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Abstract. We give two alternative proofs that 1-based theories
of finite SU-rank have stable forking, neither of which seems to
require the full power of elimination of hyperimaginaries. We also
show some miscellaneous results related to stable forking in simple
theories.

1. Introduction

Recall that the class of simple theories is a proper extension of the
class of stable theories. While the former can be characterized by,
among other things, the symmetry of non-forking independence, fork-
ing in a stable theory (deviation from the definition of the type) is often
rather easier to identify and smoother to work with than forking in a
simple theory. For this reason, one might hope that forking in a simple
unstable theory is always at least witnessed by a stable formula. Also,
although there is a plethora of examples of simple unstable theories,
many of these seem to be essentially stable up to some kind of “noise.”
One way to formalize this intuition is found in [5]:

Definition 1.1. A simple theory T has stable forking if whenever q(x)
is a complete type over a model M , A ⊂ M and q forks over A then
there is is a stable formula ψ(x; b) ∈ q which forks over A.

The Stable Forking Conjecture is simply that every simple theory
has stable forking. The conjecture is unresolved—and not universally
believed true—but it has been verified in several special classes includ-
ing 1-based supersimple theories and stable theories expanded with a
generic predicate.

Although the result is fairly well-known to model-theorists, demon-
strations of the fact that 1-based supersimple theories have stable
forking have all involved highly technical machinery spread over sev-
eral publications. The original proof runs through [4], where Kim
showed that 1-based simple theories with elimination of hyperimagi-
naries (EHI) have stable forking, and it terminates in a very technical
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paper, [1], where it is shown that all supersimple theories have EHI. In
the standard textbook on simple theories, [8], it is proved as a sort of
afterthought in an extended treatment of elimination of hyperimaginar-
ies. In this note, we present some streamlined proofs of stable forking
in 1-based theories of finite SU -rank. While still building on [1], we
avoid a great deal of technical machinery.

The demonstrations in this article arose partially out of an attempt
to obtain the results of [6] on stable forking for elements of “low SU -
rank” in ω-categorical simple theories while dropping the ω-categoricity
assumption. The original project was successful in that we proved (sec-
tion 2) that in any simple theory with EHI, if a rank-2 element a forks
with b, and b has finite SU-rank, then tp(a/b) contains a stable forking
formula. Our proof actually uses a condition, Dependence Witnessed
by Imaginaries (DWIP), which seems to be somewhat weaker than full
EHI (equivalent to weak elimination of hyperimaginaries in a simple
theory), and building on this idea, we extend the method that worked
for rank-2 elements against finite-rank elements to work for all finite-
ranked elements in 1-based theory with DWIP (section 4). Finally, we
present a second demonstration of stable forking in a 1-based theory
(again, for finite-ranked elements) that does not require any mention
of hyperimaginaries whatever.

In what follows we assume a familiarity with common conventions of
model theory . We work in a suitably saturated model M; we will use
the terms forking, simple, supersimple, SU -rank, canonical base, and
so on freely. One reference for this background material is [8]. All that
said, we include a very brief reminder on the basics of hyperimaginaries
because the word “hyperimaginary” makes at least one of the authors
a bit queasy.

1.1. Hyperimaginaries. This subsection presents background on hy-
perimaginaries; there are no new results contained inside. For more
details see [3], [1], and [8]. Readers familiar with hyperimaginaries
may wish to skip to the next section.

Stability theory makes much use of imaginary elements, each of
which is a name for a class of a definable equivalence relation. Imagi-
nary elements can be “added” to a theory by adding sorts to represent
each definable equivalence relation, and this “eq” construction pre-
serves all of the relevant properties of the original first-order theory.

We can, then, do the same thing for type-definable equivalence rela-
tions, calling the name of such an equivalence class a hyperimaginary.
If E(x̄, ȳ) is a type definable equivalence relation with x̄ = (xi : i ∈ I)
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and ȳ = (yi : i ∈ I) for some (possibly infinite) linearly ordered index
set I, and ā = (ai : i ∈ I) is some tuple of elements from M eq then
āE is the hyperimaginary element representing the class of all tuples
E-related to ā. It can be shown that any type-definable equivalence
relation is equivalent to an infinite conjunction of equivalence relations
defined by a countable types, so it suffices to add names only for the
equivalence relations defined by countably-infinite conjunctions of for-
mulas.

