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The Beginning

A Graph consists of a set V of vertices and a two place relation E
on them which is

> Anti-reflexive: Vx(—xEx)

» Symmetric: VxVy(xEy < yEx)

Graphs can be visualized by drawing the vertices as dots and
connecting pairs of vertices for which the relation E holds with an
edge. E is called the edge relation.
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The picture above represents a graph on three vertices with aEb,
bEc and —akEc.



Random Graph

To construct the random graph, take a countably infinite set, say
N. For each pair of vertices /,j € N, with / < j decide whether /Ej
holds by flipping a coin.

The resulting graph is the random graph.

We wish to show the random graph is unique, but this definition is
not useful to work with.



Random Graph

To construct the random graph, take a countably infinite set, say
N. For each pair of vertices /,j € N, with / < j decide whether /Ej
holds by flipping a coin.

The resulting graph is the random graph.

We wish to show the random graph is unique, but this definition is
not useful to work with.

And, technically, this definition is not quite right.



Property P

Consider the following property a graph may have. Call it
property P
For every pair of disjoint finite subsets A and B, there is
a vertex outside of AU B connected to everything in A
and disconnected from everything in B.

Note that no finite graph can have property P.

A back-and-forth argument shows a countable graph with this
property is unique up to isomorphism. (Suppose graphs G and H
have property P. Choose a vertex in G and in H. Choose a second
vertex in G, use property P to choose a corresponding vertex in H.
Repeat, except on even turns go from H to G.)



The Random Graph has property P

The random graph is a countable graph, so if it has property P, it
is unique up to isomorphism.

Suppose A and B are disjoint finite subsets of N. Let kK = |A| and
I = |B|. Since A and B are finite there is a natural number n
which bounds A and B above.

Consider an arbitrary element m > n. There are 2K/ ways for it to
be connected to the elements in A and B. Of these ways, exactly
one is the desired choice. Thus the probability m is the desired
vertex is ﬁ

But if m isn't the desired vertex, we have an infinite number of
choices above m to choose, and the probability that we don’t find
the desired vertex after s picks (1 — ﬁ)s goes to 0 as s — oo.

Thus the random graph has property P.



First Order theory of the R.G.

This talk is interested in the first order properties of the random
graph. We ask, what first-order sentences are true in the random
graph? If G is the random graph this is denoted as

Tre ={¢: G [ ¢}
And the set Tgg is called the theory of the random graph.

It turns out that Tgrg can be characterized as the set of sentences
true for almost all finite graphs.

The fact that any first order sentence is true in almost all or
almost no finite graphs is amazing and is called a 0-1 law.



First order properties
But! What is a first order sentence?

| will leave that undefined. Suffice to say that a sentence is a finite
sequence of symbols.

A first order statement is “No vertex is isolated"”:
Vx3y(x # y A xEy)

Another first order statement is “The graph has radius 2"

IxVy(y = x V xEy V 3z(xEz A zEy))

The statement is “The graph is connected” is not first order since
a path connecting two vertices may be arbitrarily long (though
finite).

However, the statement “The graph is connected, and the longest
path has length n" is first order.



Property P, first order redux

Property P is not first order expressible since the size of the finite
sets are not bounded.

But for each k,/ < w we can write the first order sentence
Ay, := Property P holds for every disjoint A and B
where |A| = k and |B| =/
= Vxi...Xky1...y /\X/#XJ/\/\}/I#YJ/\/\X/#YJ

i<j i<j

— 3z( N\ zExi A \(z # yj A ~zEy))))

i J

And then possessing property P is equivalent to all the statements
in the following set being true.

TP:{AkJ : k,/<w}



The theory of the random graph
The claim is that Tgg is equivalent to the theory
T* ={Vx(—xEx), Vxy(xEy <> yEx)} U Tp
In other words, every first order sentence in Tgrg is entailed by
merely knowing a graph has property P.

Proof.

Suppose there is a sentence ¢ such that both T* U {¢} and
T* U {—p} are consistent. Then there are countable models M
and N of T* with

M e and N = —p

But since both M and N are countable and have property P,
M = N. Thus N = ¢. Contradiction.



The Elementary Class of Tgrg

Once we have a theory T we can look at the models of the theory.

In the case of Tgg it comes down to looking at all graphs with
property P, by the previous slide.

One question we can ask is how many graphs are there with
property P?

We already showed that there is only one such countable graph.

A theorem in logic says if a theory has an infinite model then it has
a model of every larger cardinality. So, there are many models of
Trg. That is, there are many graphs with property P.



Cardinal Numbers

Cardinal numbers measure the size of a set.

Say |X| = |Y] if there is a bijection between X and Y.

The cardinal numbers can be thought of as equivalence classes of
sets under the relation | X| = |Y/|.

Thus there are unboundedly many cardinal numbers, and they are
linearly ordered. Some are familiar

0,1,2,3,...

After these, there are cardinals representing the sizes of infinite
sets. The smallest is Ng, which represents the size of a countable
set. e.g. |N| = No.

