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0.1 Introduction

These notes will cover a few primality testing algorithms. There are many
such, some prove that a number is prime, others prove that a number is
composite. To prove a number composite is easy—just provide a nontriv-
ial factor of it. Since division is a polynomial time operation, this shows
that COMPOSITE, the decision problem of recognizing composite num-
bers, is in NP, so PRIMES is in co-NP. To prove a number prime is a lit-
tle more subtle. Suffice to say, there is a primeness certificate which can
be verified in polynomial time, so PRIMES is in NP. Thus PRIMES is in
NP∩ co-NP and this was the state of affairs until 2003, when a polynomial
time algorithm was discovered to decide PRIMES.

0.2 Definitions

By integer we mean the set of positive and negative whole numbers, in-
cluding zero. We symbolize them by Z = {. . . ,−2,−1, 0, 1, 2, . . .}. Let
N = {0, 1, 2, 3, . . .} be the non-negative integers (i.e. natural numbers).

Given two integers a and b we say that a divides b (in symbols a|b) iff
there is an integer k such that ak = b.

An integer n is prime iff the only divisors of n are 1 and n. If an integer
is not prime we say that it is composite.

The fundamental theorem of arithmetic says that every integer can be
decomposed into a product of a unique collection of prime numbers, that
is, the primes are the building blocks of multiplication. Formally we say
that every n ∈ Z can be written uniquely as a product n = pα1

1 pα2
2 · · · p

αk
k
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for some k > 0, powers α1, . . . , αk > 0 and distinct primes p1, . . . , pk. Of
course, calculating the factorization may not be easy or quick.

0.3 Trial Division

The simplest way to test for the integer n for primeness is to see if any
numbers less than n divide it. After some thought, one sees that only
primes up to

√
n need to be tested, since if a, b >

√
n then ab >

√
n
√

n = n.
When n is “small”, this algorithm is not too slow, and most of the follow-
ing algorithms use trial division for such cases. The problem is that when
n in “large” the search space is also “large”.

0.4 Euclid’s algorithm

Given two integers a and b we know that 1 divides both. The question
is whether any other numbers also divide both. Since there may be more
than one, we ask for the largest. We say an integer d is the greatest com-
mon divisor of a and b iff d divides both a and b and for every e ∈ Z, if e|a
and e|b then e|d. Abbreviate greatest common divisor as “gcd” and notate
it as d = gcd(a, b) = (a, b). Both forms may be used, the first being more
computer science-ish, the latter is more classical.

If gcd(a, b) = 1 then we say that a and b are coprime.
In light of the fundamental theorem of arithmetic, by finding the gcd

of two integers we are really constructing the largest common substring
between the two prime factorizations. Since factoring can be difficult it is
surprising that the gcd can be calculated rather easily.

Algorithm 1 gcd(x, y)

Require: x, y ∈ Z with x ≥ y ≥ 0 and x > 0
1: while y > 0 do
2: x, y ← y, x mod y
3: return x

The proof that algorithm gcd returns the gcd of x and y is omitted.
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0.5 Faster GCD

Euclid does not have the last word on gcd algorithms; there are faster
methods for computing the gcd of two numbers. Here is one, not the
fastest, but still clever (see Crandall, Pomerence ch.9). It is called the Bi-
nary GCD Algorithm since it is especially suitable for numbers in binary
representation. We start with some simple identities involving the gcd.

Theorem. (Silver, Terzian, Stein)

1. If x, y are both even then gcd(x, y) = 2 ∗ gcd(x/2, y/2)

2. If x is even and y is not then gcd(x, y) = gcd(x/2, y)

3. (Euclid) gcd(x, y) = gcd(x− y, y)

4. If x, y are both odd then |x− y| is even and less than max{x, y}

In the given implementation, let v(m) = max{k : 2k|m} to be the log-
arithm of the maximum power of 2 which divides m. The algorithm is
listed in the figure.

Algorithm 2 Binary gcd(x, y)

1: [Initialization]
2: b = min{v(x), v(y)}
3: x = x/(2v(x))
4: y = y/(2v(y))
5: [Loop]
6: while x 6= y do
7: x, y = min{x, y}, |x− y| /(2v(|x−y|))
8: return 2b ∗ x

0.6 Euler Phi

The Euler phi function φ(n) gives the number of positive integers less than
and coprime to n. For example, φ(5) = 4 since (5, 1) = (5, 2) = (5, 3) =
(5, 4) = 1, and φ(12) = 4 since only 1, 5, 7, and 11 are less than and coprime
to 12. It satisfies the following properties:

1. φ(1) = 1

3



2. If p is prime and k ≥ 1 then φ(pk) = pk−1(p− 1)

3. If m and n are coprime, φ(mn) = φ(m)φ(n).

Using these relations we can calculate φ(12) without counting: φ(12) =
φ(4)φ(3) = φ(22) · 2 = 2 · 2 = 4. The relations also give an easy way to
calculate φ(n) given a prime factorization of n.