A model M enriched with these names is denoted Mheq. It’s not
hard to see that M ⊂ M eq ⊂ Mheq up to some natural and obvious
identifications. Automorphisms of M lift to Mheq, so if e = āE is a
hyperimaginary element we say an automorphism fixes e iff it fixes the
E class of ā as a set. This is an annoyance of dealing with hyperimagi-
naries: the formulas comprising the equivalence relation E do not need
to be e-invariant. The lifting of automorphisms does let us extend de-
finable closure and algebraic closure to Mheq; we will use dcl and acl
to refer to these extensions for this paper.

Unfortunately, we cannot think of Mheq as a first-order structure.
The main issue is that type-definable sets are closed but not clopen, so
the negation of such is not, in general, type-definable. However, a frag-
ment of logic can be developed. Specifically, we can extend the notions
of type and forking to hyperimaginaries. If a and b are hyperimaginar-
ies then there are equivalence relations E(x, y) and F (w, z) and tuples
ā = (ai : i ∈ I), b̄ = (bi : i ∈ J) such that a = āE, b = b̄F . The type
tp(a/b) can then be expressed as the union of the partial types over b̄,

∃wz[E(x,w) ∧ F (z, b̄) ∧ ϕ(w′, z′)]

for all ϕ such that the partial type is satisfied by a. In the equation
above w′ and z′ represent some finite subtuples of w and z. We could
have chosen to base the type on any tuple b̄∗ so long as b̄∗ and b̄ are
F -equivalent. This definition is the right one since it preserves the idea
of types representing orbits of elements over a base set.

Fact 1.2. [3, Proposition 1.4] a′ realizes tp(a/b) if and only if there is
an automorphism f fixing b such that f(a) = a′.

From the notion of type one can derive the notion of an indiscernible
sequence of hyperimaginaries. We then say a type p(x, b) = tp(a/b)
divides over a set C if there is a sequence (bi : i < ω) in tp(b/C)
indiscernible over C such that

⋃
i p(x, bi) is inconsistent. A type forks

if it implies a finite disjunction of types which divide.
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Just as it is terribly convenient to work in a theory which eliminates
imaginaries, it is very nice to work with theories that eliminate hyper-
imaginaries. We say that a theory T eliminates hyperimaginaries (has
EHI) if for every hyperimaginary e ∈ Mheq, there is a set of imaginar-
ies b̄ ⊂ Meq such that dcl(b̄) = dcl(e). Finally, we say that a theory
T has weak elimination of hyperimaginaries (has WEHI) if for every
hyperimaginary e ∈ Mheq, there is a set of imaginaries b̄ ⊂ Meq such
that bdd(b̄) = bdd(e).

2. Elements of Rank 2

In this section, we will show that whenever an element a of SU
rank 2 forks with another tuple b (of finite rank) over a set C, there
is a witnessing stable forking formula. This extends a result of Peretz
[6] by removing the assumption of ω-catagoricity and allowing b to
have rank larger than 2. We include this argument mainly because
of its connection to [6] and because it is slightly easier to follow than
its more general cousin (see section 3). The proof builds the forking
formula inductively using two observations: an element of SU -rank 2
which forks with an element of an indiscernible sequence, but is not
algebraic over the sequence, is independent from the sequence over a
single element, resembling a 1-based theory. Second, stable forking can
be transfered “upward” through algebraic closure. We will prove the
second observation en route to proving the theorem.

We will also need to use a result of Z. Shami in [7] that stable forking
is symmetric. [7] uses the additional assumption that strong types and
Lascar strong types coincide, but in private correspondence, Shami has
shown that this assumption is unnecessary. Supersimplicity implies
lstp = stp, but we don’t know if DWIP/WEHI has the same power.
Thus, we present Shami’s proof of the more general result.

2.1. Symmetry of Stable Forking. This short section presents a
proof that stable forking is symmetric in all simple theories. It builds
on a foundation laid in [7], where stable forking symmetry is proved
for theories where lstp = stp. We will recall the bare essentials of that
paper, but only present a proof of the new result which we require. This
proof and all the other material in this subsection are due to Shami.

