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The Banach-Tarski paradox is not a logical paradox, but rather a counter
intuitive result. It says that a ball can be broken into a finite number of pieces
and only using rigid motions, be reassembled into two identical balls the exact
same size as the original one. These notes follow the presentation given in Jech
[2].

For X,Y ⊆ R3 write X ≈ Y if there are a finite decomposition of X into
disjoint sets

X = X1 ∪ · · · ∪Xm

and a decomposition of Y into the same number of disjoint sets

Y = Y1 ∪ · · · ∪ Ym

such that Xi is congruent to Yi for each i ∈ {1, . . . ,m}.

Theorem 1 (Banach-Tarski). A closed ball U can be decomposed into two disjoint
sets U = X ∪ Y such that U ≈ X and U ≈ Y .

This is similar to a prior result by Hausdorff.

Theorem 2 (Hausdorff). A sphere S can be decomposed into disjoint sets

S = A ∪B ∪ C ∪Q

such that A, B, C, and B ∪ C are congruent to each other, and Q is countable.

Theorem 2 will be proved first and then used to prove theorem 1.
Since we are working on the sphere the relevant rigid motions are rotations.

Let G be the free product of the groups {1, φ} and {1, ψ, ψ2} where φ has order
2 and ψ order 3. Choose two axes of rotation aφ, aψ through the center of the
ball U . By having φ represent a rotation of 180◦ about aφ and ψ a rotation of
120◦ about aψ , we have an action of G on the sphere. Our goal is to find a
suitable partition of G and then use this to find a partition of the sphere via the
action of G. The first step is to show that there is a choice of axes such that G
can be embedded into the group of rotations on the sphere.

Lemma 1. The axes aφ and aψ can be chosen such that the action of G on the sphere
is faithful. That is, distinct elements of G will give distinct rotations.
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Proof. It suffices to find an angle θ between aφ and aψ such that no nonidentity
element of G represents the identity rotation. Take aψ to be the z-axis and aφ
to lie in the x–z plane at angle θ to aψ We can represent the rotations φ and ψ
by the matricies

ψ =

 λ µ 0
−µ λ 0
0 0 1

 (1)

φ =

 − cos θ 0 sin θ
0 −1 0

sin θ 0 cos θ

 (2)

where λ = cos 2π
3 = − 1

2 and µ = sin 2π
3 =

√
3

2 .
Choose θ so that cos θ is irrational. We wish to show that if α ∈ G is not the

identity then the corresponding action is not the identity.
If α = σmσm−1 · · ·σ2σ1 where each σ is either ψφ or ψ2φ, then the action of

each σ can be represented by one of the two matricies

σ =

 −λ cos θ ∓µ λ sin θ
±µ cos θ −λ ∓µ sin θ

sin θ 0 cos θ

 .

Choose the vector K = (0, 0, 1). We have

α ·K = σmσm−1 · · ·σ1 ·K = (sin θPm(cos θ),
√

3 sin θQm(cos θ), Rm(cos θ)),

where Pm, Qm, and Rm are polynomials with rational coefficients. In fact,

P1(x) = −1
2

Q1(x) = ∓1
2

R1(x) = x

and

Pm+1(x) = −λxPm(x)∓ 3
2
Qm(x) + λRm(x)

Qm+1(x) = ±1
2
xPm(x)− λQm(x)± 1

2
Rm(x)

Rm+1(x) = (1− x2)Pm(x) + xRm(x).

Since cos θ is irrational it is not the root of any polynomial with rational co-
efficients. Thus α · K 6= K since otherwise Rm(cos θ) − 1 = 0 would have a
solution.

The cases whereα has the forms φσm · · ·σ1, σm · · ·σ1ψ
±1, and φσm · · ·σ1ψ

±1

follow from this case.

Now we need to partition G into suitable subsets.

Lemma 2. The group G can be decomposed into three disjoint sets G = A ∪ B ∪ C
such that

φ ·A = B ∪ C, ψ ·A = B, ψ2 ·A = C (3)
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Proof. Construct A, B, and C by induction on the length of elements in G.
Begin with 1 ∈ A, φ, ψ ∈ B, and ψ2 ∈ C. Partition longer elements according
to the table.

α ∈ A α ∈ B α ∈ C
α begins with ψ±1 φα ∈ B φα ∈ A φα ∈ A
α begins with φ ψα ∈ B ψα ∈ C ψα ∈ A
α begins with φ ψ2α ∈ C ψ2α ∈ A ψ2α ∈ B

It is easy to check that these sets are disjoint and satisfy the required prop-
erties.

Now we can prove theorem 2 using this decomposition.

Proof of theorem 2. Put

Q = {x ∈ S : x is a fixed point of some nonidentity ρ ∈ G}.

