruction

0.0l

3.0

2.5

2.0

0.5

0.0L

r=3 WENO; right—biosed stencil
T T

Third stencil is right - biased and

-1 I +1 42

r=3 WENO; right—biosed stencil
T T

e e e e e s
.

covers zone 1.

Again, reconstruct via primitive function:

15 2.5

Juge()dx =T 5 [ue(x)dx = G, ;

0.5 15

= Uy, = 150 +20,, -050,,, ;
GRXX:OS—I_Ui+l+05ui+2

Question: Can you comment on the smoothness

of the two right-biased stencils?
(I.e., solid curves)

22



We need to quantify the smoothness of a stencil.
Insight: the smoothness relates to the derivatives: larger derivatives = less smoothness

Define smoothness indicators for each stencil:

05 2 2 2
s, = | [d ”“L(X)j + {d “‘;L(X)} dx = IS, = @2, + % 62

2 L;xx
s dx dx
Similarly:
" 13 . " 13 .
2 2 2 2
ISC - uC;x + ? uC;xx and ISR - uR;x t ? uR;xx

Smoothness indicator is a misnomer, because the above measures actually measure
how rough the solution is in each of the stencils.

Questions: What do we expect for the 3 smoothness indicators for the Gaussian?

What do we expect for the discontinuous profile?
What would happen if we keep switching back and forth too rapidly between stencils?



function, mesh function, reconstruction

function, mesh function, reconstruction

r=3 WENOQ; reconstruction with non—linear weights

Solution: Weight the stencils in inverse proportion to
their smoothness indicators.

|
I
|
|
|
l _ YL : _ Yc _ Tr
: WL_IS+'O’WC_IS+p’WR_ISjL'O
l (1S, +e) (1Sc +¢) (15z +¢)
l
I
| W, =— W, =—
0.0l ] 1 1 - 1 : 1 L WL-|—WC—|—WR WL+WC+WR
-2 -1 i +1  i+2 W
r=3 WENO; reconstruction with non—linear weights WR — R NOte WL +V_VC + WR -
[ ' ' ' I W, + W, + W, -
3‘0_- 5
2.5:- =
S E Y. »Yc andy, are called linear weights.
20F ! N _ . . ) )
; E ; W,_ , W, and W, are called non -linear weights.
b | -:
: ! ]
1of E : The final reconstructed profile is given by
! I ] A A R .
osf i 5 U, =W, uL;x +WC uC;x +WR Ug.x
- I N — N — N~ — N
ool 1 1 J l'Ixx :WL l'IL;xx + WC l'IC;xx +WR uR;xx
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Different strokes for different blokes:

There is a certain amount of flexibility in the choice of the linear weights, and also, indeed,
In the choice of smoothness measures.

CWENO :y, =y, =1withy. =50 and p=4.
Question: What does this do? Central stencil is emphasized because it is more stable.

Dispersion minimization: Requires adding further stencils.

Optimize accuracy: For right-going waves we pick y, =0.1, y. =0.6, y, =0.3

With this choice we can achieve fifth order of accuracy, but only for finite difference schemes.
This advantage of increasing order of accuracy does not extend to finite volume schemes.

Question: The smoothness indicators are extremely nonlinear in the solution. Why is that
a good thing? What does that give you?

In general, WENO works better if the reconstruction is carried out in characteristic variahles.



Question: Can you compare and contrast these results with those for
TVD and PPM schemes?

Advection Test: 3rd order CWENO, RK3, CFL 0.6 Advection Test: 4th order CWENQO, RK4, CFL 0.6
A Ao R PR e R R Sl e TR TN e TR LT S . e N SN P

1.0

b)

0.8

0.6

u(x)

0.4

0.2

s PR R I
-1.0 -0.5

-1.0 -0.5

Fig. 7.6a shows the advection test catalogued in the text when the third
order CWENQO reconstruction was used with a third order Runge-
Kutta scheme. Fig. 7.6b shows the same when the fourth order
CWENQO reconstruction was used with a fourth order Runge-Kutta
scheme. The solid line shows the analytic solution, the crosses show

the computed solution.
26



7.3.2) WENO Reconstruction in Multiple Dimensions

Say for example that we want third order finite volume reconstruction
over a rectangular zone. We then have

~ o~ = A~ A ~9 1 A~ ~ ~ 2 1 +A ~ o~
U (% ¥) =0, + 0, X + G X—E + 0, ¥ + 0, y—ﬁ O, X§

Our job is to reconstruct all the moments. Can be done in one of two
ways:

1) Choose large, multidimensional stencils, each of which yields all the
moments.