Here is a rough outline of the original proof. First, one establishes
that for stable formulas, generic satisfiability is unique for parameters
that have the same Lascar strong type.

Fact 2.1. [7, Claim 6.5] Let T be simple, and let φ(x, y) ∈ L be stable.
Assume a ↓A b and a′ ↓A b and that lstp(a/A) = lstp(a′/A). Then
|= φ(a, b) if and only if |= φ(a′, b).
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One uses this fact to identify an alternate definition of forking (more
akin to forking in a stable theory) with the usual one for simple theories.

Definition 2.2. Let φ(x, y) be a formula, and let A ⊆ B ⊂ Meq. Then
p ∈ Sφ(B) does not fork in the sense of LS if, for some model M
containing B, some p′ ∈ Sφ(M) extending p is definable over acl(A).

Fact 2.3. [7, Lemma 6.6] Assume T is a simple theory with lstp = stp,
and let φ(x, y) ∈ L be a stable formula. Let a ∈ Meq and A ⊆ B ⊂ M.
Then tpφ(a/B) does not fork over A in the sense of LS if and only if
tpφ(a/B) does not fork over A.

Provided lstp = stp, it is a short step from this to the symmetry
of “stable non-forking independence,” from which the symmetry of
stable forking is fairly obvious. Throughout Shami’s argument, the
assumption that lstp = stp appears only so that fact 2.1 may be used.
Thus, to extend his argument to arbitrary simple theories, it suffices
to prove an analog of fact 2.1 for strong types in place of Lascar strong
types. Strangely, the proof of this extension actually uses its precursor.

Lemma 2.4. Let E(x, y) be a bounded, co-type definable equivalence
relation. Then E is a definable, finite equivalence relation.

Proof. Suppose E is as in the hypothesis. Let r(x, y) be a partial
type defining ¬E. If E had an infinite number of equivalence classes,
then we could build an indiscernible sequence where each 2-type re-
alized r. The sequence would then imply the number of E classes
is unbounded, contradicting the hypothesis. Thus E has only a finite
number of classes. Let a1, . . . , an for some n < ω consist of a single rep-
resentative from each class. Then the type

∧
i≤n r(x, ai) is inconsistent,

so there is a formula ψ(x, y) ∈ r such that
∧

i≤n ψ(x, ai) is inconsis-
tent by compactness. Observe that ¬∃x(

∧
i≤n ψ(x, ai)) is equivalent to

∀x(
∨

i≤n ¬ψ(x, ai)), so for every x there is some j such that ¬ψ(x, aj).
Since ψ ∈ r, ¬ψ(x, y) |= E(x, y). Let

θ(x, y) ≡
∧
i≤n

(¬ψ(x, ai) ↔ ¬ψ(y, ai)) .

We will show θ defines E. First suppose θ(b, c). For some j we have
¬ψ(b, aj), and θ entails ¬ψ(c, aj). Thus E(b, aj) and E(c, aj) so by
transitivity E(b, c).

Conversely, suppose E(b, c). If ¬θ(b, c) then there is some index i
such that (without loss of generality) ¬ψ(b, ai) ∧ ψ(c, ai) holds. There
is another index j such that ¬ψ(c, aj). Then we have E(b, ai), E(b, c)
and E(c, aj). By transitivity E(ai, aj). But we chose ai and aj to
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be in different classes. The contradiction proves the claim and the
lemma. �

Lemma 2.5. Let T be simple. Let φ(x, y) ∈ L be stable. Assume
a ↓A b and a′ ↓A b and that stp(a/A) = stp(a′/A). Then |= φ(a, b) if
and only if |= φ(a′, b).

Proof. Given a complete type q(x) define the equivalence relation Eq

by

Eφ
q (a, a′) ⇐⇒ for every b |= q with b ↓ aa′, |= φ(a, b) ↔ φ(a′, b).

The complement of Eφ
q is defined by a partial type over A. By fact 2.1, if

lstp(a) = lstp(a′), then Eφ
q (a, a′) holds; this implies Eφ

q is refined by the
equality of Lascar strong type, so it is bounded. A bounded, co-type-
definable equivalence relation is a finite, definable equivalence relation
by lemma 2.4, so Eφ

q is an A-definable finite equivalence relation.
Now, suppose stp(a/A) = stp(a′/A), b ↓A a and b ↓A a′. Put q =

tp(b/A). By definition, tp(a/ acleq(A)) = tp(a/ acleq(A)), so a, a′ must
be in the same Eφ

q -class. Let a′′ realize stp(a/A) such that a′′ ↓A aa′b.