Since each rotation has two fixed points and G is countable, so is Q. The set
S \Q is the disjoint union of all orbits Px of G:

Px = {α · x : α ∈ G}.

(If α·x ∈ Q for some α then σα·x = α·x for some nonidentity σ. Hence α−1σα·
x = x, and since α−1σα 6= 1, we have x ∈ Q. But x ∈ S \Q. contradiction)

Let F = {Px : x ∈ S \Q} be the family of all orbits. By the axiom of choice,
there is a set M which contains exactly one element in each Px. Let A, B, and C
be the decomposition of G given by the lemma. Put

A = {ρ · x : ρ ∈ A, x ∈M}
B = {ρ · x : ρ ∈ B, x ∈M}
C = {ρ · x : ρ ∈ C, x ∈M}.

From the two lemmas, A, B, and C are all disjoint and congruent to each other
and to B ∪ C since

φA = {φρ · x : ρ ∈ A, x ∈M} = {τ · x : τ ∈ B ∪ C, x ∈M} = B ∪ C
ψA = {ψρ · x : ρ ∈ A, x ∈M} = {τ · x : τ ∈ B, x ∈M} = B

ψ2A = {φρ · x : ρ ∈ A, x ∈M} = {τ · x : τ ∈ C, x ∈M} = C

To prove theorem 1 some properties of the ≈ relation are needed. This
proof is similar to the Schroder-Bernstein theorem from set theory that two
sets which can be embedded into each other have the same cardinality.

Lemma 3. Let ≈ be as defined above. Then,

1. ≈ is an equivalence relation
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2. If X and Y are disjoint unions of X1, X2 and Y1, Y2 respectively, and Xi ≈ Yi
for i = 1, 2 then X ≈ Y .

3. If X1 ⊆ Y ⊆ X and X ≈ X1 then X ≈ Y .

Proof. The first two are easy. To prove the last one let X = X1 ∪ · · · ∪Xn and
X1 = X1

1 ∪ · · · ∪Xn
1 such that each Xi is congruent to Xi

1 for each i = 1, . . . , n.
Choose a congruence f i : Xi → Xi

1 for each i = 1, . . . , n, and let f : X → X1 be
the one-to-one mapping agreeing with f i on Xi for each i = 1, . . . , n. Define
the sequences X0, X1, X2, . . . and Y0, Y1, . . . by

X0 = X, Y0 = Y

Xs+1 = f(Xs), Ys+1 = f(Ys).

Put Z =
⋃∞
s=0(Xs \ Ys).

Observe that if x ∈ f(Xn \ Yn) then x /∈ f(Yn) since otherwise because
f is one-to-one there must be an element y ∈ Yn with x = f(y). But since
x ∈ f(Xn \ Yn) we have a contradiction. Thus f(Xn \ Yn) = f(Xn) \ f(Yn).

Then f(Z) ⊆ Z since

f(Z) = f(
∞⋃
s=0

(Xn \ Yn))

=
∞⋃
s=0

f(Xn \ Yn)

=
∞⋃
s=0

f(Xn) \ f(Yn)

=
∞⋃
s=0

Xn+1 \ Yn+1

⊆ Z

so f(Z) and X \ Z are disjoint, Z ≈ f(Z), and

X = Z ∪ (X \ Z), Y = f(Z) ∪ (X \ Z)

hence X ≈ Y by (2).

Proof of theorem 1. Let U be a closed ball and let S = A ∪ B ∪ C ∪ Q be the
decomposition of its surface from theorem 2. We have

U = Ā ∪ B̄ ∪ C̄ ∪ Q̄ ∪ {c}

where c is the center of the ball, and for each X ⊂ S, X̄ is the set of all points
x ∈ U such that its projection onto the surface is in X . Clearly Ā ≈ B̄ ≈ C̄ ≈
B̄ ∪ C̄. Let

X = Ā ∪ Q̄ ∪ {c}, Y = U \X
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From the lemma and the above relations we have Ā ≈ B̄ ∪ C̄ ≈ Ā ∪ C̄ ≈
Ā ∪ B̄ ∪ C̄. Thus X ≈ U .

Find some rotation α (not in G) such that Q and α · Q are disjoint. Using
C̄ ≈ Ā∪ B̄∪ C̄, there exists T ⊂ C such that T̄ ≈ Q̄. Pick an arbitrary p ∈ T̄ \ C̄.
Obviously,

Ā ∪ Q̄ ∪ {c} ≈ B̄ ∪ T̄ ∪ {p}.

Since
B̄ ∪ T̄ ∪ {p} ⊆ Y ⊆ U,

we have
B̄ ∪ T̄ ∪ {p} ≈ X ≈ U

and so by the lemma
Y ≈ U.
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