Equal Areas

Consider the curve $y=2 x-3 x^{3}$ and the line $y=c$ in the first quadrant pictured below. Find the value of c which makes both the shaded regions have equal areas.

Solution: Let $f(x)=2 x-3 x^{3}$ and let (a, c) and (b, c) with $0<a<b$ give the points of intersection of f and $y=c$. The areas desired are then given by

$$
\int_{0}^{a} c-f(x) d x \quad \text { and } \quad \int_{a}^{b} f(x)-c d x .
$$

Requiring the areas to be equal is equivalent to requiring the following integral to be zero

$$
\int_{0}^{b} c-f(x) d x=\int_{0}^{a} c-f(x) d x-\int_{a}^{b} f(x)-c d x=0 .
$$

Integrate the left hand side to get $\left[c x-x^{2}+\frac{3}{4} x^{4}\right]_{0}^{b}=b\left(c-b+\frac{3}{4} b^{3}\right)=\frac{b}{4}(3 c-$ $2 b+c-f(b))$. Because $f(b)=c$ (by definition) we have $\frac{b}{4}(3 c-2 b)=0$. Thus $b=\frac{3}{2} c$ since $b>0$. Now solve for c. Once again $f(b)=c$ so $0=c-f(b)=$ $c-f\left(\frac{3}{2} c\right)=c-3 c+\frac{\frac{3}{}^{4}}{2^{3}} c^{3}=2 c\left(\frac{9}{4} c+1\right)\left(\frac{9}{4} c-1\right)$ giving the solution $c=\frac{4}{9}$ since $c>1$.