By transitivity, aa′′ ↓A b and a′a′′ ↓A b. Then, since Eφ
q (a, a′′) and

Eφ
q (a′, a′′) we have φ(a, b) ↔ φ(a′′, b) ↔ φ(a′, b), as desired. �

The remainder of Shami’s argument (Lemma 6.6 to the end of section
6 of [7]) goes through essentially unchanged except for substituting our
lemma 2.5 for fact 2.1.

Theorem 2.6. Let T be simple. If a 6↓C b and there is a stable formula
ψ(x; y) such that ψ(x; b) forks over C, then there is a stable formula
ϕ(x; y) such that ϕ(x; a) forks over C.

2.2. Dependence-witnessed-by-imaginaries. We now introduce a
useful notion which, for wont of a better name, we call dependence
witnessed by imaginaries property, and we show that it is equivalent to
weak elimination of imaginaries. Every supersimple theory eliminates
hyperimaginaries, so as we will see, every supersimple theory must
have DWIP. The applications of DWIP in the our arguments for stable
forking do not require that SU-rank is always defined—only that it is
defined for the relevant elements—so it is possible that DWIP could
be useful outside of the supersimple context.

Definition 2.7. We say a simple theory has the Dependence Wit-
nessed by Imaginaries Property (DWIP) if whenever a 6↓C b for hy-
perimaginary elements a and b and set C then there is an imaginary
element d ∈ acl(bC) such that a 6↓C d.
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Proposition 2.8. Suppose T is simple and has DWIP. Then for every
hyperimaginary e, there is a set of imaginary elements D such that
D ∈ dcl(e) and e ∈ bdd(D). In particular, T has WEHI.

Proof. Fix any hyperimaginary e. Let C = acl(e) ∩ Meq. For each
element a ∈ C, let a′ be an imaginary element representing the set of
all e automorphic images of a. Let D be the set of all tuples a′ for
a ∈ C.

Claim. C = acl(D).

Proof of claim. It is clear D ⊂ C so acl(D) ⊂ acl(C) = C. For the
other direction suppose c ∈ C. Then there is by construction a corre-
sponding name c′ ∈ D. There is an algebraic formula which says c is
in the set named by c′. Hence c ∈ acl(D). Then D ∈ dcl(e). �

Claim. A ↓D e for any set A..

Proof of claim. Suppose not. Then there is some set A such that A 6↓D

e. By DWIP there is an imaginary element d ∈ acl(D)∩Meq such that
A 6↓D d. But d ∈ C = acl(D). Hence A ↓D d. Contradiction proves the
claim. �

Thus we may consider the case where A = e. Then e ↓D e, which
implies e ∈ bdd(D). �

Proposition 2.9. Weak elimination of hyperimaginaries implies DWIP.

Proof. Suppose T weakly eliminates hyperimaginaries and a,b are hy-
perimaginaries such that a 6↓C b. We need to find a real element
d ∈ acl(bC) such that a 6↓C d. WEHI gives a set of real elements
B such that bdd(B) = bdd(b). Hence a 6↓C bdd(B), implying a 6↓C B.
Then by the finite character of forking, there is a finite tuple d ∈ B
such that a 6↓C d. Since d ∈ B ⊆ acl(b) we are done. �

Corollary 2.10. A simple theory T has DWIP if any only if it has
weak elimination of hyperimaginaries.

2.3. Stable Forking with Rank 2 Elements. At last, we come to
the proof that forking between a finite-rank element and a rank-2 is
always witness by a stable formula. The first result along this line
comes from the observation that algebraic formulas are always stable.