2) Do all x-moments by looking in the x-direction; all y-moments by
looking in the y-direction. Then do something special for the few cross
terms that remain.

We pick strategy 2) thought the book gives citations where 1) is done.



Using {(i, j),(i+1, j+1)} along with the consistency condition:

y=1.5 %=1.5
J‘ J‘ ulj()’z’y)d)h(’ dy:U|+1J+1
§=0.5 %=0.5
gives
uxy:U|+1j+1 UIJ _ux_uy_uxx_uyy

Three other stencils are possible. Question: Can you list the other three stencils?

The smoothness indicators are given by : IS =4 G, + 4 47 + 0,

The resulting non-linear hybridization is obvious.



/.4) Evolving Conservation Laws Accurately in Time — Part I, Runge-
Kutta Methods

Spatial reconstruction at second and third order has been thoroughly
discussed. Even higher orders of spatial reconstruction are possible.

To get a balanced scheme, the temporal accuracy must match the spatial
accuracy.

Easiest way to do that is given by Runge-Kutta methods.

The time evolution is conceptualized as the solution of an ordinary

differential equation. Recall the terminology, “method of lines”, “semi-
discrete approximation” from Lecture 2.

Each stage in a Runge-Kutta method is simple and multiple internal stages
make up the RK method to give us the overall time accuracy.

Only some classes of RK methods preserve the TVD property — SSP-RK.



7.4.1) Runge-Kutta Time Stepping

Conceptualize this as an evolution in time: %—Ltj =L(U)=-F(V)

Improved Euler approximation is Strong Stability Preserving (SSP) and second order:
Question: What does SSP do for us?
U =u"+ at L(U")

grt=tyryd <1>+3AtL(u<l>)
2 2 2

Can we extend this to third order RK-SSP? Yes!
u® =uU" + At L(U”)

U@ =3y Ly Lo L(u®)
4~ 4 4

Ut = 1un 1 2y@ 4 2 L(u®)
37 3 3

Above two schemes support a max CFL of unity in 1D; Question: What about mutti-d?




Question: To what orders can we continue this?

Answer: From 4th order onwards, RK-SSP schemes become quite complicated
-- Butcher barriers!

Fourth order RK-SSP scheme
U® = U" + 0.39175222700392 At L(U”)

U® =0.44437049406734 U" + 0.55562950593266 UY + 0.36841059262959 At L(U<1>)
U® =0.62010185138540 U" + 0.37989814861460 U'? + 0.25189177424738 At L(u<2>)

U™ =0.17807995410773 U" + 0.82192004589227 U® + 0.54497475021237 At L(u<3>)

U™ = 0.00683325884039 U" + 0.51723167208978 U
+ 0.12759831133288 U + 0.34833675773694 U

+ 0.08460416338212 At L(U(3))+ 0.22600748319395 At L(u<4>)



7.4.2) Second Order Accurate Runge-Kutta Scheme
We can now discretize the spatial parts of the governing equation as

_i . _ 1 /— _ 1 (— _
Ui, = L(U)_ | =——(Fi+1/2,j —Fi—1/2,j)——(Gi,j+1/2 —Gi,j—1/2)
ot 1 AX Ay
with
_ y=1/2 L %=1/2
Fuzi= | F(X=1/2,§)d§ ; Gije= [ G(X§=1/2) d&
j=—1/2 R=—1/2

The integration of the fluxes along the faces reminds us that we are
dealing with a finite volume formulation. The integration of the
fluxes should be done with sufficiently high order of spatial accuracy
In order to realize the full accuracy of the method.

