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Chapter 3: Scalar Advection and Linear Hyperbolic Systems 
 

3.1) Introduction 

 

 The previous chapter showed us how we can construct a finite difference 

approximation (FDA) for any partial differential equation (PDE). Our study of 

consistency and stability showed us that we can construct FDAs for PDEs and be assured 

that for well-specified initial and boundary conditions they will converge to the actual 

solution of the PDE. However, when we applied our ideas to the scalar advection 

equation we discovered several deficiencies in every linear FDA that we constructed for 

solving that equation. The deficiencies were especially apparent when we tried to advect 

discontinuous solutions. The first order accurate advection schemes were too diffusive 

and dissipative; the second order accurate advection schemes generated spurious extrema 

at discontinuities. Note though that (at least from a theoretical viewpoint) a discontinuous 

initial condition is not a well-specified initial condition for a PDE. From a practical 

viewpoint, we nevertheless do want discontinuities to be advected accurately. In this 

chapter we start the process of finding a way out of this problem. 

 

 We start with the scalar advection equation. We show that there is a pictorial 

approach to advection that provides several important insights. In particular, we find that 

we can relate several of the schemes from Section 2.7 to this visually-motivated approach 

and thereby gain insights into the inner workings of the schemes as well as their 

deficiencies. Once we understand the source of the deficiencies, we discover a class of 

second order schemes that minimize diffusion and dissipation while being able to 

propagate discontinuous solutions without generating spurious overshoots and 

undershoots. This is done in Section 3.2.  In Section 3.3 we formalize our insights from 

Section 3.2. We show that it is possible to define some general properties for a second 

order accurate scheme for numerical advection which ensure that the solution will not 

generate undesirable oscillations. 
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 Having provided a satisfactory resolution of scalar advection, we then move on to 

examine linear hyperbolic systems of equations. This interest is motivated by the fact that 

many conservation laws that we are interested in are indeed hyperbolic systems. We carry 

out our study in two easy stages. In the first stage, we study linear hyperbolic systems, 

which give rise to a system of waves that are easy to analyze. We will show that the 

evolution of a linear hyperbolic system can be written in terms of a sequence of advection 

equations. The advected variable is indeed the characteristic variable and it is advected 

with a speed given by the eigenvalue. Concepts that we study in this chapter, like simple 

waves and the Riemann problem, will become increasingly important in the next few 

chapters when we study non-linear hyperbolic systems. It is for this reason that linear 

hyperbolic systems form a bridge that will lead us to our study of non-linear hyperbolic 

systems. Linear hyperbolic systems will, therefore, be the object of our study in the latter 

part of this Chapter. The second stage of our study, which we will undertake in the next 

few chapters, will consist of understanding how to deal with non-linear hyperbolic 

systems. 

 

 Our study of the simpler, linear hyperbolic systems will yield several important 

insights, many of which go over to our study of non-linear hyperbolic systems. Sub-

Section 3.4.1 catalogues several properties of linear hyperbolic systems, making a clear 

distinction between those properties they share with their non-linear cousins and those 

that they do not. The Riemann problem for linear hyperbolic systems is also discussed in 

Sub-section 3.4.2. Sub-section 3.4.3 shows how the Riemann problem can be used as a 

building block for the numerical solution of hyperbolic systems. Section 3.5 tells us how 

the structure of the waves in a linear hyperbolic system dictate the form of the numerical 

boundary conditions. Sub-section 3.6.1 discusses solution techniques for linear 

hyperbolic systems using a modified Lax-Wendroff approach. Sub-section 3.6.2 

discusses the implementation of a two-step Runge-Kutta scheme with characteristic 

limiting and Riemann solvers for linear hyperbolic systems. Sub-section 3.6.3 presents a 

predictor-corrector scheme with characteristic limiting and Riemann solvers for linear 

hyperbolic systems. Numerical results from these schemes are shown in Sub-section 
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3.6.4. Section 3.6 is useful because many of the items that we learn in that section 

constitute the building-blocks of schemes for solving non-linear hyperbolic systems. 

 

3.2) Qualitative Introduction to Non-Linear Hybridization for Scalar Advection 

 

 In Section 2.7 we tried to construct several linear schemes for numerically 

evolving the scalar advection equation u  a u 0t x+ = , which is indeed the simplest 

prototypical linear hyperbolic system. We saw, however, that all of them proved 

dissatisfactory in one way or another. The linear donor cell scheme could advect square 

pulses without adding extra wiggles but it was very dissipative and dispersive. The linear 

second order schemes, i.e. the Lax-Wendroff and Runge-Kutta schemes, could advect 

smooth pulses with much reduced dissipation and dispersion but only at the expense of 

generating spurious oscillations at discontinuities. Such undershoots can be fatal if the 

variable being advected is an inherently positive quantity such as fluid density. Within 

the strict limits set by the Lax-Richtmeyer theorem, it seemed impossible to find linear 

schemes that could advect smooth profiles as well as discontinuities with high order 

accuracy. Historically speaking, this remained a stumbling block in scheme design for a 

long time. Godunov (1959) had already proved a theorem, known as Godunov’s theorem, 

which effectively said that there are no linear, second order accurate schemes for treating 

linear advection which would always retain positivity of the solution. The full import of 

Godunov’s theorem would remain unappreciated for almost twenty years. The distinction 

of finding a way out of this conundrum fell on Bram van Leer, an astronomer working at 

Leiden in the 1970s. van Leer (1977, 1979) realized that the way out of this dilemma lay 

in designing inherently non-linear schemes for treating the linear advection problem, 

thereby escaping the clutches of Godunov’s theorem! This idea of using an inherently 

non-linear scheme is sometimes referred to as non-linear hybridization. van Leer went on 

to become a much-celebrated professor of aeronautical engineering and his seminal 

papers on advection and fluid flow have been cited several thousand times. Let us, 

therefore, retrace some of the thinking that led to successful schemes for linear advection. 
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 Starting from an old idea of Godunov (1959), van Leer realized that one could 

think of the fluid in a computational zone as representing a physical slab of fluid. Let us 

focus on solution techniques for u  a u 0t x+ = , where we think of “u” as being some sort 

of fluid density that has to be advected to the right with a speed “a”. In one dimension we 

may, if we wish, take “u” to have units of fluid mass per unit length. To simplify Figs 3.1 

to 3.4 in this section, we will use a=1 and mesh size 1x∆ = in those figures and we will 

also specialize our CFL number so that  a 0.4t x tµ ≡ ∆ ∆ = ∆ = . The formulae that we 

derive will, however, be free of this restriction. Fig. 3.1 is based on Godunov’s idea of 

moving slabs of fluid and shows the evolution of the fluid during a timestep that goes 

from nt  to 1n nt t t+ = + ∆  . The solid line in Fig. 3.1a shows five such slabs of fluid for 

five zones of a mesh at time nt . The zone centers are given by ( )1/ 2  ix i x= − ∆  and the 

zone boundaries are given by 1/2  ix i x+ = ∆  . In Fig. 3.1 the zone centers are labeled with 

the index “i”. The zone-averaged values of the mesh function at time nt  are given by 

2u 1n
i− = , 1u 1n

i− = , u 0.25n
i = , 1u 0.1n

i+ =  and 2u 0.1n
i+ = . We will focus specifically on the 

ith zone and its immediate neighbors because they straddle a discontinuity. By 

interpreting advection with a>0  as being, quite literally, a rightward shift in the profile of 

the fluid by a distance of “ a t∆ ” , the dashed line in Fig. 3.1b shows the original mesh 

function shifted by four-tenths of a mesh size (since we are using a timestep of size 

0.4t∆ = and a CFL number of 0.4 in these figures). The mesh itself does not move. At 

the end of the timestep, i.e. at time 1nt +  , we want the fluid to be represented as zone-

averaged slabs of fluid on the mesh. We accomplish this by evaluating the total fluid 

under the dashed line in Fig. 3.1b within each zone and dividing it out by x∆  to obtain a 

zone-averaged fluid density within each zone of interest. This is shown by the solid lines 

in Fig. 3.1b. A quantitative understanding of advection can be obtained by realizing that 

the light gray rectangle in Fig. 3.1b shows the amount of fluid that has crossed over into 

zone “i” from its left boundary. In other words, the light gray rectangle depicts a time-

average of the left flux so that we have  

 
1/2

1/2 1 f  = (a ) un n
i it t+
− −∆ ∆          (3.1)  
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where 1/2
1/2f n

i
+
−  is the mean flux of fluid passing through zone boundary 1/2ix − . The dark 

gray rectangle in Fig. 3.1b shows the amount of fluid that has flowed out of zone “i” from 

its right boundary. In other words, the dark gray rectangle depicts a time-average of the 

right flux so that we have  

 
1/2

1/2 f  = (a ) un n
i it t+
+∆ ∆          (3.2)  

 

where 1/2
1/2f n

i
+
+  is the mean flux of fluid going through zone boundary 1/2ix + . We can then 

account for the fluid at time 1nt +  in zone “i” by asserting a conservation law for the fluid 

in integral form as 

 

( ) ( )1 1/2 1/2 1
1/2 1/2 1 1 u   u  f  f     u  u u u  = 1 u un n n n n n n n n n

i i i i i i i i i ix x t t µ µ µ+ + + +
− + − −∆ = ∆ + ∆ −∆ ⇔ = − − − +  

           (3.3) 

The reader is encouraged to review eqns. (2.2) and (2.3) and relate them to the above 

three equations. 

 

 We see that eqn. (3.3) retrieves the first order accurate upwind scheme, i.e. the 

donor cell scheme. Because, the donor scheme for linear advection is entirely equivalent 

to shifting around featureless slabs of fluid, we see that it does not generate any new 

oscillations at the end of the timestep that were not present at the beginning of the 

timestep. Viewed mathematically, each 1un
i
+  in eqn. (3.3) is a convex combination of its 

neighbors at the previous time. In other words, notice that in the equation 

( )1
1u = 1 u un n n

i i iµ µ+
−− +  from eqn. (3.3), the coefficients ( )1 µ−  and µ  are both positive 

for 0 1µ< <  . A scheme with such a property of not generating any new extrema in the 

solution that were not present initially is called a monotonicity preserving scheme. A 

more formal, yet conceptually equivalent, definition of a monotonicity preserving scheme 

is that if un
i  lies between 1un

i−  and 1un
i+  then the scheme ensures that 1un

i
+  lies between 

1
1un

i
+
−  and 1

1un
i
+
+  for all zones “i”. For linear advection with 0 1µ< <  a sufficient condition 
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would consist saying that if un
i  lies between 1un

i−  and 1un
i+  then the scheme should 

guarantee that 1un
i
+  lies between 1un

i−  and un
i  for all zones “i” . Similarly, for 1 0µ− < < ,   

a sufficient condition would require that if un
i  lies between 1un

i−  and 1un
i+  then the scheme 

should guarantee that 1un
i
+  lies between 1un

i+  and un
i  for all zones “i”. The positivity of 

the coefficients of un
i  and 1un

i−  in eqn. (3.3) shows us that the donor cell scheme is also 

positivity preserving. Indeed, for scalar advection, the positivity preserving and 

monotonicity preserving properties are identical. This is because we can always either 

add a constant value to a mesh function to obtain another mesh function or flip the sign of 

a mesh function to obtain another mesh function. The resulting mesh functions also 

satisfy the scalar advection equation with the result that if the monotonicity preserving 

property is enforced then positivity is ensured and vice versa. The donor cell scheme in 

eqn. (3.3) is first order accurate and, therefore, very diffusive. For that reason, we wish to 

explore monotonicity preserving schemes which are second order accurate extensions of 

the donor cell scheme. 
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 The previous paragraphs enable us to realize that the donor cell scheme has a low 

order of accuracy because the slabs are represented as featureless profiles. We realize 

though that we can look to the zones on either side of a zone of interest and, therefore, 

evaluate a slope within each slab. Different slopes can be built based on whether we take 

right-biased finite differences 1u  un n
i i+ − , left-biased finite differences 1u  un n

i i−−  or central 

differences ( )1 1u  u 2n n
i i+ −− . Fig. 3.2a shows us the same mesh function as Fig. 3.1a but 

this time we have looked to the right of each zone and built a right-biased slope within 

each zone “i” . Thus within each zone we evaluate an undivided difference 

1u  u  u
n n n
i i i+∆ = −  so that the slope in zone “i” is given by u

n
i x∆ ∆ . The undivided 

differences can also be thought of as slopes that have been multiplied by x∆  and are 

often referred to as just the slopes. This process of endowing the slabs of fluid on a mesh 

with internal structure is known as reconstruction and we say that we have carried out 

piecewise linear reconstruction within each zone. The piecewise linear reconstruction of 

the mesh function is shown as a dashed profile in Fig. 3.2a where the right biased finite 

differences have been used to evaluate the slopes. The fluid’s profile in zone “i” is 

written as 

 

( ) ( )uu   u    
n
in n

i i ix x x
x

∆
= + −

∆
       (3.4) 

 

Advecting the fluid with second order accuracy is now tantamount to shifting the 

piecewise linear profile in Fig. 3.2a to the right by a distance “ a t∆ ” . The shifted profile 

is shown by the dashed line in Fig. 3.2b. The final step in the second order advection now 

consists of spatially averaging the shifted profile over each of the zones. This yields the 

solution at time 1nt +  and is shown by the solid slabs in Fig. 3.2b. A quantitative 

understanding of piecewise linear advection can be obtained by realizing that the area of 

the light gray trapezoid in Fig. 3.2b shows the amount of fluid that has crossed over into 

zone “i” from its left boundary. The base of the trapezoid is (a )t∆ , the height of its left 
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side is ( ) 11u 1 2 u
nn
ii µ −− + − ∆  and the height of its right side is 11u u 2

nn
ii −− + ∆ , making the 

area easy to evaluate. The time-average of the left flux, 1/2
1/2f  n

i
+
− , is then given by:  

 

( )1/2
11/2 1

1 f  = (a ) u  1 u
2

nn n
ii it t µ+
−− −

 ∆ ∆ + − ∆  
      (3.5)  

where 1/2
1/2f n

i
+
−  is the mean flux of fluid going through zone boundary 1/2ix − . The dark gray 

trapezoid in Fig. 3.2b shows the amount of fluid that has flowed out of zone “i” from its 

right boundary. I.e. it is a time-average of the right flux so that we have  

 

( )1/2
1/2

1 f  = (a ) u  1 u
2

nn n
ii it t µ+

+
 ∆ ∆ + − ∆  

      (3.6)  

 

where 1/2
1/2f n

i
+
+  is the mean flux of fluid going through zone boundary 1/2ix + . We can then 

account for the fluid at time 1nt +  in zone “i” by writing an integral expression for the 

conservation of fluid in that zone. Our general second order scheme is therefore given by 

 

( ) ( )( )
1 1/2 1/2

1/2 1/2

1
11

 u   u   f    f     

u  u u u 1 u u
2

n n n n
i i i i

n nn n n n
i ii i i i

x x t t+ + +
− +

+
−−

∆ = ∆ + ∆ − ∆ ⇔

= − − − − ∆ −∆
µµ µ

     (3.7) 

 

Fig. 3.2b clearly shows that the scheme in eqn. (3.7) has produced a spurious extremum 

in zone “i-1” at time 1nt + . 

 

 By comparing eqn. (3.7) to eqn. (3.3) we see that the use of piecewise linear 

profiles has produced an extra term in the update equation that depends on the slopes. It 

is also interesting to realize that our choice of right-biased slopes indeed yields the Lax-

Wendroff scheme from Sub-section 2.7.3. We know that the Lax-Wendroff scheme is not 

monotonicity preserving from Fig. 2.19b, where we saw that it can produce large 

overshoots and undershoots that were not present in the original solution. By examining 

the solid lines in Fig. 3.2b we see that the advection has produced a spurious overshoot in 
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zone “i−1” at time 1nt +  . It is easy to see that the piecewise linear profile that we 

introduced in zone “i” has not had a deleterious effect while the piecewise linear profile 

that we introduced in zone “i-1” has indeed spawned an overshoot in the same zone. We 

are inclined to ask what makes one linear profile acceptable when the other is not? The 

answer emerges when we realize that the linear profile that we introduced in zone “i-1” 

produces an overshoot, i.e. a local maximum, that is not present in the original mesh 

function. That is not the case for the profile that we introduced in zone “i”. Once an 

unphysical extremum has formed in one timestep, its further growth will be exacerbated 

in subsequent timesteps, resulting in larger overshoots or undershoots. The utility of Fig. 

3.2 stems from the fact that it enables us to get a visual understanding of the process by 

which an overshoot is formed in one timestep. We see that the overshoot comes about 

because the reconstructed piecewise linear profile itself has an overshoot – an overshoot 

that was not present in the original mesh function in Fig. 3.2a. Choosing a centered slope 

(or even a left-biased slope) would not solve the problem. Fig. 3.3 shows the 

consequence of using centered slopes, resulting in a scheme by Fromm (1968). We see 

that the problem persists. Using left-biased slopes yields the Beam-Warming scheme. 

Using the Beam-Warming scheme with the same initial conditions would have resulted in 

an undershoot in zone “i+1” at time 1nt +  . We therefore see that all second order accurate 

schemes that impart an unrestricted, piecewise linear profile within the zones are doomed 

to produce overshoots or undershoots. The solution consists of restricting, i.e. limiting, 

the piecewise linear profile within each zone so that it does not produce any new extrema 

that were not initially present in the original slabs of fluid. We examine strategies for 

limiting the slopes next. 
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 Fig. 3.2a clearly shows that the spurious extremum in the linear reconstruction, 

i.e. the dashed line in Fig. 3.2a, could have been avoided if we had taken the smaller of 

the left and right-biased slopes in all the zones. The left-biased slope, also referred to as 

the left slope, in zone “i−1” would then be zero. So even though the right slope in zone 

“i−1” is rather large, we can use our knowledge of the left slope to limit the overall 

piecewise linear slope that we impart to the zone “i-1” in Fig. 3.2a. A similar line of 

reasoning can be used to limit the slopes in Fig. 3.3a.  Fig. 3.4a shows the same initial 

profile but this time the undivided differences in all the zones have been evaluated in 

accordance with the algorithm 

 

( ) ( )( ) ( )1 1 1 1
1u   sgn u  u sgn u  u  min u  u , u  u
2

n n n n n n n n n
i i i i i i i i i+ − + −∆ = − + − − −   (3.8) 
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Here the function sgn (x) is +1 for x 0≥  and -1 for x<0. Notice that if the left and right 

undivided differences have the same sign then u
n
i∆  will also have that sign. It will then 

have a magnitude that is given either by the absolute value of the right undivided 

difference, 1u  un n
i i+ −  , or the left undivided difference , 1u  un n

i i−−  , depending on which 

one has the smaller value. Notice that the function depicted on the right hand side of eqn. 

