
Title: Minimally Interesting
Abstract: The vagueness of the phrase “simplest possible” is shown through
the sometimes coinciding sometimes wildly diverging notions of prime model,
a model which can be embedded inside any other model of a given theory, and
a minimal model, a model which does not contain any submodels of a given
theory. Hijinks ensue. The highlight will be the exhibition of a theory with no
prime model and 2ℵ0 minimal models along with a proof of this fact due to
Baldwin, Blass, Glass, and Kueker.

This talk is about simple structures. By simple I mean “least complicated”;
nothing in this talk will refer to normal subgroups. There are two notions
which one can use to define a simple model. One way says a simple model
contains only the bare minimum to satisfy the given theory. The other says a
simple model does not contain any proper submodels. Of course, since model
theory mainly deals with infinite models, this is a slippery requirement since
the very definition of an infinite set is that there can be an injective but not
surjective map from that set into itself.

Since this is a logic talk, let me begin with the obligatory run-down of con-
cepts and terminology. Like last time lets begin groups. Everyone knows what
a group is: a set G with a binary operation × and a distinguished element e
such that the following rules are satisfied:

1. For all a, b, c ∈ G, a× (b× c) = (a× b)× c.

2. For all a ∈ G, a× e = e× a = a.

3. For all a ∈ G there is an element b ∈ G such that a× b = b× a = e.

And that is all a group is.
Usually we just write that G is a group, but sometimes we write (G,×) or

(G,×, e). Notice that there are two parts to defining a group: we first require a
set, a binary function and a distinguished element. We then require that these
things satisfy certain rules.

Moreover, maps between groups are defined so that they respect the oper-
ation. That is if G and H are groups and f : G → H is a function then we
require for all a, b ∈ G that f(a×G b) = f(a)×H f(b). One also requires that the
identity elements are mapped to each other, f(eG) = eH . In this case of groups
one can prove that from the second condition follows necessarily from the first,
but since we are aiming to generalize this idea we keep it in.

In a similar manner we can define ordered groups, rings, fields, posets, and
vector spaces and the maps between them, etc.

Model theory was characterized by Chang and Keisler as “Universal alge-
bra + Logic” in 1973. (Nowadays it is more like “algebraic geometry + logic”.)
A lot of the notions of of models is lifted almost directly from algebra with
suitable generalizations.

We begin with a language, which is a collection of symbols for constants,
relations, and functions. Given an language L we define an L-structure to be

1



a set along with constants, functions and relations on this set to interpret the
symbols in the language—much like a group begins with a set and a binary
operation.

For a set and a binary operation to be a group it must also satisfy some
rules. Instead a a fixed list of rules we will allow any collection of rules, calling
a collection consistent if there is a model which can satisfy all of them. Such
collections are called theories and they are simply a set of L-sentences. (An
L-sentence is a formula with no free variables.)

For example with groups we have the language L = {e, ·}with e a constant,
· a binary function. We would then define the theory TGroup using the axioms
listed earlier.

Given a model A and a sentence ϕ we can ask whether ϕ is satisfied in A. If
so we write A |= ϕ.

Notice both Z and S3 are models in the theory of groups but they are not
both models of the sentence σ .= ∀xy [x · y = y · x] giving the abelian condi-
tion. Using our notation Z |= σ and S3 6|= σ. If a theory allows this kind of
ambiguity then we say it is incomplete. (n.b. there is a result by Gödel say-
ing “the first-order axioms of arithmetic are incomplete”). The converse of
an incomplete theory is, naturally, a complete theory. This means the truth of
every first order sentence is determined by the theory. An easy way to get
a complete theory is to construct a model and then put every first order sen-
tence true of the model into the theory. In fact, this is so convenient there
is notation for it: given a structure A notate and define the theory of A as
Th(A) = {σ : σ is an L-sentence andA |= σ}.