At second order things are simple. We can replace the spatially
averaged fluxes with the fluxes from the Riemann problem that have
been evaluated at the centers of the zone faces.

32



In each zone (i, j), we assume we have U, ; and undivided differences A,U; ; and A U, , ,
to get:

_ 1 — _ 1. -
Uiz = U+ EAin,j ;v Ugiso = Uiy — EAxUm,j
= 1, - = 1
UB;i,j+1/2_ Ui,j + EAin,j 1 UT;i,j+1/2_ U| j+1 EA Uu j+1
I—:i+1/2,j — FRS ( UL;i+l/2,j’ UR;i+1/2,j) ’ éi,j+1/2 ( B;i,j+1/2? UT;i,j+1/2)
U;f‘-, i,j+1/2
The neighboring zones \\(ij+]) b
have to interactusinga | ----3 ®--—— — -
Riemann solver sothat [ ____ P 23
we get the flux at the / ' $ ; "y
zone boundaries! U " (”)/’ 4 \(H ) y[
B;i,j+1/2 1]
1]1
/7 N %
U‘r‘f’ i+1/2,j UR; i+1/2.j

Fig. 7.7 shows the construction for obtaining spatially second order accurate fluxes
for the second order Runge-Kuttla scheme. The quadrature points are shown with
dots. The surfaces to the immediate left and immediate right of the zone boundaries
are shown with dashes.



7.4.3) Runge-Kutta Schemes at Higher Orders: Using Third Order

as an Example
We still discretize the spatial parts of the governing equation as

_i . _ 1 (— _ 1 (— _
oV, = L(U)_ _ =——(Fi+1/2,j —Fi1/2,j)——(Gi,j+1/2 —Gi,j—llz)
ot ] AX Ay
with
_ y=1/2 . X=1/2
Frzi= [ F(X=1/29)dy ; Gijuz= [ G(X§=1/2) dx
J=—1/2 %=—1/2

Problem: At higher order, evaluating the above integrals becomes difficult.
Questions:What does the Simpson rule tell us about numerical quadrature?

How many evaluations of the numerical flux would it require?
One option would be to use multiple Riemann solver evaluations at multiple
Gaussian points along each boundary. This can become very expensive.

Because Riemann problem evaluation is expensive, we want to make as few
evaluations of the Riemann problem as possible -- A quadrature - free approach.
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UL; i+1/2, (37) = Ui,j (-% =1/ 2:5’) R i+1/2,j (.V) = Ur‘+l,_}' (jE =—1/ 2:5’)
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R
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|
Wie, Y,

Fig. 7.8 shows the construction for obtaining spatially third order accurate fluxes for
the third order Runge-Kutta scheme. The wave model, along with the variables used
for obtaining it, are shown. The quadrature points are shown with dots. The surfaces

to the immediate left and immediate right of the zone boundary at (i+1/2,j) are shown
with dashes.
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Start with a reconstructed profile in each zone (i, j):

N

Ui,j()~(’ y):Ui,j+ Oi, U )7 Oi,j;XX(XZ_ij+ Oi,j;w(yz_ij-l_oi,j;xyy(y
Let us take the HLL Riemann solver as an example.

U, (X,¥) is used to obtain the left state : U\, = U, (X =1/2,§=0)
U...; (% ¥) is used to obtain the right state : U, ., =U,,, (X=-1/2,§=0)

These can be used to obtain S, and S, , the extremal wave speeds for the HLL RS.
If these wave speeds are frozen, we obtain the HLL flux as:

. S . S .
|+1/2 j (y) |:S _RS :| I:L; i+1/2, (y)_|:S _LS :| |:R; i+1/2, (y)
R L R L

SpS Y Y
+{S : g :|(UR;i+1/2,j(y)_UL;i+1/2’j(y))
R VL

Question: What does freezing the wave speeds, S, and S , give us?