(3.8) takes two arguments, i.e. the right- and left-biased undivided differences, and 

produces one value for the final undivided difference u
n
i∆  for use in the numerical 

scheme in eqn. (3.7). It limits the undivided differences that are used in making the slope 

and is, therefore, referred to as a slope limiter. The specific function shown in eqn. (3.8) 

is called a minmod slope limiter and there are several similarly designed slope limiters. 

The slope limiters depend on the mesh-function in a nonlinear fashion. Consequently, 

schemes that use limiters for linear advection are inherently nonlinear. Since all slope 

limiters are extremely non-linear functions of their arguments, they help justify our claim 

that our successful schemes for linear advection are based on non-linear hybridization. 

The box at the end of this section catalogues several slope limiters. Interestingly, eqn. 

(3.8) is also the most computationally efficient implementation of the minmod limiter. 

We see from the dashed profile in Fig. 3.4a that the minmod limiter has eliminated all 

spurious overshoots and undershoots in the piecewise linear profile. Fig. 3.4b shows the 

result of advecting the dashed profile in Fig. 3.4a. We see that the final advected profile 

in Fig. 3.4b is free of overshoots and undershoots.  
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 Notice from the previous paragraph that the minmod limiter only achieved its 

success by locally clipping the solution. As a result, the order of the method is locally 

reduced by a limiter in those zones where it is activated. In other words, the limiter 

achieves its salutary effect by providing strong dissipation where it is needed to prevent 

dispersive ripples that would otherwise form in a second order scheme. (Recall from your 

basic physics studies that dispersion refers to the fact that waves with different 

wavelengths propagate at different speeds. The dashed profile with overshoots in Fig. 

3.2a has a lot of short wavelength information in it owing to the overshoot. It is this short 

wavelength information that propagates on the mesh at speeds that are substantially 

different from the advection speed “a”. This results in the formation of new extrema in 

the next timestep, as shown in Fig. 3.2b. The limiter locally reduces dispersion at the 

expense of locally enhancing dissipation.) Taking Fig. 3.4a as an example, we see that 

applying the limiter to zone “i−1” has made the flux at zone boundary “i−1/2” a first 

order accurate flux; the flux at zone boundary “i+1/2” remains second order accurate 
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because the limiter left the slope in zone “i” unchanged. Notice that the limiter achieves 

its beneficial goal by examining the solution over a larger stencil than one would have in 

a straightforward, second order accurate Lax-Wendroff scheme. The limiter in eqn. (3.8) 

effectively compares the ratio of the left undivided difference, given by 1u  un n
i i−− , to the 

right undivided difference, given by 1u  un n
i i+ − , in its effort to pick out an undivided 

difference with the smaller absolute value. Consequently, the important quantity when 

examining whether the solution has a local extremum is given by taking the ratio of the 

left slope to the right slope as follows 

 

1

1

u  u
u  u

n n
i i

i n n
i i

θ −

+

−
=

−
          (3.9) 

 

Negative values of iθ  cause the resulting slope to be zero. When iθ  is close to unity, the 

mesh function is taken to be reasonably smooth and the undivided difference provided by 

a good slope limiter should revert back to the centered finite difference. As iθ  becomes 

much larger or much smaller than unity the mesh function is taken to have a significant 

kink in it. When iθ  begins deviating strongly from unity, an increasing amount of slope 

limiting is provided by the limiter. Notice that the minmod limiter clips the slope in all 

situations where iθ  makes even the slightest deviation from unity. Some of the other 

limiters, which are catalogued in the box at the end of this section, permit a little more 

latitude.  

 

 We should never forget though that the solution may have a local extremum that 

could be physically meaningful and the minmod limiter, like all other limiters, will clip 

that local extremum. Osher and Chakravarthy (1984) have indeed shown that any method 

that uses the limiters described here must degenerate to first order of accuracy at points of 

local extrema. Their result makes sense because a simple ratio of slopes, as in eqn. (3.9), 

cannot give us a good diagnostic of the structure of the flow. For that reason, a lot of 

research has gone into designing schemes that are gentler in the manner in which they 

reduce undesired oscillations. A class of such schemes that succeeds in this regard is 
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known as the Weighted Essentially Non-Oscillatory schemes (WENO henceforth), but 

we will defer the study of WENO schemes to Chapter 7. The Piecewise Parabolic 

Method (PPM henceforth) also pays a lot of careful attention to the reconstruction 

problem and is also presented in Chapter 7. Even amongst the monotonicity preserving 

limiters, there are several choices and some of the better ones produce solutions whose 

quality is discernably better than the poorer choices. In fact, the humble minmod limiter 

from eqn. (3.8) is one of the most dissipative limiters. Yet it is not to be scoffed at, 

because when the physical problem becomes very stringent the minmod limiter can 

indeed become the most trusted choice.  

 

 We now apply the minmod limiter and one of its more sophisticated cousins to the 

advection problems that we first presented in Section 2.7. The more sophisticated limiter 

that we use goes under the name of the monotonized central difference limiter (MC 

henceforth) and was also proposed by van Leer (1977). The MC limiter is catalogued in 

the box at the end of this section. As before, we set the propagation speed to unity and 

propagate certain profiles around the unit interval, [ ]0.5,0.5x∈ −  with periodic boundary 

conditions. We used a CFL number of 0.8. Our first profile consists of a Gaussian profile 

( ) ( )20.1u , 0 xx t e−= =  which is plotted in Fig. 3.5a at times t=0 (solid line), t=1 (asterisks) 

and t=2 (diamonds). Our second profile consists of setting  

( ) [ ]u , 0 1  0.05,0.05x t x= = ∀ ∈ −  and ( )u , 0 0x t = =  elsewhere. It is shown in Fig. 3.5b 

at times of t=0 (solid line), t=0.25 (asterisks) and t=0.75 (diamonds). The Gaussian, 

because it is smooth, was advected on a 50 zone mesh whereas the square pulse was 

advected on a 100 zone mesh. Fig. 3.5 is based on the advection scheme from eqn. (3.7) 

with the minmod limiter applied to the slopes. Fig. 3.6 parallels Fig. 3.5 but uses the MC 

limiter. We see that Figs. 3.5a and 3.6a are dramatic improvements over Figs. 2.17a and 

2.21a for the first order accurate schemes in Section 2.7. Furthermore, they even 

eliminate the slight undershoot that plagued the Lax-Wendroff and Runge-Kutta schemes 

in Figs. 2.19a and 2.20a. On comparing Fig. 3.6a with Fig. 2.19a for the Lax-Wendroff 

scheme we see, however, that the top of the Gaussian is clipped. This result is in 

accordance with our expectation that the accuracy degrades to first order at local extrema. 
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The minmod limiter has not been able to distinguish between the local maximum in the 

Gaussian, which is indeed physical, and the spurious oscillations that could arise in the 

vicinity of a discontinuous solution. Consequently, the minmod limiter, just like all the 

other limiters presented in this section, indiscriminately eliminates both types of extrema. 

Because of its relatively unsophisticated design, the minmod limiter clips the top of the 

Gaussian to a noticeably greater extent than the MC limiter, as can be seen by comparing 

Fig. 3.5a to Fig. 3.6a.  

 

 We now turn our attention to Figs. 3.5b and 3.6b for the advection of the top hat 

profile. Observe that we have made a considerable improvement over all the results in 

Section 2.7 for this problem. We see that both limiters produce oscillation-free 

propagation of the top hat profile, however, the solution from the minmod limiter is much 

more diffusive. It can in fact be shown that the minmod limiter is the most diffusive of 

the second order accurate limiters. Use of the MC limiter yields a much better looking 

profile for the propagating square wave. Note though that the solution in Fig. 3.6b does 

exhibit some diffusion. By observing the solution in Fig. 3.6b we see that the front and 

rear parts of the square wave have become unsymmetrical. This is inevitable considering 

that our scheme is still an upwind biased scheme. In principle, the forward and backward 

facing parts of profiles in Fig. 3.6b should have remained symmetrical. In reality, the loss 

of symmetry is a direct consequence of the directional bias that we have built into the 

scheme. Modern schemes do however go a long way towards minimizing this upwind 

bias. 
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More on Limiters 
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 Observe from Figs. 3.2, 3.3 and 3.4 and eqns. (3.5) and (3.6) that changing the 

way the slope is constructed also changes the flux of fluid that is advected across zone 

boundaries. It is, therefore, possible to formulate the limiters in such a fashion as to make 

the limiting of the fluxes more evident. Such limiters are known as flux limiters, to 

contrast them with the slope limiters that we have used to illustrate the issues in this 

section. Since we will be emphasizing finite volume reconstruction as a building block 

for successful schemes in this book we will not use flux limiters in any of the practical 

schemes that we discuss later. It is, nevertheless, necessary to mention for the sake of 

completeness that for every slope limiter that one might formulate, there is a 

corresponding flux limiter that can operate directly on the fluxes.  

 

 Earlier in this section we had mentioned that the minmod is but one of a class of 

slope limiters. It helps to catalogue many of the popularly used limiters here along with 

their attribution. Thus with a and b specifying the left and right slopes respectively the 

slope limiters can be written as 

Minmod (Roe 1986): 

( ) ( ) ( )( ) ( )1minmod ,  sgn sgn  min ,
2

a b a b a b= +  

van Leer (van Leer 1974): 

( ) ( ) ( )( )  vanleer , sgn sgn  a ba b a b
a b

= +
+

 

Monotonized Central (MC)(van Leer 1977): 

( ) ( ) ( )( )1 1MC ,  sgn sgn  min  ,  2 ,  2
2 2

a b a b a b a b = + + 
 

 

MCβ : 

( ) ( ) ( )( )1 1MC  ,  sgn sgn  min  ,  ,       1 2
2 2

a b a b a b a bβ β β β = + + ≤ ≤ 
 

 

Superbee (Roe 1986): 

( ) ( ) ( )( ) ( ) ( )( )1Superbee ,  sgn sgn  max  min 2 ,  , min , 2  
2

a b a b a b a b= +  

Sweby (Sweby 1984): 
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( ) ( ) ( )( ) ( ) ( )( )1Superbee  , sgn sgn  max min ,  , min ,    1 2
2

a b a b a b a bβ β β β= + ≤ ≤

 

The limiters are given here in a form that is most efficient when implementing them on 

modern computers with modern languages. Notice that the  MC class of limiters have the 

advantage that they can retrieve the centered slope ( ) 2a b+  when the left and right 

slopes do not constrain the slope limiting process. The centered slope is the most stable 

slope that one can provide for smooth variations in the flow. Compared to the left and 

right slopes, it is also the most accurate slope. The MC class of limiters provide a special 

advantage over the other limiters in the vicinity of smooth flow because they permit us to 

retrieve a centered slope. The minmod limiter is the most stable of these limiters in the 

presence of strong discontinuities, with the vanLeer and MC limiters also performing 

ably on large classes of problems. While the superbee limiter by Roe (1986) can produce 

charming results for certain types of linear advection problems, it can also be a 

temperamental performer on problems with strong shocks. The Sweby limiter tones it 

down. 

 

 Notice that the MCβ  limiter reduces to the minmod limiter when 1β =  and 

reverts to the MC limiter when 2β =  . The Sweby limiter has a similar attribute where it 

reduces to the minmod limiter with 1β =  and reverts to the Superbee limiter when 

2β = . One may, therefore, ask what is being controlled by the parameter β . The slopes 

produced by these adjustable limiters become larger as β  approaches 2. Let us, therefore, 

take another look at Figs. 3.5b and 3.6b. The reason the square wave profile looks crisper 

in Fig. 3.6b is that the MC limiter produces larger slopes. The larger slopes tend to 

preserve the form of the square wave, i.e. they compress the profile so as to make it look 

crisper. Consequently, all the limiters, except for the minmod limiter, are also called 

compressive limiters because they try to produce a somewhat larger slope in order to 

preserve discontinuous profiles more crisply.  

 

The ensuing two figures show us the difference between the minmod and MC 

limiters graphically. The dashed line in both figures shows the mesh function. The solid 
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lines show the reconstructed profiles for the minmod and MC limiters in the figures to the 

left and right respectively. In this example, the slope produced by the MC limiter is twice 

as large as the slope produced by the minmod limiter. Without introducing any new 

extrema, the MC limiter has produced the steeper, i.e. more compressed, profile with 

smaller jumps at zone boundaries. Now recall that the donor cell scheme produces the 

largest jumps in the reconstructed profile at zone boundaries, which also makes it a very 

diffusive scheme. Thus the extent of the jump in the reconstructed profiles at zone 

boundaries correlates with the amount of diffusion in the scheme. Since smaller jumps at 

the zone boundaries result in decreased numerical diffusion, we see that the MC limiter is 

less diffusive than the minmod limiter. For the reconstructed profiles shown below, the 

minmod limiter introduces jumps, and therefore dissipative fluxes, at 1/ 2,  1/2x = −  and 

3/2 . The fluxes produced by using the MC limiter also introduce dissipation at 1/ 2x = , 

thus contributing to stability. But the MC limiter does not introduce extra dissipation at 

the other two zone boundaries. Consequently, the MC limiter produces sharper profiles. 

 
 There are several flow features, such as an entropy wave in hydrodynamics or an 

Alfven wave in ideal MHD, where the flow feature should ideally propagate unchanged 

over very long distances. By using the eigenvectors that were introduced in Chapter 1 it is 

possible to detect where such features occur in the flow. Compressive limiters can be 

very useful in designing schemes that allow such features to propagate over long 

distances on a computational mesh without much change. Schemes that pay more 
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attention to the reconstruction problem, like the PPM or WENO schemes which we will 

study later, offer an even more elegant solution to the problem of accurate advection. 

 

3.3) The Total Variation Diminishing Property and Understanding the Limiters 

 

 In the previous section we saw that the monotonicity preserving property is 

essential for obtaining schemes for scalar advection that don’t generate any more extrema 

at the end of a timestep than were present at the beginning of a timestep. It is hard to 

formulate the monotonicity preserving property in a mathematically cogent way. For that 

reason Harten (1983) invented the concept of total variation diminishing (TVD 

henceforth) schemes where the TVD property is easily formulated. Harten was able to 

show that if a scheme is TVD then it should also be monotonicity preserving. Let us 

therefore specify a mesh with zone size x∆  and a zone-centered collocation. Let the 

index “i” label the zones . We solve the scalar advection equation u  a u 0t x+ =  on this 

mesh. To simplify the treatment of the fluxes at the boundaries of our domain, we treat 

the domain as infinite with a solution that tends to zero as x →±∞  . We define the total 

variation of a mesh function { }1 1u  ...,  u ,  u ,  u ,  ....n n n n
i i i− +≡  at time nt  as 

 

( ) 1TV u  = u un n n
i i

i

∞

+
=−∞

−∑         (3.10) 

 

After application of the scheme in eqn. (3.7) we get the mesh function 

{ }1 1 1 1
1 1u  ...,  u ,  u ,  u ,  ....n n n n

i i i
+ + + +

− +≡  at time 1  n nt t t+ = + ∆  and we can define ( )1TV un+  

similarly to eqn. (3.10). The TVD property then says that  

 

( ) ( )1TV u TV un n+ ≤          (3.11) 

 

One has only to imagine a square pulse at one time step and envision it developing 

wiggles at the next time step. Fig. 2.19b provides such an example. Each of the upswings 

and downswings in the wiggles contributes positively to the total variation. The total 
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variation for the solid curve in Fig. 2.19b is exactly 2, i.e. an upswing of unity followed 

by a downswing of unity. We can see that the total variation in the dashed curve is much 

greater than 2, showing that the total variation increased after several time steps in Fig. 

2.19b. A scheme that satisfies eqn. (3.11) is called a TVD scheme. A TVD scheme would 

not produce such an increase in the variation, thus preventing the growth of spurious 

oscillations. 

 

 Harten (1983) proved an incredibly important theorem for TVD schemes, which 

we explain below. Harten observed that the general structure of the update equation in 

eqn. (3.7) can be written as  

 

( ) ( )1
, 1/2 1 , 1/2 1u  u u u  u un n n n n n

i i i i i i i iC C+
− − − + + += − − + −      (3.12) 

 

where , 1/2iC− −  and , 1/2iC+ +  can be any functions that depend on the mesh function in a 

linear or non-linear fashion. For the Lax-Wendroff scheme, which is a linear scheme for 

advection, eqn. (3.7) gives us ( ), 1/2 1 2iC µ µ− − = +  and ( ), 1/2 1 2iC µ µ+ + = − −  so that the 

coefficients only depend on the CFL number. For any advection scheme that achieves its 

stability via non-linear hybridization, we in fact expect , 1/2iC− −  and , 1/2iC+ + to have a non-

linear dependence on the mesh function. By permitting  , 1/2iC− −  and , 1/2iC+ +  to be data-

dependent, Harten’s theorem is general enough to encompass non-linear schemes for 

solving the linear advection problem. Harten was able to assert his main theorem which 

says that : When , 1/2 0iC− + ≥  , , 1/2 0iC+ + ≥  and , 1/2 , 1/2+ 1i iC C− + + + ≤  for all zones “i” in the 

update equation given by eqn. (3.12), the scheme is TVD. A scheme that produces new 

maxima or minima when the solution is evolved in time would violate the TVD property. 

If we take the Lax-Wendroff scheme with 0 1µ< <  as an example, we see that 

, 1/2 0iC+ + <   thus proving that it is not a TVD scheme. If the solution is positive to begin 

with, a TVD scheme would prevent it from going negative at a later time. We thus see 

that the TVD property will also help a scheme to be positivity preserving. 
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The proof of Harten’s theorem goes as follows. By resetting 1i i→ + in eqn. 