0.7 Group Theory and Modular Arithmetic

A group is given by a tuple (G, ∗) where G is a set and ∗ : G×G→ G is a
binary operation with the following properties for a fixed constant e ∈ G:

1. (identity) e ∗ x = x ∗ e for all x ∈ G

2. (inverse) For every x ∈ G there is an element x′ ∈ G such that x∗x′ =
x′ ∗ x = e

3. (associativity) x ∗ (y ∗ z) = (x ∗ y) ∗ z for every x, y, z ∈ G

We will denote the group (G, ∗) by G if there is no confusion over what
the operation is.

A few examples of groups:

• (Z, +) the group of integers under addition

• (Zn, +) The group of integers under addition modulo n for any n ∈ N

• (Sn, ◦) The group of permutations of n elements were ◦ is function
composition

• (Q, +) The group of rational numbers under addition

• (R, +) The group of real numbers under addition

• (R \ {0}, ·) The group of nonzero real numbers under multiplication

Given a group G, a subgroup H of G, denoted H ≤ G, is a group whose
set of elements is a subset of G and whose operation is a restriction of G’s
to that subset. Given an element a ∈ G we can form the set 〈a〉 = {an :
n ∈ Z} where an is shorthand for a ∗ a ∗ · · · ∗ a(n times). This set forms a
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subgroup of G and is called the subgroup generated by a. If there is an
element g ∈ G such that 〈g〉 = G then we say G is cyclic.

If G is a group, let the order of G be the cardinality of the underlying set
of G, and write |G| for this number. (N.B. some authors write #G for this).
If |G| < ∞ then we say G is a finite group. It is a theorem of Lagrange
that if G is a finite group and H is a subgroup of G then the order of H
divides the order of G. For what follows, the most important consequence
of Lagrange’s theorem is that if H is a proper subgroup of a finite group G
then |H| ≤ 1

2
|G|.

We will mainly be concerned with two families of groups. One is
(Zn, +) with n ∈ N, as seen above. These groups are cyclic with gener-
ator 1, finite and have order |Zn| = n.

The other family of groups is (Z∗
n, ·) with n ∈ N and

Z∗
n = {x : 1 ≤ x < n and gcd(x, n) = 1}

under multiplication modulo n. The coprime requirement ensures the ex-
istence of inverses. These groups are finite with order |Z∗

n| = φ(n), where
φ(n) is the Euler phi function evaluated at n.

Observe that |Z∗
n| = n − 1 if and only if n is prime. In this case, Z∗

n is
also cyclic. Thus, giving a generator for Z∗

n provides a certificate that n is
prime. This is the idea behind showing PRIMES ∈ NP .

The group Z∗
n is not necessarily cyclic for arbitrary n. For example,

the group Z∗
8 is not cyclic. In fact, the groups Z∗

n which are cyclic can be
characterized precisely.

Theorem. Z∗
n is cyclic if and only if n is either 2, 4, pk, or 2pk where k is any

positive integer and p is any odd prime.

I was going to add a proof of this theorem, but it would take us on a
long digression. If you want to find it look for “primitive roots” in any
number theory textbook.

0.8 Fermat’s Theorem

Theorem. Given a prime p and element x ∈ Z∗
p

xp−1 ≡ 1 (mod p)
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This is because the number of elements in the subgroup generated by x
must divide the number of elements in Z∗

p, which is p− 1 when p is prime.
As you might expect, the argument can be extended to Z∗

n for arbitrary n.

Theorem. (Euler’s Theorem) Given positive integer n and element x ∈ Z∗
n

xφ(n) ≡ 1 (mod n)

0.9 Chinese Remainder Theorem

Theorem. Let n1, . . . , nk be a sequence of pairwise coprime numbers with prod-
uct n =

∏k
i=1 ni. For any sequence r1 ∈ Zn1 , . . . , rk ∈ Znk

there is a unique
r ∈ Zn with r = ri (mod ni) for 1 ≤ i ≤ k.

0.10 Legendre and Jacobi Symbols

An element a ∈ Z∗
n is said to be a quadratic residue is there exists an

x ∈ Z∗
n such that a = x2 (mod n). In other words, a quadratic residue is an

element with a square root.

Theorem. (Euler’s Criterion) For a prime p an element a ∈ Z∗
p is a quadratic

residue if and only if a
p−1
2 = 1 (mod p)

Given a prime p and element a ∈ Z∗
p we define the Legendre symbol

to be
[

a
p

]
=

{
1 if a is a quadratic residue (mod p),

−1 otherwise.