The idea of two structures satisfying the same first order sentences is very
nice, and it also gives an equivalence relation called elementary equivalence.
Write A is elementary equivalent to B by A ≡ B. We already have some in-
tuitive idea of this. It can be shown that the theory of Algebraically closed
fields is complete, up to the characteristic of the field. Thus, since both Qalg,
the algebraic completion of the rationals, and C are models of this theory and
have characteristic 0 they are elementary equivalent: Qalg ≡ C. But they are
certainly not isomorphic. For starters π /∈ Qalg.

Lets consider the theory Th(Z,+). It contains the basic abelian group state-
ments. It also says that it is torsion free: for each n ∈ N there is a formula
∀x [(x + x = x) ∨ (x + x + · · · + x 6= x)]. It seems like we can’t say much with
this limited language, but more can be expressed than one would think at first.

For example, Q is not a model of this theory. Consider the sentence ∃x [x 6=
0 ∧ ∀y [y + y 6= x]] which says there is an element that is not divisible by 2.
Clearly this sentence is true in Z, but it is not true in Q since for any element
a ∈ Q we know a

2 + a
2 = a.

For another example, Z×Z is not a model of this theory by considering the
sentence ∃xy∀wvz [w+w 6= x∧ v+ v 6= y∧ z+ z 6= x+ y] This is not satisfied in
Z since it says the sum of two odd numbers is odd. But it is satisfied in Z × Z
by taking x and y to be the two generating elements (1, 0) and (0, 1).

But this talk is about simple structures. That is, even though two structures
may satisfy be elementary equivalent they could still be non-isomorphic. So,
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given a complete theory, can we find a “simplest” possible structure?
But first, we need to pin down what we mean by “simplest”. One idea is

that a simple structure should only contain the kinds of elements that abso-
lutely must contain and none of the optional elements. (e.g. C is not simple
since it contains many more transcendental elements than necessary to be an
algebraically closed field.) How do we know which elements are necessary?
Simple! A model is simple if it can be embedded into any other model of the
theory. If this is the case, the structure is called a prime model of the theory T .

Even though you understood what I mean by embedding, let me quickly de-
fine it. The definition is lifted almost exactly from group theory and is exactly
what one would expect. Given two L-structures A, B then we define an L-
embedding from one to the other as a function φ : A→ B which preserves the
interpretation of the constants, functions and relations. To wit:

1. φ(cA) = cB , for each constant c ∈ L

2. φ(fA(a1, . . . , anf
)) = fB(φ(a1), . . . , φ(anf

)) for each function f ∈ L

3. (a1, . . . , amR
) ∈ RA if and only if (φ(a1), . . . , φ(amR

)) ∈ RB for each rela-
tion symbol R ∈ L

Notice that everyL-embedding is injective since for any a, b ∈ A andL-embedding
φ : A→ B if we have B |= φ(a) = φ(b) then A |= a = b. (There is a notion of an
L-homomorphism which doesn’t require this, but we not interested in it since
what we are really concerned with is the preservation of formulas.)

And then since we care about the preservation of the truth of formulas we
also require a map π : A → B such that for every formula ψ and tuple a ∈ A
we have A |= ψ(a) if and only if B |= ψ(π(a)) is an elementary embedding. It
is called an embedding since the map π must necessarily be injective. If A is a
substructure of B and the inclusion map is an elementary embedding then we
say A is an elementary-substructure of B and write A ≺ B

And so what we really meant to say is that a prime model of a theory T is a
model which elementary embeds into any other model of that theory. (Since it
will come up again later define an algebraically prime model to be a model which
merely embeds into any other model of T ).

Another way of defining a “simple” model is as one for which no proper
subset is a model of the theory. (A minimal model of a theory T is a modelA |= T
such that for any proper substructure B ⊂ A is not a model of the theory, i.e.
B 6|= T .)

What about the relationship between prime models and minimal models?
Clearly if a theory has both a prime model and a minimal model then they
must coincide. Believe it or not, but this is about the best result we have in
general.