The reconstruction within each zone allows us to write:
UL;i+1/2,j(y):Ui,j()z:]'/Z’ y) ; UR;i+1/2,j(y)_U|+1J(X__1/2 y)

The above expressions are available analytically and can be integrated
once and for all:

§=1/2

I (URAHMJ(V)_LhnHMJ(y»dy

§=—1/2

Fluxes treated similarly:
UM, =V, (8=1/2,9=-1/2) ; UP. ., =U (X=1/2,§=0)
U, =V, (%=1/2,§=1/2)

§=1/2

j FL: i+1/2, ] (y)dy % (U(L)|+1/21) + % F(U(I_Z;)i+1/2,j) + % F(U(Lg;)m/z,j)

§=—1/2



7.5) Evolving Conservation Laws Accurately in Time — Part 11,
Predictor-Corrector Schemes

7.5.1) Second Order Accurate Predictor-Corrector Schemes
Say we have used the reconstruction in zone (i, j) at time t" to obtain:

Ul (R,9)=Ui + AU X+ AU, ¥

We refer to A,U; ; and A, U, ; as the modes.

Consider nodal points :(i+1/2, j),(i-1/2,j),(i, j+1/2) and (i, j—1/2).

We evaluate nodal values from immediately inside the zone (i, j) being considered.

[
(i, j+1/2)

?i—l/Z, j) (I’J) (i+1/2,]’)

(i,j-1/2)
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The Predictor Step now gives T
us an “evolution-in-the-small” e
for the PDE as follows:-

° Uin—1/2,j (I ’J) Uin+1/2,.j

n
Ui,j—1/2
o

Consider nodal points :(i+1/2, j),(i-1/2,j),(i, j+1/2) and (i, j—1/2).

1

We now have nodal values: U!,,, , = U} + EA U, ; UL, =0 -

n 1 1 n n
UI j+1/2 — U EA U U 12 — U -

Ij’ 1]

Predictor Step then gives us the time rate of update within each zone (i, j) as:

oU ! 1 n n 1 n A
(E)i,j } _E(F(Uiﬂ/z,j )_ |:(Ui—1/2.j ))_A_y(G (Ui'j”’z)_G (Ui’j_m)) 39



Corrector Step then assembles the space- and time-centered values on either side of

each zone boundary:

UrIiJrllJle/Zj = Dlj A A Un _At( j Url;JrllJif/ZJ = D 1 A Un ;At(@j

St ) ot Jin,j
n+ n n U n+ L] 1 n 1 0 n
Usg. .1/,2;4/2 = U +— A, U (8_j , Up |1/12+1/ = U, My A U, i T 5 S At (Ej
i, j+1

R;i+1/2, ] L;i-1/2,j ¥ R;i-1/2,]

Final update: U*' = U’ ——( s (Ulige, Unitde, )~ Fes (UL 1 URiS ))
)

n+1/2 n+1/2 n+1/2 n+1/2
( (UB|J+1/2’UT|1+1/2) G (UB|11/2’U

T:i,j-1/2

UT: i.j+/2
The Corrector Step is (-7+1) i
the step wherethe [ Z2°°° -1
neighboring zones [T >3 &= il
interact with each other //(:’f) se (+L)) .
through the Riemann s / 1k ‘
solver. UZ s = :

R, i+li2,5



7.5.2) ADER Time Stepping for Second, and Higher Order Time
Accuracy

ADER == Arbitrary DERIvatives in space and time.
It is @ method for starting with a high order spatial reconstruction and
rapidly doing the time update with higher order of accuracy.

l.e., the Predictor-Corrector methods at second order go on to become
full-fledged ADER methods at all orders in space and time.

The important part is the ADER-Predictor step. It starts with the spatially
reconstucted modes with any order of spatial accuracy within a zone. It
gives us the temporal “evolution-in-the-small”” of the PDE up to the same
order of space-time accuracy. Here, “evolution-in-the-small” means
locally within the zone of interest.