It turns out that
[

a
p

]
= a

p−1
2 since a

p−1
2 is either 1 or −1.

We can extend the Legendre symbol to any odd number, the extension
is called the Jacobi symbol. For any odd integer n with prime factoriza-
tion pα1

1 · · · p
αk
k , and integer a coprime to n define the Jacobi symbol to be[

a
n

]
=

∏k
i=1

[
a
pi

]αi

. As with the gcd, we do not need to know a complete
factorization to compute the Jacobi symbol for two integers. We use the
following relations to derive an algorithm

Theorem. Given integers a,b, and n, the Jacobi symbol satisfies the following
properties, when it is defined:

1.
[

ab
n

]
=

[
a
n

] [
b
n

]
.
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2. If a ≡ b (mod n) then
[

a
n

]
=

[
b
n

]
.

3. If a and n are both odd and coprime then
[

a
n

]
= (−1)

a−1
2

n−1
2

[
n
a

]
.

4.
[

1
n

]
= 1.

5.
[

2
n

]
=

{
−1 n ≡ 3, 5 (mod 8)

1 n ≡ 1, 7 (mod 8)

Algorithm 3 Jacobi evaluation(a, n)

Require: a > 0, n odd, and gcd(a, n) = 1
1: r ← 1
2: while a 6= 1 do
3: if a is even then
4: Let a = 2kd where d is odd
5: if k is odd and (n ≡ 3 or 5 (mod 8)) then
6: r ← −r
7: a← d
8: else if a is odd and a > n then
9: a← a mod n

10: else {a is odd and a < n}
11: r ← (−1)

a−1
2

n−1
2 r

12: a, n← n, a
13: return r

The Jacobi symbol is nice, since it is defined over all odd denominators,
but reduces to the Legendre symbol for prime denominators. This makes
it easy to calculate.

0.11 Prime Testing

The general idea in testing for primeness is to take a statement of the form
“If p is prime then S(p)” and look at its, possibly erroneous, converse “If
S(p) then p is prime”. If S holds for some non-prime value n then say n is
an S-pseudoprime. Some properties S are better than others, in the sense
of not having very many pseudoprimes.

7



Fermat’s test, derived from Fermat’s theorem above, is one possible
prime test. In fact, it is a very famous test, so famous that Fermat-pseudoprimes
have their own name: Carmichael numbers. The formal definition states
that n is a Carmichael number if for all a ∈ Z∗

n

an−1 ≡ 1 (mod n).

0.12 Solovay-Strassen Composite Proving

Finally, a randomized algorithm.

Algorithm 4 Solovay-Strassen Composite Proving(n)

Require: Odd number n.
1: Choose a ∈ Zn \ {0} uniformly at random.
2: if gcd(a, n) 6= 1 then
3: return COMPOSITE
4: else if

[
a
n

]
6≡ a

n−1
2 (mod n) then

5: return COMPOSITE
6: else
7: return PRIME

We wish to show that the algorithm is always correct when it returns
“COMPOSITE” and if the input is composite, then it returns “PRIME”
with probability at most 1/2. (It follows from the first statement that if the
input is prime then it returns “PRIME”.)

Theorem. If the SS algorithm returns “COMPOSITE” then n is composite.

Proof. If SS returns “COMPOSITE” then it chose an element a ∈ Zn with
either gcd(a, n) 6= 1 or

[
a
n

]
6≡ a

n−1
2 (mod n), both of which are only possible

if n is composite.

For any odd number n, define the set Jn by

Jn = {a ∈ Z∗
n :

[a

n

]
≡ a

n−1
2 (mod n)}.

Observe that Jn = Z∗
n for prime n. Now consider n composite.

Lemma. If n is composite then |Jn| ≤ 1
2
|Z∗

n|.
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Proof. It is clear Jn ⊆ Z∗
n is a group, since

[
a
n

] [
b
n

]
=

[
ab
n

]
. All we need to

do is show that it is a proper subgroup.
Suppose that Jn = Z∗

n. Let pk1
1 · · · pkt

t be a prime factorization of n. Put
q = pk1

1 and m = n/q. Since n is odd, p1 6= 2, so Z∗
q is cyclic. Let g be a

generator of Z∗
q . Choose an element a ∈ Z∗

n that satisfies the following

a ≡ g (mod q)

a ≡ 1 (mod m).

Such an element exists by the Chinese Remainder theorem. Observe that
a ≡ 1 (mod pi) for all i ≥ 2. There are now two cases to consider: either
k1 = 1 or k1 > 1.