(3.12) and subtracting eqn. (3.12) from the resulting equation we obtain 

 

( ) ( )( ) ( )1 1
1 , 1/2 1 , 1/2 , 1/2 1 , 3/2 2 1u u  u u  + 1   u u  + u un n n n n n n n

i i i i i i i i i i i iC C C C+ +
+ − − − − + + + + + + + +− = − − − − −  

           (3.13) 

Now if the coefficients of ( )1u un n
i i−−  , ( )1u un n

i i+ −  and ( )2 1u un n
i i+ +−  are non-negative then 

an interesting result prevails. By repeatedly applying the Schwartz inequality ( i.e. 

a b a b+ ≤ + ) to eqn. (3.13) and summing over all indices “i”, let us evaluate the total 

variation in the mesh function at time 1  n nt t t+ = + ∆ . We see that 

 

( ) ( )1 1 1
1 , 1/2 , 1/2 1

, 1/2 1 , 3/2 2 1

TV u   u u   1   u u

                                                  + u u  + u u

n n n n n
i i i i i i

i i

n n n n
i i i i i i

i i

C C

C C

∞ ∞
+ + +

+ − + + + +
=−∞ =−∞

∞ ∞

− − − + + + +
=−∞ =−∞

≡ − ≤ − − −

− −

∑ ∑

∑ ∑
 (3.14) 

 

Making unit shifts in the summation indices “i” for the last two sums in eqn. (3.14) gives 

us 

 

( ) ( )1 1 1
1 , 1/2 , 1/2 1

, 1/2 1 , 1/2 1

TV u   u u   1   u u

                                                  + u u  + u u

                               

n n n n n
i i i i i i

i i

n n n n
i i i i i i

i i

C C

C C

∞ ∞
+ + +

+ − + + + +
=−∞ =−∞

∞ ∞

− + + + + +
=−∞ =−∞

≡ − ≤ − − −

− −

∑ ∑

∑ ∑

( )1                  u u   TV un n n
i i

i

∞

+
=−∞

= − ≡∑

 (3.15) 

 

This completes our proof of Harten’s theorem. 

 

 Harten’s theorem is important for TVD schemes because several advection 

schemes, including the monotonicity preserving scheme that was sketched out in the 

previous section, can be cast (or recast) to have a structure that formally looks like eqn. 

(3.12). As a result, TVD schemes are an important building block in many successful 
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strategies for treating hyperbolic systems. Notice though that in making the update 

equation for a scheme resemble eqn. (3.12) the coefficients , 1/2iC− −  and , 1/2iC+ +  can 

acquire a strongly nonlinear dependence on the mesh function. The further utility of 

Harten’s theorem, therefore, lies in the fact that it will be used to gain deep insights into 

the workings of the limiter and the non-linear hybridization that it introduces into the 

numerical scheme.  

 

 Now let us put the schemes that we designed in the previous section in context 

with the help of Harten’s theorem. In light of the update equation for scalar advection, i.e. 

the first equation in eqn. (3.7), we realize that a scheme will have the TVD property if its 

fluxes have a special form. For that reason, let us compare the Lax-Wendroff fluxes in 

eqns. (3.5) and (3.6) to the donor cell fluxes in eqns. (3.1) and (3.2).  Notice that the 

fluxes defined by eqns. (3.1) and (3.2) are diffusive but the first order scheme that utilizes 

those fluxes will indeed satisfy the TVD property. Consequently, the extra terms in the 

fluxes in eqns. (3.5) and (3.6) are referred to as the anti-diffusive fluxes. For example, 

using the right-biased undivided differences, 1 1u u u
n n n
i i i− −∆ = −  , in eqn. (3.5), the anti-

diffusive flux has the form: ( )( )1a 1 u u 2n n
i iµ −− −  . Recall too that the right-biased 

differences give us the Lax-Wendroff scheme. For 0 1µ≤ ≤  we see that the coefficient in 

front of ( )1u un n
i i−−  has a sign that is opposite to that of a diffusion term. In other words, 

the coefficient “ ( )a 1 2µ− ” is positive which is opposite to the sign that a diffusion term 

would have for an update equation of the form ( )1 1/2 1/2
1/2 1/2u  u   f fn n n n

i i i it x+ + +
+ −= − ∆ − ∆  . 

Hence the flux is called anti-diffusive and it performs the task of steepening the mesh 

function. If the anti-diffusive fluxes are allowed to have a linear dependence on their 

neighboring mesh function, the previous section has shown us that the scheme will not be 

monotonicity preserving. In order to have a TVD advection scheme, we see that the 

slopes in the second order accurate fluxes from eqns. (3.5) and (3.6) have to be limited. 

The next advance came from Sweby (1984) who studied how the anti-diffusive fluxes 

can be limited in a fashion that is consistent with Harten’s theorem. See also Tadmor 
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(1988). He showed that such a study yields a systematic strategy for understanding all the 

limiters. In the next paragraph we retrace the most important aspects of Sweby’s paper. 

 

 To begin with, realize that if the full extent of the undivided differences 1u
n
i−∆  and 

u
n
i∆  from the second order accurate fluxes 1/2

1/2f  n
i
+
−  and 1/2

1/2f n
i
+

+  of eqns. (3.5) and (3.6) are 

used then the resulting second order scheme will not be monotonicity preserving. To 

design a TVD scheme we have to limit the slopes 1u
n
i−∆  and u

n
i∆  in eqns. (3.5) and (3.6) 

respectively. We therefore use a flux limiter ( )iφ θ  which depends on iθ  from eqn. (3.9) 

for each zone “i”. In eqn. (3.5) we replace ( ) ( )1 1 1u  u u
n n n
i i i i− − −∆ → −φ θ  , i.e. we are using a 

limited form of the right slope. We similarly replace ( ) ( )1u  u u
n n n
i i i i+∆ → −φ θ  in eqn. 

(3.6). We then obtain the limited fluxes 

 

( ) ( ) ( )1/2
1/2 1 1 1

1f  = a u  1   u u
2

n n n n
i i i i iµ φ θ+
− − − −

 + − −  
     (3.16)  

 

and 

 

( ) ( ) ( )1/2
1/2 1

1f  = a u  1   u u
2

n n n n
i i i i iµ φ θ+
+ +

 + − −  
      (3.17)  

 

Intuitively, we seek a limiter such that ( ) 0φ θ =  for 0θ <  so that the creation of new 

extrema is avoided. (Within the confines of our TVD formulation it is not possible to 

distinguish between smooth extrema in the actual solution and spurious extrema resulting 

from numerical oscillations, so we play it safe and avoid all extrema.) We also wish to 

have ( ) 0φ θ >  for 0θ >  so that the slope within each zone has the right orientation. In 

order to achieve second order accuracy in the limit where the solution is smooth and 

monotone, we also wish to have ( ) 1φ θ →  as 1θ →  . I.e. when the solution is smooth, 

monotone and free of kinks, our limited scheme reverts back to the second order accurate 
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Lax-Wendroff scheme. We know from Section 2.7 that the Lax-Wendroff scheme 

performs beautifully in such situations. The second order accurate scheme from eqn. (3.7) 

is, therefore, modified to become 

 

( ) ( ) ( ) ( ) ( ) ( )1
1 1 1 1u  u u u 1  u u    u u

2
n n n n n n n n
i i i i i i i i i i

µµ µ φ θ φ θ+
− + − −

 = − − − − − − −   (3.18) 

 

Observe that with ( ) 0φ θ =  eqn. (3.18) reverts to a donor cell scheme, whereas with 

( ) 1φ θ =  eqn. (3.18) it becomes the Lax-Wendroff scheme with right-biased undivided 

differences. With the functional dependence ( )φ θ θ=  it can also become the Beam-

Warning scheme with left-biased undivided differences. So the inclusion of the limiters 

has endowed our scheme with a great deal of flexibility. Please also note that the 

inclusion of limiters ( )iφ θ  and ( )1iφ θ −  that depend on the ratios iθ  and 1iθ −  in the above 

equation also results in an expansion of the stencil for our numerical scheme. We still 

have to recast eqn. (3.18) in a form that conforms with eqn. (3.12) so that Harten’s 

theorem may be applied to it. A first attempt at recasting eqn. (3.18) would be to write it 

as 

 

( ) ( ) ( ) ( ) ( ) ( )1
1 1 1u  u 1 u u 1 u u

2 2
n n n n n n
i i i i i i i i

µ µµ µ φ θ µ φ θ+
− − +

   = − − − − + − − −      
 (3.19) 

 

We see that the coefficient of ( )1u un n
i i+ −  will be negative for normal situations when 

0 1µ≤ ≤  and ( ) ~ 1iφ θ  . As a result, the form of eqn. (3.19) is unsuitable for Harten’s 

theorem. With the help of eqn. (3.9), we now substitute ( ) ( )1 1u u u un n n n
i i i i iθ+ −− = −  in eqn. 

(3.19) to obtain 

 

( ) ( ) ( ) ( )1
1 1u  u  1 u u

2
in n n n

i i i i i
i

φ θµµ µ φ θ
θ

+
− −

   = − + − − −  
   

    (3.20) 

 



 27 

By relating eqn. (3.20) to eqn. (3.12) we get 

 

( ) ( ) ( ), 1/2 1 , 1/21   and  0
2

i
i i i

i

C C
φ θµµ µ φ θ
θ− − − + +

 
= + − − = 

 
    (3.21) 

 

We, therefore, see that an application of Harten’s theorem requires , 1/20 iC− −≤  and 

, 1/2 1iC− − ≤  . For 0 1µ≤ ≤  the former condition, i.e. , 1/20 iC− −≤ , requires that the square 

bracket in eqn. (3.21) is greater than or equal to −2 . The latter condition, i.e. , 1/2 1iC− − ≤ , 

requires that the same square bracket be less than or equal to 2. Consequently, we see that 

insisting on the TVD property is tantamount to requiring that 

 

( ) ( )12    2i
i

i

φ θ
φ θ

θ −− ≤ − ≤         (3.22) 

 

for all possible values of iθ  and 1iθ −  . Problem 3.5 at the end of this chapter gently steps 

the reader through the derivation of eqn. (3.22). In general, iθ  and 1iθ −  are independent of 

each other. Thus the only way to guarantee the TVD property is to have a non-negative 

function ( )φ θ  which is bounded by 

 

( ) ( )0    2   and   0    2
φ θ

φ θ
θ

≤ ≤ ≤ ≤       (3.23) 

 

Eqn. (3.23) identifies the region where the TVD property holds. For positive flux 

limiters, this region is bounded by ( )   2φ θ θ≤  and ( )   2φ θ ≤ . Fig. 3.7a shows that 

TVD region as a shaded region. We see that the TVD region includes the situation where 

( ) 0φ θ = , consistent with a first order upwind scheme. We wish to restrict our focus to 

second order schemes. For such schemes the slope that is chosen can range all the way 

from the right slope, which yields the Lax-Wendroff scheme, to the left slope, which 

yields the Beam-Warming scheme. I.e. this range is guaranteed to capture the full range 
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of second order schemes. The Lax-Wendroff scheme corresponds to making the choice 

( ) 1φ θ =  in eqn. (3.18) and the Beam-Warming scheme to the choice ( )φ θ θ=  in the 

same equation. These two choices are shown by the two dark solid lines in Fig. 3.7b. A 

second order TVD preserving scheme should lie between these two choices in addition to 

lying in the region shown in Fig. 3.7a. Thus a second order accurate TVD preserving 

scheme should lie in the shaded region shown in Fig. 3.7b. Notice that this also ensures 

( )1 1φ =  which was our further condition for second order accuracy. I.e. for situations 

where 1θ =  our scheme should revert back to the well-centered second order accurate 

Lax-Wendroff scheme. A final desirable attribute of TVD preserving second order 

accurate limiters is that they should produce a symmetric reconstruction of a symmetric 

mesh function. This property would help in reducing the upwind bias as much as 

possible; see Fig. 3.6b for an example of a very slight upwind bias. It can be shown that 

this symmetry condition is ensured by requiring 

 

( ) ( )1/
φ θ

φ θ
θ

=          (3.24) 

 

for all positive values of θ . Problem 3.6 at the end of this chapter steps the reader 

through this demonstration. All the limiters presented in this chapter satisfy the above 

symmetry condition. The shaded region shown in Fig. 3.7b is sometimes referred to as 

the Sweby region. 
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 We can now plot out the limiter functions for the four distinct types of popular, 

second order accurate limiters that were catalogued at the end of the last section. Written 

as flux limiters they become 

 

( ) ( )

( )

( ) ( )

( ) ( ) ( )( )

minmod   : minmod  1,  

van Leer  : 
1

1MC          : max 0,  min  1 ,  2, 2
2

Superbee  : max  0,  min  1,  2 ,  min  2,  

φ θ θ

θ θ
φ θ

θ

φ θ θ θ

φ θ θ θ

=

+
=

+

  = +    
=

    (3.25) 

 

Eqn. (3.25) shows that it is easy to transcribe from a flux limiter to a slope limiter and 

vice versa. The position of the flux limiters relative to the second order TVD region is 

shown in Figs. 3.8a,b,c and d for the minmod, van Leer, MC and Superbee limiters 

respectively. We see right away that all the limiter functions lie within the Sweby region 

for second order accurate TVD schemes, consistent with the fact that they are indeed 

second order accurate limiters. We can see from Fig. 3.8a that the minmod limiter always 
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has the smallest values and, therefore, produces the smallest slopes in the fluid profiles 

that it reconstructs. Consequently, schemes that use the minmod limiter, while second 

order accurate, will suffer the most amount of dissipation. The MC and van Leer limiters 

lie in the middle of the Sweby region. They will, therefore, produce slopes that are larger 

than the minmod limiters. The Superbee limiter lies at the upper boundary of the Sweby 

region. Consequently, it produces the largest slopes and is also the most compressive of 

limiters, a fact that can sometimes act to its detriment.  

 

 
 

Limiters from a Different Viewpoint 

 

 The previous two sections have given us both a pictorial and a rigorous way of 

understanding limiters. There is a further algebraically motivated viewpoint for 

understanding limiters that is more succinct and might please some readers. It also gives 

us the very important and interesting perspective that the limiters can depend on the kind 
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of underlying scheme that is used, see Arora and Roe (1997) and Toro (2009). We 

consider the advection equation, u  a u 0t x+ = with a>0. Let us consider a portion of the 

mesh function around the zone “i”, so that we focus on the mesh function 

{ }1 1u  ...,  u ,  u ,  u ,  ....n n n n
i i i− +≡  at time nt . Let x∆  be the uniform zone size, let t∆  be the 

timestep and let µ  be the Courant number. In order to build a second order scheme, we 

endow zone “i” with an undivided difference u
n
i∆ , while leaving its value open for now. 

When 1un
i−  , un

i  and 1un
i+  are not monotone, i.e. when the value of un

i  does not lie 

between 1un
i−  and 1un

i+ , we can use our experience from the previous two sections to set 

u
n
i∆  to zero. Thus we only consider situations where 1 1u  u  un n n

i i i− +≤ ≤  or situations where 

1 1u  u  un n n
i i i− +≥ ≥  below. 

 

 Within the zone “i” the time rate of update, u t , can be discretized as a u
n
i x− ∆ ∆  . 

Defining 1/2
; 1/2un

L i
+
+  to be the value of the solution at the left of the zone boundary “i+1/2” at 

a time 2nt t+ ∆  we get 

 

( )1/2
; 1/2

1 u 1u  u   u    a   u   1 u
2 2 2

n
n nin n n
i iL i i i

t
x

µ+
+

∆ ∆
= + ∆ − = + − ∆

∆
 

 

Notice that the flux in eqn. (3.6) can be written as 1/2 1/2
1/2 ; 1/2f  = a un n

i L i
+ +
+ +  which shows us that 

limiting 1/2
; 1/2un

L i
+
+  and 1/2

; 1/2un
R i
+
−  is tantamount to limiting the fluxes. Similarly, by defining 

1/2
; 1/2un

R i
+
−  to be the value of the solution at the right of the zone boundary “i−1/2” at a time 

2nt t+ ∆ , we get 

 

( )1/2
; 1/2

1 u 1u  u   u    a   u   1 u
2 2 2

n
n nin n n
i iR i i i

t
x

µ+
−

∆ ∆
= − ∆ − = − + ∆

∆
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The monotonicity preserving property of the scheme can be formulated in terms of 

requiring 1/2
; 1/2un

R i
+
−  to lie between 1un

i−  and un
i  and, furthermore, by requiring 1/2

; 1/2un
L i
+
+  to lie 

between un
i  and 1un

i+ . See the figure below. 

 

 
 Consider the case 1 1u  u  un n n

i i i− +≤ ≤  so that the mesh function does not decrease 

with increasing “x”. The left panel in the above figure provides an example. We wish to 

have 1/2
1 ; 1/2u u  un n n

i R i i
+

− −≤ ≤  which gives us  

 

( )1
1u u   1 u  u
2

nn n n
ii i iµ− ≤ − + ∆ ≤  

 

The two inequalities in the previous equation then yield the requirements that  

 

( )1
20  u   u u

1
n n n
i i iµ −≤ ∆ ≤ −

+
 

 

Similarly requiring that 1/2
; 1/2 1u  u   un n n

i L i i
+
+ +≤ ≤  and simplifying gives us the requirements 
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( )1
20  u   u u

1
n n n
i i iµ +≤ ∆ ≤ −

−
 

 

The above two sets of requirements can be amalgamated to yield 

 

( ) ( )1 1
2 20  u   min u u ,  u u

1 1
n n n n n
i i i i iµ µ− +

 
≤ ∆ ≤ − − + − 

 

 

 Now consider the case 1 1u  u  un n n
i i i− +≥ ≥  so that the mesh function does not 

increase with increasing “x”. The right panel in the above figure provides an example. 

We wish to have 1/2
1 ; 1/2u u  un n n

i R i i
+

− −≥ ≥  which, after some simplification, gives us the 

conditions 

 

( )1
2 u u   u   0

1
nn n
ii iµ −− − ≤ ∆ ≤

+
 

 

Similarly, requiring 1/2
; 1/2 1u  u   un n n

i L i i
+
+ +≥ ≥   and carrying out some simplifications, yields 

the conditions 

 

( )1
2 u u   u   0

1
nn n
ii iµ +− − ≤ ∆ ≤

−
 

 

Taken together, the above two sets of conditions yield 

 

( ) ( )1 1
2 2 min u u  , u u   u   0

1 1
nn n n n
ii i i iµ µ− +

 
− − − ≤ ∆ ≤ + − 

 

 

 Putting all the conditions together for increasing and decreasing mesh functions 

together we get 
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( ) ( )( )1 1 1 1
1 2 2u  =  sgn u u sgn u u  min u u ,  u u
2 1 1

n n n n n n n n n
i i i i i i i i iµ µ− + − +

 
∆ − + − − − + − 

 

 

In most situations, as with the MC limiter that we have seen before, it helps to give the 

limiter the option of approaching a central slope so that we may also write 

 

( ) ( )( )1 1 1 1 1 1
1 1 2 2u  =  sgn u u sgn u u  min u u  ,  u u ,  u u
2 2 1 1

n n n n n n n n n n n
i i i i i i i i i i iµ µ− + + − − +

 
∆ − + − − − − + − 

 

 

Notice that the limiters obtained via this process are dependent on the Courant number 

µ . Furthermore, the left and right undivided differences carry different weights with the 

result that the above two limiters only hold when a>0. For a<0, the weights ( )2 1 µ+  and 

( )2 1 µ−  should switch places in the above two limiters. The limiters from this box do 

provide crisper profiles in several situations. However, it is also worth mentioning that 

Arora and Roe (1997) found that the Courant number-dependent limiters may not be as 

robust in certain circumstances as the ones we have studied previously. This limits their 

utility. For general hyperbolic systems, they also require us to carry out a characteristic 

decomposition, which we study in the next section. The characteristic decomposition of 

large hyperbolic systems can be computationally costly.  