Proposition 2.11. Let C ⊂ M, and let a, b ∈ M be finite tuples. If
SU(b/C) = 1 and a 6↓C b then there are stable forking formulas in both
tp(a/bC) and tp(b/aC).
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Proof. From a 6↓C b, we have SU(b/aC) < SU(b/C) = 1, so b ∈
acl(aC) \ acl(C). Let θ(y; ac) ∈ tp(b/aC) be an algebraic formula.
Then θ(y; ac) forks over C because b /∈ acl(C), and it is stable because
it is algebraic. The stable forking formula inside tp(b/aC) then follows
from theorem 2.6. �

We next show stable forking can be passed “upward” through alge-
braic closure. It is similar to the result of Kim [4] that if E(y; z) is a
finite equivalence relation and ϕ(x; y) is any formula then ∃y[ϕ(x; y)∧
E(y; z)] is stable. For this one claim we do not need to assume T is
simple.

Lemma 2.12. Let T be an arbitrary theory. Suppose ζ(x; y) is a stable
formula and θ(y; zw) is algebraic in y. Let ψ(x; zw) be the formula
∃y[ζ(x; y) ∧ θ(y; zw)]. Then,

(1) ψ(x; zw) is stable;
(2) if there are elements a, b, c, d and a set D containing d such that

a |= ζ(x; c), ζ(x; c) forks over D, and θ(x; bd) isolates tp(c/bD)
(so c ∈ acl(bD)) then ψ(x; b) forks over D.

Proof of (1). Towards a contradiction, suppose ψ(x; zw) is unstable.
Let (aibici : i < ω + ω) be an indiscernible sequence witnessing the
order property – i.e. |= ψ(ai; bjcj) iff i ≤ j. For i < ω, let di be the
element witnessed by the existential in ψ(ai; bωcω). Since θ(y; bωcω) is
algebraic, there are only finitely many possible di, so by the pigeonhole
principle at least one, d′, is repeated infinitely often. As ζ is stable
and (ai)i<ω+ω is indiscernible, the set {i < ω+ω : |= ζ(ai; d

′)} is either
finite or cofinite, and by our choice of d′, it must be cofinite. Conse-
quently, there are indices k > ω such that |= ζ(ak; d

′), and this entails
|= ψ(ak; bωcω), a contradiction . �

Proof of (2). Let (ci)i<n enumerate all n elements satisfying θ(y; bd).
We may assume all the ci have the same type over bD as c since θ
isolates tp(c/bD). Since ζ(x; c) forks over D, so does

∨
i<n ζ(x; ci). As

ψ(x; bd) `
∨

i<n ζ(x; ci), ψ(x; bd) forks. �

We restate the previous lemma to have a more useful form. This
corollary is what we mean by stable forking passing “upward” in alge-
braic closure. The stable forking of a with d is passed to a and b.

Corollary 2.13. Let T be an arbitrary theory. Suppose a and b are
tuples where tp(a/Cb) forks. Moreover, suppose there is an element d ∈
acl(Cb) such that tp(a/Cd) forks via a stable formula. Then tp(a/Cb)
also contains a stable forking formula.
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Theorem 2.14. Let T be a simple theory with DWIP, and let C ⊂ Meq.
Further, let a, b ∈ Meq, and assume that SU(a/C) = 2 and SU(b/C) <
ω. Then, if a 6↓C b then there is a stable formula in tp(a/bC) which
forks over C.

Proof. Suppose a 6↓C b. The proof is by induction on the SU rank of
b over C. If SU(b/C) = 1 then proposition 2.11 produces a stable
forking formula in tp(a/bC).

Now suppose SU(b/C) = r < ω and the proposition holds for all
elements having smaller rank. Let ϕ(x; bc) with c ∈ C be an forking
formula in tp(a/bC). Choose a sequence I = (bic)i∈ω containing b which
is indiscernible over aC and for which a 6∈ acl(IC). One way to find
such a sequence is to take non-forking extensions of tp(b/aC). The
dependence a 6↓C b implies a 6↓C I which gives the rank inequalities
1 ≤ SU(a/IC) ≤ SU(a/bC) < SU(a/C) = 2. Hence, SU(a/IC) =
SU(a/bC), and so a ↓bC I. Put e = Cb(a/IC). Since a and I are
independent over bC, e ∈ bdd(bC). In fact, we could have done the
above rank argument with any b′ ∈ I to give e ∈ bdd(b′C). However,
b /∈ acl(e), since b ∈ acl(e) would imply b ∈ acl(b′C) for any b′ ∈ I,
which is impossible since b and b′ are both in the same indiscernible
sequence I.