If k1 = 1 then q = p1. Since n is not prime, m 6= 1. Compute the Jacobi
symbol for a and n: [a

n

]
=

t∏
i=1

[
a

pi

]ki

=

[
a

q

] t∏
i=2

[
a

pi

]ki

=

[
g

q

] t∏
i=2

[
1

pi

]ki

=

[
g

q

]
.

Because q is prime the Jacobi symbol reduces to the Legendre symbol. The
generator of Z∗

q cannot be a quadratic residue making
[

a
n

]
=

[
g
q

]
= −1.

Since Jn = Z∗
n by assumption, we have

a
n−1

2 ≡ −1 (mod n).

And since m divides n,

a
n−1

2 ≡ −1 (mod m).

But this contradicts our choice a ≡ 1 (mod m).
Now suppose k1 > 1. By assumption Jn = Z∗

n. Thus,

a
n−1

2 ≡ ±1 (mod n)
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squaring both sides
an−1 ≡ 1 (mod n)

and substituting for a (since q|n)

gn−1 ≡ 1 (mod q).

Since g is a generator for Z∗
q its order is φ(q). By the above relation φ(q)|(n−

1). Since k1 ≥ 2 the prime p1 divides φ(q). Thus p1 divides n − 1. But p1

also divides n giving a contradiction since no prime can divide both n and
n− 1.

Theorem. Given an odd integer n, the algorithm will always return “PRIME”
if n is prime and will return “COMPOSITE” with probability at least 1/2 if n is
composite.

Proof. If n is composite then the algorithm will return “PRIME” if it chooses
an element a ∈ Jn. Since a is chosen uniformly at random, the probability
of making a bad choice for a is

|Jn|
|Zn| − 1

<
|Jn|
|Z∗

n|
≤

1
2
|Z∗

n|
|Z∗

n|
=

1

2
.

0.13 Elliptic Curves

The previous algorithm tests whether a number is prime or not, but it
makes a one-sided error with its answers. Hence, a better name for it may
be a composite-prover, since that answer is always correct. The Goldwasser-
Kilian algorithm provides a proof certificate along with an affirmative an-
swer. It does this by relating the primeness of the integer in question to the
primeness of a smaller number. After enough recursive steps the numbers
are small enough to be checked for primeness using trial-division or other
basic tests.

Given a field F whose characteristic is not 2 or 3, and two elements
A, B ∈ F with 4A3+27B2 6= 0 we can look at solutions in F to the equation
y2 = x3 + Ax + B. These solutions will be in two variables (x, y), and
amazingly enough, it is possible to put a group structure after including
one extra element I which represents the point at “infinity”. The intuition
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behind the new group operation on these elements is very geometrical,
but it can also be described algorithmically.

Given an elliptic curve (A, B) and a field F let EA,B(F ) represent the
associated elliptic curve group. Since we will be working with the fields Zp

with p prime, we will shorten this notation to EA,B(p). For some reason it is
standard to write #p(A, B) instead of |EA,B(p)| to represent the cardinality
of the elliptic group.

There is also a notion of multiplication. Given an integer q > 0 and
element L ∈ EA,B(n) define

[q]L =


L if q = 1,
[q/2](L + L) if q is even,
L + [q − 1]L if q is odd.

Similar to the above approaches, given an integer n the idea is to asso-
ciate the question of n being prime to a property of an associated group.
In this case the group we associate is some elliptic curve group (A, B) over
Zn. There are many possible groups, we pick one for which #p(A, B) = 2q
where q is prime. How do we know q is prime? We run Solovay-Strassen
on it enough times to get a high probability of primeness. Keep in mind
that elliptic curves need to be defined over a field, and we don’t know if
Zn is a field or not—indeed, if we did we would already know whether or
not n is prime. We just assume Zn is a field and upon encountering an in-
consistency we know our assumption was wrong. At this stage it might be
better to call EA,B(n) a pseudocurve, and this is the standard terminology
for such things. The main theorem behind the algorithm is thus:

Theorem (Goldwasser-Kilian). Let n > 1 be an integer coprime to 6, (A, B)
be a pseudocurve over Zn, and L ∈ EA,B(n) with L 6= I . Suppose [q]L = I for
some q > n1/2 + 2n1/4 + 1. Then if q is prime, n is prime.

The resulting algorithm is described by Richard Crandall and Carl Pomer-
ence in their book Prime Numbers as follows.

Given a nonsquare integer n > 232 strongly suspected of be-
ing prime (in particular, gcd(n, 6) = 1 and presumably n has
already passed a probable prime test), this algorithm attempts
to reduce the issue of primality of n to that of a smaller number
q. The algorithm returns either the assertion “n is composite”
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or the assertion “If q is prime then n is prime,” where q is an
integer smaller than n.
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