Commuting Elements

Let G be a group, possibly non-abelian. Suppose there are three elements x, y, z in G with the following properties

- x has order m, where m is odd
- y and z both have order 2
- x and y commute with each other (that is $x y=y x$)
- z commutes with the product $x y$ (that is $z x y=x y z$)

Can you show that z commutes with x and y individually. That is, show $x z=z x$ and $y z=z y$.

Can you answer the same question supposing m is even?
Solution: Since $x y$ and z commute $(z x y)^{k}=z^{k}(x y)^{k}=z^{k} x^{k} y^{k}$, the latter equality comes from x and y commuting. Ditto for $(x y z)^{k}=x^{k} y^{k} z^{k}$. Since m is odd,

$$
(z x y)^{m}=z^{m} x^{m} y^{m}=z y
$$

And

$$
(x y z)^{m}=x^{m} y^{m} z^{m}=y z
$$

So $y z=(x y z)^{m}=(z x y)^{m}=z y$, which shows z and y commute. For x and z observe

$$
z x y=x y z=x z y
$$

so

$$
z x=x z
$$

And we are done.
If m is even then the argument above won't work since then $(z x y)^{m}=1$.