ADER-CG studied here. “CG” stands for Continuous Galerkin.
Question: What does a stiff source term do? i




1D ADER Predictor In Brief : Toro & Titarev (2002), Titarev & Toro (2002),
Gassner et al (2007), Dumbser, Enaux & Toro (2008), Dumbser et al. (2008) Toro & Castro

(2008), Gassner et al (2011), Balsara et al. (2009, 2013)
Governing Equation : 6, u+ 0, f(u) =0

Mathematical Statement of our goal:-

Within a 1D zone start with spatial reconstruction, 1.e. spatial modes:-

u(x,t=0)=w, +w, x+w_ (xz = éj

Use governing equation to obtain space-time reconstruction, i.e. space-
time modes:-

A A A 1 - - - :
uex,ty=w, +w, Xx+w,, (xz - Ej +0,t+ 0, t*+0, xt < Dynamics!!!

The process Is iterative, but the iterations converge very fast! 42




Governing Equation : 6, u+ 0, f(u) =0

STEP 1) Start with the reconstructed initial polynomial within each zone
expressed in a higher order modal basis set (i.e. orthogonal Hermite
polynomials) (1d here for simplicity; modes shown with caret):-

) 1 j Space-time element

u(x, t=0)=w, +w, XxX+Ww,_ (x - =
12

t=1 é
We can use the above to obtain the spatial
representation of the fluxes at t=0; i

I.e. evaluate only once:

H‘
N
X

~ ~ ~ =0 e

f(x,t=0)=f, +f x+f (xz—ij 3
0 X XX

12 x=-0.5 x=0.5

How? Answer:

a) Evaluate u; = u(x=0,t=0), u, = u(x=.5,t=0), u; = u(x=-.5,t=0).

b) Find f, = f(u,), f, = f(u,), f5 = f(u,) .

c) Obtain modal representation of flux. 3'9 order in 1D is first non—tri\?{ial
case.




Governing Equation : 6, u+ 0, f(u) =0

STEP 1, cont’d)
We wish to obtain the space-time representation of the conserved vars.
within a zone:-

1 N N N
uxt)=w, +w, x+w,_ (x 5 +u t+ U, t"+Uu, xt

Similarly, we wish to obtain a space-time representation of the fluxes:
(the fluxes don’t need to be saved, so they don’t take up storage)

N

fo,t)y=Ff, +f x+f (xz - %} +f t+ f 2 +f, xt

We start the iteration with : 0, = G, =0, =0 and f =f =f, =0

V. Imp. Questions: 1) Given approx. u(x,t), how to obtain improved #Xx,t)?

2) How to obtain an improved space-time representation?i.e. u,, U, and U,



STEP Il) Pick a space-time element. Pick a set of nodal points in a
space-time element. 1d shown here; has been extended to multi-d.

u (X, t; ) can be evaluated at each such nodal point “i =4, 5, 6”.

STEP 111) Use nodal values to find nodal fluxesf; =f(u(x;,t)).

Nodal points at
STEP IV) Obtain modal representation of fluxes: / different time levels

Notice: Finite Difference-like forms t=1 é /
fo:(4f1+f2+f3)/6 ; 5e s 4 t
fx = (f2 f3) / ‘
f =2(f, —2f +f,) ; =0 o . .
3 1 2 X
- x=-0.3 x=0.5
fo=1 -21f, - 2%, +21, + 2%, — 1 ; Space-time element in (x,t)
ftt =-2(f, - f, —f, +f, +f, — ) ; Spans [-.5,.5]x[0,1]

=2 (f, - f, —f, +1,) Notice: t=0 variables only
evaluated once; saves float ffs.

—h>



STEP V) Use space-time basis functions as test functions to derive
update equations:

B(xt) =t 5 g(xt)=t" ; g(xt)=xt

Make Galerkin, 1.e. weak-form integration over the space-time element :-

o, u(xt) +o, f(xt)=0

f(X’t):f0+fXX+fxx (XZ - _j +ftt+ ftt t2+f

u,t)=w, +Ww, x+w

XX

1 R n R
(xz = Ej +0, t+ 0, t*+0, xt

Galerkin formulation:
H & ( X, t)[at u(xt) + 0, f(x,t)] dxdt=0 fori=1,2,3

[-1/2,1/2],te[0.1]
46



This gives us the update equations:-
(Notice that this is the part where we do dynamics, because we relate
gradients of flux to the time-rate of change of the conserved variables!!!)