 

 

The van Albada Limiter 

The Sweby region gives us a formal way of analyzing and categorizing second 

order accurate limiters. In practice, limiters might be constructed that serve different 

purposes. Several practical limiters have been constructed which lie quite close to the 

Sweby region, even though they do not lie entirely within it. A prominent example is the 

van Albada limiter (van Albada et al. 1982) given by 

( )
2 2

2 2vanAlbada ,
 + 

a b b aa b
a b ε

+
=

+
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Here ε  is a tiny number designed to prevent division by zero. The van Albada limiter 

can, of course, be brought into the Sweby region by prefixing the right hand side with 

( ) ( )( )1 sgn sgn
2

a b+ , but it also works well as given. Even when the slopes have opposite 

signs the limiter picks out the smaller of the two slopes, thus stabilizing the numerical 

method. While this limiter doesn’t produce the sharpest profiles for explicit advection 

schemes, it is very useful for implicit formulations. Because of its smoothness, it 

produces a flux that has a smooth and differentiable dependence on the mesh function. 

This smooth variation is very useful for the convergence of iterative linear algebra 

methods.  

 

3.4) Linear Hyperbolic Systems and the Riemann Problem 

 

 We split this section into several connected parts. In Sub-section 3.4.1 we discuss 

the solution of linear hyperbolic equations for continuous, once-differentiable initial 

conditions. Sub-section 3.4.2 discusses discontinuous initial conditions and introduces the 

Riemann problem. Sub-section 3.4.3 shows the importance of the Riemann problem as an 

essential building block for numerical solutions of hyperbolic systems. Sub-section 3.4.4 

explains how the Riemann problem restores stability to a second order accurate TVD 

scheme for linear hyperbolic systems while retaining consistency of the numerical fluxes 

that it provides to a numerical scheme. Sub-section 3.4.5 presents the fluctuation form 

which will be very useful in our subsequent study of non-conservative systems. The box 

presented at the end of this section instantiates the mathematics in this section for the 

linearized one-dimensional Euler equations. It might be helpful to read it in conjunction 

with this section so that the reader can see the arguments instantiated for a particular 

physical system. The reader is also requested to review Section 1.5 before reading this 

section. 

 

3.4.1) Solution of Linear Hyperbolic PDEs for Continuous Initial Data 
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 Many of the systems of conservation laws that interest us have a predominantly 

hyperbolic component with an additional non-ideal component that may be parabolic. 

Here we focus on the hyperbolic part, ignoring non-ideal contributions. For now we 

further restrict attention to one dimensional variations. The conservation law can then be 

formally written as U F(U) 0t x+ =  where the vectors U and F are column vectors with 

“M” components. As seen in Chapter 1, the conservation law can be linearized to yield an 

equation of the form 

 

U  A U 0t x+ =          (3.26) 

 

where “A” is an M×M matrix that is sometimes referred to as the characteristic matrix. 

We say that the system is hyperbolic if “A” has “M” real eigenvalues, 1 2, ,..., Mλ λ λ . Such 

a hyperbolic system is sometimes referred to as an M×M hyperbolic system. Physically, 

as we have demonstrated in Sub-sections 1.5.2 and 1.5.3, it means that a very small one-

dimensional disturbance produced at any location will propagate away from that location 

as “M” independent waves along the x-axis. In the next paragraph we study the role of 

these eigenvalues in characterizing a hyperbolic system. 

 

 For certain hyperbolic systems the eigenvalues can be arranged in an ordered 

sequence from smallest to largest, i.e. 1 2 ... Mλ λ λ< < < . Furthermore, if that order is 

preserved regardless of the value of “U” we call the hyperbolic system strictly 

hyperbolic. Physically, the waves emanating from a small perturbation to the constant 

state of a strictly hyperbolic system are guaranteed to always have the same ordering in 

space-time. Because the waves in a strictly hyperbolic system are well-separated, elegant 

theorems can be proved to ensure that solution techniques can be found, see Lax (1972). 

Typical hyperbolic systems of interest to us are not strictly hyperbolic; consider the three-

dimensional Euler equations as an example. For the 5×5 Euler system we have 
1 2 3 4 5λ λ λ λ λ< ≤ ≤ <  where the extremal wave families correspond to the left- and 

right-going sound waves and the central three correspond to the entropy wave and the 

two transverse shear waves. We call such systems non-strictly hyperbolic. Fortunately for 
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the Euler system, the degenerate eigenvalues correspond to linearly degenerate wave 

families and a result by Lax comes to the rescue ensuring that reliable numerical solution 

methods can be found in certain instances. We will learn about linearly degenerate wave 

families later.  Unfortunately, several of the other hyperbolic systems of interest to us, 

such as two-phase flow, non-linear elasticity, MHD and relativistic MHD, have 

characteristic matrices with worse properties and the intrepid computationalist has to 

persevere with the situation as it is.  

 

In general, the matrix “A” will be a strongly non-linear function of the solution 

vector. We will study such situations later. A much simpler situation arises when the 

matrix “A” is a constant. The solution for such systems is easily found and is catalogued 

in this section. The ideas developed here will also be useful for the numerical treatment 

of non-linear hyperbolic systems. In particular, even when one is dealing with a non-

linear hyperbolic system, one can always achieve the form in eqn. (3.26) by freezing the 

matrix “A” at any location consistent with the local values of the solution vector “U”. 

Consequently, while we restrict our attention to linear hyperbolic systems in this section, 

we will also gain important early insights into treating the non-linear case.  

 

 Associated with each of the “M ” eigenvalues , mλ with m=1,…M , we can write 

an equation for the right and left eigenvectors as 

 

A   ;      A =  m m m m m mr r l lλ λ=        (3.27) 

 

where mr  is a column vector with “M” components and ml  is a row vector with “M” 

components. We assume that the eigenvalues form an ordered set, 1 2 ... Mλ λ λ< < < . The 

eigenvectors can be arranged in the same order so that we can write a matrix R whose mth 

column is mr . Similarly, we can obtain a matrix of left eigenvectors L whose mth row is 
ml  , see Fig. 1.11. Notice that we set 1L R−=  so that the left and right eigenvectors are 

orthonormal relative to eachother, i.e.  m n
mnl r δ=  where mnδ  is the Kronecker delta 

function. Defining the diagonal matrix { }1 2diag , ,..., Mλ λ λΛ =  we can write 
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 A     or    A =   L R R L= Λ Λ         (3.28) 

 

By left-multiplying eqn. (3.26) with the mth left eigenvector ml  we get 

 

 U   A U   +   U  =  +   0    where  Um m m m m m m m m m
t x t x t xl l w l w w w lλ λ+ = = ≡  (3.29) 

 

We call the scalar variable  Um mw l≡  the characteristic variable or eigenweight for the 

mth wave family. Eqn. (3.29) shows us that the characteristic variable for the mth wave 

family satisfies the simple advection equation  +   0m m m
t xw wλ = . In other words, the 

eigenweight mw  propagates quite simply as a wave with the speed mλ . This process of 

decomposing a general hyperbolic system U  A U 0t x+ =  into a set of simple advection 

equations  +   0m m m
t xw wλ =  in the characteristic variables is called characteristic 

decomposition. It is important to also point out that many aspects of the mathematics that 

were used in eqn. (3.29) would not hold exactly for non-linear systems. In particular, 

writing ( ) U  Um m m
t tt

l l w= =  assumes that ml  is a constant in space and time. Similarly, 

for a linear system the waves from eqn. (3.29) can propagate past each other without a 

change in their form, i.e. without dispersion, a fact that does not hold true for non-linear 

hyperbolic systems. However, eqn. (3.29) is so important in developing our 

understanding of hyperbolic systems that we will later on be cavalier enough to rely on it 

even for non-linear hyperbolic systems. When it comes to designing numerical schemes 

for hyperbolic systems, we simply do not have any substantially better perspective to 

hang our hats on.  

 

 Eqn. (3.29) has shown us that the parts of the solution vector that are projected 

into characteristic variables travel with the wave speed associated with that variable. The 

Cauchy problem for hyperbolic systems tells us that if the solution is defined in a smooth 

and differentiable way on a non-characteristic surface in space-time then it can indeed be 

evolved further for a finite distance in time. For our purposes we will assume that the 
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initial conditions are given at time 0t =  on the x-axis by an M-component vector ( )0U x  

each of whose components are smooth and differentiable at least once. We can then 

obtain “M” smooth functions given by  

 

( ) ( )0 0 U       for 1,...,m mw x l x m M= =       (3.30) 

 

Since ( )0U x  is a specified function of x, eqn. (3.30) tells us that ( )0
mw x  is a known 

function of x. In light of eqn. (3.29) which says that the mth characteristic variable obeys 

the advection equation  +   0m m m
t xw wλ = , the solution for 0t >  is given by 

 

( ) ( )0
1

U ,  
M

m m m

m
x t w x t rλ

=

= −∑         (3.31) 

 

It is easy to substitute eqn. (3.31) into eqn. (3.26) and verify that it is the right solution of 

the linear PDE that satisfies the initial conditions. Thus if all we wanted to do was solve a 

smooth problem with initial condition ( )0U x  over the entire x-axis then we would only 

have to generate the profiles ( )0
mw x  for each characteristic field, advect (i.e. shift) them 

around with the appropriate wave speed to get ( )0
m mw x tλ−  and then use eqn. (3.31) to 

obtain the solution at some later time. In practice, we would also have to be mindful of 

boundary conditions on a finite domain. But it is worth pointing out that the solution of 

the linear problem with smooth initial conditions is rather simple. However, linear 

hyperbolic PDEs also admit discontinuous solutions and we study those solutions next. 

 

3.4.2) Solution of Linear Hyperbolic PDEs for Discontinuous Initial Data: Simple 

Waves and the Riemann Problem 

 

 The previous sub-section showed us how to obtain the solution at all times 0t >  

when the initial conditions are specified as a continuous function ( )0U x  at time 0t = . 
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When ( )0U x  is continuous and differentiable, there is only an infinitesimal jump from 

one point to an immediately neighboring one. It turns out that eqn. (3.26) also admits 

discontinuous initial conditions. In this sub-section we will study the evolution of 

discontinuous initial data in two gradual stages. In the first stage, we study simple waves 

where the jump in the initial data has to have a specific form. In the second stage of our 

study, we consider the Riemann problem where one can have an arbitrary change in 

initial conditions at a point of discontinuity. 

 

 Let us first study simple waves. The differential form of the hyperbolic PDE in 

eqn. (3.26) cannot, by itself, represent a discontinuity because the derivatives would be 

ill-defined at the discontinuity. However, there is an integral sense in which one can 

justify the presence of discontinuous solutions. Thus imagine a situation where we have 

( )0U  = U  for <0Lx x and ( )0U  = U  for 0Rx x ≥ . Let that discontinuity propagate from 

the origin in the x-direction so that at a time “T” it has propagated a distance “X” as 

shown in Fig. 3.9. We can now integrate U  A U 0t x+ =  over the rectangle [ ] [ ]0,X 0,T×  

in space and time, see Fig. 3.9. Using integration by parts, which we illustrate below, we 

get 

 

( )

( ) ( ) ( )

0 0 0 00 0

U  + A U   = 0     U  A U 0

X  U  X  U  X + A U  T U  T  = 0    A U U  U U
T

t T x Xt T x X x X t T

t x
t x x tt x

L R R L R L R L

dx dt dx dt
= == = = =

= = = == =

   
⇔ + =   

   

⇔ − − ⇔ − = −

∫ ∫ ∫ ∫
 (3.32) 

 

We then see from eqn. (3.32) that in order for a discontinuity to satisfy the integral form 

of the linear hyperbolic system, it must move with a speed given by λ  which  satisfies 

the equation  

 

( ) ( )A U U  U UR L R Lλ− = −         (3.33) 
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Eqn. (3.33) shows us that the speed of the discontinuity must be one of the eigenvalues of 

the characteristic matrix “A”. Furthermore, the jump U UR L−  must be proportional to 

the corresponding eigenvector of “A”. Eqn. (3.33) is a special form of the Rankine-

Hugoniot jump conditions which we will study even further for non-linear hyperbolic 

systems in the next two chapters. We, therefore, see that the eigenvectors are not just 

useful because they allow us to propagate smooth solutions, as was done in eqn. (3.31), 

but they are also useful in propagating discontinuous solutions to eqn. (3.26). Such 

discontinuous solutions of hyperbolic systems that satisfy eqn. (3.32), which holds only 

in an integral sense, are referred to as weak solutions of the hyperbolic equations. In the 

next chapter we will see that nonlinear hyperbolic systems that can be cast in 

conservation form can also support weak solutions. The existence of a conservation form 

is crucial, because if the hyperbolic PDE does not have a conservation form then we 

cannot demonstrate the existence of weak solutions. 

 

 
 The simplest form of discontinuous solution admitted by eqn. (3.26), therefore, 

consists of a simple wave. Such a solution can be defined for any of the “M” wave 

families of eqn. (3.26). The simple wave for the mth wave family that is centered at the 

origin 0x =  consists of using the initial conditions  

 

( ) ( )0 0U  = U         for <0    ; U  = U = U          for 0m m
L R Lx x x r xα+ ≥   (3.34) 
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Consequently, UL  and UR  correspond to the solutions to the left and right of the 

discontinuity respectively. mα is a constant in eqn. (3.34) and is usually referred to as an 

eigenweight of the eivenvector mr . The time-evolution of this simple wave is given by  

 

( )U ,  = U                               for <    

            = U = U          for  

m
L

m m m
R L

x t x t

r x t

λ

α λ+ ≥
     (3.35) 

 

I.e. to the left of the characteristic curve  mx tλ=  the solution is UL , to the right of it the 

solution is UR . We have the freedom to specify UL or UR , but not both. Notice that the 

jump between UL  and UR  for a simple wave has to be carefully arranged so that it is 

exactly equal to some scalar multiple of the mth right eigenvector, i.e.  m mrα .  

 

 Having studied simple waves of finite amplitude, it is very natural to ask, what 

happens if the left and right states, i.e. UL  and UR  respectively, are chosen randomly? 

Let us assume, as before, that the discontinuity is located at 0x =  so that the initial 

conditions at time 0t =  are given by ( )0U ULx =  for 0x <  and ( )0U URx =  for 0x ≥  . 

Clearly, if the difference between the two states is very small then the dispersion analysis 

for linearized PDEs from Chapter 1 tells us that we should expect “M” waves with very 

small wave strength to propagate away from the origin, see Fig. 1.9. If the jump U UR L−  

is of finite amplitude and the hyperbolic system is linear then a similar result prevails. 

Thus, a set of “M” waves of finite amplitude propagate away from the origin. Fig. 3.10 

shows a schematic diagram of this situation. Eqns. (3.34) and (3.35) give us a very useful 

hint that the difference in the right and left states, U UR L− , should somehow be related 

to the right eigenvectors. To make that relationship more concrete, we now remind 

ourselves of a result from matrix methods which says that any real vector with “M” 

components can be projected onto the eigenvectors of a square matrix “A” if that matrix 

has real and disjoint eigenvalues. To use the terminology of vector spaces, the right 

eigenspace of the matrix “A” in eqn. (3.26) is complete because it has real and disjoint 
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eigenvalues. As a result, any real M-component vector, say U UR L− , can be projected 

onto the eigenspace { }1 2, ,..., Mr r r  . Thus we can write 

 

( )
1

U U     where    U U
M

m m m m
R L R L

m
r lα α

=

− = ≡ −∑      (3.36) 

 

From eqn. (3.36) we see that the set of left eigenvectors { }1 2, ,..., Ml l l  enable us to project 

the vector U UR L−  into the vector space of the right eigenvectors. Notice that if we 

apply the construction of eqn. (3.36) to the left and right states of the simple wave for the 

mth wave family, i.e. if UL  and UR  are given by eqn. (3.34), then we clearly make the 

identification that mα  represents the eigenweight of the single eigenvector mr . 

Operationally, we obtain the eigenweights mα  by observing that ( )U Um m
R Llα ≡ − . We 

urge the reader to see the analogy between eqn. (3.36) which gives the eigenweights for 

discontinuous initial conditions and eqn. (3.30) for obtaining the eigenweights when we 

have smooth initial conditions. This realization now enables us to interpret the 

eigenweights and the solution given in eqn. (3.36). Taking our cue from eqn. (3.35), we 

realize that each jump by m mrα  introduces another simple wave and eqn. (3.36) 

decomposes the general jump U UR L−  into a sequence of simple waves, each moving 

with their characteristic speed mλ . Interpreting Fig. 3.10 we see that we have a set of 

M−1 constant states ( ) ( ) ( ) ( ){ }1 2 1U , U ,..., U ,..., Um M −  between UL  and UR  where the mth 

constant state, ( )U m , lies in the region bounded by 1  m mt x tλ λ +< < . In other words, the 

mth constant state, ( )U m , lies between the mth characteristic surface and the (m+1)th 

characteristic surface. The solution at all points in space and time is then given by 
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( )

( )

1

1

1 1

U , = U                                                              for 

           = U U  U      for   ,  1,..., 1

            = U                            

L

m M
m p p p p m m

L R
p p m

R

xx t
t

xr r m M
t

λ

α α λ λ +

= = +

<

≡ + = − < < = −∑ ∑

                                 for M x
t

λ <

 

           (3.37) 

 

Notice from Fig. 3.10 that the jump between ( )1U m−  and ( )U m  is mediated by the 

characteristic surface  mx tλ=  associated with the mth wave. Eqn. (3.37) clearly shows 

that the jump ( ) ( )1U Um m−−  is then proportional to the right eigenvector mr  . Thus the 

general jump U UR L−  is resolved by fitting a sequence of “M” simple waves between 

UL  and UR . We urge the reader to see the analogy between eqn. (3.37) which gives the 

solution for discontinuous initial conditions and eqn. (3.31) for obtaining the solution 

when we have smooth initial conditions. 
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Observe from eqn. (3.37) that ( )U m  can be obtained by starting from UL  and 

sequentially adding in the contributions of the right eigenvectors  p prα  with p m≤ . 