The next larger cardinal is denoted N;. And then N5, and so on.

0,1,2,3,..., R0, R, ..., Ry, Noiq, ...



Spectrum

Let /(T,\) denote the number of models of T with cardinality \.

We have
I(Trg,0) =0
I(Tre,1) =0
I(Tre,No) =1

I(Tre,N1) =7 (>1)



I(Trg, Y1), The number of Trs graphs of size N;

In the countable random graph every vertex has degree Ng. Two
ways to show this.

1. If not, then some vertex has degree n, and there is a first
order sentence saying there is a vertex with degree n. But this
sentence cannot be true for almost all graphs.

2. For any vertex v, use property P to build a collection of Ng
neighbors.

Extending this idea to random graphs of cardinality X1, each vertex
may have degree Ny or N;. So we can count how many of each any
given graph has. And graphs with different counts cannot be
isomorphic.



I(Tgrg, W), cont.

We have the following possibilities.

degree Ny degree N3
Ny 0
Ny 1
Ny Ng
Ny Ny
No Ny
0 Ny

In total, Ng 4+ 3 + Rg = Ng combinations.

Thus I(TRGle) > No



Unstability

But it is more subtle than just looking at the degrees of the
vertices. We need to look at how the vertices in a model are
hooked together.

In fact, a general purpose theorem tells us /( Trg,R1) = 2™,
Definition (Shelah)

A theory T is unstable if there is a formula interpreting either the
Independence Property or the Strict Order Property.

Theorem (Shelah)
If T is unstable then I(T, k) = 2" for all Kk > No.



Formulas

Before we used sentences. In a sentence, every variable is attached
to some quantifier—either V or 3.

IxVy(y = x V xEy V 3z(xEz A zEy))

If at least one variable is not attached to a quantifier then it is
called a formula.

Vy(y = x V xEy V 3z(xEz A zEy))

Here the variable x is not attached to any quantifiers, so we have a
formula ¢(x). We cannot ask whether a formula is true in a model
since we do not know how to interpret the symbol ‘x'.

Instead we can ask, which elements in a model M make the
formula true? Write this as

o(M)=f{acM:MEg(a)} C M



Definable Sets

If M is a model, a subset B C M" of n-tuples is definable if there
is a formula ¢(X,y) and a parameter b € M such that
B=¢(M,b)={ac M": Mk ¢(a,b)}

Example

The set of all triples of vertices which form a triangle is definable
via the formula p(x1, x2, x3) == A\, ;(xi Ex}).

Example
In (R, +, ) the ordering <, i.e. all pairs (a, b) such that a < b, is
definable via ¢(x, y) := 3z(z2 = y — x).



Structure of Definable Sets

The definable sets of a structure depend on the language used.

Shelah's idea is that we can count the number of models by
looking at the complexity of the definable sets. Having definable
sets which nest in intricate ways make it easy to mess up
isomorphisms between models.



IP and SOP

Consider a single formula ¢(x). For our purposes it has
complicated definable sets if it has either of these properties.

Definition
A formula (X, y) has the strict order property if there is a model

M and such that ¢ defines a partial order on the set of n-tuples
with an infinite chain.

Definition
A formula (X, y) has the independence property if there is a
model M and elements 31, 3y, ... € M such that for every finite

subset A C N there is a parameter ba € M which picks out the
set {a; : i € A}.

M= p(3i,ba)  iff i€



SOP Example

The main example of a theory having SOP is the theory of dense
linear orders without endpoints: (Q, <).

From earlier slide, the theory of real-closed fields also has SOP:
(R,0,1,+,-).

Also, the theory of arithmetic has SOP: (N, 0,1, +, ).

The theory of algebraically closed fields does not have SOP.
(C,0,1,+,-).

The random graph does not have SOP, either.



Random Graph and IP

In the case of the random graph, the formula xEy has the
independence property.

Let M be the random graph. Choose any sequence a1, az,... € M
of vertices. Property P may not guarantee all of the needed ba
elements exist inside M since we need each element to be
disconnected from an infinite number of a;. But we can use it to
construct an extension N of M which has the required elements.

Thus Tgg is unstable. Ergo, I(Trg, 1) = 2™



Map of Theories

NSOP SOP

P Random Graph Arithmetic
VS(F,) with bilinear form
Alg. closed fields with automorphism

NIP Algebraically closed fields Real-closed fields
Vector spaces linear orders
Abelian groups

For awhile model theory ignored the unstable theories for the
stable ones. That is, theories with NIP and NSOP.



Pseudo-Finiteness

The sentences in Tgre are those which are true in almost all finite
graphs.

We can do similar things for other collection of finite things, e.g.
linear orders, fields.

In the case of fields, we get the theory of the pseudo-finite fields.
Models K are characterized by (Ax)

» K is perfect

» K has exactly one algebraic extension of every degree

» every absolutely irreducible variety over K has a point in K