0,=-f ; 0O,=-f,/2 ; 0,=-2f,

t X tt

Go back to STEP Il and iterate!

For an N order scheme, even in multi-dimensions, this process can be
shown to converge in (N-1) iterations. — Picard lteration

ADER can now be used in Predictor-Corrector fashion to obtain a
one-step update scheme for conservation laws.

We’ve described the Predictor Step. Next, we describe efficient

evaluation of the Corrector Step.
47



Flowchart for Initializing ADER-CG lteration

: N . 1
Start with:u (X, ) =w, +W X+ W (XZ - _j

12
u (X;, t; =0) evaluated at each spatial nodal point “i =1, .., 3”.
X;=—0.5 ; X, =0.0 ; X3=0.5

|

Use nodal values, u (x; , t; ) to find nodal fluxes f; =f (u (x;, t;)), 1=1,..,3 \

|

Use nodal fluxes f, to obtain modal fluxes f,

N

fo= (4f, +f, +,)/6 ; f,=(f, —f,) ; f

l

N

We start the iteration with: U, = U, =U

=2(f, —2f, +1,)

XX




Flowchart for ADER-CG lteration

2

: A ~ 1 - - -
Start with 1 u (X, t) =w, +w, X+W_, | X ——j+utt+ 0, t° +0, xt| «—
12

u (X;, t; ) evaluated at each space-time nodal point “i =4, 5, 6”.
(X t) = (-9,.9) ; (X5, t5) = (0.5,0.5) ; (Xgs) = (0,1)

|

Use nodal values, u (X , t; ) to find space-time nodal fluxes f; =f (u (X, t;))

|

Use nodal fluxes f, to obtain modal fluxes fi ; ft =f - 2f, —2f, +2f, +2f, - f ;

= -2 (f2 - f, —f4+f5)

1

~

fo=-2(f —f, —f, +f, +f, - f) ; f

xt

|

Update equations : 0, = —f,_ ; (0, = —fxt/z 0, = —2f |—1

N-1 iterations for an N order scheme. 49




1D ADER Corrector: Rapid strateqy for obtaining numerical fluxes

Dumbser, Kaser & Toro (2008), Balsara et al. (2009), Balsara et al. (2013)
Say for the governing equation: 0, u+ 0, f(u) =0

We have obtained the space-time representation of “u” and “f”,
I.e. within each zone we have:

Question: How do we rapidly obtain the numerical flux after we
have obtained the space-time representation?

50



Define;

1 <u>L: RIE < f >'—? i+1/2 <U>R; 12 < f >R; i+1/2

<f>|_; 2 = J fL; i+1/2 (t) dt ; =1 as \ T /
1 o o
<f>R; i+1/2 = J fR: i+1/2 (t) dt ) : : \: : /
=0 | I o— | " I+1 L
1 1 1 S 1 1
W)= [V 0t | ] pati R
t:10 - / \ X
(U)y 1 = .' Un i (1) dt | Ul (B) =0 (x=1/21) & Ug. o (E) = U, (X=-1/2,1) &
- fL; i+1/2 (t)E fi(X:]'/ Z’t) fR;i+1/2 (t)E fi+1(x:—1/2,t)

Consider the v. simple case of the HLL flux:

S S SpS
fifﬁé (t) = {SRRSL} fL; i+1/2 (t) _{SRLSL} fR; i+1/2 (t) T { SRR— gL :|(UR; i+1/2 (t) —Up i (t))

1

The numerical flux is then given by : ()" = j f.hs (t) dt
t=0

If we freeze A, and A, in some intelligent way (described later) then we can write:

S S S.S
< f >:E/Lz = _R < f >|_; i+1/2 _L < f >R; 2 T R_ . (<U>R; i+1/2 _<u>|51i+1/2)
S =S, S =S, S =S,




Above example showed how time-averaging can be done. For

multidimensional problems, the averaging can be done in space & time.
Can also be done for other Riemann solvers.