Thus envision traversing Fig. 3.10 from left to right. Crossing the characteristic curve 

associated with each simple wave in Fig. 3.10 adds the contribution from that simple 

wave to the solution. Similarly, ( )U m  can also be obtained by starting from UR  and 

sequentially subtracting off the contributions of the right eigenvectors  p prα  with 

1p m≥ + . This is tantamount to traversing Fig. 3.10 from right to left. All this is, of 

course, consistent with our interpretation of eqn. (3.36). Notice too that eqn. (3.37) is a 

similarity solution because it only depends on the similarity variable x t  . In physical 

terms, the characteristics that carry the fluctuations in the jump U UR L−  are straight lines 

in space-time, hence the solution is self-similar. The solution at a later time just looks like 

an expanded version of the solution at an earlier time. Thus the problem where UL  and 

UR  are arbitrarily specified for a linear hyperbolic system gives rise to a system of “M” 

simple waves with M−1 constant states lying between UL  and UR . This problem is 

called the Riemann problem in honor of Bernhardt Riemann who understood its 

importance for linear as well as non-linear hyperbolic systems, Riemann (1860). Because 

of its fan-like structure, Fig. 3.10 is also referred to as the Riemann fan. The Riemann 

problem is an important building block for solution techniques for linear as well as non-

linear hyperbolic systems. 

 

3.4.3) The Riemann Problem as a Building Block for the Numerical Solution of 

Hyperbolic Systems 

 

 We now demonstrate why the Riemann problem is an important building block 

for the numerical solution of hyperbolic problems. Figs. 3.1 and 3.4 show us two possible 

monotonicity preserving reconstruction strategies with piecewise constant and piecewise 

linear reconstruction respectively. By looking at Figs. 3.1 and 3.4 we can easily realize 

that any monotonicity preserving reconstruction of physical variables results in 

discontinuities at zone boundaries. This is true regardless of whether the slabs are 
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piecewise constant, as they are in Godunov’s original method, or whether they have 

piecewise linear (or piecewise parabolic, or piecewise cubic…) profiles. A higher order 

reconstruction only reduces the magnitude of the jumps at the zone boundaries when the 

mesh function is smooth. In doing so, it reduces the amount of dissipation introduced by 

the scheme. However, for arbitrary mesh functions, the jumps cannot be eliminated if one 

wants a monotonicity preserving reconstruction of the physical variables. The Riemann 

problem, which is the object or our study, then allows us to obtain a physically consistent 

strategy for following the evolution of the jumps at the zone boundaries.  

 

 Fig. 3.11 provides a schematic diagram showing a piecewise constant mesh 

function and its evolution in space-time. The upper panel in Fig. 3.11 shows the slabs of 

fluid along with the jumps at the zone boundaries. The jumps can have any value, so they 

result in a Riemann fan at each zone boundary. The upper panel in Fig. 3.11 is meant to 

be the analogue of Fig. 3.1b for the donor cell method. I.e. in this section we seek to 

construct an analogue of the donor cell method with its upwinded fluxes for linear 

hyperbolic systems. The lower panel in Fig. 3.11 shows how the waves from the 

Riemann problem at each zone boundary propagate away from that zone boundary. 

Notice too that we have found it very desirable to write the solution in flux form. Using 

the top panel Fig. 3.11, and making the identification F = A U , we can write Godunov’s 

first order scheme as  

 

( )1
1/2 1/2U U F Fn n n n

i i i i
t
x

+
+ −

∆
= − −

∆
        (3.38) 

 

Here the index “i” labels zone centers of a mesh of with mesh size x∆  and eqn. (3.38) 

depicts a timestep from time nt  to 1n nt t t+ = + ∆  . The zone boundaries of zone “i” are 

labeled “i+1/2” and “i−1/2”. Recall from eqns. (2.2) and (2.3) that the numerical flux 

1/2Fn
i+ is a time-average of the flux at the zone boundary. The goal is to find properly 

upwinded fluxes for eqn. (3.38). In other words, we wish to find fluxes that build in the 

realization that there are discontinuities in the solution and incorporate the fact that the 

discontinuity at each boundary will split into a family of simple waves that move in 
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different directions. More specifically, from Fig. 3.11 we see that there will always be 

some discontinuities in the solution vector at the zone boundaries. For example, at zone 

boundary “i+1/2” Fig. 3.11 shows us that we have a left state ; 1/2UL i+  and a right state 

; 1/2UR i+  which are both used to form the upwinded flux 1/2Fn
i+ in eqn. (3.38). Fig. 3.10 

shows us that these jumps will result in a Riemann fan with simple waves propagating in 

different directions. The upwinded flux is the physically meaningful flux that is produced 

by the Riemann problem, which correctly resolves which waves flow to the left and 

which waves flow to the right of the original discontinuity. The self-similarity of the 

Riemann problem, as well as the fact that we restrict our attention in eqn. (3.38) to first 

order schemes in one dimension, makes it easy for us to pick out the flux that we need. 

We do that next. 

 
 From the third panel in Fig. 3.11 we see that we want the solution of the Riemann 

problem at the zone boundaries. Our zone boundaries don’t move in time. Let us 

therefore shift our coordinate system so that the origin, x=0, coincides with the zone 

boundary of interest. (As long as we avoid the intricacies of a mesh with moving 

boundaries, our simple use of non-moving boundaries will serve us well on several 

problems.) This is tantamount to asking for the solution of the Riemann problem at 0x =  
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for times 0t >  in Fig. 3.10. We, therefore, seek a state ( ) ( )0U U mRS ≡  which overlies  

0x =  as shown in Fig. 3.10. The two characteristics 0mx tλ=  and 0 1mx tλ +=  straddle the 

zone boundary that we are interested in. This state is often referred to as the resolved 

state of the Riemann problem. To obtain the resolved state we have, therefore, to 

distinguish between waves that move to the right and waves that move to the left. For the 

resolved state we have  

 
( ) ( )0

0
0 0

0

1

1

1 1

U U = U                                                            if 0

                   = U  U             if 0

                   = U                        

mRS
L

m M
m mp p p p

L R
p p m

R

r r

λ

α α λ λ +

= = +

≡ <

+ = − < ≤∑ ∑
                                    if 0Mλ ≤

  (3.39) 

 

The resolved flux is the flux that corresponds to the resolved state. It is also known as the 

numerical flux, because it is the flux that is evaluated at zone boundaries in a numerical 

code. For a linear hyperbolic system, the flux at any point in space-time is easily obtained 

by right multiplying the characteristic matrix “A” by the solution from eqn. (3.39). The 

resolved flux that we desire is just ( ) ( )F A URS RS≡ , though it can be a fair bit more 

complicated for a non-linear hyperbolic system. The numerical flux that we seek for eqn. 

(3.38) is just a space-time average of the resolved flux at the zone boundary. For the 

simple case of a first order scheme, that averaging is trivial. 

 

 Because eqn. (3.39) and the resolved flux that results from it are very important, a 

good bit of attention is lavished on obtaining compact, computationally efficient, 

expressions for it. Eqn. (3.39) is not very well-suited for computer implementation 

because it relies on analyzing the foliation of the waves in the Riemann problem. Our 

goal in this paragraph is to obtain expressions that automate this process and are, 

therefore, easy to implement in a computer code. Defining the auxiliary variables 

 

( ) ( ), ,max ,0     ;      min ,0      ;     F A U      ;     F A Um m m m
L L R Rλ λ λ λ+ −≡ ≡ ≡ ≡  (3.40) 
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and evaluating the desired numerical flux ( )A U RS  from eqn. (3.39) enables us to write the 

numerical flux in three equivalent forms as 

 

( ) ,

1
F  = F     

M
RS m m m

L
m

rλ α−

=

+ ∑         (3.41a) 

( ) ,

1
F  F     

M
RS m m m

R
m

rλ α+

=

= − ∑          (3.41b) 

( ) ( )
1

1 1F  = F  F       
2 2

M
RS m m m

R L
m

rλ α
=

+ − ∑        (3.41c) 

 

All three expressions in eqn. (3.41) are equivalent. Observe that ,mλ+  and ,mλ−  in eqn. 

(3.40) are designed to make it easy for us to distinguish between wave families that move 

to the right and those that move to the left. Notice that ,
00 for m m mλ− = >  thus enabling 

us to justify the first expression in eqn. (3.41). Similarly, ,
0= 0 for m m mλ+ ≤  , thus 

justifying the second expression in eqn. (3.41). The third expression in eqn. (3.41) is just 

an arithmetic average of the first two expressions in the same equation. Thus instead of 

identifying a state ( )0U m and extending the summation selectively, as we do in eqn. (3.39), 

our definition of ,mλ+  and ,mλ−  enables us to be cavalier about the summation indices in 

eqn. (3.41). We put our new notation to work by showing that the computation of the 

resolved flux can be automated in order to facilitate implementation on a computer. 

Using ( )U Um m
R Llα ≡ −  from eqn. (3.36) in the above equation then allows us to write 

the numerical flux as 

 
( ) ( )F  = F  A U URS

L R L
−+ −         (3.42a) 

( ) ( )F  F  A U URS
R R L

+= − −          (3.42b) 

( ) ( ) ( )1 1F  = F  F   A U U
2 2

RS
R L R L+ − −        (3.42c) 
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All three expressions in eqn. (3.42) are equivalent. The above equation is completed by 

defining the matrices  

 

{ } { }
{ }

+ +,1 +,2 +,M ,1 ,2 ,M

1 2 +

Λ diag λ , λ ,..., λ    ;   Λ diag λ , λ ,..., λ    ;   

Λ diag  λ  , λ  ,..., λ    ;    A Λ    ;   A Λ    ;    A Λ    M R L R L R L

− − − −

+ − −

≡ ≡

≡ ≡ ≡ ≡
(3.43) 

 

Notice that A ,  A  and A+ −  in eqn. (3.43) have definitions that parallel that of “A” in 

eqn. (3.28). To demonstrate that the expressions in eqn. (3.42) are equivalent to those in 

eqn. (3.41) it is easiest to substitute the eqns. (3.43) in the expressions given for the 

resolved flux by eqn. (3.42). For a linear hyperbolic system, the matrices A+ , A−  and 

A  are computed once and for all using eqn. (3.43). Any of the expressions in eqn. (3.42) 

then provide an automatic evaluation of the resolved flux in a form that is suitable for 

implementation in a computer code. 

 

3.4.4) Consistency and Dissipation Properties of the Linear Riemann Solver 

 

Let us now show that the Riemann solver derived in eqn. (3.42) is consistent. The 

third expression in eqn. (3.42) clearly shows that the flux produced by the Riemann 

solver is consistent in the sense that ( ) ( )F F URS →  as U UL →  and U UR →  for any 

state U . Thus for smooth mesh functions with vanishingly small jumps at the zone 

boundaries, the FDA in eqn. (3.38) approaches the PDE in eqn. (3.26) when the fluxes 

from the present Riemann solver are used in the FDA. A similar consistency will be 

demanded of the numerical fluxes that are used in the solution of non-linear hyperbolic 

systems.  

 

 Let us now turn our attention to the dissipation properties of the linear Riemann 

solver in eqn. (3.42). It is very important to relate what we are about to learn to the 

forward Euler and donor cell schemes from Chapter 2. We, therefore, urge the reader to 

review Sub-sections 2.7.1 and 2.7.5 from Chapter 2 before proceeding. Realize that both 
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the forward Euler and donor cell schemes are first order accurate in time. They differ 

only because the forward Euler scheme can be written in terms of fluxes that are second 

order accurate in space while the donor cell scheme uses fluxes that are only first order 

accurate in space. The expression in eqn. (3.42c) also shows us that the numerical flux 

from the Riemann solver can be decomposed into two parts. The first term, i.e., 

( )F  F 2R L+  , is a centered, second order flux. In the limit of scalar advection, such a 

centered, spatially second order accurate flux acting by itself would give us the forward 

Euler scheme. Just like the forward Euler scheme, the centered flux ( )F  F 2R L+ , taken 

all by itself, would lead to numerical instability. The second term, i.e., ( )1 A U U
2 R L− −  

, should therefore be interpreted as the diffusive contribution to the Riemann solver; i.e., 

it is the part that suppresses the numerical instability. In the limit of scalar advection, the 

sum of the first and second terms gives rise to the donor cell flux. That flux is 

numerically stable. This decomposition of the flux from the Riemann solver into a 

centered part and a diffusive part is central to understanding the dissipation properties of 

any Riemann solver. We will put it to good use when we analyze the dissipation 

properties of various approximate Riemann solvers in a subsequent chapter.  

 

 When we consider schemes that are first order accurate in time and have no 

reconstructed sub-structure within each zone, we see that both the terms from eqn. 

(3.42c) are needed to achieve stability via upwinding. Schemes that use second order 

accurate TVD reconstruction will introduce a linear profile within each zone. That linear 

profile reduces the jump in the reconstructed variables at each zone boundary, resulting in 

reduced dissipation. Recall that the dissipation in eqn. (3.42c) is proportional to the jump 

( )U UR L− , with the result that reducing the jump at a zone boundary reduces the 

dissipation. Consequently, second order TVD schemes are substantially less dissipative 

than their donor cell-based cousins while retaining the advantage of monotonicity 

preserving propagation of flow features. However, it is important to keep in mind that 

second order upwind TVD schemes (as well as their higher order cousins, which we will 
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only study in subsequent chapters) also rely on stabilization via upwinding that is 

provided by the Riemann solver. 

 

 It is also important to observe that Eqns. (3.41), (3.42) and (3.43) have a structure 

that is based entirely on matrix manipulations. Roe (1981) showed that the solution of the 

Riemann problem for a non-linear hyperbolic system of conservation laws is closely 

approximated by a very similar matrix structure. Thus our investment in the study of the 

Riemann problem in this section will pay us a further dividend when we study the 

Riemann problem for non-linear systems of conservation laws. This completes our 

description of the Riemann problem for linear hyperbolic systems.  

 

3.4.5) The Fluctuation Form 

 

 Fig. 3.10 shows that the Riemann problem evolves self-similarly. Any constant 

time slice of Fig. 3.10 with 0t >  looks just like any other constant time slice of Fig. 3.10 

at a later time. In other words, as time evolves, the Riemann fan, and all the states 

associated with it, just spread out. But there is no fundamental change in the solution, 

other than this scaling. The Riemann problem, therefore, evolves self-similarly and this is 

an attribute that is also shared with the Riemann problem for non-linear hyperbolic 

systems of equations. Self-similar evolution means that the solution at any space-time 

point, ( ),x t  only depends on one variable – the similarity variable x tξ = . This is true 

for all 0t > . We can, therefore, write 

( ) ( )

( )
1

1

U = U   H

       U   H

M
p p p

L
p

M
p p p

R
p

r

r

ξ α ξ λ

α λ ξ

=

=

+ −

= − −

∑

∑
        (3.aa) 

Here ( )H x  is the Heaviside function; for 0x ≥ , ( )H 1x =  whereas for 0x <  , ( )H 0x = . 

Eqn. (3.aa) is identical to eqn. (3.37); it just shows more clearly how the contribution 

from each wave adds up to make the states in the Riemann fan. Eqn. (3.41) also shows 

how the each wave contributes to the flux. The individual contributions from each of the 

waves to the flux is referred to as a fluctuation. From eqn. (3.41a) we can see that the 
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numerical flux is made up of the left flux plus the fluctuations that are moving to the left. 

From eqn. (3.41b) we see that the numerical flux is also made up of the right flux minus 

the fluctuations that are moving to the right. 

 

 Using this notation of fluctuations, we can now write eqn. (3.38) in a more 

illustrative form. We can use eqn. (3.41a) two write ( )1/2 1F F + A U Un
i i i i

−
+ += −   We can 

also use eqn. (3.41b) to write ( )1/2 1F F  A U Un
i i i i

+
− −= − −  . Assembling the flux terms, we 

can write eqn. (3.38) in fluctuation form as  

 

( ) ( )( )1
1 1U U A U U +A U Un n

i i i i i i
t
x

+ − +
+ −

∆
= − − −

∆
      (3.ab) 

 

The above equation illustrates that the solution 1Un
i
+  at the later time is just the solution 

Un
i  at the earlier time along with the contributions from the right-going fluctuations from 

the left zone boundary and the contributions from the left-going fluctuations from the 

right zone boundary. Notice that eqn. (3.ab) is not in conservation form. Even so, when 

the system is conservative, it retrieves the conservation form. For linear hyperbolic 

systems, this is not an important point of distinction because any linear hyperbolic system 

can always be recast in a conservation form. However, eqn. (3.ab) becomes important 

when considering non-linear hyperbolic systems that may not be in conservation form. 

We see that they can at least be written in a fluctuation form. The fluctuation form, 

therefore, establishes a desirable concordance between conservative systems and non-

conservative hyperbolic systems. 

 

Illustrating the Previous Section for the linearized Euler Equations 

 

 We now illustrate the ideas from this section for a representative system. The 

easiest way to obtain a physically meaningful linear hyperbolic system is to linearize a 

hyperbolic system of interest and then to freeze the coefficients in front of the space and 

time derivatives. Doing that for the Euler system after excluding the transverse velocities 
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and restricting it to one dimension gives us a linear hyperbolic system for the evolution of 

the density ρ  , the x-velocity xv  and the pressure P which we catalogue below 

 

x0 0

x x0 x
0

2
0 0 x0

v 0
1v  +  0 v  v  = 0

P P
0 c v

t x

ρρ ρ

ρ
ρ

 
    

∂ ∂    
    ∂ ∂        

 

 

 

The above equation is equivalent to eqn. (1.58) from Section 1.5.2. Here 0ρ  , x0v  and 0c  

are the density, x-velocity and sound speed respectively around which we linearize the 

Euler system. This gives us a 3×3 linear hyperbolic system and the characteristic matrix 

is easily identified. The three ordered eigenvalues are given by eqn. (1.59). The 

orthonormalized right and left eigenvectors are given by eqns. (1.60) and (1.61) and they 

correspond to eqns. (3.27) and (3.28) respectively.  

 

 For any right and left states ( )U , v ,P T
L L xL Lρ=  and ( )U , v ,P T

R R xR Rρ=  

respectively we can now formulate the Riemann problem for the linearized Euler system. 

We do this by projecting the jump in the variables into the space of the right eigenvectors 

as follows 

 

( ) ( ) ( ) ( )

( ) ( )

3

1

1 2
2 2

0 0 0 0

3
2

0 0 0

U U     where    

1 1 1v v P P   ;  P P   ;
2 c 2  c c

1 1v v P P
2 c 2  c

m m
R L

m

xR xL R L R L R L

xR xL R L

rα

α α ρ ρ
ρ

α
ρ

=

− =

−
≡ − + − ≡ − − −

≡ − + −

∑

 

 

The above equations correspond to eqns. (3.36). Assuming the initial discontinuity occurs 

at 0x = , its evolution in space and time is given by the similarity solution 
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( ) 0 0

(1) 1 1 2 2 3 3
0 0 0

(2) 1 1 2 2

U , U                                                                     for v c

            = U   U   = U            for v c v

            = U   U    = U

L x

L R x x

L R

xx t
t

xr r r
t

r r

α α α

α α

= < −

≡ + − − − < <

≡ + + 3 3
0 0 0

0 0

          for v v c

            = U                                                                    for v +c

x x

R x

xr
t

x
t

α− < < +

<

 

 

The above equation corresponds to eqn. (3.37). 