Hence SU(b/e) > 0 and SU(e/b) = 0. The Lascar inequalities then
show SU(e) < SU(b):

SU(e) < SU(b/e) + SU(e) ≤ SU(eb) ≤ SU(e/b)⊕ SU(b) = SU(b)

Both a 6↓C I and a ↓e I imply a 6↓C e by transitivity. DWIP gives a
finite, real tuple d ∈ acl(e) with a 6↓C d. The induction hypothesis gives
a stable forking formula inside tp(a/dC) since SU(dC) ≤ SU(eC) <
SU(bC). Then because d ∈ acl(bC) corollary 2.13 gives a stable forking
formula in tp(a/bC). �

This proof relies on the fact that a is essentially 1-based with respect
to the indiscernible sequence I. The main obstacle to extending the
proof to elements a with SU-rank larger than 2 is that it is, then, no
longer possible to force Cb(a/CI) to lie inside the bounded closure of a
single element of the indiscernible sequence I; in general the canonical
base just would be inside the bounded closure of I.

The observation that 1-basedness is what really makes the induction
step work suggested looking at how well this proof generalizes to, well,
1-based theories. Naturally, the argument requires the presence of SU
ranks for the induction. In trying to remove other assumptions we
found that DWIP, at least, seems essential, but it is sufficient for stable
forking of finite-rank elements in a 1-based theory.
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We present two approaches, the first one keeps the same argument
as in the rank-2 case, and we use the 1-basedness of the theory to
eliminate the rank-2 assumption.

The second approach uses a well known coordinatization result for
1-based theories to stand as a replacement for DWIP. The trade-off is
that we must assume the entire theory (and not just the elements a
and b) is finite-ranked.

3. A broader application of DWIP

In this section, we will show that the proof for theorem 2.14 has much
broader applicability than it would initially seem. More precisely, in
that argument, we used an indiscernible sequence I = (bi : i < ω) with
the following properties:

(1) I is indiscernible over aC
(2) a ↓biC I for all i < ω

There we relied on that fact of SU(a/C) = 2 to make such a sequence,
but as we noted earlier, this was akin to saying that “a is 1-based with
respect to I.” Here, we will see that this statement is precise; that
is, assuming T is 1-based is sufficient to extend the argument to all
elements of finite SU-rank.

Lemma 3.1. Suppose T is a simple, 1-based theory. If a,b are elements
such that a 6↓C b for some set C then there is sequence I = (bi : i < ω)
indiscernible over aC such that b0 = b and satisfying a ↓biC I for all
i < ω.

Proof. Let a,b,C be as in the statement of the lemma. We will consider
“negative” ordinals for indexing purposes, and let J = (bi : −|T |+ ≤
i ≤ |T |+) be a Morley sequence in tp(b/aC). By using an automor-
phism, we may assume b0 = b. Let L = (bi : 1 ≤ i ≤ |T |+) and
K = (bi : −|T |+ ≤ i ≤ −1). For the moment we will focus on L. By
1-basedness L is Morley over b0C. For some subset D ⊂ L such that
|D| ≤ |T | we have a ↓b0CD L. Let L∗ = L \ D. Since L∗ is Morley
over b0C, D ↓b0C L∗. Apply transitivity to get a ↓b0C L∗. In the same
way we find a subset K∗ ⊂ K such that a ↓b0C K∗. There is a subset
D ⊂ K∗ such that a ↓b0CL∗D K∗, by replacing K∗ with K∗ \D we may
assume a ↓b0C K∗b0L

∗ (note that in either case we have |K∗| = |T |+).
Let I ′ = K∗_b_0 L

∗. I ′ is indiscernible over aC, which implies for each
bi ∈ I, a ↓biC I ′. Taking I = (bi : 0 ≤ i < ω) ⊂ I ′ then works for the
conclusion of the lemma. �

Now we have the theorem.
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Theorem 3.2. Let T be a 1-based supersimple theory. Let C be a set.
Suppose a is an imaginary element and b is an arbitrary imaginary
element with SU(b/C) < ω. If a 6↓C b then there is a stable formula in
tp(a/bC) which forks over C.