Question: How does one obtain S, and Sy ?

ubL;i+1/2 ubR;i+1/2

\ /

i-1 i — | i+l t
SL SR L

X

Ui = U (X=1/2,t=1/2) and U, ;.0 =U;,, (X =-1/2,t =1/ 2)
are honest to goodness physical states at the space-time barycenters of the faces.
They can be used to obtain 4, and A,

These ideas extend to multidimensions; they can also be used to yield
the electric fields for MHD. 52



7.5.2.1) Multidimensional ADER-CG Predictor Step

Within a zone we start with the third order spatial reconstruction:

~ ~ — -~ ~ -~ ~ ~ ~2 1 ~ ~2 1 ~ _ o~
Ui,j(X, yat):Ui,j+ Ui,j;xx+ Ui,j;yy+ Ui,j;xx(X _E + Ui,j;yy Y —— +Ui,j;xyxy

Question: Why do we add just these terms? (Hint: Think Taylor series)

53



Recall that we needed the gradients of the x- and y- fluxes to obtain the
predictor step. Same holds true here. So let us write the space-time moments of

the x- and y-fluxes:
~ .o » A 1 A
(X Y, t) F|J+ |:i,j;x)H' gy Y T FiJ;XX(X _EJ-'_ I:i,j;yy(y _Ej-l_lzi,j;xyxy
F

GIJ()~(1 y’f):éij—i_élJx)’Z_FélJyy—i_é'ij'xx(y(z_i +é|1yy(y2_ij Aljxy)zy
’ v 12 12
Gljtt+Gljttt +GIthXt+Gljytyt

Question: How would you obtain the spatial moments of the fluxes?

What about temporal moments?
How do we relate the moments of the fluxes to the moments of U, , (X, ¥,f)?

AX OX Ay oy




To understand how it goes, let us explicitly try out ¢(%, ¥,) = . Show that we get:
- 4 - 5 - 2 - 2 -

Ui,j;t § UI Jtt - I:i,j;x _ Gi,j;y o 5 ijixt 5 Gljyt
Similarly, with ¢ (%, §,T)=t*:

~ 3~ - A 3 - 3 A

Ui,j;t + E Ui,j;tt - I:i,j;x B Gi,j;y B Z Ljxt Z Gi,j;yt
Similarly, with ¢(%,§,f) =% T : U e =-2F 0 — Gy
Similarly, with ¢(%, 9,{)=9 T : U jp=-Fy = 2G, .,
Recall that this is a finite element-like procedure.

We can resort to iterative improvement of the

moments : Uiiir Uiwr Upjeand Ug

Question: How would such an iteration work? Answer: Break it into two parts & see.

It turns out that, at third order, the process converges in two iterations!



T

1

Fig. 7.9 shows the placement of nodal points in space and time. The originof our local
coordinate system is actually centered at the first nodal point. The nine black circles,
labeled ] to 9, correspondto the nodes at time = 0. The five grey circles, labeled 10 to
14, correspondto the nodes at time = 1/2. Node 10 is collocated at the center of the
space-time cube. Nodes 11 and 12 are centeredinthe x-faces,; nodes 13 and 14 are
centered in the y-faces. The dashed circle corresponds to the node 15 at time= 1. It is
collocated at the center of the top face of the space-time cube.



From the spatial nodal points (Only evaluated once at the start of the iteration.):
{(0,0,0),(l/ 2,0,0),(—1/2,0,0),(0,1/2,0),(0,—1/2,0),
(1/2,1/2,0),(-1/2,1/2,0),(1/2,-1/2,0),(-1/2,-1/ 2,0)}

FI jixx _2(F2 —2 I:Ilj +FI31) ) Fi,j;yy :2(FI4J -2 I:Ilj +FI5J)

- 6 7 8 9

Fljxy—FIJ I:IJ I:lJ—I_FI

C 3 : C : r
|:i,j;x:Fi,j_l:i,j ’ |:i,jy_|:I4j_|:l5j 1 F :F'l' ( IjXX )/12

Notice the finite difference-like forms!