 

 Let us take the transonic case with a positive fluid velocity, so that 0 00 < v cx < . 

We then have m0=1 because 0 0v c 0x − <  , 0v 0x >  and 0 0v c 0x + >  . We can then set 

 
( )

( ) ( )

(1) 1 1 1

2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

F  = A U  = A U     
                    = A U       

1 1                    = A U A U      +    +   
2 2

RS
L

R

R L

r
r r

r r r

λ α

λ α λ α

λ α λ α λ α

+

− −

+ −

 

 

The above equation gives us the resolved flux for the Riemann problem and corresponds 

to eqn. (3.41). Fig. 3.11 also illustrates the transonic case for a system with three wave 

families. For the present transonic problem we can now define 

 

{ } { }
{ }

0 0 0 0 0

0 0 0 0 0

 diag 0,  v ,  v c    ;    diag v c ,  0,  0    ;   

c v ,  v ,  v c
x x x

x x x

+ −Λ ≡ + Λ ≡ −

Λ ≡ − +
 

 

Notice that all the elements in +Λ  are non-negative, all the elements in −Λ  are non-

positive and that + −Λ = Λ −Λ  . With these matrices in hand, we can proceed to build A+  

, A−  and A   using eqn. (3.43) and the eigenvectors that we have developed in this box. 

Eqn. (3.42) then enables us to solve any Riemann problem associated with this linear 

hyperbolic system. As a result, the fluxes needed in eqn. (3.38) can always be obtained. 
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3.5) Numerical Boundary Conditions for Linear Hyperbolic Systems 

 

 To compute the solution of any scientific or engineering problem involving 

hyperbolic PDEs we have to solve the problem on a specified computational domain. The 

solution that we eventually get depends on the physics of the PDE, the initial conditions 

and the information that comes in from the boundaries as the problem is evolved in time. 

This is known as the initial boundary value problem. Notice, therefore, that the 

specification of values at the boundary can play an important role in the evolution of the 

problem. It is not always easy to specify the boundary conditions as they are often based 

on making an intelligent prognostication of the solution outside the boundary. Yet we 

assume that the interesting part of the computational problem and its evolution is 

captured within the computational domain, so that the boundary conditions have only a 

gentle and predictable influence on the interior of the domain. Even so, the boundary 

conditions cannot be specified entirely arbitrarily. For example, for the scalar advection 

problem shown in Fig. 2.15, the advection takes place to the right. If we were to solve 

that problem on a finite, one-dimensional, non-periodic computational domain, the 

characteristics would bring in new information from the left boundary. Thus the value of 

the desired solution should be specified for all times at the left boundary. However, 

specifying the solution at the right boundary would indeed over-specify the problem. The 

right boundary should be such as to permit any solution that approaches it to smoothly 

leave the domain without injecting any spurious information back into the domain.  

 

 For an “M” component linear hyperbolic system eqn. (3.29) has shown us that the 

mth eigenweight propagates with a speed mλ  . As in the previous section we assume an 

ordered set of eigenvalues. Because the hyperbolic system is linear and the characteristic 

matrix is a constant, the wave speeds do not change as the solution evolves. As in eqn. 

(3.39) or Fig. 3.10, we assume that there is some integer 0m  such that 0 0 10m mλ λ +< ≤  . 

Say that the linear hyperbolic system is to be evolved on a one-dimensional, non-periodic 

computational domain. Then, at the left boundary, we want the waves associated with 

outgoing characteristics to flow out smoothly so that we would want the first 0m waves 
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(with their associated eigenweights) to leave the domain without generating any back-

reaction. The characteristics for the next 0M m−  waves enter the computational domain 

from the left so that we should specify the next 0M m−  eigenweights at the left 

boundary. At the right boundary we also want the waves associated with the outgoing 

characteristics to leave the domain smoothly so that we would want the last 0M m−  

waves (with their associated eigenweights) to leave the domain without generating any 

back-reaction. The characteristics for the first 0m  waves enter the computational domain 

from the right so that we should specify the first 0m  eigenweights at the right boundary. 

We, therefore, see that for this very simple linear hyperbolic problem a total of exactly 

“M” eigenweights must be specified at the boundaries and allowance must be made for 

the same number of eigenweights to leave the domain without generating a back-reaction. 

Boundary conditions that permit a wave to leave the computational domain without 

generating a back-reaction are called radiative or non-reflective boundary conditions. 

Such non-reflective boundary conditions were first designed by Hedstrom (1979). 

Boundary conditions that specify the amplitude of a wave that should flow into a 

computational domain are called inflow boundary conditions. The above-mentioned two 

types of boundary condition are but a very small subset of the kinds of boundary 

conditions that are used in practice. 

 

 Certain types of boundary conditions are indeed specific to the physics 

represented by a particular type of hyperbolic system. As a result, it is not possible to 

give a complete catalogue of boundary conditions. For the non-linear Euler and Navier-

Stokes equations a systematic effort has been made to catalogue all the different types of 

boundary conditions, see Thompson (1990), Sutherland & Kennedy (2003) and Liu & 

Vasilyev (2010), but even such an effort is intimately tied to the type of scheme being 

used. For certain steady state aerodynamics problems, the far field solutions are known to 

a good approximation (Jameson 1982, Yee et al. 1982). Unfortunately, this advantage 

does not extend to problems in astrophysics and space science. It is, however, possible to 

improve one’s intuition so that one can always develop suitable boundary conditions as 

the need arises. 
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 Fig. 3.12 shows a schematic representation of a mesh spanning the domain 

[ ],x a b∈  with “N” zones and ( )x b a N∆ = −  . The zone centers and zone boundaries are 

given by ( )1/ 2  ix a i x= + − ∆  and 1/2  ix a i x+ = + ∆  respectively with integral values for 

“i”. The mesh function in zone “i” at a time nt  is given by Un
i . Our philosophy in 

developing the boundary conditions is that we should apply the same numerical 

algorithm, if this is at all possible, to all the zones of the mesh. Notice that our numerical 

algorithms consist of applying limiters to obtain undivided differences within each zone, 

so that we will need one more zone on each side of any zone to which the limiter is 

applied. We will, therefore, need a few ghost zones on either side of the dynamically 

active zones in the mesh, see Fig. 3.12. These ghost zones will be filled in with 

appropriate data so as to make the solution that is interior to the mesh behave 

appropriately. To apply the Riemann solvers to zone boundaries  1/2x  and 1/2Nx +  we need 

solution values as well as undivided differences to be specified in ghost zones “0” and 

“N+1”. As a result, when designing a second order accurate TVD scheme we will at least 

need to specify the solution in ghost zones “−1” and “N+2”. In other words, we need a 

minimum of two ghost zones on either side of our computational domain. 

 

 
 

 Let us now focus on the left boundary x a= . Eqn. (3.29) tells us that the mth 

eigenweight, mw , evolves according to the equation  +   0m m m
t xw wλ = . Thus to suppress 

any back-reaction from the first 0m waves at the boundary x a=  we need to make 

 0m
xw =  for 0m m≤  which will, in turn, make  0m

tw =  for those same wave families. In 
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other words, a spatially varying eigenweight results in a temporally propagating wave of 

a particular family. We wish to suppress m
tw  at the left boundary for outgoing waves, i.e. 

all of the mth waves with 0m m≤ . This is easily achieved by zeroing the spatial variation 

in those modes, i.e. by setting 1 0 1  m m mw w w− = =  for 0m m≤  at each timestep in the solution 

process. Here 1
mw− , 0

mw  and 1
mw  are the eigenweights of the mth wave family in the zones 

“−1”, “0” and “1” respectively. Thus 1
mw  is used to refresh the values 0

mw  and 1
mw−  at each 

timestep. Notice that this corresponds to a zeroth order accurate extrapolation. Such 

extrapolations have been found to be numerically stable; higher order extrapolations tend 

to be numerically unstable. This completes our description of the non-reflective boundary 

conditions at the left boundary.  

 

 Now consider the wave families with 0m m>  at the same left boundary, x a= . 

Theses waves carry information into the computational domain. For these waves, we can 

actually set 1
mw−  and 0

mw  in any time-evolving fashion that is consistent with the waves we 

want to propagate into the left boundary x a= . For example, say we wish to make a 

space and time dependent solution propagate into the computational domain from the left 

along a characteristic with 0m m> . We can do that by endowing 1
mw−  and 0

mw  with that 

space and time-dependence and it will be propagated into the computational domain; see 

the box at the end of this section for an example. In doing so, one has to be mindful of the 

intrinsic numerical resolution of the scheme so that the spatial variation in the ghost 

zones’ values should be distributed over several zones and substantial temporal variation 

in those values should only occur over several timesteps. This completes our description 

of the inflow boundary conditions at the left boundary. Similar considerations can be 

made for the right boundary. Note, therefore, that all the eigenweights are specified in all 

the ghost zones making it possible for us to retrieve the solution vector “U” in each of the 

four ghost zones of Fig. 3.12. To take zone “−1” as an example, we obtain the solution 

vector in that zone as 1 1
1

U  
M

n m m

m
w r− −

=

=∑ .  
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 Please observe that our description of boundary conditions is not comprehensive. 

For example, periodic boundary conditions are most easily enforced by setting 0U Un n
N= , 

1 1U Un n
N− −= , 1 1U Un n

N+ =  and 2 2U Un n
N+ =  . We might have situations where we wish to 

have zero gradients at a boundary in order to ensure that a feature in the solution that is 

approaching a boundary can leave the boundary without producing any new information 

in the computational domain. For the class of higher order accurate Godunov schemes 

that we explore here, this is most easily achieved by outflow or continuitive boundary 

conditions which continuously extend the solution from the last interior zone into the 

ghost zones. Such outflow boundary conditions are most easily enforced at the left 

boundary by setting 1 0 1U U Un n n
− = =  and at the right boundary by setting 

2 1U U Un n n
N N N+ += =  . Outflow boundary conditions work very nicely when Riemann 

solvers are used at domain boundaries to evaluate the flux. This is because the Riemann 

solver relies on examining the wave structure of the problem and, therefore, permits the 

outgoing solution features to leave the domain in a natural way. The box below gives a 

description of a few other boundary conditions that pertain to the linearized Euler 

equations. 

 

Boundary Conditions for the Linearized Euler Equations 

 
 

 In this box we consider the linearized Euler equations that were first documented 

in the box at the end of Section 3.4. It is a linear hyperbolic system with three 
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eigenvalues. For a given choice of 0vx  and 0c  , the evolution of the characteristics in 

space-time is set once and for all and is shown by the four diagrams above. The ratio 

0 0v cx  is called the Mach number of the flow. The Mach number plays an important 

role in determining the nature of the solution as well as the form of the boundary 

conditions. In this box we assume that we utilize the same mesh as in Fig. 3.12. Thus 

0 0v cx < −  corresponds to the supersonic situation shown in figure (a) of this box where 

we take 0 3m =  and consider all three waves to be outgoing at the left boundary and 

incoming at the right boundary. Similarly, 0 0v cx ≤  with 0v 0x <  corresponds to the 

subsonic situation shown in figure (b) where we take 0 2m = . Thus the first two waves 

are outgoing at the left boundary and incoming at the left boundary, while the third wave 

is outgoing at the right boundary and incoming at the left boundary. Likewise, 0 0v cx ≤  

with 0v 0x ≥  corresponds to figure (c) where we take 0 1m = . Consequently, the first 

wave is outgoing at the left boundary and incoming at the right boundary, while the 

second and third waves are outgoing at the right boundary and incoming at the left 

boundary. Finally, 0 0v cx >  corresponds to the supersonic situation shown in figure (d) of 

this box where we take 0 0m =  so that all waves are incoming at the left boundary and 

outgoing at the right boundary. 

 

 In many CFD problems we want flow features to reflect back from a solid 

surface. If we want to set up reflective boundary conditions at the right boundary then 

this can be achieved by setting  

 

x x x x

1 2 1

v v     and    v v
P P P P

n n n n

N N N N

ρ ρ ρ ρ

+ + −

       
       = − = −       
       
       

 

 

The two ghost zones that lie rightward of the right boundary have to be reset at each 

timestep according to the above rules. Any wave approaching the right boundary will 

then be reflected back into the domain. Notice that this boundary condition is specific to 
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the physics of the linear hyperbolic system that we consider here. Other hyperbolic 

problems will have other boundary conditions that are specific to the science that they 

represent. 

 

 Let us say that we have 0 0v cx ≤  with 0v 0x < , which corresponds to figure (b) 

above. We may then want to set up an oscillatory boundary condition at the left boundary 

as follows. Say we want to send in a sinusoidally oscillating solution from the left 

boundary along the third (incoming) wave without generating any new information in the 

outgoing waves at that boundary. We can arrange for oscillations with a wave number 

“k” and amplitude 0A  to come in through the left boundary on the third characteristic by 

setting 

 

( )
( )

1 1 2 2 3 3
0 1 1 0

1 1 2 2 3 3
1 1 1 0

U  =    +   + A  sin  / 2          

U  =    +   + A  sin  3 / 2    

n n

n n

w r w r k a x t r

w r w r k a x t r

λ

λ−

 − ∆ − 
 − ∆ − 

 

 

Notice that the first two characteristic fields have been extrapolated from the first interior 

zone, i.e. we have set 1 1 1
1 0 1w w w− = =  and 2 2 2

1 0 1w w w− = =  in the above two equations. This 

extrapolation has to be carried out anew at each time step. The last characteristic field 

carries the ingoing wave into the computational domain. For a typical second order 

scheme, the wavelength that corresponds to “k” should be larger than ten to twenty zones 

in order for the wave to propagate without significant attenuation on the mesh. 

 

 

3.6) Second Order Upwind Schemes for Linear Hyperbolic Systems 

 

 Having understood the nature of linear hyperbolic systems in the previous two 

sections, we now wish to apply our new-found knowledge to their numerical solution. 

Eqn. (3.29) has shown us that the numerical solution of the linear M×M hyperbolic 

system U  A U 0t x+ =  is most easily obtained by examining the “M” scalar advection 
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equations  +   0m m m
t xw wλ =  where  Um mw l≡  . Recall that mλ  , mr  , ml  and mw  are the 

eigenvalue, right eigenvector, left eigenvector and eigenweight respectively of the mth 

family of simple wave. Since the methods developed in Sections 3.2 and 3.3 are very 

adept at scalar advection, we realize that we can build solution strategies for linear 

hyperbolic systems that propagate each of the “M” characteristic weights at their 

appropriate speeds. Indeed we present three such numerical schemes.  

 

Sub-section 3.6.1 presents a direct upgrade of the Lax-Wendroff method, this time 

modified by the application of limiters. Such a TVD method was first presented by 

Harten (1983). It has the advantage that it is fast because the entire second order accurate 

time-update is accomplished in one step.  

 

The second method uses a two-stage, second order accurate Runge-Kutta time 

stepping strategy and is presented in Sub-section 3.6.2. Each stage of a Runge-Kutta 

method is simpler, making it easier to add on additional physics. This makes Runge-

Kutta methods very useful for many science and engineering problems. However, the 

scheme consists of two stages and is, therefore, costlier. Such Runge-Kutta timestepping 

strategies can be extended to higher orders (Shu and Osher 1988, Shu 1988) and Chapter 

7 will show how this is done. In contrast, the Lax-Wendroff scheme is usually restricted 

to being second order accurate in time because it becomes progressively harder to trade 

time derivatives for spatial derivatives for an entire scheme as the order of accuracy is 

increased. Note though that the Lax-Wendroff procedure from Sub-section 2.7.3 is easier 

to extend to higher orders. 

 

Sub-section 3.6.3 presents another scheme by Colella (1985) where the predictor 

step is taken within each zone by using the slope information within that zone in the most 

economical fashion. Such schemes will also be extended to higher order in Chapter 7 

using the ADER methodology  (Titarev and Toro 2002, Dumbser et al. 2008). ADER is 

an acronym that stands for Arbitrary accuracy DERivative Riemann problem.  
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The schemes in Sub-sections 3.6.1 to 3.6.3 present the three most important 

design strategies for second order accurate schemes.  Sub-section 3.6.4 shows numerical 

results from these three schemes. 

 

 We describe all the schemes on a one-dimensional mesh in the x-direction having 

a uniform zone size x∆ . Fig. 3.12 shows a schematic representation of such a mesh 

spanning the domain [ ],x a b∈  with “N” zones and ( )x b a N∆ = −  . The zone centers 

and zone boundaries are given by ( )1/ 2  ix a i x= + − ∆  and 1/2  ix a i x+ = + ∆  respectively 

with integral values for “i”. We describe a single time-step where the solution vector is 

taken from a time nt  to a time 1  n nt t t+ = + ∆  . The full time-evolution of the hyperbolic 

system is obtained on a computer by repeating the timestep as many times as is needed. 

Because the hyperbolic system is linear we make the simplifying assumption that the 

eigenvalues and the right and left eigenvectors are fully specified by evaluating them 

only once in the numerical implementation. We use a zone centered collocation of data so 

that at time nt  the zone averaged vector of “M” conserved variables in the zone “i” is 

given by Un
i  . Each of the methods describes the procedure for obtaining 1Un

i
+  for all 

zones “i” at time 1nt + . All of the methods presented here are based on the non-linear 

hybridization ideas that were developed in Sections 3.2 and 3.3. Consequently, the 

present schemes are stable with a CFL number of unity in one dimension. Since our 

present goal is not to describe a production-grade scheme, we assume that the solution is 

suitably initialized with constant values in two extra ghost zones that lie on either side of 

the mesh being considered. Our present examples will be easy enough to get by with this 

simplification. 

 

3.6.1) Second Order Accurate Extension of the Lax-Wendroff Scheme with Limiters 

 

 Since the linear hyperbolic system displays its most natural form in the 

characteristic variables, we construct characteristic variables within each zone “i” as 

follows 
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 U     for 1,...,m m n
i iw l m M= =         (3.44) 

 

Notice that m
iw  has to be constructed anew at each timestep using Un

i  that is available at 

the beginning of each timestep. (We have not included the superscript “n” in our 

definition of wm
i  just to keep the notation uncluttered.) Eqn. (3.29) then tells us that we 

can think of eqn. (3.44) as providing us with “M” scalar mesh functions { }m
iw  each of 

which has to be advected with a speed mλ . Section 3.2 has already shown us how to 

carry out such an advection with second order accuracy. Thus our next step is to build 

limited slopes for these characteristic variables. We build limited slopes for the 

characteristic variables within each zone “i” as follows 

 

( )1 1,      for 1,...,m m m m m
i i i i iw Limiter w w w w m M+ −∆ = − − =     (3.45) 

 

Here “Limiter” stands for any of the slope limiters catalogued in the box at the end of 

Section 3.2.  