Proof. This proof closely follows the proof of theorem 2.14. Suppose
a 6↓C b. We proceed by induction on SU(b/C). If SU(b/C) = 1 then
proposition 2.11 produces a stable forking formula in tp(a/bC). Now
suppose SU(b/C) = α and the proposition holds for all elements having
smaller rank (over C). Choose a forking formula ϕ(x; bc) ∈ tp(a/bC)
(for some c ∈ C), and a sequence I = (bic)i∈ω containing b which is
indiscernible over aC and for which a 6∈ acl(IC) and a ↓bC I; such a
sequence exists by lemma 3.1. Let e = Cb(a/IC). e ∈ bdd(bC) since
a ↓bC IC. In fact, the above rank argument could be repeated with
any b′ ∈ I to give e ∈ bdd(b′C). However, b /∈ acl(e), since b ∈ acl(e)
would imply b ∈ acl(b′C) for any b′ ∈ I, which is impossible since b and
b′ are both in the same indiscernible sequence I. Hence SU(b/e) > 0
and SU(e/b) = 0. The Lascar inequalities then show SU(e) < SU(b).
a 6↓C I, and a ↓e I imply a 6↓C e. DWIP produces a finite, real tuple
d ⊂ e with a 6↓C d. Note that SU(d) ≤ SU(e) and d ∈ acl(bC). Since
SU(dC) < SU(bC), apply the induction hypothesis to get a stable
forking formula inside tp(a/êC). Then corollary 2.13 gives a stable
forking formula in tp(a/bC). �

4. Stable forking via coordinatization

In this section, we will prove 1-based theories of finite SU-rank have
stable forking using a coordinatization lemma and avoiding any men-
tion of hyperimaginaries. This coordinatization lemma is a fairly well-
known fact, exposed in [2] and also to be found in [8], and it is the
engine that drives many results on theories of finite SU -rank.

Fact 4.1. [2, Lemma 3.1] Assume T is supersimple of finite rank and
1-based. Let a ∈ Meq and A ⊂ Meq such that SU(a/A) = α + 1. Then
SU(a/Ab) = 1 for some b ∈ acleq(a). (And by the Lascar inequalities,
SU(b/A) = α.)

Theorem 4.2. Assume T is a 1-based simple theory of finite SU-rank.
Let a, b ∈ Meq, C ⊂ M, SU(b/C) < ω and suppose a 6↓C b. Then there
is a formula ψ(x; d) ∈ tp(a/bC) such that ψ(x; y) is stable and ψ(x; d)
forks over C.

Proof. The proof is by induction on SU(b/C).
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If C is an arbitrary base set and b is an arbitrary tuple such that
SU(b/C) = 1 then by proposition 2.11, there is such a stable forking
formula inside tp(a/bC).

Now suppose the conclusion holds for all base sets C and all elements
b with SU(b/C) < α. Let C be a set and b a tuple such that SU(b/C) =
α and a 6↓C b. Since SU(b/C) > 1 fact 4.1 finds an element d ∈ acleq(b)
such that SU(b/dC) = 1 and SU(b/C) = SU(d/C)+1. There are now
two possible cases: either a and d are dependent over C, or they are
independent. If a 6↓C d then since SU(d/C) < SU(b/C) by induction
there is a stable forking formula inside tp(a/Cd). Since d ∈ acl(bC),
there is a stable forking formula inside tp(a/bC) and we are done.

For the other case a ↓C d. By transitivity of forking, we must have
a 6↓Cd b, and SU(b/Cd) ≤ 1 < α. By induction there is a stable
formula ψ(x; y) such that some instance ψ(x; bdc) is in tp(a/bdC) and
ψ(x; bdc) forks over Cd. Note that ψ(x; bdc) still forks over C, and is in
tp(x; bdC). Since d ∈ acl(bC) there is some algebraic formula θ(w; yz)
and tuple c′ ⊂ C such that d |= θ(w; bc′). In what follows we may
assume c = c′. Let ϕ(x; yz) be the formula ∃w[ψ(x; ywz) ∧ θ(w; yz)].
It’s routine to verify that ϕ(x; yz) is stable, so we need only show that
ϕ(x, bc) forks over C. To show this, suppose {d1, ..., dn} is a maximal
set of realizations of θ(w; bc). Now, ϕ(x; bc) |=

∨
i ψ(x; bdic), and the

disjunction forks over C; hence, ϕ(x; bc) forks over C, as required. �
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