An example of a prime model and a minimal model coinciding is with al-
gebraically closed fields.

An example of a theory with a prime model but no minimal models is the
theory of “dense linear orders without endpoints”, i.e. Th(Q, <). In this theory
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the model Q is prime since it is a countable dense linear order, but it is not
minimal since there is a proper subset of it which is also a dense linear order,
say { a

2b : b ≥ 0}.
I will present a proof giving the opposite: a theory with no prime models

and 2ℵ0 minimal models.
First a lemma. It allows us to deduce elementary equivalence of a given

group and Z from some relatively strong group theoretic conditions.

Lemma. If A is a torsion-free abelian group and A/pA ∼= Z/pZ for each prime p then
A ≡ Z.

Proof. ...I don’t have a proof of this.

We need one other lemma for us to tell when a subgroup of an abelian group
is also an elementary sub-model. The following definition gives a closure con-
dition on subgroups saying the divisibility of elements does not change be-
tween the larger group and the subgroup.

Definition. A is a pure subgroup of B if for each a ∈ A and integer n the formula
nx = a has a solution in B if and only if it has a solution in A.

Lemma. If A and B are abelian groups and A is a pure subgroup of B then A ≡ B
implies A ≺ B

Proof. ...once again, no proof.

Our main results concern the following cleverly constructed structure.
Define Z(p) = {a

b ∈ Q : p - b}. The commutative algebraists may recognize
this as a kind of localization of Z at (p), only we are still thinking of it as a group,
not a ring. Also, for each prime p we have pZ(p)

∼= Z/pZ and pZ(q) = Z(q) if q
is a prime different from p. Now let W =

⊕
p Z(p). Observe that W is abelian

and torsion-free. By these observations W/pW ∼= Z/pZ for each prime p, and
so W ≡ Z.

Lets see if those formulas from earlier are satisfied in W . We had ∃x [x 6=
0 ∧ ∀y [y + y 6= x]] saying there is an element which is not divisible by 2. This
is satisfied in W by the element (1, 0, 0, . . .). This element being divisible by
2 would require the existence of the element ( 1

2 , 0, 0, 0, . . .), an element which
doesn’t exist since 1

2 /∈ Z(2).
The other sentence from before is 6 ∃xy∀wvz [w + w 6= x ∧ v + v 6= y ∧

z + z 6= x + y] saying there are not two “odd” elements whose sum is also
“odd”. It is always harder to show certain elements don’t exist. Suppose x =
(x2, x3, x5, . . .) and y = (y2, y3, y5, . . .). Then x+y = (x2 +y2, x3 +y3, . . .). Each
component except the first can be divided by 2. The first component is then the
sum of two odd numbers, meaning it can also be divided by 2. So this formula
does not hold in W .

The theorem I want to present is due to Baldwin, Blass, Glass, and Kueker
(1972).

Theorem. Let T be the additive theory of the integers.
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1. T has a minimal and algebraically prime model (namely Z) which is not a prime
model. Hence T has no prime model.

2. T has a model (namely
⊕

p Zp) with no minimal elementary submodels.

3. T has 2ℵ0 minimal models.

Proof. 1. Z has no proper elementary submodels so it is a minimal model of
T . In particular, nZ is not a submodel since the inclusion is map is not
elementary: Z |= ∃x[x+ x+ · · ·+ x = n] and nZ 6|= ∃x[x+ · · ·+ x = n].

By previous theorem
⊕

p Z(p) |= T . However Z cannot be embedded
as an elementary submodel of

⊕
p Z(p) since in Z 1 is not divisible by

any prime but each non-zeno member of
⊕

p Z(p) is divisible by infinitely
many primes.