 

 Notice that the mth characteristic variable in zone “i” , i.e. m
iw , is advected as a 

scalar with a speed mλ using scalar fluxes 1/2f m
i+  and 1/2f m

i−  for that characteristic field. The 

scalar fluxes 1/2f m
i+  and 1/2f m

i−  are defined at zone boundaries “i+1/2” and “i−1/2” 

respectively. Thus an important ingredient of the present scheme consists of specifying 

1/2f m
i+ . The tricky part in the specification of the flux 1/2f m

i+  consists of realizing that mλ  

can be positive or negative. If mλ were just positive, eqn. (3.17) would have served us 

very well. As it stands, we need an upgraded expression that is based on eqn. (3.17) but 

can work for both signs of mλ . When 0mλ ≥ , such a flux 1/2f m
i+  at zone boundary “i+1/2” 

must depend on the upwind variables m
iw  and m

iw∆ . When 0mλ < , the flux 1/2f m
i+  at zone 

boundary “i+1/2” must depend on the upwind variables 1
m
iw +  and 1

m
iw +∆ . Following a 

convention that is customary in the definition of this scheme, we define 
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1/2

1

            for 0
            =           for 0

m m m
i i

m m
i

w w
w

λ

λ
+

+

∆ = ∆ ≥

∆ <
       (3.46) 

 

We can then write 1/2f m
i+  at each zone boundary “i+1/2” as 

 

,
1/2 1/2

,
1 1/2

1f 1
2

1        1         for 1,...,
2

m m m m m
i i i

m m m m
i i

tw w
x

tw w m M
x

λ λ

λ λ

+
+ +

−
+ +

 ∆  = + − ∆  ∆  
 ∆  + − − ∆ =  ∆  

   (3.47) 

 

Recall that only one of the two terms ,mλ+  or ,mλ−  is non-zero for the mth wave family. 

Notice that eqn. (3.47) is still not the entire flux vector that we seek. Just as the entire 

solution vector in zone “i” can be written as 
1

U  
M

n m m
i i

m
w r

=

=∑  ( i.e. we have to sum the 

right eigenvectors with the eigenweights), we can write the entire flux vector at zone 

boundary “i+1/2” as 1/2
1/2 1/2

1
F f  

M
n m m

i i
m

r+
+ +

=

=∑  . Notice too that eqn. (3.47) is second order 

accurate in space and time. Hence the resulting flux 1/2
1/2Fn

i
+
+  is written with a superscript 

“n+1/2” to show that it is second order accurate in space and time and, therefore, properly 

time-centered. Using the identities in eqn. (3.43) then permits us to write 

 

1/2
1/2 1 1/2 1/2 1/2

1

1F  A  U  + A  U  + F  where  F 1  
2

M
n n n m m m m

i i i i i i
m

t w r
x

λ λ+ + −
+ + + + +

=

∆ = = − ∆ ∆ 
∑   

(3.48). 

Notice that the flux 1/2
1/2Fn

i
+
+  in eqn. (3.48) lends itself to an easy interpretation. It is made 

up of three parts that are each easy to interpret. The part A  Un
i

+  carries the contributions 

from all the right-going waves with 0mλ ≥  . It represents a flux that is first order 

accurate in space and time from just those right-going waves. The part 1A  Un
i

−
+  carries 

the contributions from all the left-going waves with 0mλ < . This part also represents a 

flux that is first order accurate in space and time from just those left-going waves. As 
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with eqns. (3.16) and (3.17), the flux 1/2
1/2Fn

i
+
+  in eqn. (3.48) only becomes second order 

accurate in space and time if we include an anti-diffusive part, i.e. the third part 1/2Fi+
  in 

eqn. (3.48). All the terms in eqn. (3.48) are fully specified by our eqns. (3.44), (3.45), 

(3.46) and (3.43). By building the fluxes 1/2
1/2Fn

i
+
+  at all the zone boundaries “i+1/2” we 

obtain the final, one-step, second order accurate update 

 

( )1 1/2 1/2
1/2 1/2U U F Fn n n n

i i i i
t
x

+ + +
+ −

∆
= − −

∆
       (3.49) 

 

This completes our description of the original TVD scheme of Harten (1983) for linear 

hyperbolic systems. 

 

3.6.2) Second Order Accurate, Two-Stage Runge-Kutta Scheme with Limiters 

 

 The second order accurate, two-stage Runge-Kutta scheme is based on a simple 

philosophy. The time-evolution in such schemes is based on time-explicit, second order 

accurate Runge-Kutta methods for solving ordinary differential equations. I.e., we write 

the hyperbolic system as U Ft x= −  and treat the gradient of the fluxes as if it is the right 

hand side of a system of ordinary differential equations that are to be evolved in time. 

Such Runge-Kutta methods are based on the idea of having a sequence of stages, each of 

which is simple and may only be first order accurate in time. The gradient of the fluxes 

will indeed have to be evaluated at each of those stages. However, when the result of all 

the stages is assembled together, the resulting Runge-Kutta scheme is higher order 

accurate in time. Consequently, each of the stages can be simpler than a single stage 

scheme that seeks to achieve second or higher order accuracy in time. An example of the 

latter would be the Lax-Wendroff scheme from the previous sub-section. When this 

philosophy is applied to the numerical solution of hyperbolic PDEs, the goal is to build 

the fluxes at each stage using only the solution at that stage. Thus the fluxes only have to 

be second order accurate in space, though not necessarily second order accurate in time. 

The whole scheme is, however, second order accurate in time. The boundary conditions 
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have to be consistently applied at each of the two stages. The approach described here 

functionally splits off the task of constructing a higher order accurate spatial flux from 

the task of ensuring higher order accurate temporal evolution of the hyperbolic PDE. The 

temporal accuracy is always matched to the spatial accuracy. It is also known in the 

literature as a method of lines approach or a semi-discrete method because the time-

evolution is enforced by some suitable ODE method that has a sequence of discrete 

stages.  

 

 The stages in the second order accurate, two-stage Runge-Kutta scheme are given 

by the following two equations 

 

( ) ( )( )
( ) ( )( )

1/2
1/2 1/2

1 1/2 1/2 1/2 1/2
1/2 1/2

U U F U F U
2

U U F U F U

n n n n n n
i i i i

n n n n n n
i i i i

t
x

t
x

+
+ −

+ + + + +
+ −

∆
= − −

∆
∆

= − −
∆

     (3.50). 

 

The above scheme is also called the modified Euler approximation. The first line in eqn. 

(3.50) is called the predictor step of the Runge-Kutta scheme. In this step we build the 

fluxes ( )1/2F Un n
i+  so that they are second order accurate in space but only first order 

accurate in time using the mesh function { }Un  at time nt . (We will provide all the details 

associated with obtaining a second order flux from the mesh function in a couple of 

paragraphs.) Consequently, the mesh function { }1/2Un+  that we obtain after applying the 

first stage to the entire mesh is only first order accurate in time and can be thought of as 

corresponding to an intermediate time 1/2 2n nt t t+ = + ∆  . Technically, it is referred to as 

an internal stage of the Runge-Kutta scheme. When implementing the scheme on a 

computer, notice that we have to store both the mesh functions { }Un  and { }1/2Un+  

because they are both needed in the second line of eqn. (3.50). Using the newly obtained 

{ }1/2Un+  we can obtain the fluxes ( )1/2 1/2
1/2F Un n

i
+ +
+ . Because these fluxes are properly time-

centered and also second order accurate in space, they can provide an update in eqn. 

(3.50) that is second order accurate in space and time. The second stage of eqn. (3.50) is 
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often called the corrector step of the Runge-Kutta scheme and yields a second order 

accurate mesh function { }1Un+  at the time 1n nt t t+ = + ∆  . Because of its easy 

interpretation, eqn. (3.50) is well-used in practice.  

 

The improved Euler approximation is also has some noteworthy features. It is a 

two-stage Runge-Kutta scheme given by 

 

( ) ( )( )
( ) ( ) ( )( )

(1)
1/2 1/2

1 (1) (1) (1) (1) (1)
1/2 1/2

U U F U F U

1U U U F U F U
2 2

n n n n n
i i i i

n n
i i i i i

t
x

t
x

+ −

+
+ −

∆
= − −

∆
∆

= + − −
∆

    (3.51) 

 

 Here the mesh function { }(1)Ui  is an internal stage of the scheme. It is worth mentioning 

that Shu and Osher (1988) and Shu (1988) showed that the above scheme has a special 

property that if each of the stages in the scheme is TVD then the whole scheme will be 

TVD. Runge-Kutta time stepping schemes that have such a property are referred to as 

strong stability preserving (SSP) time discretizations, see Spiteri and Ruuth (2003). In 

practice, eqns. (3.50) and (3.51) perform equally well, even though eqn. (3.50) is not 

SSP. The SSP property for eqn. (3.51) is explored further in the box at the end of this 

sub-section where it is shown that it is certainly SSP for scalar advection and 

provisionally for linear hyperbolic systems. 

 

 To provide a complete description of the scheme we only need to describe the 

procedure for obtaining ( )1/2F Ui+  from a mesh function { }U  . This is because the 

procedure for building the fluxes from a given mesh function is indeed identical in each 

of the two stages of the Runge-Kutta schemes. The steps that are carried out in any one of 

the stages are shown schematically in Fig. 3.13. As in the previous Sub-section, we 

realize that since the characteristic variables are indeed the entities that are advected, it is 

most natural to carry out the reconstruction by limiting the characteristic variables. This 

is done in the following three steps. First, we use the left eigenvectors to project the 

solution on to the characteristic variables 
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 U     for 1,...,m m
i iw l m M= =         (3.52) 

 

Second, we limit the characteristic variables 

 

( )1 1,      for 1,...,m m m m m
i i i i iw Limiter w w w w m M+ −∆ = − − =     (3.53) 

 

Third, we use the limited slopes of the characteristic variables to obtain the limited slopes 

of the conserved variables. This is done by using the right eigenvectors as follows 

 

1
U  

M
m m

i i
m

w r
=

∆ = ∆∑          (3.54) 

 

Taken together, eqns. (3.52), (3.53) and (3.54) constitute a procedure for obtaining a 

properly limited vector of slopes Ui∆ within each zone. This method for reconstructing 

the solution is called characteristic reconstruction or limiting on the characteristic 

variables. While the projection to the space of characteristic variables in eqn. (3.52) and 

the transcription back to physical variables in eqn. (3.54) might be computationally 

expensive, characteristic reconstruction is truest to the inner structure of the linear 

hyperbolic system which tells us that the characteristic variables undergo scalar advection 

with their characteristic speeds.  

 

 Once the reconstructed vector of slopes Ui∆ is available within each zone, as 

shown by the dashed lines in the upper panel of Fig. 3.13, it is possible to specify the 

solution at any point on the mesh with second order accuracy in space. In particular, we 

can specify it at the zone boundary “i+1/2”. Notice that we have two possible values at 

the zone boundary “i+1/2” given by 

 

1; 1/2 ; 1/2 1
1 1U  U  +  ΔU    ;   U  U    ΔU
2 2

i iL i i R i i ++ + +≡ ≡ −     (3.55) 
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; 1/2UL i+  is defined immediately to the left of the zone boundary “i+1/2” using values from 

zone “i”. ; 1/2UR i+  is defined immediately to the right of the zone boundary “i+1/2” using 

values from zone “i+1”. Please see the upper panel of Fig. 1.13. Our development of the 

Riemann solver in Sub-sections 3.4.2 and 3.4.3 now shows its utility. The flux 1/2Fi+  that 

we seek at the zone boundary “i+1/2” is nothing but the resolved flux from the Riemann 

problem with ; 1/2UL i+  as the left state and ; 1/2UR i+  as the right state. In other words, we 

can think of the Riemann solver, FRS  , as a machine that takes two states and produces 

one resolved flux that is to be used in the numerical scheme. This is shown in the lower 

panel of Fig. 1.13. Thus at all zone boundaries “i+1/2” we invoke the machinery of the 

Riemann solver to obtain 

 

( )1/2 ; 1/2 ; 1/2F F  U ,  Ui RS L i R i+ + +=         (3.56) 

 

This flux can now be used in eqns. (3.50) or (3.51) depending on which stage of the 

Runge-Kutta scheme we are evaluating. This completes our description of the two-stage 

Runge-Kutta scheme. 
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 The observant reader may have noticed that the sequence of operations in eqns. 

(3.52), (3.53) and (3.54) represents a very complicated way of obtaining the reconstructed 

vector of slopes Ui∆  within each zone. A simpler alternative exists which is often used. 

If our goal is simply to achieve second order accuracy, this alternative is indeed 

computationally more efficient. Thus we write out the components of Ui  and Ui∆  

explicitly so that we have ( )1 2U  u ,  u ,...,  u
TM

i i i i≡  and ( )1 2
U  u ,  u ,...,  u

TM
i i i i∆ ≡ ∆ ∆ ∆  . 

Recall that in each zone “i” Ui  is an M-component vector so that u k
i  is the kth component 

of that vector. We can then write 

 

( )1 1u u u , u u         for 1,...,
m m m m m
i i i i iLimiter m M+ −∆ = − − =     (3.57) 

 

In other words, we reconstruct Ui∆  by applying the limiter componentwise to the vector 

of conserved variables. We call this limiting on the conserved variables. Notice that Sub-

section 3.4.1 indeed informs us that the correct variables that one should reconstruct are 

in fact the characteristic variables. Even so, the componentwise reconstruction always 



 73 

seems to have a way of working out for all of the hyperbolic systems that are likely to 

interest us in this book. Observe too that the scheme in Section 3.6.1 does not have this 

option of circumventing a characteristic projection because it requires the difference in 

characteristic variables, i.e. 1/2
m
iw +∆  in eqn. (3.48), to construct the flux. Using this trick of 

componentwise limiting enables the scheme described in this Sub-section to match the 

speed of the scheme described in Sub-section 3.6.1. 

 

TVD Property for the Improved Euler Runge-Kutta Scheme 

 

 To demonstrate the TVD property for the second order accurate scheme described 

in eqn. (3.51) we rewrite it as: 

( ) ( )( )
( ) ( )( )

( )

(1)
1/2 1/2

(2) (1) 1/2 (1) (1)
1/2 1/2

1 (2)

U U F U F U

U U F U F U

1U U U
2

n n n n n
i i i i

n n
i i i i

n n
i i i

t
x

t
x

+ −

+
+ −

+

∆
= − −

∆
∆

= − −
∆

= +

 

Let “U” be an “M” component vector. By left-multiplying each of the above three 

equations by the matrix of left eigenvectors, “L”, we can write the above three equations 

in terms of “M” scalar equations for the eigenweights as: 

( ) ( )( )
( ) ( )( )

( )

,

,(1) , , ,
1/2 1/2

,(2) ,(1) ,(1) ,(1)
1/2 1/2

, 1 , ,(2)

1 , 1

1

U

f f

f f        for 1,...,

1
2

U

m n m n
i i

m m n m m n m m n
i i i i

m m m m m m
i i i i

m n m n m
i i i

M
n m n m
i i

m

w l
tw w w w
x

tw w w w m M
x

w w w

w r

+ −

+ −

+

+ +

=

≡
∆

= − −
∆
∆

= − − =
∆

= +

≡∑

 

In other words, we start our time step at time nt  by obtaining “M” characteristic variables 
,m n

iw  in each zone “i”. We then evolve these characteristic variables as scalar advection, 

not as a system, using TVD-preserving fluxes. Observe that each of the two stages in the 

time-update above is TVD. (In practice, it is uneconomical to solve a hyperbolic problem 
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as described in this box; however, it yields useful insights.) For example, at the zone 

boundary “i+1/2” we evaluate ( ),
1/2f m m n

i w+  for all the characteristic variables and use all 

such fluxes to obtain ,(1)m
iw  for each characteristic variable in each zone using the first 

stage.  The TVD property of the first stage of our Runge-Kutta scheme then ensures that 

( ) ( ),(1) ,TV TVm m nw w≤ . Continuing the example, we then evaluate ( ),(1)
1/2f m m

i w+  for each 

zone boundary “i+1/2” and each characteristic field. Using the second stage, we obtain 
,(2)m

iw  for all the characteristic variables in all the zones “i”. Since we used a TVD-

preserving flux, we again have ( ) ( ),(2) ,(1)TV TVm mw w≤ . For each zone “i” we can now 

obtain , 1m n
iw +  for all the characteristic variables as a convex combination of ,m n

iw  and 

,(2)m
iw . The fact that it is a convex combination plays an important role in our proof of the 

TVD property. We use , 1m n
iw +  to obtain the final updated state 1Un

i
+ , thus completing the 

entire time-update. Fascinatingly, the TVD property is not obtained in the conserved 

state, but rather in the characteristic variables because we can write: 

 

( ) ( ) ( ) ( ) ( ) ( ), 1 , ,(2) , ,(1) ,1 1TV TV TV TV TV TV    1,..,
2 2

m n m n m m n m m nw w w w w w m M+    ≤ + ≤ + ≤ ∀ =     

 

I.e., we see that the entire time-evolution of the semi-discrete form can be written entirely 

in characteristic variables, and it is the characteristic variables that do indeed satisfy a 

TVD property for the scheme in eqn. (3.51). Consequently, we realize why the 

characteristic variables are more fundamental to the solution of a linear hyperbolic 

system, and this insight goes over to non-linear hyperbolic systems. We now come to a 

deeper understanding of why we carried out the reconstruction on the characteristic 

variables in eqns. (3.52) to (3.54). 

 

 For scalar advection we see that if each of the stages in eqn. (3.51) is TVD then 

the whole scheme is TVD. For linear hyperbolic systems, we could define the total 

variation of the hyperbolic system as the sum of the total variation in all its characteristic 

variables, i.e.  
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( ) ( ),

1
TV U TV

M
n m n

m
w

=

≡∑  

Such a definition would allow us to assert ( ) ( )1TV U TV Un n+ ≤ . However, this is 

dissatisfying because the above definition of total variation would not be the same as 

taking the component-wise L1 norm of 1U Ui i+ −  and then summing over all zones “i”. In 

fact, it can be shown that a total variation defined in the component-wise norm will 

definitely not have a TVD property of the form that we would like to have. It is also 

difficult to gainfully extend the TVD concept to non-linear hyperbolic systems. Likewise, 

as shown by Goodman & LeVeque (1985), the TVD property cannot be profitably 

extended to include second order accurate techniques for scalar conservation laws in 

multiple dimensions. Despite its many limitations, the TVD property continues to give us 

the fundamental insight that in order to evolve the solution of a hyperbolic system in a 

non-oscillatory fashion, the variation of the solution within a zone has to be restricted via 

some sort of non-linear hybridization. 