From the space-time nodal points (Evaluated for each iteration):

{(0,0,1/2),(1/2,0,1/2),(-1/2,0,1/2),(0,1/ 2,1/ 2),(0,-1/ 2,1/ 2),(0,0,1)}
We get:

Fo = 2R RS -FL 4 R) 5 Ry =2(R -RI - +R)

i, jiyt

10 1 . B 1
j;ttZZ(F,j_ZFi,j"‘Fi,j) ,F--.t F, F —F

i j; i, jitt

N



7.5.2.2) Multidimensional ADER-CG Corrector Step

The construction from the previous sub-section has given us the space
and time representation of the conserved variables and the fluxes.

We wish to obtain the numerical flux in a quadrature-free fashion. In
doing so, we wish to use all the space-time information that we have

generated.
. S . S Lo
I:i+1/2,j (y’t ) - |:SR —RSL :| I:L; i+1/2, (y’t)_{SR —LSL :| FR; i+1/2, j (y’t )

S¢S 0§ A
+{ =S :|(UR;i+1/2,j(y’t)_UL;”l/Z’j(y’t))

SR _SL

The extremal speeds, S, and S; , are obtained from:
U, =V, (x=1/2,=0,f=1/2) ; UY .. =U, (x=-1/2,9=0,f=1/2)

As before, we freeze these speeds. Question: What does this buy us?
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Fig. 7.8 shows the construction for obtaining spatially third order accurate fluxes for
the third order Runge-Kutta scheme. The wave model, along with the variables used
for obtaining it, are shown. The quadrature points are shown with dots. The surfaces

to the immediate left and immediate right of the zone boundary at (i+1/2,j) are shown
with dashes.
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t=1 y=1/2 3 3 B 1 ~ 1.
j _[ UR '+1/21 t)dy dt = (Uiﬂ,j - EUi+1,j;x+ guiﬂ,j;xxJ

t=0 y=-1/2

Do analogously for F.. .., : (.T) .



7.8) Numerical Tests for Euler Flow

7/.8.1) Demonstrating Accuracy on Multidimensional Test Problems
We study scheme performance for vortex flow with increasing
resolution.

Questions: On a coarse mesh, with just a few zones across, which
scheme performs better? As the mesh is refined, which scheme performs
better? How do you measure order of accuracy?

sk
< r _2
a) E b) y
_4':'- 2 »
2 3-3F
E - F
5 -5 s |
oo F woF
g‘ E gl 4 ”
- —B:r — L
; 9 /I
: 3 ’
-7 o _55- i
—BE i i i i i i -BE i i i i i i
wAB B A D el =08 w08 =04 N8 wAB A wND el =08 w0 =04
log(ax) log(ax)

Fig. 7.10 shows the variation of the L, (left panel) and L, (vight panel) errors as a function of

zone size for the 2d vortex problem. The solid lines show the second order predictor-corrector
scheme with minmod limiter, the dotted and dashed lines show third and fourth order ADER- 61
WENO schemes respectively.



5.8.2) Forward Facing Step Test Problem

step problem with 480x160 2anes
1.4 ' i
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Fig. 7.11 shows the density variable from the forward facing step
problem at resolutions of 480X160 and 960X320 zones at a time of 4
units. Thirty equally spaced contours are shown in the density variable
ranging from 0.105 to 6.699. The fourth order scheme with a linearized
Riemann solver was used. We see the beginnings of the vortex sheet roll-
up at a resolution of 480X 160 zones and the 960X 320 zone simulation
captures the roll-up very clearly.



7.8.3) Double Mach Reflection Problem

double Mach prablem with 950%240 zones
T = w = % W & o= % B & wm & B & @ & W % @ & & W% & k& 7

a8

a.6

a.4

az

=]
L]
(4]

e i cY =t
b i ] =

LS
fa

I
=

°I\\|II\‘I\\|II\|\\I

3

Fig 7.12 shows a resolution study of the double Mach reflection of a
strong shock. The top and bottom panels show the density from 960X240
and 1920X480 zone simulations. The 4™ order ADER-WENQO scheme
with a linearized Riemann solver was used. 30 contours were fit between
a range of 1.4 and 20.975. We clearly see the roll up of the Mach stem
due to Kelvin-Helmholtz instability in the higher resolution simulation.
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