2. Not shown.

3. To construct 2ℵ0 minimal models begin with a function σ from the primes
into the positive integers. Define

Qσ =
{m
n

: m,n ∈ Z, n 6= 0, and for all primes p, pσ(p) - n
}

This is a subgroup of the rationals. Show Qσ ≡ Z using our test. To
this end let x = m

npk ∈ Qσ be an arbitrary element represented with
gcd(n, p) = 1 and 0 ≤ k < σ(p). Since n and p are relatively prime n has a
multiplicative inverse modulo p. Let n′ be this inverse and let m′ = n′m.
Then x − m′

pk = m−m′n
npk = pα

npk ∈ pQσ . Thus x ≡ m′

pk (mod pQσ). If
k 6= σ(p) − 1 then m

pk ∈ pQσ since m
pk = p m

pk+1 . This means the map
Z → Qσ/pQσ given by m 7→ m

pσ(p)−1 is surjective and since it has ker-
nel pZ the first isomorphism theorem tells us Z/pZ ∼= Qσ/Qσ . Therefore
Qσ/pQσ

∼= Z/pZ and the lemma concludes Qσ ≡ Z.

Qσ is minimal since it has no pure subgroup A If m
n ∈ A is a non-zero

element and gcd(m,n) = 1 then 1
n ∈ Qσ and since A is pure 1

n ∈ A. If
1 ∈ A then so is everything dividing 1 thus A = Qσ .

Therefore Qσ is a minimal model.

Suppose τ is another map from the primes into the positive integers and
f : Qσ

∼= Qτ . For each prime p the value σ(p) − 1 is the largest power of
p which divides 1 in Qσ . Thus σ(p) − 1 is the largest power of p which
divides f(1) in Qτ . (Keep in mind that by “divides” it is meant ∃y [y+y+
· · · + y = x]). This means f(1) = ypσ(p)−1 for some y ∈ Qτ . But y, being
in Qτ can be written as a

b
1

pτ(p)−1 with gcd(b, p) = 1. If gcd(a, p) 6= 1 then
y can be written as y = py′ for some y′. Then we have f(1) = ypσ(p)−1 =
py′pσ(p)−1 = y′pσ(p). But the maximum power of p that divides f(1) is
σ(p) − 1. Thus gcd(a, p) = 1 and so we can write f(1) = αpσ(p)−τ(p)

with gcd(α, p) = 1. If τ and σ disagree on more than a finite number of
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primes than f(1) would have an infinite prime factorization. Thus σ and
τ only disagree on a finite number of primes. This means only a countable
number of maps from the primes to the positive natural numbers can
give a structure isomorphic to Qσ . Since there are ℵℵ0

0 = 2ℵ0 possible
maps there are 2ℵ0 non-isomorphic Qσ’s.

After seeing this proof and the chaos associated with the theory of (Z,+)
consider the theory of (Z,+, 1). Observe that while the element 0 was definable
in (Z,+), using the formula x + x = x, the element 1 wasn’t. In fact, the very
property of 1, that no other element divides it, cannot be expressed in a single
formula. It requires an infinite number of formulas, and the lack of a first order
formula is what causes the large number of minimal models. By adding the
constant 1 to the language the non-dividability of 1 can be rolled into the base
theory, and so any model of (Z,+, 1) must contain an element 1M for which no
other element divides. This means any model of (Z,+, 1) must contain a copy
of Z, and moreover it can be shown to be an elementary embedding. Thus Z is
a prime model of (Z,+, 1). Also, since Z does not contain any submodels, it is
also a minimal model.

Here is another theory which does not have a prime model. Consider the
language L = {Pi : i < ω} with each Pi a unary predicate symbol. Consider
finite sequences of 0’s and 1’s. (That is 2<ω). If σ ∈ 2<ω write Pσ as shorthand
for

∧
P

σ(i)
i x with P 0

i x := ¬Pix and P 1
i := Pix. Let the theory say that there

is an element satisfying Pσ for each σ ∈ 2<ω. Since this is a countable lan-
guage there are theorems saying there is a model of countable cardinality. But
a countable model cannot contain enough elements to realize every possible
infinite sequence 2ω.
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