 

Stepwise Description of the Runge-Kutta Scheme 

 Since the scheme described in this sub-section is very useful, we catalogue it in 

terms of steps that are suitable for numerical implementation. We only describe one stage 

of the Runge-Kutta scheme: 

Step 1: Impose boundary conditions. Then carry out reconstruction. Either use eqns. 

(3.52) to (3.54) or use eqn. (3.57). 

Step 2: Obtain left and right states from eqn. (3.55). Use the Riemann solver as a machine 

to obtain the flux from eqn. (3.56). 

Step 3: Use the appropriate update stage in either one of eqn. (3.50) or eqn. (3.51). 

 

3.6.3) Predictor-Corrector Formulation 

 

 Observe that eqn. (3.50), the first stage in the two-stage Runge-Kutta scheme, 

only serves the role of advancing the solution to a time 2nt t+ ∆  at which time we 

evaluate the fluxes that are actually used in the update eqn. (3.51). The final update 
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equation, i.e. eqn. (3.51), then carries the solution through the full timestep. As a result, 

we realize that there might be an alternative way of obtaining the left and right states for 

the Riemann solver in a way that already corresponds to the time 2nt t+ ∆ . By doing that 

we would be able to avoid the need to have separate predictor and corrector stages as in 

the Runge-Kutta scheme. Indeed we have already calculated the slope information at time 
nt  within each zone, which allows us to evolve the solution within the zone for a short 

amount of time. Thus within a zone “i” we can write 

 

U UA 0
n
ii

t x
∆ ∆

+ =
∆ ∆

         (3.58) 

 

so that we can evolve the solution for a time 2t∆  within zone “i” using the slope U
n
i∆  

that can be obtained by applying the characteristic limiter from eqns. (3.52) to (3.54) to 

the mesh function at time nt . A similar equation can be written for the time-evolution in 

zone “i+1”. Eqn. (3.55) gives us the left and right states at the zone boundary “i+1/2” at 

time nt . We would actually like to have those states at that zone boundary at time 

2nt t+ ∆ . This is easily done by drawing on eqn. (3.58) and its analogue in zone “i+1”. 

We first consider the left state and work through it in detail. Thus we can write 

 

1/2
; 1/2

U1 1U  U  +  ΔU   
2 2

1 1           = U  +  ΔU    A ΔU
2 2

nn n i
iL i i

n nn
i ii

t
t

t
x

+
+

∆ ≡ + ∆  ∆ 
∆

−
∆

      (3.59) 

 

Using eqn. (3.54) in (3.59) we get 

 

1/2
; 1/2

1

1 1U  = U  +  ΔU      
2 2

Mnn n m m m
iL i i i

m

t w r
x

λ+
+

=

∆
− ∆

∆ ∑      (3.60) 

 

An analogous exercise for the right state is given by 
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1/2 1
1; 1/2 1

1 11

U1 1U  U    ΔU   
2 2
1 1            = U    ΔU    A ΔU
2 2

nn n i
iR i i

n nn
i ii

t
t

t
x

+ +
++ +

+ ++

∆ ≡ − + ∆  ∆ 
∆

− −
∆

      (3.61) 

 

and it yields 

 

1/2
1; 1/2 1 1

1

1 1U  = U    ΔU      
2 2

Mnn n m m m
iR i i i

m

t w r
x

λ+
++ + +

=

∆
− − ∆

∆ ∑      (3.62) 

 

Eqns. (3.60) and (3.62) can be thought of as the predictor step for this scheme. The figure 

in the box at the end of Section 3.3 illustrates how the predicted values at the zone 

boundary “i+1/2”, i.e. 1/2
; 1/2Un

R i
+
−  and 1/2

; 1/2Un
L i
+
+ , are obtained within the simpler context of 

scalar advection. If we think of the Riemann solver as a machine that takes two states, 

one from the left and another from the right, and produces a resolved flux then our single 

stage time-update is given by 

 

( ) ( )( )1 1/2 1/2 1/2 1/2
; 1/2 ; 1/2 ; 1/2 ; 1/2U U F  U  , U  F  U  , U  n n n n n n

i i RS L i R i RS L i R i
t
x

+ + + + +
+ + − −

∆
= − −

∆
   (3.63) 

 

Eqn. (3.63) can be thought of as the corrector step that gives us the full time update. Such 

a scheme was first proposed by Colella (1985) and was also used in Colella & Woodward 

(1984).  

 

 The present method offers the same stability properties as the previous Runge-

Kutta method. Both methods work with the same CFL restriction. However, the 

reconstructed profiles only have to be evaluated once for the present method. Likewise, 

we only need to make one evaluation of the Riemann problem for the method described 

in this sub-section. For non-linear hyperbolic systems, the Riemann solver can dominate 

the cost of the scheme. As a result, the present scheme has a favorable computational 

efficiency relative to the Runge-Kutta method. We see, however, that the left and right 
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states, i.e. eqns. (3.60) and (3.62), require a more intricate construction than the left and 

right states in eqn. (3.55) for the Runge-Kutta method. Thus, in a way of speaking, there 

is a trade-off between simplicity of programming, which favors the Runge-Kutta method, 

and computational efficiency, which favors the present method. In Chapter 7 we will 

present variants of these two methods (at second and higher orders of accuracy) for non-

linear hyperbolic systems. We will see that the same trade-offs prevail even in that 

situation. 

 

 There is a small latitude that one can draw on in the definition of the left and right 

states that go into the Riemann solver. Colella (1985) utilized that latitude to obtain 

expressions that are slightly different from our expressions in eqns. (3.60) and (3.62). 

Thus let 1λ  and Mλ  be the smallest and largest eigenvalues respectively of the 

characteristic matrix “A” (i.e. we assume that the eigenvalues are ordered from smallest 

to largest). Then the left state in eqn. (3.55) was taken to be a spatial average over all the 

waves that reach the zone boundary from the left zone in a time t∆ . Similarly, the right 

state in eqn. (3.55) was taken to be a spatial average over all the waves that reach the 

zone boundary from the right zone in a time t∆ . As a result, the expressions preferred by 

Colella (1985) are 

 

( )1/2
; 1/2

1

1 1U  = U  + 1 max ,0  ΔU      
2 2

Mnn n M m m m
iL i i i

m

t t w r
x x

λ λ+
+

=

∆ ∆ − − ∆ ∆ ∆ 
∑   (3.64) 

 

( )1/2 1
1; 1/2 1 1

1

1 1U  = U   1 min ,0  ΔU      
2 2

Mnn n m m m
iR i i i

m

t t w r
x x

λ λ+
++ + +

=

∆ ∆ − + − ∆ ∆ ∆ 
∑   (3.65) 

 

In practice, it has been found that eqns. (3.64) and (3.65) are a little more stabilizing than 

eqns. (3.60) and (3.62). 

 

Stepwise Description of the Predictor-Corrector Scheme 

 Since the Predictor-Corrector scheme described in this sub-section is very useful, 

we catalogue it in terms of steps that are suitable for numerical implementation: 
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Step 1: Impose boundary conditions. Then carry out reconstruction. Either use eqns. 

(3.52) to (3.54) or use eqn. (3.57). 

Step 2: Obtain left and right states from eqns. (3.60) and (3.62). This is the predictor step. 

Step 3: Use the Riemann solver as a machine to obtain the numerical flux from eqn. 

(3.56). 

Step 4: Update using eqn. (3.63). This is the corrector step. 

 

3.6.4) Numerical Results from the Previous Three Schemes 

 

 As our numerical example we take the linearized, one-dimensional Euler system 

that was catalogued in the box at the end of Section 3.4. The characteristic matrix in our 

numerical example is defined by setting 0 1ρ =  , 0v 0.25x =  and 0c 0.75=  . We solve a 

Riemann problem numerically using the three schemes that we designed in the previous 

three sub-sections. We take the left and right states to be ( )U 0.2,0.3,0.1 T
L =  and 

( )U 0.1,0.4,0.3 T
R = −  respectively. Note that these left and right states can be interpreted 

as fluctuations that are applied to the mean values of the density, x-velocity and pressure 

in the Euler equations. As fluctuations go, the present fluctuations are quite large and 

would provoke non-linear effects in the full Euler equation. However, we are only 

solving a linear problem that is derived from the Euler equations and so it is acceptable to 

have these left and right states for our Riemann problem. The Riemann problem was 

initialized in the middle of a 70 zone mesh which spans [ ]0.5,0.5−  along the x-axis. The 

MC limiter was applied to the characteristic variables for the schemes in Sub-sections 

3.6.1 and 3.6.2. The MC limiter was found to be too compressive for the scheme 

described in Sub-section 3.6.3 and so we switched to a minmod limiter. A CFL number 

of 0.6 was used for all three schemes and they were evolved to a final time of 0.4. 

 

 Fig. 3.14a, 3.14b and 3.14c show the results from the schemes in Sub-sections 

3.6.1, 3.6.2 and 3.6.3 respectively. The crosses show the fluctuations in the density, the 

triangles show the fluctuations in the velocity and the diamonds show the fluctuations in 

the pressure. We see that the Riemann problem has been resolved by all three schemes 
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into a sequence of three simple waves. The leftmost discontinuity is a left-going sound 

wave and generates changes in the density, x-velocity and pressure. The relative sizes of 

the jumps produced in the variables across the left-going sound wave are proportional to 

the components of the first right eigenvector 1r  . The middle wave is a contact 

discontinuity. It does not produce changes in the x-velocity or the pressure; its changes 

are restricted to producing a jump in the density variable. This can also be seen by an 

examination of the second right eigenvector 2r  . The rightmost discontinuity is a right-

going sound wave and again generates jumps in all three variables that are proportional to 

the third right eigenvector 3r . (The eigenvectors are catalogued in Sub-section 1.5.2.) 

The only noticeable difference between Figs. 3.14a and 3.14b arises in the treatment of 

the right-going sound wave where we see that the profile is smeared a little more in Fig. 

3.14b than in Fig. 3.14a. This can be understood because the scheme with Runge-Kutta 

timestepping applies the Riemann problem twice in the course of a time step, thus 

producing a slightly greater dissipation in the fastest propagating wave. In practice, the 

full, non-linear Euler system displays a self-steepening of sound waves. Consequently, 

this extra dissipation in the rightward propagating sound wave would be counteracted by 

the tendency of the hyperbolic system to cause its sound waves to self-steepen. Fig. 3.14c 

shows that the waves are also crisply preserved in the scheme from Sub-section 3.6.3. 

This time, the central wave is slightly smeared because of the use of the minmod limiter. 
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TVD Property for Hyperbolic Systems? 

 

In the box at the end of Sub-section 3.6.2 we documented that the improved Euler 

approximation has a TVD property. We observed that the Runge-Kutta scheme described 
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there only retains the TVD property for linear hyperbolic systems when it is formulated 

in characteristic variables. When formulated in conserved variables, the property does not 

hold. We now catalogue the time evolution of the total variation for the problem 

described in this sub-section. The dotted curve shows the total variation as measured in 

the characteristic variables. We see that the improved Euler approximation does an 

excellent job of preserving the total variation in the characteristic variables. We had also 

mentioned that the same property does not hold in conserved variables. The solid and 

dashed curves show the total variation measured for the conserved variables when the 

improved Euler and modified Euler approximations are used. Consistent with our 

expectation, we see that the total variation does increase for either of those two Runge-

Kutta schemes. In fact, there is practically no difference between them. 
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Problem Set 

 

3.1) Use right differences, 1u  u  u
n n n
i i i+∆ = − , in eqn. (3.7) to show that it reduces to the 

Lax-Wendroff scheme from Sub-section 2.7.3. Can you show that the scheme is not 

positivity preserving? 

 

3.2) Use centered differences, ( )1 1
1u  u  u
2

n n n
i i i+ −∆ = − , in eqn. (3.7) to show that it reduces 

to the Fromm scheme which is given by 

 

( ) ( )
2

1
1 1 2 1 1 2u  u u  3 u  5 u  u u u u u

4 4
n n n n n n n n n n
i i i i i i i i i i

µ µ+
+ − − + − −= − + − + + − − +  

 

Use eqn. (2.46) to show that this scheme is second order accurate. Can you show that the 

scheme is not positivity preserving? Notice that while the centered difference might have 

seemed like the most symmetrical choice, it does not yield a symmetrical scheme, nor is 

its stencil symmetrical. 

 

3.3) Use left differences, 1u  u  u
n n n
i i i−∆ = − , in eqn. (3.7) to show that it reduces to the 

Beam-Warming scheme given by 

 

( ) ( )
2

1
1 2 1 2u  u 3 u  4 u  u u  2 u  u

2 4
n n n n n n n n
i i i i i i i i

µ µ+
− − − −= − − + + − +  

 

Using eqn. (2.46), show that this scheme is second order accurate. As in the previous 

problem, notice that the choice of a left difference does not yield a symmetrical scheme. 

Can you show that the scheme is not positivity preserving? Exercises 3.1, 3.2 and 3.3 

taken together display the full set of one-stage, time-explicit, second order schemes that 

can be designed with a compact stencil. We see that the latter two schemes are not even 

symmetrical. 

 



 87 

3.4) For a continuous function the total variation is defined by ( ) ( )/TV f f x dx
∞

−∞

= ∫ . 

Extend the concept for discontinuous functions. Find the total variation for the following 

functions: 

a) ( ) ( )20.1xf x e−=  

b) ( ) ( ) [ ]sin   ,f x x x π π= ∀ ∈ −  and ( ) 0f x = for all other values of x. 

c) ( ) [ ]1  0.05,0.05f x x= ∀ ∈ −  and ( ) 0f x = for all other values of x. 

 

3.5) In the text, we asserted that eqn. (3.21) was sufficient to ensure the TVD property for 

the scheme in eqn. (3.19). We now prove the claim. Consider the function 

( ) ( )1
2

f Dµµ µ µ= + −  for 0 1µ≤ ≤  and some value ( ) ( )1
i

i
i

D
φ θ

φ θ
θ −= − . Show that 

requiring ( )0 1f µ≤ ≤  is equivalent to requiring that 2 2
1

D
µ µ

− ≤ ≤
−

. (Hint: Do this by 

first subtracting µ  and then dividing by ( )1
2
µ µ− .) Consequently, for 0 1µ≤ ≤ , we 

realize that 2 2D− ≤ ≤  is sufficient for guaranteeing the TVD property. This problem 

also highlights the fact that ( ) ( )1
i

i
i

φ θ
φ θ

θ −−  can lie within a larger range than the one 

asserted in eqn. (3.21). The larger range can be exploited to obtain a sharper limiter, as 

was done in the box at the end of Section 3.3. 

 

3.6) Assume a symmetrical mesh function around the zone boundary “i−1/2” so that 

2ui b− = − , 1ui a− = −  , ui a=  and 1ui b+ = . To make the example concrete assume 

0 a b≤ < . Obtain the limited, undivided difference u i∆  in zone “i” by using the fact that 

 

( )1
1

1

u uu u u
u u

i i
i i i

i i

φ −
+

+

 −
∆ = − − 
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Similarly obtain 1u i−∆  . By specializing the values in the formulae using a and b , show 

that our requirement that the slopes be symmetrical about the zone boundary “i−1/2” 

gives us 1u ui i−∆ = ∆  . By asserting this equality, show that 

 

2

2 2

a
b ab a

a a
b a

φ
φ

 
  −−    =     
 − 

 

 

Since a and b are general values, realize that we have just proved the statement in eqn. 

(3.24). 

 

3.7) Substitute eqn. (3.31) into eqn. (3.26) and verify that it is the correct solution of the 

linear PDE that satisfies the initial conditions given by the smooth and differentiable 

vector function ( )0U x  . 

 

3.8) Use integration by parts and Fig. 3.9 to show that eqn. (3.32) is the appropriate 

discontinuous solution of eqn. (3.26). 

 

3.9) Show that the expressions in eqn. (3.42) are equivalent to their counterparts in eqn. 

(3.41). This is most easily done by substituting the definitions from eqn. (3.43) in eqn. 

(3.42) and simplifying the resulting expressions. You will also have to use the definition 

( )U Um m
R Llα ≡ −  . 

 

3.10) Assume an x-directional, non-zero, initial magnetic field in the one-dimensional 

MHD system. Eliminate all fluctuations in the density, pressure, x-velocity and x-

component of the magnetic field. Also eliminate the z-components of the velocity and 

magnetic field altogether. Show that the fluctuations in the y-components of the velocity 

and magnetic field satisfy the 2×2 system given by 
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0
0

0

0 0

Bvv v
4  0

B B
B v

x
xy y

y y
x x

t x
π ρ

 −   ∂ ∂ + =    ∂ ∂    − 

 

 

Here 0ρ  , 0vx  and 0Bx  are the unperturbed density, x-velocity and x-component of the 

magnetic field. Show that the eigenvalues are given by 1
0 Av vxλ = −  and 2

0 Av + vxλ =  

where A 0 0v B 4  x π ρ=  is called the Alfven speed. Find the left and right 

eigenvectors and obtain the resolved flux for this system using steps that parallel the steps 

in the box at the end of Section 3.4. 

 

Computer Exercises 

 

3.1) Using eqns. (3.7) and (3.8) reproduce the results given in Fig. 3.5 

 

3.2) Using eqns. (3.7) and the MC limiter that was given at the end of Section 3.2, 

reproduce the results given in Fig. 3.6 

 

3.3) Apply the Superbee limiter to produce results that are analogous to Figs. 3.5 and 3.6. 

What can you say about the quality of the solution produced by the superbee limiter? 

 

3.4) Apply the Superbee limiter to the numerical advection of the function sin (2 π x) on 

the unit interval. Use periodic geometry and advect the sine wave for several cycles. On a 

small enough mesh you should see that the sine wave starts turning into a square wave, 

thus illustrating the overcompressive nature of the limiter. 

 

3.5) Reproduce the results from Figs. 3.14a and 3.14b by coding up both the schemes 

from Section 3.6. 

 

3.6) For the 2×2 hyperbolic system defined in problem 3.10 above, set 0 1ρ =  , 0v 0.5x =  

and 0B 4x π=  . Set up a 100 zone mesh spanning  [ ]0.5,0.5−  along the x-axis. At x=0 
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initialize a Riemann problem with ( )U 0.1,0.3L =  and ( )U 0.2,0.2R = −  . Use a CFL 

number of 0.6 and evolve the Riemann problem to a final time of 0.3. Try both the 

schemes from Section 3.5. 

 

 

 

 

 


